mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-02 22:39:35 +03:00
66953686c0
Clang's static analyzer pointed out that if alloc_pages >= nr_pages before the loop, the value of page will be undefined and will be used anyway. This should not be possible, but as cleanup, we add an assertion. We also recognize that the local variables should be unsigned in the first place, so we make them unsigned. This is not enough to avoid the need for the assertion, since there is still the case that alloc_pages == nr_pages and nr_pages == 0, which the assertion implicitly checks. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Brian Atkinson <batkinson@lanl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #14456
1158 lines
32 KiB
C
1158 lines
32 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
|
|
* Copyright (c) 2019 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* See abd.c for a general overview of the arc buffered data (ABD).
|
|
*
|
|
* Linear buffers act exactly like normal buffers and are always mapped into the
|
|
* kernel's virtual memory space, while scattered ABD data chunks are allocated
|
|
* as physical pages and then mapped in only while they are actually being
|
|
* accessed through one of the abd_* library functions. Using scattered ABDs
|
|
* provides several benefits:
|
|
*
|
|
* (1) They avoid use of kmem_*, preventing performance problems where running
|
|
* kmem_reap on very large memory systems never finishes and causes
|
|
* constant TLB shootdowns.
|
|
*
|
|
* (2) Fragmentation is less of an issue since when we are at the limit of
|
|
* allocatable space, we won't have to search around for a long free
|
|
* hole in the VA space for large ARC allocations. Each chunk is mapped in
|
|
* individually, so even if we are using HIGHMEM (see next point) we
|
|
* wouldn't need to worry about finding a contiguous address range.
|
|
*
|
|
* (3) If we are not using HIGHMEM, then all physical memory is always
|
|
* mapped into the kernel's address space, so we also avoid the map /
|
|
* unmap costs on each ABD access.
|
|
*
|
|
* If we are not using HIGHMEM, scattered buffers which have only one chunk
|
|
* can be treated as linear buffers, because they are contiguous in the
|
|
* kernel's virtual address space. See abd_alloc_chunks() for details.
|
|
*/
|
|
|
|
#include <sys/abd_impl.h>
|
|
#include <sys/param.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/zfs_znode.h>
|
|
#ifdef _KERNEL
|
|
#include <linux/kmap_compat.h>
|
|
#include <linux/scatterlist.h>
|
|
#else
|
|
#define MAX_ORDER 1
|
|
#endif
|
|
|
|
typedef struct abd_stats {
|
|
kstat_named_t abdstat_struct_size;
|
|
kstat_named_t abdstat_linear_cnt;
|
|
kstat_named_t abdstat_linear_data_size;
|
|
kstat_named_t abdstat_scatter_cnt;
|
|
kstat_named_t abdstat_scatter_data_size;
|
|
kstat_named_t abdstat_scatter_chunk_waste;
|
|
kstat_named_t abdstat_scatter_orders[MAX_ORDER];
|
|
kstat_named_t abdstat_scatter_page_multi_chunk;
|
|
kstat_named_t abdstat_scatter_page_multi_zone;
|
|
kstat_named_t abdstat_scatter_page_alloc_retry;
|
|
kstat_named_t abdstat_scatter_sg_table_retry;
|
|
} abd_stats_t;
|
|
|
|
static abd_stats_t abd_stats = {
|
|
/* Amount of memory occupied by all of the abd_t struct allocations */
|
|
{ "struct_size", KSTAT_DATA_UINT64 },
|
|
/*
|
|
* The number of linear ABDs which are currently allocated, excluding
|
|
* ABDs which don't own their data (for instance the ones which were
|
|
* allocated through abd_get_offset() and abd_get_from_buf()). If an
|
|
* ABD takes ownership of its buf then it will become tracked.
