When iterating over a ZAP object, we're almost always certain to iterate
over the entire object. If there are multiple leaf blocks, we can
realize a performance win by issuing reads for all the leaf blocks in
parallel when the iteration begins.
For example, if we have 10,000 snapshots, "zfs destroy -nv
pool/fs@1%9999" can take 30 minutes when the cache is cold. This change
provides a >3x performance improvement, by issuing the reads for all ~64
blocks of each ZAP object in parallel.
Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
External-issue: DLPX-58347
Closes#8862
We've observed that on some highly fragmented pools, most metaslab
allocations are small (~2-8KB), but there are some large, 128K
allocations. The large allocations are for ZIL blocks. If there is a
lot of fragmentation, the large allocations can be hard to satisfy.
The most common impact of this is that we need to check (and thus load)
lots of metaslabs from the ZIL allocation code path, causing sync writes
to wait for metaslabs to load, which can take a second or more. In the
worst case, we may not be able to satisfy the allocation, in which case
the ZIL will resort to txg_wait_synced() to ensure the change is on
disk.
To provide a workaround for this, this change adds a tunable that can
reduce the size of ZIL blocks.
External-issue: DLPX-61719
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8865
Historically while doing performance testing we've noticed that IOPS
can be significantly reduced when all vdevs in the pool are hitting
the zfs_mg_fragmentation_threshold percentage. Specifically in a
hypothetical pool with two vdevs, what can happen is the following:
Vdev A would go above that threshold and only vdev B would be used.
Then vdev B would pass that threshold but vdev A would go below it
(we've been freeing from A to allocate to B). The allocations would
go back and forth utilizing one vdev at a time with IOPS taking a hit.
Empirically, we've seen that our vdev selection for allocations is
good enough that fragmentation increases uniformly across all vdevs
the majority of the time. Thus we set the threshold percentage high
enough to avoid hitting the speed bump on pools that are being pushed
to the edge. We effectively disable its effect in the majority of the
cases but we don't remove (at least for now) just in case we hit any
weird behavior in the future.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8859
Exported and documented a new module parameter.
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: DHE <git@dehacked.net>
Closes#8706
When receiving a DRR_OBJECT record the receive_object() function
needs to determine how to handle a spill block associated with the
object. It may need to be removed or kept depending on how the
object was modified at the source.
This determination is currently accomplished using a heuristic which
takes in to account the DRR_OBJECT record and the existing object
properties. This is a problem because there isn't quite enough
information available to do the right thing under all circumstances.
For example, when only the block size changes the spill block is
removed when it should be kept.
What's needed to resolve this is an additional flag in the DRR_OBJECT
which indicates if the object being received references a spill block.
The DRR_OBJECT_SPILL flag was added for this purpose. When set then
the object references a spill block and it must be kept. Either
it is update to date, or it will be replaced by a subsequent DRR_SPILL
record. Conversely, if the object being received doesn't reference
a spill block then any existing spill block should always be removed.
Since previous versions of ZFS do not understand this new flag
additional DRR_SPILL records will be inserted in to the stream.
This has the advantage of being fully backward compatible. Existing
ZFS systems receiving this stream will recreate the spill block if
it was incorrectly removed. Updated ZFS versions will correctly
ignore the additional spill blocks which can be identified by
checking for the DRR_SPILL_UNMODIFIED flag.
The small downside to this approach is that is may increase the size
of the stream and of the received snapshot on previous versions of
ZFS. Additionally, when receiving streams generated by previous
unpatched versions of ZFS spill blocks may still be lost.
OpenZFS-issue: https://www.illumos.org/issues/9952
FreeBSD-issue: https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=233277
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8668
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Laager <rlaager@wiktel.com>
Closes#8641
1. Support QAT when ZFS is root file-system:
When ZFS module is loaded before QAT started, the QAT can
be started again in post-process, e.g.:
echo 0 > /sys/module/zfs/parameters/zfs_qat_compress_disable
echo 0 > /sys/module/zfs/parameters/zfs_qat_encrypt_disable
echo 0 > /sys/module/zfs/parameters/zfs_qat_checksum_disable
2. Verify alder checksum of the de-compress result
3. Allocate Digest, IV and AAD buffer in physical contiguous
memory by QAT_PHYS_CONTIG_ALLOC.
4. Update the documentation for zfs_qat_compress_disable,
zfs_qat_checksum_disable, zfs_qat_encrypt_disable.
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Weigang Li <weigang.li@intel.com>
Signed-off-by: Chengfeix Zhu <chengfeix.zhu@intel.com>
Closes#8323Closes#8610
UNMAP/TRIM support is a frequently-requested feature to help
prevent performance from degrading on SSDs and on various other
SAN-like storage back-ends. By issuing UNMAP/TRIM commands for
sectors which are no longer allocated the underlying device can
often more efficiently manage itself.
This TRIM implementation is modeled on the `zpool initialize`
feature which writes a pattern to all unallocated space in the
pool. The new `zpool trim` command uses the same vdev_xlate()
code to calculate what sectors are unallocated, the same per-
vdev TRIM thread model and locking, and the same basic CLI for
a consistent user experience. The core difference is that
instead of writing a pattern it will issue UNMAP/TRIM commands
for those extents.
The zio pipeline was updated to accommodate this by adding a new
ZIO_TYPE_TRIM type and associated spa taskq. This new type makes
is straight forward to add the platform specific TRIM/UNMAP calls
to vdev_disk.c and vdev_file.c. These new ZIO_TYPE_TRIM zios are
handled largely the same way as ZIO_TYPE_READs or ZIO_TYPE_WRITEs.
This makes it possible to largely avoid changing the pipieline,
one exception is that TRIM zio's may exceed the 16M block size
limit since they contain no data.
In addition to the manual `zpool trim` command, a background
automatic TRIM was added and is controlled by the 'autotrim'
property. It relies on the exact same infrastructure as the
manual TRIM. However, instead of relying on the extents in a
metaslab's ms_allocatable range tree, a ms_trim tree is kept
per metaslab. When 'autotrim=on', ranges added back to the
ms_allocatable tree are also added to the ms_free tree. The
ms_free tree is then periodically consumed by an autotrim
thread which systematically walks a top level vdev's metaslabs.
Since the automatic TRIM will skip ranges it considers too small
there is value in occasionally running a full `zpool trim`. This
may occur when the freed blocks are small and not enough time
was allowed to aggregate them. An automatic TRIM and a manual
`zpool trim` may be run concurrently, in which case the automatic
TRIM will yield to the manual TRIM.
Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Contributions-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Contributions-by: Tim Chase <tim@chase2k.com>
Contributions-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8419Closes#598
When Multihost is enabled, and a pool is imported, uberblock writes
include ub_mmp_delay to allow an importing node to calculate the
duration of an activity test. This value, is not enough information.
If zfs_multihost_fail_intervals > 0 on the node with the pool imported,
the safe minimum duration of the activity test is well defined, but does
not depend on ub_mmp_delay:
zfs_multihost_fail_intervals * zfs_multihost_interval
and if zfs_multihost_fail_intervals == 0 on that node, there is no such
well defined safe duration, but the importing host cannot tell whether
mmp_delay is high due to I/O delays, or due to a very large
zfs_multihost_interval setting on the host which last imported the pool.
As a result, it may use a far longer period for the activity test than
is necessary.
This patch renames ub_mmp_sequence to ub_mmp_config and uses it to
record the zfs_multihost_interval and zfs_multihost_fail_intervals
values, as well as the mmp sequence. This allows a shorter activity
test duration to be calculated by the importing host in most situations.
These values are also added to the multihost_history kstat records.
It calculates the activity test duration differently depending on
whether the new fields are present or not; for importing pools with
only ub_mmp_delay, it uses
(zfs_multihost_interval + ub_mmp_delay) * zfs_multihost_import_intervals
Which results in an activity test duration less sensitive to the leaf
count.
In addition, it makes a few other improvements:
* It updates the "sequence" part of ub_mmp_config when MMP writes
in between syncs occur. This allows an importing host to detect MMP
on the remote host sooner, when the pool is idle, as it is not limited
to the granularity of ub_timestamp (1 second).
* It issues writes immediately when zfs_multihost_interval is changed
so remote hosts see the updated value as soon as possible.
* It fixes a bug where setting zfs_multihost_fail_intervals = 1 results
in immediate pool suspension.
* Update tests to verify activity check duration is based on recorded
tunable values, not tunable values on importing host.
* Update tests to verify the expected number of uberblocks have valid
MMP fields - fail_intervals, mmp_interval, mmp_seq (sequence number),
that sequence number is incrementing, and that uberblock values match
tunable settings.
Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#7842
Before sequential scrub patches ZFS never aggregated I/Os above 128KB.
Sequential scrub bumped that to 1MB, supposedly to reduce number of
head seeks for spinning disks. But for SSDs it makes little to no
sense, especially on FreeBSD, where due to MAXPHYS limitation device
will likely still see bunch of 128KB I/Os instead of one large.
Having more strict aggregation limit for SSDs allows to avoid
allocation of large memory buffer and copy to/from it, that is a
serious problem when throughput reaches gigabytes per second.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Closes#8494
By default, when multihost is enabled for a pool, the pool is
suspended if (zfs_multihost_fail_intervals*zfs_multihost_interval) ms
pass without a successful MMP write. This is the recommended
configuration.