|
|
*/
|
|
{ "linear_cnt", KSTAT_DATA_UINT64 },
|
|
/* Amount of data stored in all linear ABDs tracked by linear_cnt */
|
|
{ "linear_data_size", KSTAT_DATA_UINT64 },
|
|
/*
|
|
* The number of scatter ABDs which are currently allocated, excluding
|
|
* ABDs which don't own their data (for instance the ones which were
|
|
* allocated through abd_get_offset()).
|
|
*/
|
|
{ "scatter_cnt", KSTAT_DATA_UINT64 },
|
|
/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
|
|
{ "scatter_data_size", KSTAT_DATA_UINT64 },
|
|
/*
|
|
* The amount of space wasted at the end of the last chunk across all
|
|
* scatter ABDs tracked by scatter_cnt.
|
|
*/
|
|
{ "scatter_chunk_waste", KSTAT_DATA_UINT64 },
|
|
/*
|
|
* The number of compound allocations of a given order. These
|
|
* allocations are spread over all currently allocated ABDs, and
|
|
* act as a measure of memory fragmentation.
|
|
*/
|
|
{ { "scatter_order_N", KSTAT_DATA_UINT64 } },
|
|
/*
|
|
* The number of scatter ABDs which contain multiple chunks.
|
|
* ABDs are preferentially allocated from the minimum number of
|
|
* contiguous multi-page chunks, a single chunk is optimal.
|
|
*/
|
|
{ "scatter_page_multi_chunk", KSTAT_DATA_UINT64 },
|
|
/*
|
|
* The number of scatter ABDs which are split across memory zones.
|
|
* ABDs are preferentially allocated using pages from a single zone.
|
|
*/
|
|
{ "scatter_page_multi_zone", KSTAT_DATA_UINT64 },
|
|
/*
|
|
* The total number of retries encountered when attempting to
|
|
* allocate the pages to populate the scatter ABD.
|
|
*/
|
|
{ "scatter_page_alloc_retry", KSTAT_DATA_UINT64 },
|
|
/*
|
|
* The total number of retries encountered when attempting to
|
|
* allocate the sg table for an ABD.
|
|
*/
|
|
{ "scatter_sg_table_retry", KSTAT_DATA_UINT64 },
|
|
};
|
|
|
|
static struct {
|
|
wmsum_t abdstat_struct_size;
|
|
wmsum_t abdstat_linear_cnt;
|
|
wmsum_t abdstat_linear_data_size;
|
|
wmsum_t abdstat_scatter_cnt;
|
|
wmsum_t abdstat_scatter_data_size;
|
|
wmsum_t abdstat_scatter_chunk_waste;
|
|
wmsum_t abdstat_scatter_orders[MAX_ORDER];
|
|
wmsum_t abdstat_scatter_page_multi_chunk;
|
|
wmsum_t abdstat_scatter_page_multi_zone;
|
|
wmsum_t abdstat_scatter_page_alloc_retry;
|
|
wmsum_t abdstat_scatter_sg_table_retry;
|
|
} abd_sums;
|
|
|
|
#define abd_for_each_sg(abd, sg, n, i) \
|
|
for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
|
|
|
|
/*
|
|
* zfs_abd_scatter_min_size is the minimum allocation size to use scatter
|
|
* ABD's. Smaller allocations will use linear ABD's which uses
|
|
* zio_[data_]buf_alloc().
|
|
*
|
|
* Scatter ABD's use at least one page each, so sub-page allocations waste
|
|
* some space when allocated as scatter (e.g. 2KB scatter allocation wastes
|
|
* half of each page). Using linear ABD's for small allocations means that
|
|
* they will be put on slabs which contain many allocations. This can
|
|
* improve memory efficiency, but it also makes it much harder for ARC
|
|
* evictions to actually free pages, because all the buffers on one slab need
|
|
* to be freed in order for the slab (and underlying pages) to be freed.
|
|
* Typically, 512B and 1KB kmem caches have 16 buffers per slab, so it's
|
|
* possible for them to actually waste more memory than scatter (one page per
|
|
* buf = wasting 3/4 or 7/8th; one buf per slab = wasting 15/16th).
|
|
*
|
|
* Spill blocks are typically 512B and are heavily used on systems running
|
|
* selinux with the default dnode size and the `xattr=sa` property set.
|
|
*
|
|
* By default we use linear allocations for 512B and 1KB, and scatter
|
|
* allocations for larger (1.5KB and up).
|
|
*/
|
|
static int zfs_abd_scatter_min_size = 512 * 3;
|
|
|
|
/*
|
|
* We use a scattered SPA_MAXBLOCKSIZE sized ABD whose pages are
|
|
* just a single zero'd page. This allows us to conserve memory by
|
|
* only using a single zero page for the scatterlist.
|
|
*/
|
|
abd_t *abd_zero_scatter = NULL;
|
|
|
|
struct page;
|
|
/*
|
|
* _KERNEL - Will point to ZERO_PAGE if it is available or it will be
|
|
* an allocated zero'd PAGESIZE buffer.
|
|
* Userspace - Will be an allocated zero'ed PAGESIZE buffer.
|
|
*
|
|
* abd_zero_page is assigned to each of the pages of abd_zero_scatter.
|
|
*/
|
|
static struct page *abd_zero_page = NULL;
|
|
|
|
static kmem_cache_t *abd_cache = NULL;
|
|
static kstat_t *abd_ksp;
|
|
|
|
static uint_t
|
|
abd_chunkcnt_for_bytes(size_t size)
|
|
{
|
|
return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
|
|
}
|
|
|
|
abd_t *
|
|
abd_alloc_struct_impl(size_t size)
|
|
{
|
|
/*
|
|
* In Linux we do not use the size passed in during ABD
|
|
* allocation, so we just ignore it.
|
|
*/
|
|
(void) size;
|
|
abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
|
|
ASSERT3P(abd, !=, NULL);
|
|
ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
|
|
|
|
return (abd);
|
|
}
|
|
|
|
void
|
|
abd_free_struct_impl(abd_t *abd)
|
|
{
|
|
kmem_cache_free(abd_cache, abd);
|
|
ABDSTAT_INCR(abdstat_struct_size, -(int)sizeof (abd_t));
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
static unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;
|
|
|
|
/*
|
|
* Mark zfs data pages so they can be excluded from kernel crash dumps
|
|
*/
|
|
#ifdef _LP64
|
|
#define ABD_FILE_CACHE_PAGE 0x2F5ABDF11ECAC4E
|
|
|
|
static inline void
|
|
abd_mark_zfs_page(struct page *page)
|
|
{
|
|
get_page(page);
|
|
SetPagePrivate(page);
|
|
set_page_private(page, ABD_FILE_CACHE_PAGE);
|
|
}
|
|
|
|
static inline void
|
|
abd_unmark_zfs_page(struct page *page)
|
|
{
|
|
set_page_private(page, 0UL);
|
|
ClearPagePrivate(page);
|
|
put_page(page);
|
|
}
|
|
#else
|
|
#define abd_mark_zfs_page(page)
|
|
#define abd_unmark_zfs_page(page)
|
|
#endif /* _LP64 */
|
|
|
|
#ifndef CONFIG_HIGHMEM
|
|
|
|
#ifndef __GFP_RECLAIM
|
|
#define __GFP_RECLAIM __GFP_WAIT
|
|
#endif
|
|
|
|
/*
|
|
* The goal is to minimize fragmentation by preferentially populating ABDs
|
|
* with higher order compound pages from a single zone. Allocation size is
|
|
* progressively decreased until it can be satisfied without performing
|
|
* reclaim or compaction. When necessary this function will degenerate to
|
|
* allocating individual pages and allowing reclaim to satisfy allocations.