The default value for zfs_multihost_fail_intervals has been 5, and the
default value for zfs_multihost_interval has been 1000, so pool
suspension occurred at 5 seconds.
There have been multiple cases where a single misbehaving device in a
pool triggered a SCSI reset, and all I/O paused for 5-6 seconds. This
in turn caused MMP to suspend the pool.
In the cases observed, the rest of the devices were healthy and the
pool was otherwise correctly performing I/O. The reset was handled
correctly by ZFS, and by suspending the pool MMP made replacing the
device more difficult as well as forcing the host to be rebooted.
Increase the default value of zfs_multihost_fail_intervals to 10, so
that MMP tolerates up to 10 seconds of failed MMP writes before
suspending the pool.
Increase the default value of zfs_multihost_import_intervals to 20, to
maintain the 2:1 safety factor. This results in a force import taking
approximately 20 seconds when MMP is enabled, with default values.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Andreas Dilger <andreas.dilger@whamcloud.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#7709Closes#8495
abd_alloc() normally does scatter allocations, thus solving the problem
that ABD originally set out to: the bulk of ZFS's allocations are single
pages, which are faster to allocate and free, and don't suffer from
internal fragmentation (and the inability to reclaim memory because some
buffers in the slab are still allocated).
However, the current code does linear allocations for 4KB and smaller
allocations, defeating the purpose of ABD.
Scatter ABD's use at least one page each, so sub-page allocations waste
some space when allocated as scatter (e.g. 2KB scatter allocation wastes
half of each page). Using linear ABD's for small allocations means that
they will be put on slabs which contain many allocations. This can
improve memory efficiency, but it also makes it much harder for ARC
evictions to actually free pages, because all the buffers on one slab
need to be freed in order for the slab (and underlying pages) to be
freed. Typically, 512B and 1KB kmem caches have 16 buffers per slab, so
it's possible for them to actually waste more memory than scatter (one
page per buf = wasting 3/4 or 7/8th; one buf per slab = wasting
15/16th).
Spill blocks are typically 512B and are heavily used on systems running
selinux with the default dnode size and the `xattr=sa` property set.
By default we will use linear allocations for 512B and 1KB, and scatter
allocations for larger (1.5KB and up).
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: DHE <git@dehacked.net>
Reviewed-by: Chunwei Chen <tuxoko@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#8455
Add the zio_deadman_log_all tunable to print all zios in
zio_deadman_impl(). Also, in all cases, display the depth of the
zio relative to the original parent zio. This is meant to be used by
developers to gain diagnostic information for hangs which don't involve
fully set-up zio trees or are otherwise stuck or hung in an early stage.
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#8362
Deletion throttle currently does not account for holes in a file.
This means that it can activate when it shouldn't.
To fix it we switch the throttle to be based on the number of
L1 blocks we will have to dirty when freeing
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
Closes#7725Closes#7888
This patch is an async implementation of the existing sync
zfs_unlinked_drain() function. This function is called at mount time and
is responsible for freeing znodes that we didn't get to freeing before.
We don't have to hold mounting of the dataset until the unlinked list is
fully drained as is done now. Since we can process the unlinked set
asynchronously this results in a better user experience when mounting a
dataset with entries in the unlinked set.
Reviewed by: Jorgen Lundman <lundman@lundman.net>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
Closes#8142
= Old behavior
For vdev sizes 100GB to 50TB we keep ~200 metaslabs per
vdev and the metaslab size grows from 512MB to 256GB.
For vdev's bigger than that we start increasing the
number of metaslabs until we hit the 128K limit.
= New Behavior
For vdev sizes 100GB to 3TB we keep ~200 metaslabs per
vdev and the metaslab size grows from 512MB to 16GB.
For vdev's bigger than that we start increasing the
number of metaslabs until we hit the 128K limit.
= Reasoning
The old behavior makes metaslabs grow in size when
the vdev range is between 3TB (ms_size 16GB) and
32PB (ms_size 256GB). Even though keeping the number
of metaslabs is good in terms of potential number of
I/Os per TXG, these bigger metaslabs take longer
to be loaded and after they are loaded they can
take up a lot of memory because of their range trees.
This change tries to put a boundary in memory and
loading time for the specific range of vdev sizes.
Reviewed-by: Matt Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Don Brady <don.brady@delphix.com>
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Closes#8324
Increase the default allowed number of reconstruction attempts.
There's not an exact right number for this setting. It needs
to be set large enough to cover any realistic failure scenarios
and small enough to avoid stalling the IO pipeline and invoking
the dead man detection.
The current value of 256 was empirically determined to be too
low based on multi-day runs of ztest. The fault injection code
would inject more damage than could be reconstructed given the
relatively small number of attempts. However, in all observed
cases the block could be reconstructed using a slightly higher
limit.
Based on local testing increasing the default value to 4096 was
determined to strike the best balance. Checking all combinations
takes less than 10s in the worst case, and has so far eliminated
the vast majority of false positives detected by ztest. This
delay is roughly on par with how long retries may be performed
to a misbehaving HDD and was deemed to be reasonable. Better to
err on the side of a brief delay rather than fail to reconstruct
the data.
Lastly, the -Y flag has been added to zdb to make it easy to try all
possible combinations when performing split block reconstruction.
For badly damaged blocks with 18 splits, they can be fully enumerated
within a few minutes. This has been done to ensure permanent errors
are never incorrectly reported when ztest verifies the pool with zdb.
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#8271
PROBLEM
========
The first access to a block incurs a performance penalty on some platforms
(e.g. AWS's EBS, VMware VMDKs). Therefore we recommend that volumes are
"thick provisioned", where supported by the platform (VMware). This can
create a large delay in getting a new virtual machines up and running (or
adding storage to an existing Engine). If the thick provision step is
omitted, write performance will be suboptimal until all blocks on the LUN
have been written.
SOLUTION
=========
This feature introduces a way to 'initialize' the disks at install or in the
background to make sure we don't incur this first read penalty.
When an entire LUN is added to ZFS, we make all space available immediately,
and allow ZFS to find unallocated space and zero it out. This works with
concurrent writes to arbitrary offsets, ensuring that we don't zero out
something that has been (or is in the middle of being) written. This scheme
can also be applied to existing pools (affecting only free regions on the
vdev). Detailed design:
- new subcommand:zpool initialize [-cs] <pool> [<vdev> ...]
- start, suspend, or cancel initialization
- Creates new open-context thread for each vdev
- Thread iterates through all metaslabs in this vdev
- Each metaslab:
- select a metaslab
- load the metaslab
- mark the metaslab as being zeroed
- walk all free ranges within that metaslab and translate
them to ranges on the leaf vdev
- issue a "zeroing" I/O on the leaf vdev that corresponds to
a free range on the metaslab we're working on
- continue until all free ranges for this metaslab have been
"zeroed"
- reset/unmark the metaslab being zeroed
- if more metaslabs exist, then repeat above tasks.
- if no more metaslabs, then we're done.
- progress for the initialization is stored on-disk in the vdev’s
leaf zap object. The following information is stored:
- the last offset that has been initialized
- the state of the initialization process (i.e. active,
suspended, or canceled)
- the start time for the initialization
- progress is reported via the zpool status command and shows
information for each of the vdevs that are initializing
Porting notes:
- Added zfs_initialize_value module parameter to set the pattern
written by "zpool initialize".
- Added zfs_vdev_{initializing,removal}_{min,max}_active module options.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Wren Kennedy <john.kennedy@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: loli10K <ezomori.nozomu@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Signed-off-by: Tim Chase <tim@chase2k.com>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/9102
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c3963210ebCloses#8230
Porting Notes:
* Add options to zfs-module-parameters(5) man page.
* zfs_nocacheflush move to vdev.c instead of vdev_disk.c, since
the latter doesn't get built for user space.
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Patrick Mooney <patrick.mooney@joyent.com>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: George Melikov <mail@gmelikov.ru>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/9963
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f8fdf68125Closes#8186
* Detect IO errors during device removal
While device removal cannot verify the checksums of individual
blocks during device removal, it can reasonably detect hard IO
errors from the leaf vdevs. Failure to perform this error
checking can result in device removal completing successfully,
but moving no data which will permanently corrupt the pool.
Situation 1: faulted/degraded vdevs
In the configuration shown below, the removal of mirror-0 will
permanently corrupt the pool. Device removal will preferentially
copy data from 'vdev1 -> vdev3' and from 'vdev2 -> vdev4'. Which
in this case will result in nothing being copied since one vdev
in each of those groups in unavailable. However, device removal
will complete successfully since all IO errors are ignored.
tank DEGRADED 0 0 0
mirror-0 DEGRADED 0 0 0
/var/tmp/vdev1 FAULTED 0 0 0 external fault
/var/tmp/vdev2 ONLINE 0 0 0
mirror-1 DEGRADED 0 0 0
/var/tmp/vdev3 ONLINE 0 0 0
/var/tmp/vdev4 FAULTED 0 0 0 external fault
This issue is resolved by updating the source child selection
logic to exclude unreadable leaf vdevs. Additionally, unwritable
destination child vdevs which can never succeed are skipped to
prevent generating a large number of write IO errors.