|
|
*/
|
|
void
|
|
abd_alloc_chunks(abd_t *abd, size_t size)
|
|
{
|
|
struct list_head pages;
|
|
struct sg_table table;
|
|
struct scatterlist *sg;
|
|
struct page *page, *tmp_page = NULL;
|
|
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
|
|
gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
|
|
unsigned int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1);
|
|
unsigned int nr_pages = abd_chunkcnt_for_bytes(size);
|
|
unsigned int chunks = 0, zones = 0;
|
|
size_t remaining_size;
|
|
int nid = NUMA_NO_NODE;
|
|
unsigned int alloc_pages = 0;
|
|
|
|
INIT_LIST_HEAD(&pages);
|
|
|
|
ASSERT3U(alloc_pages, <, nr_pages);
|
|
|
|
while (alloc_pages < nr_pages) {
|
|
unsigned int chunk_pages;
|
|
unsigned int order;
|
|
|
|
order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
|
|
chunk_pages = (1U << order);
|
|
|
|
page = alloc_pages_node(nid, order ? gfp_comp : gfp, order);
|
|
if (page == NULL) {
|
|
if (order == 0) {
|
|
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
|
|
schedule_timeout_interruptible(1);
|
|
} else {
|
|
max_order = MAX(0, order - 1);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
list_add_tail(&page->lru, &pages);
|
|
|
|
if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
|
|
zones++;
|
|
|
|
nid = page_to_nid(page);
|
|
ABDSTAT_BUMP(abdstat_scatter_orders[order]);
|
|
chunks++;
|
|
alloc_pages += chunk_pages;
|
|
}
|
|
|
|
ASSERT3S(alloc_pages, ==, nr_pages);
|
|
|
|
while (sg_alloc_table(&table, chunks, gfp)) {
|
|
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
|
|
schedule_timeout_interruptible(1);
|
|
}
|
|
|
|
sg = table.sgl;
|
|
remaining_size = size;
|
|
list_for_each_entry_safe(page, tmp_page, &pages, lru) {
|
|
size_t sg_size = MIN(PAGESIZE << compound_order(page),
|
|
remaining_size);
|
|
sg_set_page(sg, page, sg_size, 0);
|
|
abd_mark_zfs_page(page);
|
|
remaining_size -= sg_size;
|
|
|
|
sg = sg_next(sg);
|
|
list_del(&page->lru);
|
|
}
|
|
|
|
/*
|
|
* These conditions ensure that a possible transformation to a linear
|
|
* ABD would be valid.
|
|
*/
|
|
ASSERT(!PageHighMem(sg_page(table.sgl)));
|
|
ASSERT0(ABD_SCATTER(abd).abd_offset);
|
|
|
|
if (table.nents == 1) {
|
|
/*
|
|
* Since there is only one entry, this ABD can be represented
|
|
* as a linear buffer. All single-page (4K) ABD's can be
|
|
* represented this way. Some multi-page ABD's can also be
|
|
* represented this way, if we were able to allocate a single
|
|
* "chunk" (higher-order "page" which represents a power-of-2
|
|
* series of physically-contiguous pages). This is often the
|
|
* case for 2-page (8K) ABD's.
|
|
*
|
|
* Representing a single-entry scatter ABD as a linear ABD
|
|
* has the performance advantage of avoiding the copy (and
|
|
* allocation) in abd_borrow_buf_copy / abd_return_buf_copy.
|
|
* A performance increase of around 5% has been observed for
|
|
* ARC-cached reads (of small blocks which can take advantage
|
|
* of this).
|
|
*
|
|
* Note that this optimization is only possible because the
|
|
* pages are always mapped into the kernel's address space.
|
|
* This is not the case for highmem pages, so the
|
|
* optimization can not be made there.
|
|
*/
|
|
abd->abd_flags |= ABD_FLAG_LINEAR;
|
|
abd->abd_flags |= ABD_FLAG_LINEAR_PAGE;
|
|
abd->abd_u.abd_linear.abd_sgl = table.sgl;
|
|
ABD_LINEAR_BUF(abd) = page_address(sg_page(table.sgl));
|
|
} else if (table.nents > 1) {
|
|
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
|
|
abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
|
|
|
|
if (zones) {
|
|
ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
|
|
abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
|
|
}
|
|
|
|
ABD_SCATTER(abd).abd_sgl = table.sgl;
|
|
ABD_SCATTER(abd).abd_nents = table.nents;
|
|
}
|
|
}
|
|
#else
|
|
|
|
/*
|
|
* Allocate N individual pages to construct a scatter ABD. This function
|
|
* makes no attempt to request contiguous pages and requires the minimal
|
|
* number of kernel interfaces. It's designed for maximum compatibility.
|
|
*/
|
|
void
|
|
abd_alloc_chunks(abd_t *abd, size_t size)
|
|
{
|
|
struct scatterlist *sg = NULL;
|
|
struct sg_table table;
|
|
struct page *page;
|
|
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
|
|
int nr_pages = abd_chunkcnt_for_bytes(size);
|
|
int i = 0;
|
|
|
|
while (sg_alloc_table(&table, nr_pages, gfp)) {
|
|
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
|
|
schedule_timeout_interruptible(1);
|
|
}
|
|
|
|
ASSERT3U(table.nents, ==, nr_pages);
|
|
ABD_SCATTER(abd).abd_sgl = table.sgl;
|
|
ABD_SCATTER(abd).abd_nents = nr_pages;
|
|
|
|
abd_for_each_sg(abd, sg, nr_pages, i) {
|
|
while ((page = __page_cache_alloc(gfp)) == NULL) {
|
|
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
|
|
schedule_timeout_interruptible(1);
|
|
}
|
|
|
|
ABDSTAT_BUMP(abdstat_scatter_orders[0]);
|
|
sg_set_page(sg, page, PAGESIZE, 0);
|
|
abd_mark_zfs_page(page);
|
|
}
|
|
|
|
if (nr_pages > 1) {
|
|
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
|
|
abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
|
|
}
|
|
}
|
|
#endif /* !CONFIG_HIGHMEM */
|
|
|
|
/*
|
|
* This must be called if any of the sg_table allocation functions
|
|
* are called.
|
|
*/
|
|
static void
|
|
abd_free_sg_table(abd_t *abd)
|
|
{
|
|
struct sg_table table;
|
|
|
|
table.sgl = ABD_SCATTER(abd).abd_sgl;
|
|
table.nents = table.orig_nents = ABD_SCATTER(abd).abd_nents;
|
|
sg_free_table(&table);
|
|
}
|
|
|
|
void
|
|
abd_free_chunks(abd_t *abd)
|
|
{
|
|
struct scatterlist *sg = NULL;
|
|
struct page *page;
|
|
int nr_pages = ABD_SCATTER(abd).abd_nents;
|
|
int order, i = 0;
|
|
|
|
if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
|
|
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
|
|
|
|
if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
|
|
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
|
|
|
|
abd_for_each_sg(abd, sg, nr_pages, i) {
|
|
page = sg_page(sg);
|
|
abd_unmark_zfs_page(page);
|
|
order = compound_order(page);
|
|
__free_pages(page, order);
|
|
ASSERT3U(sg->length, <=, PAGE_SIZE << order);
|
|
ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
|
|
}
|
|
abd_free_sg_table(abd);
|
|
}
|
|
|
|
/*
|
|
* Allocate scatter ABD of size SPA_MAXBLOCKSIZE, where each page in
|
|
* the scatterlist will be set to the zero'd out buffer abd_zero_page.