Situation 2: individual hard IO errors
During removal if an unexpected hard IO error is encountered when
either reading or writing the child vdev the entire removal
operation is cancelled. While it may be possible to reconstruct
the data after removal that cannot be guaranteed. The only
strictly safe thing to do is to cancel the removal.
As a future improvement we may want to instead suspend the removal
process and allow the damaged region to be retried. But that work
is left for another time, hard IO errors during the removal process
are expected to be exceptionally rare.
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #6900Closes#8161
This patch adds a new slow I/Os (-s) column to zpool status to show the
number of VDEV slow I/Os. This is the number of I/Os that didn't
complete in zio_slow_io_ms milliseconds. It also adds a new parsable
(-p) flag to display exact values.
NAME STATE READ WRITE CKSUM SLOW
testpool ONLINE 0 0 0 -
mirror-0 ONLINE 0 0 0 -
loop0 ONLINE 0 0 0 20
loop1 ONLINE 0 0 0 0
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#7756Closes#6885
Porting notes:
* Renamed zfs_dirty_data_sync_pct to zfs_dirty_data_sync_percent and
changed the type to be consistent with the other dirty module params.
* Updated zfs-module-parameters.5 accordingly.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://illumos.org/issues/9617
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7928f4baCloses#7976
Due to a flaw in 4589f3ae the number of unique combinations
could be calculated incorrectly. This could result in the
random combinations reconstruction being used when it would
have been possible to check all combinations.
This change fixes the unique combinations calculation and
simplifies the reconstruction logic by maintaining a per-
segment list of unique copies.
The vdev_indirect_splits_damage() function was introduced
to validate both the enumeration and random reconstruction
logic with ztest. It is implemented such it will never
make a known recoverable block unrecoverable.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #6900Closes#7934
Allocation Classes add the ability to have allocation classes in a
pool that are dedicated to serving specific block categories, such
as DDT data, metadata, and small file blocks. A pool can opt-in to
this feature by adding a 'special' or 'dedup' top-level VDEV.
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Alek Pinchuk <apinchuk@datto.com>
Reviewed-by: Håkan Johansson <f96hajo@chalmers.se>
Reviewed-by: Andreas Dilger <andreas.dilger@chamcloud.com>
Reviewed-by: DHE <git@dehacked.net>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Gregor Kopka <gregor@kopka.net>
Reviewed-by: Kash Pande <kash@tripleback.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Signed-off-by: Don Brady <don.brady@delphix.com>
Closes#5182
Assertion failed in arc_buf_destroy() when concurrently reading
block with checksum error.
Porting notes:
* The ability to zinject decompression errors has been added, but
this only works at the zio_decompress() level, where we have all
of the info we need to match against the user's zinject options.
* The decompress_fault test has been added to test the new zinject
functionality
* We attempted to set zio_decompress_fail_fraction to (1 << 18) in
ztest for further test coverage. Although this did uncover a few
low priority issues, this unfortuantely also causes ztest to
ASSERT in many locations where the code is working correctly since
it is designed to fail on IO errors. Developers can manually set
this variable with the '-o' option to find and debug issues.
Authored by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Matt Ahrens <mahrens@delphix.com>
Ported-by: Tom Caputi <tcaputi@datto.com>
OpenZFS-issue: https://illumos.org/issues/9403
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/fa98e487a9Closes#7822
This project's goal is to make read-heavy channel programs and zfs(1m)
administrative commands faster by caching all the metadata that they will
need in the dbuf layer. This will prevent the data from being evicted, so
that any future call to i.e. zfs get all won't have to go to disk (very
much). There are two parts:
The dbuf_metadata_cache. We identify what to put into the cache based on
the object type of each dbuf. Caching objset properties os
{version,normalization,utf8only,casesensitivity} in the objset_t. The reason
these needed to be cached is that although they are queried frequently,
they aren't stored in a dbuf type which we can easily recognize and cache in
the dbuf layer; instead, we have to explicitly store them. There's already
existing infrastructure for maintaining cached properties in the objset
setup code, so I simply used that.
Performance Testing:
- Disabled kmem_flags
- Tuned dbuf_cache_max_bytes very low (128K)
- Tuned zfs_arc_max very low (64M)
Created test pool with 400 filesystems, and 100 snapshots per filesystem.
Later on in testing, added 600 more filesystems (with no snapshots) to make
sure scaling didn't look different between snapshots and filesystems.
Results:
| Test | Time (trunk / diff) | I/Os (trunk / diff) |
+------------------------+---------------------+---------------------+
| zpool import | 0:05 / 0:06 | 12.9k / 12.9k |
| zfs get all (uncached) | 1:36 / 0:53 | 16.7k / 5.7k |
| zfs get all (cached) | 1:36 / 0:51 | 16.0k / 6.0k |
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Alek Pinchuk <apinchuk@datto.com>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
OpenZFS-issue: https://illumos.org/issues/9337
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7dec52fCloses#7668
Datasets that are deeply nested (~100 levels) are impractical. We just
put a limit of 50 levels to newly created datasets. Existing datasets
should work without a problem.
The problem can be seen by attempting to create a dataset using the -p
option with many levels:
panic[cpu0]/thread=ffffff01cd282c20: BAD TRAP: type=8 (#df Double fault) rp=ffffffff
fffffffffbc3aa60 unix:die+100 ()
fffffffffbc3ab70 unix:trap+157d ()
ffffff00083d7020 unix:_patch_xrstorq_rbx+196 ()
ffffff00083d7050 zfs:dbuf_rele+2e ()
...
ffffff00083d7080 zfs:dsl_dir_close+32 ()
ffffff00083d70b0 zfs:dsl_dir_evict+30 ()
ffffff00083d70d0 zfs:dbuf_evict_user+4a ()
ffffff00083d7100 zfs:dbuf_rele_and_unlock+87 ()
ffffff00083d7130 zfs:dbuf_rele+2e ()
... The block above repeats once per directory in the ...
... create -p command, working towards the root ...
ffffff00083db9f0 zfs:dsl_dataset_drop_ref+19 ()
ffffff00083dba20 zfs:dsl_dataset_rele+42 ()
ffffff00083dba70 zfs:dmu_objset_prefetch+e4 ()
ffffff00083dbaa0 zfs:findfunc+23 ()
ffffff00083dbb80 zfs:dmu_objset_find_spa+38c ()
ffffff00083dbbc0 zfs:dmu_objset_find+40 ()
ffffff00083dbc20 zfs:zfs_ioc_snapshot_list_next+4b ()
ffffff00083dbcc0 zfs:zfsdev_ioctl+347 ()
ffffff00083dbd00 genunix:cdev_ioctl+45 ()
ffffff00083dbd40 specfs:spec_ioctl+5a ()
ffffff00083dbdc0 genunix:fop_ioctl+7b ()
ffffff00083dbec0 genunix:ioctl+18e ()
ffffff00083dbf10 unix:brand_sys_sysenter+1c9 ()
Porting notes:
* Added zfs_max_dataset_nesting module option with documentation.
* Updated zfs_rename_014_neg.ksh for Linux.
* Increase the zfs.sh stack warning to 15K. Enough time has passed
that 16K can be reasonably assumed to be the default value. It
was increased in the 3.15 kernel released in June of 2014.
Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
OpenZFS-issue: https://www.illumos.org/issues/9330
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/757a75aCloses#7681
Details about the motivation of this feature and its usage can
be found in this blogpost:
https://sdimitro.github.io/post/zpool-checkpoint/
A lightning talk of this feature can be found here:
https://www.youtube.com/watch?v=fPQA8K40jAM
Implementation details can be found in big block comment of
spa_checkpoint.c
Side-changes that are relevant to this commit but not explained
elsewhere:
* renames members of "struct metaslab trees to be shorter without
losing meaning
* space_map_{alloc,truncate}() accept a block size as a
parameter. The reason is that in the current state all space
maps that we allocate through the DMU use a global tunable
(space_map_blksz) which defauls to 4KB. This is ok for metaslab
space maps in terms of bandwirdth since they are scattered all
over the disk. But for other space maps this default is probably
not what we want. Examples are device removal's vdev_obsolete_sm
or vdev_chedkpoint_sm from this review. Both of these have a
1:1 relationship with each vdev and could benefit from a bigger
block size.
Porting notes:
* The part of dsl_scan_sync() which handles async destroys has
been moved into the new dsl_process_async_destroys() function.
* Remove "VERIFY(!(flags & FWRITE))" in "kernel.c" so zhack can write
to block device backed pools.
* ZTS:
* Fix get_txg() in zpool_sync_001_pos due to "checkpoint_txg".
* Don't use large dd block sizes on /dev/urandom under Linux in
checkpoint_capacity.
* Adopt Delphix-OS's setting of 4 (spa_asize_inflation =
SPA_DVAS_PER_BP + 1) for the checkpoint_capacity test to speed
its attempts to fill the pool
* Create the base and nested pools with sync=disabled to speed up
the "setup" phase.
* Clear labels in test pool between checkpoint tests to avoid
duplicate pool issues.
* The import_rewind_device_replaced test has been marked as "known
to fail" for the reasons listed in its DISCLAIMER.
* New module parameters:
zfs_spa_discard_memory_limit,
zfs_remove_max_bytes_pause (not documented - debugging only)
vdev_max_ms_count (formerly metaslabs_per_vdev)
vdev_min_ms_count
Authored by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9166
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7159fdb8Closes#7570
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Giuseppe Di Natale <guss80@gmail.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: bunder2015 <omfgbunder@gmail.com>
Signed-off-by: ajs124 <git@ajs124.de>
Closes#7649
This patch adds tunables for modifying the maximum memory limit and
maximum instruction limit that can be specified when running a channel
program.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov
Reviewed-by: Sara Hartse <sara.hartse@delphix.com>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
External-issue: LX-1085
Closes#7618
Device removal allocates a new location for each allocated segment on
the disk that's being removed. Each allocation results in one entry in
the mapping table, which maps from old location + length to new
location. When a fragmented disk is removed, this can result in a large
number of mapping entries, and thus a large amount of memory consumed by
the mapping table. In the worst real-world cases, we've seen around 1GB
of RAM per 1TB of storage removed.
We can improve on this situation by allocating larger segments, which
span across both allocated and free regions of the device being removed.
By including free regions in the allocation (and thus mapping), we
reduce the number of mapping entries. For example, if we have a 4K
allocation followed by 1K free and then 4K allocated, we would allocate
4+1+4 = 9KB, and then move the entire region (including allocated and
free parts). In this case we used one mapping where previously we would
have used two, but often the ratio is much higher (up to 20:1 in
real-world use). We then need to mark the regions that were free on the
removing device as free in the new locations, and also obsolete in the
mapping entry.
This method preserves the fragmentation of the removing device, rather
than consolidating its allocated space into a small number of chunks
where possible. But it results in drastic reduction of memory used by
the mapping table - around 20x in the most-fragmented cases.
In the most fragmented real-world cases, this reduces memory used by the
mapping from ~1GB to ~50MB of RAM per 1TB of storage removed. Less
fragmented cases will typically also see around 50-100MB of RAM per 1TB
of storage.
Porting notes:
* Add the following as module parameters:
* zfs_condense_indirect_vdevs_enable
* zfs_condense_max_obsolete_bytes
* Document the following module parameters:
* zfs_condense_indirect_vdevs_enable
* zfs_condense_max_obsolete_bytes
* zfs_condense_min_mapping_bytes
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9486
OpenZFS-commit: https://github.com/ahrens/illumos/commit/07152e142e44c
External-issue: DLPX-57962
Closes#7536
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123Closes#7459
Authored by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Porting Notes:
* Added tuning to man page.
* Test case changes dropped, default behavior unchanged.
OpenZFS-issue: https://www.illumos.org/issues/9256
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/32356b3c56Closes#7470
We should use zfs_dbgmsg instead of spa_dbgmsg. Or at least,
metaslab_condense() should call zfs_dbgmsg because it's important and
rare enough to always log. It's possible that the message in
zio_dva_allocate() would be too high-frequency for zfs_dbgmsg.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Serapheim Dimitropoulos <serapheim.dimitro@delphix.com>
Reviewed by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Richard Lowe <richlowe@richlowe.net>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Patch Notes:
* Removed ZFS_DEBUG_SPA from zfs-module-parameters.5
OpenZFS-issue: https://www.illumos.org/issues/9236
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/cfaba7f668Closes#7467
Authored by: Matt Ahrens <Matt.Ahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/9280
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/243952cCloses#7445
Remove duplicate segment copies to minimize the possible search
space for reconstruction. Once reduced an accurate assessment can
be made regarding the difficulty in reconstructing the block.
Also, ztest will now run zdb with
zfs_reconstruct_indirect_combinations_max set to 1000000 in an attempt
to avoid checksum errors.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#6900
Mirrors are supposed to provide redundancy in the face of whole-disk
failure and silent damage (e.g. some data on disk is not right, but ZFS
hasn't detected the whole device as being broken). However, the current
device removal implementation bypasses some of the mirror's redundancy.
Note that in no case is incorrect data returned, but we might get a
checksum error when we should have been able to find the right data.
There are two underlying problems:
1. When we remove a mirror device, we only read one side of the mirror.
Since we can't verify the checksum, this side may be silently bad, but
the good data is on the other side of the mirror (which we didn't read).
This can cause the removal to "bake in" the busted data – all copies of
the data in the new location are the same, busted version, while we left
the good version behind.
The fix for this is to read and copy both sides of the mirror. If the
old and new vdevs are mirrors, we will read both sides of the old
mirror, and write each copy to the corresponding side of the new mirror.
(If the old and new vdevs have a different number of children, we will
do this as best as possible.) Even though we aren't verifying checksums,
this ensures that as long as there's a good copy of the data, we'll have
a good copy after the removal, even if there's silent damage to one side
of the mirror. If we're removing a mirror that has some silent damage,
we'll have exactly the same damage in the new location (assuming that
the new location is also a mirror).
2. When we read from an indirect vdev that points to a mirror vdev, we
only consider one copy of the data. This can lead to reduced effective
redundancy, because we might read a bad copy of the data from one side
of the mirror, and not retry the other, good side of the mirror.
Note that the problem is not with the removal process, but rather after
the removal has completed (having copied correct data to both sides of
the mirror), if one side of the new mirror is silently damaged, we
encounter the problem when reading the relocated data via the indirect
vdev. Also note that the problem doesn't occur when ZFS knows that one
side of the mirror is bad, e.g. when a disk entirely fails or is
offlined.
The impact is that reads (from indirect vdevs that point to mirrors) may
return a checksum error even though the good data exists on one side of
the mirror, and scrub doesn't repair all data on the mirror (if some of
it is pointed to via an indirect vdev).
The fix for this is complicated by "split blocks" - one logical block
may be split into two (or more) pieces with each piece moved to a
different new location. In this case we need to read all versions of
each split (one from each side of the mirror), and figure out which
combination of versions results in the correct checksum, and then repair
the incorrect versions.
This ensures that we supply the same redundancy whether you use device
removal or not. For example, if a mirror has small silent errors on all
of its children, we can still reconstruct the correct data, as long as
those errors are at sufficiently-separated offsets (specifically,
separated by the largest block size - default of 128KB, but up to 16MB).
Porting notes:
* A new indirect vdev check was moved from dsl_scan_needs_resilver_cb()
to dsl_scan_needs_resilver(), which was added to ZoL as part of the
sequential scrub work.
* Passed NULL for zfs_ereport_post_checksum()'s zbookmark_phys_t
parameter. The extra parameter is unique to ZoL.
* When posting indirect checksum errors the ABD can be passed directly,
zfs_ereport_post_checksum() is not yet ABD-aware in OpenZFS.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9290
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/591Closes#6900
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1ebCloses#6900
When using 16MB blocks the send/recv queue's aren't quite big
enough. This change leaves the default 16M queue size which a
good value for most pools. But it additionally ensures that the
queue sizes are at least twice the allowed zfs_max_recordsize.
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#7365Closes#7404
With compressed ARC (bug 6950) we use up to 25% of our CPU to decompress
indirect blocks, under a workload of random cached reads. To reduce this
decompression cost, we would like to increase the size of the dbuf cache so
that more indirect blocks can be stored uncompressed.
If we are caching entire large files of recordsize=8K, the indirect blocks
use 1/64th as much memory as the data blocks (assuming they have the same
compression ratio). We suggest making the dbuf cache be 1/32nd of all memory,
so that in this scenario we should be able to keep all the indirect blocks
decompressed in the dbuf cache. (We want it to be more than the 1/64th that
the indirect blocks would use because we need to cache other stuff in the dbuf
cache as well.)
In real world workloads, this won't help as dramatically as the example above,
but we think it's still worth it because the risk of decreasing performance is
low. The potential negative performance impact is that we will be slightly
reducing the size of the ARC (by ~3%).
Porting Notes:
* Added modules options to zfs-module-parameters.5 man page.
* Preserved scaling based on target ARC size rather than max ARC size.
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Prashanth Sreenivasa <pks@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed-by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/9188
OpenZFS-commit: https://github.com/openzfs/openzfs/pull/564
Upstream bug: DLPX-46942
Closes#7273
When it's set, a DTL range will be cleared even if its scan/scrub had
errors. This allows to work around resilver/scrub upon import when the
pool has errors.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#7293
This patch adds support for acceleration of AES-GCM encryption
with Intel Quick Assist Technology.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chengfeix Zhu <chengfeix.zhu@intel.com>
Signed-off-by: Weigang Li <weigang.li@intel.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7282
Change checksum & IO delay ratelimit thresholds from 5/sec to 20/sec.
This allows zed to actually trigger if a bunch of these events arrive in
a short period of time (zed has a threshold of 10 events in 10 sec).
Previously, if you had, say, 100 checksum errors in 1 sec, it would get
ratelimited to 5/sec which wouldn't trigger zed to fault the drive.
Also, convert the checksum and IO delay thresholds to module params for
easy testing.
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#7252
Currently, the DMU relies on ZIO layer compression to free LO
dnode blocks that no longer have objects in them. However,
raw receives disable all compression, meaning that these blocks
can never be freed. In addition to the obvious space concerns,
this could also cause incremental raw receives to fail to mount
since the MAC of a hole is different from that of a completely
zeroed block.
This patch corrects this issue by adding a special case in
zio_write_compress() which will attempt to compress these blocks
to a hole even if ZIO_FLAG_RAW_ENCRYPT is set. This patch also
removes the zfs_mdcomp_disable tunable, since tuning it could
cause these same issues.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7198
zfs_arc_p_aggressive_disable is no more. This PR removes docs
and module parameters for zfs_arc_p_aggressive_disable.