|
|
*/
|
|
static void
|
|
abd_alloc_zero_scatter(void)
|
|
{
|
|
struct scatterlist *sg = NULL;
|
|
struct sg_table table;
|
|
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
|
|
int nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
|
|
int i = 0;
|
|
|
|
#if defined(HAVE_ZERO_PAGE_GPL_ONLY)
|
|
gfp_t gfp_zero_page = gfp | __GFP_ZERO;
|
|
while ((abd_zero_page = __page_cache_alloc(gfp_zero_page)) == NULL) {
|
|
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
|
|
schedule_timeout_interruptible(1);
|
|
}
|
|
abd_mark_zfs_page(abd_zero_page);
|
|
#else
|
|
abd_zero_page = ZERO_PAGE(0);
|
|
#endif /* HAVE_ZERO_PAGE_GPL_ONLY */
|
|
|
|
while (sg_alloc_table(&table, nr_pages, gfp)) {
|
|
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
|
|
schedule_timeout_interruptible(1);
|
|
}
|
|
ASSERT3U(table.nents, ==, nr_pages);
|
|
|
|
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
|
|
abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
|
|
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
|
|
ABD_SCATTER(abd_zero_scatter).abd_sgl = table.sgl;
|
|
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
|
|
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
|
|
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
|
|
|
|
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
|
|
sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
|
|
}
|
|
|
|
ABDSTAT_BUMP(abdstat_scatter_cnt);
|
|
ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
|
|
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
|
|
}
|
|
|
|
#else /* _KERNEL */
|
|
|
|
#ifndef PAGE_SHIFT
|
|
#define PAGE_SHIFT (highbit64(PAGESIZE)-1)
|
|
#endif
|
|
|
|
#define zfs_kmap_atomic(chunk) ((void *)chunk)
|
|
#define zfs_kunmap_atomic(addr) do { (void)(addr); } while (0)
|
|
#define local_irq_save(flags) do { (void)(flags); } while (0)
|
|
#define local_irq_restore(flags) do { (void)(flags); } while (0)
|
|
#define nth_page(pg, i) \
|
|
((struct page *)((void *)(pg) + (i) * PAGESIZE))
|
|
|
|
struct scatterlist {
|
|
struct page *page;
|
|
int length;
|
|
int end;
|
|
};
|
|
|
|
static void
|
|
sg_init_table(struct scatterlist *sg, int nr)
|
|
{
|
|
memset(sg, 0, nr * sizeof (struct scatterlist));
|
|
sg[nr - 1].end = 1;
|
|
}
|
|
|
|
/*
|
|
* This must be called if any of the sg_table allocation functions
|
|
* are called.
|
|
*/
|
|
static void
|
|
abd_free_sg_table(abd_t *abd)
|
|
{
|
|
int nents = ABD_SCATTER(abd).abd_nents;
|
|
vmem_free(ABD_SCATTER(abd).abd_sgl,
|
|
nents * sizeof (struct scatterlist));
|
|
}
|
|
|
|
#define for_each_sg(sgl, sg, nr, i) \
|
|
for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
|
|
|
|
static inline void
|
|
sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
|
|
unsigned int offset)
|
|
{
|
|
/* currently we don't use offset */
|
|
ASSERT(offset == 0);
|
|
sg->page = page;
|
|
sg->length = len;
|
|
}
|
|
|
|
static inline struct page *
|
|
sg_page(struct scatterlist *sg)
|
|
{
|
|
return (sg->page);
|
|
}
|
|
|
|
static inline struct scatterlist *
|
|
sg_next(struct scatterlist *sg)
|
|
{
|
|