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Richard Elling <Richard.Elling@RichardElling.com>
Closes#7135
Currently, the ARC exposes 2 tunables (zfs_arc_min_prefetch_ms
and zfs_arc_min_prescient_prefetch_ms) which are documented
to be specified in milliseconds. However, the code actually
uses the values as though they were in seconds. This patch
adjusts the code to match the names and documentation of the
tunables.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#7126
* Remove 'zfs snap' from zfs help message (OpenZFS sync)
* Update zfs(8) to suggest 'snap' can be used as an alias for 'snapshot'
* Enforce 80 columns limit in help messages
* Remove zfs_disable_dup_eviction from zfs-module-parameters(5)
* Expose zfs_scan_max_ext_gap as a kernel module parameter.
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes#7087
The intent of this patch is extend the existing deadman code
such that it's flexible enough to be used by both ztest and
on production systems. The proposed changes include:
* Added a new `zfs_deadman_failmode` module option which is
used to dynamically control the behavior of the deadman. It's
loosely modeled after, but independant from, the pool failmode
property. It can be set to wait, continue, or panic.
* wait - Wait for the "hung" I/O (default)
* continue - Attempt to recover from a "hung" I/O
* panic - Panic the system
* Added a new `zfs_deadman_ziotime_ms` module option which is
analogous to `zfs_deadman_synctime_ms` except instead of
applying to a pool TXG sync it applies to zio_wait(). A
default value of 300s is used to define a "hung" zio.
* The ztest deadman thread has been re-enabled by default,
aligned with the upstream OpenZFS code, and then extended
to terminate the process when it takes significantly longer
to complete than expected.
* The -G option was added to ztest to print the internal debug
log when a fatal error is encountered. This same option was
previously added to zdb in commit fa603f82. Update zloop.sh
to unconditionally pass -G to obtain additional debugging.
* The FM_EREPORT_ZFS_DELAY event which was previously posted
when the deadman detect a "hung" pool has been replaced by
a new dedicated FM_EREPORT_ZFS_DEADMAN event.
* The proposed recovery logic attempts to restart a "hung"
zio by calling zio_interrupt() on any outstanding leaf zios.
We may want to further restrict this to zios in either the
ZIO_STAGE_VDEV_IO_START or ZIO_STAGE_VDEV_IO_DONE stages.
Calling zio_interrupt() is expected to only be useful for
cases when an IO has been submitted to the physical device
but for some reasonable the completion callback hasn't been
called by the lower layers. This shouldn't be possible but
has been observed and may be caused by kernel/driver bugs.
* The 'zfs_deadman_synctime_ms' default value was reduced from
1000s to 600s.
* Depending on how ztest fails there may be no cache file to
move. This should not be considered fatal, collect the logs
which are available and carry on.
* Add deadman test cases for spa_deadman() and zio_wait().
* Increase default zfs_deadman_checktime_ms to 60s.
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed by: Thomas Caputi <tcaputi@datto.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#6999
Parameter was removed in d3c2ae1c08
(OpenZFS 6950 - ARC should cache compressed data)
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: DHE <git@dehacked.net>
Closes#7043
Replace "percent" with "%", add bold to default values.
Reviewed-by: bunder2015 <omfgbunder@gmail.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes#7018
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: John Kennedy <jwk404@gmail.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Igor Kozhukhov <igor@dilos.org>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Robert Mustacchi <rm@joyent.com>
Ported-by: Prakash Surya <prakash.surya@delphix.com>
PROBLEM
=======
There's a race condition that exists if `zil_free_lwb` races with either
`zil_commit_waiter_timeout` and/or `zil_lwb_flush_vdevs_done`.
Here's an example panic due to this bug:
> ::status
debugging crash dump vmcore.0 (64-bit) from ip-10-110-205-40
operating system: 5.11 dlpx-5.2.2.0_2017-12-04-17-28-32b6ba51fb (i86pc)
image uuid: 4af0edfb-e58e-6ed8-cafc-d3e9167c7513
panic message:
BAD TRAP: type=e (#pf Page fault) rp=ffffff0010555970 addr=60 occurred in module "zfs" due to a NULL pointer dereference
dump content: kernel pages only
> $c
zio_shrink+0x12()
zil_lwb_write_issue+0x30d(ffffff03dcd15cc0, ffffff03e0730e20)
zil_commit_waiter_timeout+0xa2(ffffff03dcd15cc0, ffffff03d97ffcf8)
zil_commit_waiter+0xf3(ffffff03dcd15cc0, ffffff03d97ffcf8)
zil_commit+0x80(ffffff03dcd15cc0, 9a9)
zfs_write+0xc34(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0)
fop_write+0x5b(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0)
write+0x250(42, fffffd7ff4832000, 2000)
sys_syscall+0x177()
If there's an outstanding lwb that's in `zil_commit_waiter_timeout`
waiting to timeout, waiting on it's waiter's CV, we must be sure not to
call `zil_free_lwb`. If we end up calling `zil_free_lwb`, then that LWB
may be freed and can result in a use-after-free situation where the
stale lwb pointer stored in the `zil_commit_waiter_t` structure of the
thread waiting on the waiter's CV is used.
A similar situation can occur if an lwb is issued to disk, and thus in
the `LWB_STATE_ISSUED` state, and `zil_free_lwb` is called while the
disk is servicing that lwb. In this situation, the lwb will be freed by
`zil_free_lwb`, which will result in a use-after-free situation when the
lwb's zio completes, and `zil_lwb_flush_vdevs_done` is called.
This race condition is prevented in `zil_close` by calling `zil_commit`
before `zil_free_lwb` is called, which will ensure all outstanding (i.e.
all lwb's in the `LWB_STATE_OPEN` and/or `LWB_STATE_ISSUED` states)
reach the `LWB_STATE_DONE` state before the lwb's are freed
(`zil_commit` will not return untill all the lwb's are
`LWB_STATE_DONE`).
Further, this race condition is prevented in `zil_sync` by only calling
`zil_free_lwb` for lwb's that do not have their `lwb_buf` pointer set.
All lwb's not in the `LWB_STATE_DONE` state will have a non-null value
for this pointer; the pointer is only cleared in
`zil_lwb_flush_vdevs_done`, at which point the lwb's state will be
changed to `LWB_STATE_DONE`.
This race *is* present in `zil_suspend`, leading to this bug.
At first glance, it would appear as though this would not be true
because `zil_suspend` will call `zil_commit`, just like `zil_close`, but
the problem is that `zil_suspend` will set the zilog's `zl_suspend`
field prior to calling `zil_commit`. Further, in `zil_commit`, if
`zl_suspend` is set, `zil_commit` will take a special branch of logic
and use `txg_wait_synced` instead of performing the normal `zil_commit`
logic.
This call to `txg_wait_synced` might be good enough for the data to
reach disk safely before it returns, but it does not ensure that all
outstanding lwb's reach the `LWB_STATE_DONE` state before it returns.
This is because, if there's an lwb "stuck" in
`zil_commit_waiter_timeout`, waiting for it's lwb to timeout, it will
maintain a non-null value for it's `lwb_buf` field and thus `zil_sync`
will not free that lwb. Thus, even though the lwb's data is already on
disk, the lwb will be left lingering, waiting on the CV, and will
eventually timeout and be issued to disk even though the write is
unnecessary.
So, after `zil_commit` is called from `zil_suspend`, we incorrectly
assume that there are not outstanding lwb's, and proceed to free all
lwb's found on the zilog's lwb list. As a result, we free the lwb that
will later be used `zil_commit_waiter_timeout`.
SOLUTION
========
The solution to this, is to ensure all outstanding lwb's complete before
calling `zil_free_lwb` via `zil_destroy` in `zil_suspend`. This patch
accomplishes this goal by forcing the normal `zil_commit` logic when
called from `zil_sync`.
Now, `zil_suspend` will call `zil_commit_impl` which will always use the
normal logic of waiting/issuing lwb's to disk before it returns. As a
result, any lwb's outstanding when `zil_commit_impl` is called will be
guaranteed to reach the `LWB_STATE_DONE` state by the time it returns.
Further, no new lwb's will be created via `zil_commit` since the zilog's
`zl_suspend` flag will be set. This will force all new callers of
`zil_commit` to use `txg_wait_synced` instead of creating and issuing
new lwb's.
Thus, all lwb's left on the zilog's lwb list when `zil_destroy` is
called will be in the `LWB_STATE_DONE` state, and we'll avoid this race
condition.
OpenZFS-issue: https://www.illumos.org/issues/8909
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ece62b6f8dCloses#6940
Currently, scrubs and resilvers can take an extremely
long time to complete. This is largely due to the fact
that zfs scans process pools in logical order, as
determined by each block's bookmark. This makes sense
from a simplicity perspective, but blocks in zfs are
often scattered randomly across disks, particularly
due to zfs's copy-on-write mechanisms.
This patch improves performance by splitting scrubs
and resilvers into a metadata scanning phase and an IO
issuing phase. The metadata scan reads through the
structure of the pool and gathers an in-memory queue
of I/Os, sorted by size and offset on disk. The issuing
phase will then issue the scrub I/Os as sequentially as
possible, greatly improving performance.
This patch also updates and cleans up some of the scan
code which has not been updated in several years.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Authored-by: Saso Kiselkov <saso.kiselkov@nexenta.com>
Authored-by: Alek Pinchuk <apinchuk@datto.com>
Authored-by: Tom Caputi <tcaputi@datto.com>
Signed-off-by: Tom Caputi <tcaputi@datto.com>
Closes#3625Closes#6256
Update zfs module parameters man5 with missing parameter details
for multiple tunings.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Signed-off-by: Alex Braunegg <alex.braunegg@gmail.com>
Closes#6785
8558 lwp_create() returns EAGAIN on system with more than 80K ZFS filesystems
On a system with more than 80K ZFS filesystems, we've seen cases
where lwp_create() will start to fail by returning EAGAIN. The
problem being, for each of those 80K ZFS filesystems, a taskq will
be created for each dataset as part of the ZIL for each dataset.
Porting Notes:
- The new nomem taskq kstat was dropped.
- Added module options and documentation for new tunings
zfs_zil_clean_taskq_nthr_pct, zfs_zil_clean_taskq_minalloc,
zfs_zil_clean_taskq_maxalloc, and zfs_sync_taskq_batch_pct.
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/8558
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/216d772
8602 remove unused "dp_early_sync_tasks" field from "dsl_pool" structure
Reviewed by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/8602
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/2bcb545Closes#6779
It's often useful to have access to txg history for debugging
purposes. This patch changes the default from 0 to 100 TXGs
worth of history preserved.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Alek Pinchuk <apinchuk@datto.com>
Closes#6691
* ztest.1 man page: fix typo
* zfs-module-parameters.5 man page: fix grammar
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Closes#6492
Redefine the SET_ERROR macro in terms of __dprintf() so the error
return codes get logged as both tracepoint events (if tracepoints are
enabled) and as ZFS debug log entries. This also allows us to use
the same definition of SET_ERROR() in kernel and user space.
Define a new debug flag ZFS_DEBUG_SET_ERROR=512 that may be bitwise
or'd into zfs_flags. Setting this flag enables both dprintf() and
SET_ERROR() messages in the debug log. That is, setting
ZFS_DEBUG_SET_ERROR and ZFS_DEBUG_DPRINTF|ZFS_DEBUG_SET_ERROR are
equivalent (this was done for sake of simplicity). Leaving
ZFS_DEBUG_SET_ERROR unset suppresses the SET_ERROR() messages which
helps avoid cluttering up the logs.
To enable SET_ERROR() logging, run:
echo 1 > /sys/module/zfs/parameters/zfs_dbgmsg_enable
echo 512 > /sys/module/zfs/parameters/zfs_flags
Remove the zfs_set_error_class tracepoints event class since
SET_ERROR() now uses __dprintf(). This sacrifices a bit of
granularity when selecting individual tracepoint events to enable but
it makes the code simpler.
Include file, function, and line number information in debug log
entries. The information is now added to the message buffer in
__dprintf() and as a result the zfs_dprintf_class tracepoints event
class was changed from a 4 parameter interface to a single parameter.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#6400
Add multihost=on|off pool property to control MMP. When enabled
a new thread writes uberblocks to the last slot in each label, at a
set frequency, to indicate to other hosts the pool is actively imported.
These uberblocks are the last synced uberblock with an updated
timestamp. Property defaults to off.
During tryimport, find the "best" uberblock (newest txg and timestamp)
repeatedly, checking for change in the found uberblock. Include the
results of the activity test in the config returned by tryimport.
These results are reported to user in "zpool import".
Allow the user to control the period between MMP writes, and the
duration of the activity test on import, via a new module parameter
zfs_multihost_interval. The period is specified in milliseconds. The
activity test duration is calculated from this value, and from the
mmp_delay in the "best" uberblock found initially.
Add a kstat interface to export statistics about Multiple Modifier
Protection (MMP) updates. Include the last synced txg number, the
timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV
label that received the last MMP update, and the VDEV path. Abbreviated
output below.
$ cat /proc/spl/kstat/zfs/mypool/multihost
31 0 0x01 10 880 105092382393521 105144180101111
txg timestamp mmp_delay vdev_guid vdev_label vdev_path
20468 261337 250274925 68396651780 3 /dev/sda
20468 261339 252023374 6267402363293 1 /dev/sdc
20468 261340 252000858 6698080955233 1 /dev/sdx
20468 261341 251980635 783892869810 2 /dev/sdy
20468 261342 253385953 8923255792467 3 /dev/sdd
20468 261344 253336622 042125143176 0 /dev/sdab
20468 261345 253310522 1200778101278 2 /dev/sde
20468 261346 253286429 0950576198362 2 /dev/sdt
20468 261347 253261545 96209817917 3 /dev/sds
20468 261349 253238188 8555725937673 3 /dev/sdb
Add a new tunable zfs_multihost_history to specify the number of MMP
updates to store history for. By default it is set to zero meaning that
no MMP statistics are stored.
When using ztest to generate activity, for automated tests of the MMP
function, some test functions interfere with the test. For example, the
pool is exported to run zdb and then imported again. Add a new ztest
function, "-M", to alter ztest behavior to prevent this.
Add new tests to verify the new functionality. Tests provided by
Giuseppe Di Natale.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes#745Closes#6279
The volmode property may be set to control the visibility of ZVOL
block devices.
This allow switching ZVOL between three modes:
full - existing fully functional behaviour (default)
dev - hide partitions on ZVOL block devices
none - not exposing volumes outside ZFS
Additionally the new zvol_volmode module parameter can be used to
control the default behaviour.
This functionality can be used, for instance, on "backup" pools to
avoid cluttering /dev with unneeded zd* devices.
Original-patch-by: mav <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
FreeBSD-commit: https://github.com/freebsd/freebsd/commit/dd28e6bbCloses#1796Closes#3438Closes#6233
In arc_evict_state() we start pruning when arc_dnode_size >
arc_dnode_limit, i.e. arc_dnode_limit is a ceiling rather than a
floor.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chris Dunlop <chris@onthe.net.au>
Closes#6228
- After some ZIL changes 6 years ago zil_slog_limit got partially broken
due to zl_itx_list_sz not updated when async itx'es upgraded to sync.
Actually because of other changes about that time zl_itx_list_sz is not
really required to implement the functionality, so this patch removes
some unneeded broken code and variables.
- Original idea of zil_slog_limit was to reduce chance of SLOG abuse by
single heavy logger, that increased latency for other (more latency critical)
loggers, by pushing heavy log out into the main pool instead of SLOG. Beside
huge latency increase for heavy writers, this implementation caused double
write of all data, since the log records were explicitly prepared for SLOG.
Since we now have I/O scheduler, I've found it can be much more efficient
to reduce priority of heavy logger SLOG writes from ZIO_PRIORITY_SYNC_WRITE
to ZIO_PRIORITY_ASYNC_WRITE, while still leave them on SLOG.
- Existing ZIL implementation had problem with space efficiency when it
has to write large chunks of data into log blocks of limited size. In some
cases efficiency stopped to almost as low as 50%. In case of ZIL stored on
spinning rust, that also reduced log write speed in half, since head had to
uselessly fly over allocated but not written areas. This change improves
the situation by offloading problematic operations from z*_log_write() to
zil_lwb_commit(), which knows real situation of log blocks allocation and
can split large requests into pieces much more efficiently. Also as side
effect it removes one of two data copy operations done by ZIL code WR_COPIED
case.
- While there, untangle and unify code of z*_log_write() functions.
Also zfs_log_write() alike to zvol_log_write() can now handle writes crossing
block boundary, that may also improve efficiency if ZPL is made to do that.
Sponsored by: iXsystems, Inc.
Authored by: Alexander Motin <mav@FreeBSD.org>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Steven Hartland <steven.hartland@multiplay.co.uk>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Richard Elling <Richard.Elling@RichardElling.com>
Approved by: Robert Mustacchi <rm@joyent.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Richard Yao <ryao@gentoo.org>
Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov>
OpenZFS-issue: https://www.illumos.org/issues/7578
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/aeb13acCloses#6191
Change the default ZVOL behavior so requests are handled asynchronously.
This behavior is functionally the same as in the zfs-0.6.4 release.
Reviewed-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #5902
When multiple filesystems are in use, memory pressure causes arc_cache
to collapse to a minimum. Allow arc_cache to maintain proportional size
even when hit rates are disproportionate. We do this only via evictable
size from the kernel shrinker, thus it's only in effect under memory
pressure.
AKAMAI: zfs: CR 3695072
Reviewed-by: Tim Chase <tim@chase2k.com>
Reviewed-by: Richard Yao <ryao@gentoo.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Debabrata Banerjee <dbanerje@akamai.com>
Closes#6035
Commit 37f9dac removed the zvol_taskq for processing zvol requests.
This was removed as part of switching to make_request_fn and was
motivated by a concern at the time over dispatch latency.
However, this also made all bio request synchronous, and caused
serious performance issues as the bio submitter would wait for
every bio it submitted, effectively making the IO depth 1.
This patch reinstate zvol_taskq, and to make sure overlapped I/Os
are ordered properly, we take range lock in zvol_request, and pass
it along with bio to the I/O functions zvol_{write,discard,read}.
In order to facilitate benchmarks a zvol_request_sync module
option was added to switch between sync and async request handling.
For the moment, the default behavior is synchronous but this is
likely to change pending additional testing.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Closes#5824
It was documented as being related to zfs_vdev_async_max_active
when it is actually related to zfs_vdev_async_write_max_active.
Also, expand the documentation to describe the allocation throttle
which was introduced as part of OpenZFS 7090 in 3dfb57a.
Reviewed-by: Richard Yao <ryao@gentoo.org>
Reviewed-by: Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#6064
Resilver operations frequently cause only a small amount of dirty data
to be written to disk at a time, resulting in the IO scheduler to only
issue 1 write at a time to the resilvering disk. When it is rotational
media the drive will often travel past the next sector to be written
before receiving a write command from ZFS, significantly delaying the
write of the next sector.
Raise zfs_vdev_async_write_min_active so that drives are kept fed
during resilvering.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: DHE <git@dehacked.net>
Issue #4825Closes#5926
Force flushing of txg's can be painfully slow when competing for disk
IO, since this is a process meant to execute asynchronously. Optimize
this path via allowing data/hole seeking if the file is clean, but if
dirty fall back to old logic. This is a compromise to disabling the
feature entirely.
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Debabrata Banerjee <dbanerje@akamai.com>
Closes#4306Closes#5962
Update documentation in zfs-module-parameters.5 for new
parameter "zfs_qat_disable" which was introduced by #5846.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Weigang Li <weigang.li@intel.com>
Closes#5914
The global tunable zfs_arc_num_sublists_per_state is used by the ARC and
the dbuf cache, and other users are planned. We should change this
tunable to be common to all multilists. This tuning may be overridden
on a per-multilist basis.
Reviewed-by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed-by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matthew Ahrens <mahrens@delphix.com>
Closes#5764
When the code was added this tunable was not exposed via module params. Also it
was not documented. This patch changes the type from a uint32 to a ulong as
done with other percentage tunables and also documents it in the
zfs-module-parameters man page.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: David Quigley <david.quigley@intel.com>
Closes#5750
The deadman in ZoL didn't behave quite as it did in upstream
OpenZFS. In addition to the 2 purposes for which OpenZFS used the
zfs_deadman_synctime_ms parameter, ZoL also used it to determine how
frequently the deadman would fire once it has been triggered.
This patch adds the zfs_deadman_checktime_ms parameter to control how
frequently the subsequent checks are performed.
The deadman is now disabled for suspended pools.
As had been the case, unlike upstream OpenZFS, ZoL will not panic when
a hung IO is detected.
The module parameter documentation has been upated to include the new
parameter and to better describe the operation of the deadmen.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Melikov <mail@gmelikov.ru>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#5695
fB -> \fB in zpool.8 (Properties -> cachefile)
\fN -> \fB in zfs-module-parameters.5 (zfs_dirty_data_max_max_percent)
Three | -> \fR|\fI fixes for arguments of diff and inherit in zfs.8.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Haakan T Johansson <f96hajo@chalmers.se>
Closes#5645
This change introduces a new weighting algorithm to improve
metaslab selection. The new weighting algorithm relies on the
SPACEMAP_HISTOGRAM feature. As a result, the metaslab weight
now encodes the type of weighting algorithm used (size-based
vs segment-based).
Porting Notes: The metaslab allocation tracing code is conditionally
removed on linux (dependent on mdb debugger).
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Alex Reece <alex@delphix.com>
Reviewed by: Chris Siden <christopher.siden@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com>
Reviewed by: Pavel Zakharov pavel.zakharov@delphix.com
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Don Brady <don.brady@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported-by: Don Brady <don.brady@intel.com>
OpenZFS-issue: https://www.illumos.org/issues/7303
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/d5190931bdCloses#5404
Enable zio_dva_throttle_enabled=1 by default. Subsequent
testing has been unable to reproduce the suspected regression.
Tested-by: kernelOfTruth kerneloftruth@gmail.com
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Signed-off-by: Brian Behlendorf behlendorf1@llnl.gov
Reverts #5335Closes#5289Closes#5457
Bold and Normal codes were mixed up in a few places resulting in
bad highlighting.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: DHE <git@dehacked.net>
Closes#5397
avx512f should work on all AVX512 hardware, since it only uses
Foundation instructions.
avx512bw should be faster on hardware supporting the AVW512BW
extension. We can use full-width pshufb (instead of relying on the 256
bits AVX2 pshufb). As a side-effect, the code is also unrolled more.
Reviewed-by: Richard Laager <rlaager@wiktel.com>
Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Jinshan Xiong <jinshan.xiong@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.github@dolbeau.name>
Closes#5219
Until it can be determined definitively that a performance
regression wasn't introduced accidentally by 3dfb57a this
functionality is being disabled by default. It can be re-
enabled by setting zio_dva_throttle_enabled=1.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#5335
Issue #5289
This is not useful on micro-architecture with a weak NEON
implementation (only 64 bits); the native version is slower &
the byteswap barely faster than scalar. On A53 or A57, it's
a small improvement on scalar but OK for byteswap.
Results from an A53 system:
0 0 0x01 -1 0 1499068294333000 1499101101878000
implementation native byteswap
scalar 1008227510 755880264
aarch64_neon 1198098720 1044818671
fastest aarch64_neon aarch64_neon
Results from a A57 system:
0 0 0x01 -1 0 4407214734807033 4407233933777404
implementation native byteswap
scalar 2302071241 1124873346
aarch64_neon 2542214946 2245570352
fastest aarch64_neon aarch64_neon
Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.dolbeau@atos.net>
Closes#5248
OpenZFS 7090 - zfs should throttle allocations
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Alex Reece <alex@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Sebastien Roy <sebastien.roy@delphix.com>
Approved by: Matthew Ahrens <mahrens@delphix.com>
Ported-by: Don Brady <don.brady@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
When write I/Os are issued, they are issued in block order but the ZIO
pipeline will drive them asynchronously through the allocation stage
which can result in blocks being allocated out-of-order. It would be
nice to preserve as much of the logical order as possible.
In addition, the allocations are equally scattered across all top-level
VDEVs but not all top-level VDEVs are created equally. The pipeline
should be able to detect devices that are more capable of handling
allocations and should allocate more blocks to those devices. This
allows for dynamic allocation distribution when devices are imbalanced
as fuller devices will tend to be slower than empty devices.
The change includes a new pool-wide allocation queue which would
throttle and order allocations in the ZIO pipeline. The queue would be
ordered by issued time and offset and would provide an initial amount of
allocation of work to each top-level vdev. The allocation logic utilizes
a reservation system to reserve allocations that will be performed by
the allocator. Once an allocation is successfully completed it's
scheduled on a given top-level vdev. Each top-level vdev maintains a
maximum number of allocations that it can handle (mg_alloc_queue_depth).
The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth)
are distributed across the top-level vdevs metaslab groups and round
robin across all eligible metaslab groups to distribute the work. As
top-levels complete their work, they receive additional work from the
pool-wide allocation queue until the allocation queue is emptied.
OpenZFS-issue: https://www.illumos.org/issues/7090
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7Closes#5258
Porting Notes:
- Maintained minimal stack in zio_done
- Preserve linux-specific io sizes in zio_write_compress
- Added module params and documentation
- Updated to use optimize AVL cmp macros
The following new test cases need to have execute permissions set:
userquota/groupspace_003_pos.ksh
userquota/userquota_013_pos.ksh
userquota/userspace_003_pos.ksh
upgrade/upgrade_userobj_001_pos.ksh
upgrade/setup.ksh
upgrade/cleanup.ksh
The following source files accidentally were marked executable:
lib/libzpool/kernel.c
lib/libshare/nfs.c
lib/libzfs/libzfs_dataset.c
lib/libzfs/libzfs_util.c
tests/zfs-tests/cmd/rm_lnkcnt_zero_file/rm_lnkcnt_zero_file.c
tests/zfs-tests/cmd/dir_rd_update/dir_rd_update.c
cmd/zed/zed_exec.c
module/icp/core/kcf_sched.c
module/zfs/dsl_pool.c
module/zfs/arc.c
module/nvpair/nvpair.c
man/man5/zfs-module-parameters.5
Reviewed-by: GeLiXin <ge.lixin@zte.com.cn>
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#5241
This re-use the framework established for SSE2, SSSE3 and
AVX2. However, GCC is using FP registers on Aarch64, so
unlike SSE/AVX2 we can't rely on the registers being left alone
between ASM statements. So instead, the NEON code uses
C variables and GCC extended ASM syntax. Note that since
the kernel explicitly disable vector registers, they
have to be locally re-enabled explicitly.
As we use the variable's number to define the symbolic
name, and GCC won't allow duplicate symbolic names,
numbers have to be unique. Even when the code is not
going to be used (e.g. the case for 4 registers when
using the macro with only 2). Only the actually used
variables should be declared, otherwise the build
will fails in debug mode.
This requires the replacement of the XOR(X,X) syntax
by a new ZERO(X) macro, which does the same thing but
without repeating the argument. And perhaps someday
there will be a machine where there is a more efficient
way to zero a register than XOR with itself. This affects
scalar, SSE2, SSSE3 and AVX2 as they need the new macro.
It's possible to write faster implementations (different
scheduling, different unrolling, interleaving NEON and
scalar, ...) for various cores, but this one has the
advantage of fitting in the current state of the code,
and thus is likely easier to review/check/merge.
The only difference between aarch64-neon and aarch64-neonx2
is that aarch64-neonx2 unroll some functions some more.
Reviewed-by: Gvozden Neskovic <neskovic@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Romain Dolbeau <romain.dolbeau@atos.net>
Closes#4801
Enable ignore_hole_birth by default until all known hole birth bugs
have been resolved and relevant test cases added.
Reviewed-by: Boris Protopopov <boris.protopopov@actifio.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4809Closes#5099
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: David Quigley <david.quigley@intel.com>
This review covers the reading and writing of compressed arc headers, sharing
data between the arc_hdr_t and the arc_buf_t, and the implementation of a new
dbuf cache to keep frequently access data uncompressed.
I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs
off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block
for that DVA. The physical block may or may not be compressed. If compressed
arc is enabled and the block on-disk is compressed, then the b_pdata will match
the block on-disk and remain compressed in memory. If the block on disk is not
compressed, then neither will the b_pdata. Lastly, if compressed arc is
disabled, then b_pdata will always be an uncompressed version of the on-disk
block.
Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict
any arc_buf_t's that are no longer referenced. This means that the arc will
primarily have compressed blocks as the arc_buf_t's are considered overhead and
are always uncompressed. When a consumer reads a block we first look to see if
the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new
arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If
the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t
and bcopy the uncompressed contents from the first arc_buf_t to the new one.
Writing to the compressed arc requires that we first discard the b_pdata since
the physical block is about to be rewritten. The new data contents will be
passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we
will copy the physical block contents to a newly allocated b_pdata.
When an l2arc is inuse it will also take advantage of the b_pdata. Now the
l2arc will always write the contents of b_pdata to the l2arc. This means that
when compressed arc is enabled that the l2arc blocks are identical to those
stored in the main data pool. This provides a significant advantage since we
can leverage the bp's checksum when reading from the l2arc to determine if the
contents are valid. If the compressed arc is disabled, then we must first
transform the read block to look like the physical block in the main data pool
before comparing the checksum and determining it's valid.
OpenZFS-issue: https://www.illumos.org/issues/6950
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0
Issue #5078
ARC will evict meta buffers that exceed the arc_meta_limit. Before a further
investigating on whether we should take special protection on meta buffers,
this tunable make arc_meta_limit adjustable for different workloads.
People can set zfs_arc_meta_limit_percent to any value while insmod zfs.ko,
so some range check is added to guarantee a suitable arc_meta_limit.
Suggested by Tim Chase, zfs_arc_dnode_limit is changed to a percent-style
tunable as well.
Signed-off-by: GeLiXin <ge.lixin@zte.com.cn>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4957
Adds a module option which disables the hole_birth optimization
which has been responsible for several recent bugs, including
issue #4050.
Original-patch: https://gist.github.com/pcd1193182/2c0cd47211f3aee623958b4698836c48
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4833
Metadata-intensive workloads can cause the ARC to become permanently
filled with dnode_t objects as they're pinned by the VFS layer.
Subsequent data-intensive workloads may only benefit from about
25% of the potential ARC (arc_c_max - arc_meta_limit).
In order to help track metadata usage more precisely, the other_size
metadata arcstat has replaced with dbuf_size, dnode_size and bonus_size.
The new zfs_arc_dnode_limit tunable, which defaults to 10% of
zfs_arc_meta_limit, defines the minimum number of bytes which is desirable
to be consumed by dnodes. Attempts to evict non-metadata will trigger
async prune tasks if the space used by dnodes exceeds this limit.
The new zfs_arc_dnode_reduce_percent tunable specifies the amount by
which the excess dnode space is attempted to be pruned as a percentage of
the amount by which zfs_arc_dnode_limit is being exceeded. By default,
it tries to unpin 10% of the dnodes.
The problem of dnode metadata pinning was observed with the following
testing procedure (in this example, zfs_arc_max is set to 4GiB):
- Create a large number of small files until arc_meta_used exceeds
arc_meta_limit (3GiB with default tuning) and arc_prune
starts increasing.
- Create a 3GiB file with dd. Observe arc_mata_used. It will still
be around 3GiB.
- Repeatedly read the 3GiB file and observe arc_meta_limit as before.
It will continue to stay around 3GiB.
With this modification, space for the 3GiB file is gradually made
available as subsequent demands on the ARC are made. The previous behavior
can be restored by setting zfs_arc_dnode_limit to the same value as the
zfs_arc_meta_limit.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4345
Issue #4512
Issue #4773Closes#4858
- Implementation lock replaced with atomic variable
- Trailing whitespace is removed from user specified parameter, to enhance
experience when using commands that add newline, e.g. `echo`
- raidz_test: remove dependency on `getrusage()` and RUSAGE_THREAD, Issue #4813
- silence `cppcheck` in vdev_raidz, partial solution of Issue #1392
- Minor fixes and cleanups
- Enable use of original parity methods in [fastest] configuration.
New opaque original ops structure, representing native methods, is added
to supported raidz methods. Original parity methods are executed if selected
implementation has NULL fn pointer.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4813
Issue #1392
Builds off of 1eeb4562 (Implementation of AVX2 optimized Fletcher-4)
This commit adds another implementation of the Fletcher-4 algorithm.
It is automatically selected at module load if it benchmarks higher
than all other available implementations.
The module benchmark was also amended to analyze the performance of
the byteswap-ed version of Fletcher-4, as well as the non-byteswaped
version. The average performance of the two is used to select the
the fastest implementation available on the host system.
Adds a pair of fields to an existing zcommon module parameter:
- zfs_fletcher_4_impl (str)
"sse2" - new SSE2 implementation if available
"ssse3" - new SSSE3 implementation if available
Signed-off-by: Tyler J. Stachecki <stachecki.tyler@gmail.com>
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4789
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4328
New functionality:
- Preserves existing scalar implementation.
- Adds AVX2 optimized Fletcher-4 computation.
- Fastest routines selected on module load (benchmark).
- Test case for Fletcher-4 added to ztest.
New zcommon module parameters:
- zfs_fletcher_4_impl (str): selects the implementation to use.
"fastest" - use the fastest version available
"cycle" - cycle trough all available impl for ztest
"scalar" - use the original version
"avx2" - new AVX2 implementation if available
Performance comparison (Intel i7 CPU, 1MB data buffers):
- Scalar: 4216 MB/s
- AVX2: 14499 MB/s
See contents of `/sys/module/zcommon/parameters/zfs_fletcher_4_impl`
to get list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Andreas Dilger <andreas.dilger@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4330
Various rewrites to the descriptions of module parameters. Corrects
spelling mistakes, makes descriptions them more user-friendly and
describes some ZFS quirks which should be understood before changing
parameter values.
Signed-off-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4671
The existing algorithm selects a preferred leaf vdev based on offset of the zio
request modulo the number of members in the mirror. It assumes the devices are
of equal performance and that spreading the requests randomly over both drives
will be sufficient to saturate them. In practice this results in the leaf vdevs
being under utilized.
The new algorithm takes into the following additional factors:
* Load of the vdevs (number outstanding I/O requests)
* The locality of last queued I/O vs the new I/O request.
Within the locality calculation additional knowledge about the underlying vdev
is considered such as; is the device backing the vdev a rotating media device.
This results in performance increases across the board as well as significant
increases for predominantly streaming loads and for configurations which don't
have evenly performing devices.
The following are results from a setup with 3 Way Mirror with 2 x HD's and
1 x SSD from a basic test running multiple parrallel dd's.
With pre-fetch disabled (vfs.zfs.prefetch_disable=1):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s
With pre-fetch enabled (vfs.zfs.prefetch_disable=0):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s
In addition to the performance changes the code was also restructured, with
the help of Justin Gibbs, to provide a more logical flow which also ensures
vdevs loads are only calculated from the set of valid candidates.
The following additional sysctls where added to allow the administrator
to tune the behaviour of the load algorithm:
* vfs.zfs.vdev.mirror.rotating_inc
* vfs.zfs.vdev.mirror.rotating_seek_inc
* vfs.zfs.vdev.mirror.rotating_seek_offset
* vfs.zfs.vdev.mirror.non_rotating_inc
* vfs.zfs.vdev.mirror.non_rotating_seek_inc
These changes where based on work started by the zfsonlinux developers:
https://github.com/zfsonlinux/zfs/pull/1487
Reviewed by: gibbs, mav, will
MFC after: 2 weeks
Sponsored by: Multiplay
References:
https://github.com/freebsd/freebsd@5c7a6f5dhttps://github.com/freebsd/freebsd@31b7f68dhttps://github.com/freebsd/freebsd@e186f564
Performance Testing:
https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141
Porting notes:
- The tunables were adjusted to have ZoL-style names.
- The code was modified to use ZoL's vd_nonrot.
- Fixes were done to make cstyle.pl happy
- Merge conflicts were handled manually
- freebsd/freebsd@e186f564bc by my
collegue Andriy Gapon has been included. It applied perfectly, but
added a cstyle regression.
- This replaces 556011dbec entirely.
- A typo "IO'a" has been corrected to say "IO's"
- Descriptions of new tunables were added to man/man5/zfs-module-parameters.5.
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4334