if (sg->end)
|
|
return (NULL);
|
|
|
|
return (sg + 1);
|
|
}
|
|
|
|
void
|
|
abd_alloc_chunks(abd_t *abd, size_t size)
|
|
{
|
|
unsigned nr_pages = abd_chunkcnt_for_bytes(size);
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
|
|
sizeof (struct scatterlist), KM_SLEEP);
|
|
sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
|
|
|
|
abd_for_each_sg(abd, sg, nr_pages, i) {
|
|
struct page *p = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
|
|
sg_set_page(sg, p, PAGESIZE, 0);
|
|
}
|
|
ABD_SCATTER(abd).abd_nents = nr_pages;
|
|
}
|
|
|
|
void
|
|
abd_free_chunks(abd_t *abd)
|
|
{
|
|
int i, n = ABD_SCATTER(abd).abd_nents;
|
|
struct scatterlist *sg;
|
|
|
|
abd_for_each_sg(abd, sg, n, i) {
|
|
struct page *p = nth_page(sg_page(sg), 0);
|
|
umem_free_aligned(p, PAGESIZE);
|
|
}
|
|
abd_free_sg_table(abd);
|
|
}
|
|
|
|
static void
|
|
abd_alloc_zero_scatter(void)
|
|
{
|
|
unsigned nr_pages = abd_chunkcnt_for_bytes(SPA_MAXBLOCKSIZE);
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
abd_zero_page = umem_alloc_aligned(PAGESIZE, 64, KM_SLEEP);
|
|
memset(abd_zero_page, 0, PAGESIZE);
|
|
abd_zero_scatter = abd_alloc_struct(SPA_MAXBLOCKSIZE);
|
|
abd_zero_scatter->abd_flags |= ABD_FLAG_OWNER;
|
|
abd_zero_scatter->abd_flags |= ABD_FLAG_MULTI_CHUNK | ABD_FLAG_ZEROS;
|
|
ABD_SCATTER(abd_zero_scatter).abd_offset = 0;
|
|
ABD_SCATTER(abd_zero_scatter).abd_nents = nr_pages;
|
|
abd_zero_scatter->abd_size = SPA_MAXBLOCKSIZE;
|
|
ABD_SCATTER(abd_zero_scatter).abd_sgl = vmem_alloc(nr_pages *
|
|
sizeof (struct scatterlist), KM_SLEEP);
|
|
|
|
sg_init_table(ABD_SCATTER(abd_zero_scatter).abd_sgl, nr_pages);
|
|
|
|
abd_for_each_sg(abd_zero_scatter, sg, nr_pages, i) {
|
|
sg_set_page(sg, abd_zero_page, PAGESIZE, 0);
|
|
}
|
|
|
|
ABDSTAT_BUMP(abdstat_scatter_cnt);
|
|
ABDSTAT_INCR(abdstat_scatter_data_size, PAGESIZE);
|
|
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
|
|
}
|
|
|
|
#endif /* _KERNEL */
|
|
|
|
boolean_t
|
|
abd_size_alloc_linear(size_t size)
|
|
{
|
|
return (!zfs_abd_scatter_enabled || size < zfs_abd_scatter_min_size);
|
|
}
|
|
|
|
void
|
|
abd_update_scatter_stats(abd_t *abd, abd_stats_op_t op)
|
|
{
|
|
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
|
|
int waste = P2ROUNDUP(abd->abd_size, PAGESIZE) - abd->abd_size;
|
|
if (op == ABDSTAT_INCR) {
|
|
ABDSTAT_BUMP(abdstat_scatter_cnt);
|
|
ABDSTAT_INCR(abdstat_scatter_data_size, abd->abd_size);
|
|
ABDSTAT_INCR(abdstat_scatter_chunk_waste, waste);
|
|
arc_space_consume(waste, ARC_SPACE_ABD_CHUNK_WASTE);
|
|
} else {
|
|
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
|
|
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
|
|
ABDSTAT_INCR(abdstat_scatter_chunk_waste, -waste);
|
|
arc_space_return(waste, ARC_SPACE_ABD_CHUNK_WASTE);
|
|
}
|
|
}
|
|
|
|
void
|
|
abd_update_linear_stats(abd_t *abd, abd_stats_op_t op)
|
|
{
|
|
ASSERT(op == ABDSTAT_INCR || op == ABDSTAT_DECR);
|
|
if (op == ABDSTAT_INCR) {
|
|
ABDSTAT_BUMP(abdstat_linear_cnt);
|
|
ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
|
|
} else {
|
|
ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
|
|
ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
|
|
}
|
|
}
|
|
|
|
void
|
|
abd_verify_scatter(abd_t *abd)
|
|
{
|
|
size_t n;
|
|
int i = 0;
|
|
struct scatterlist *sg = NULL;
|
|
|
|
ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
|
|
ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
|
|
ABD_SCATTER(abd).abd_sgl->length);
|
|
n = ABD_SCATTER(abd).abd_nents;
|
|
abd_for_each_sg(abd, sg, n, i) {
|
|
ASSERT3P(sg_page(sg), !=, NULL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
abd_free_zero_scatter(void)
|
|
{
|
|
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
|
|
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)PAGESIZE);
|
|
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
|
|
|
|
abd_free_sg_table(abd_zero_scatter);
|
|
abd_free_struct(abd_zero_scatter);
|
|
abd_zero_scatter = NULL;
|
|
ASSERT3P(abd_zero_page, !=, NULL);
|
|
#if defined(_KERNEL)
|
|
#if defined(HAVE_ZERO_PAGE_GPL_ONLY)
|
|
abd_unmark_zfs_page(abd_zero_page);
|
|
__free_page(abd_zero_page);
|
|
#endif /* HAVE_ZERO_PAGE_GPL_ONLY */
|
|
#else
|
|
umem_free_aligned(abd_zero_page, PAGESIZE);
|
|
#endif /* _KERNEL */
|
|
}
|
|
|
|
static int
|
|
abd_kstats_update(kstat_t *ksp, int rw)
|
|
{
|
|
abd_stats_t *as = ksp->ks_data;
|
|
|
|
if (rw == KSTAT_WRITE)
|
|
return (EACCES);
|
|
as->abdstat_struct_size.value.ui64 =
|
|
wmsum_value(&abd_sums.abdstat_struct_size);
|
|
as->abdstat_linear_cnt.value.ui64 =
|
|
wmsum_value(&abd_sums.abdstat_linear_cnt);
|
|
as->abdstat_linear_data_size.value.ui64 =
|
|
wmsum_value(&abd_sums.abdstat_linear_data_size);
|
|
as->abdstat_scatter_cnt.value.ui64 =
|
|
wmsum_value(&abd_sums.abdstat_scatter_cnt);
|
|
as->abdstat_scatter_data_size.value.ui64 =
|
|
wmsum_value(&abd_sums.abdstat_scatter_data_size);
|
|
as->abdstat_scatter_chunk_waste.value.ui64 =
|
|
wmsum_value(&abd_sums.abdstat_scatter_chunk_waste);
|
|
for (int i = 0; i < MAX_ORDER; i++) {
|
|
as->abdstat_scatter_orders[i].value.ui64 =
|
|
wmsum_value(&abd_sums.abdstat_scatter_orders[i]);
|
|
}
|
|
as->abdstat_scatter_page_multi_chunk.value.ui64 =
|
|
wmsum_value(&abd_sums.abdstat_scatter_page_multi_chunk);
|
|
as->abdstat_scatter_page_multi_zone.value.ui64 =
|
|
wmsum_value(&abd_sums.abdstat_scatter_page_multi_zone);
|
|
as->abdstat_scatter_page_alloc_retry.value.ui64 =
|
|
wmsum_value(&abd_sums.abdstat_scatter_page_alloc_retry);
|
|
as->abdstat_scatter_sg_table_retry.value.ui64 =
|
|
wmsum_value(&abd_sums.abdstat_scatter_sg_table_retry);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
abd_init(void)
|
|
{
|
|
int i;
|
|
|
|
abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
|
|
0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
|
|
wmsum_init(&abd_sums.abdstat_struct_size, 0);
|
|
wmsum_init(&abd_sums.abdstat_linear_cnt, 0);
|
|
wmsum_init(&abd_sums.abdstat_linear_data_size, 0);
|
|
wmsum_init(&abd_sums.abdstat_scatter_cnt, 0);
|
|
wmsum_init(&abd_sums.abdstat_scatter_data_size, 0);
|
|
wmsum_init(&abd_sums.abdstat_scatter_chunk_waste, 0);
|
|
for (i = 0; i < MAX_ORDER; i++)
|
|
wmsum_init(&abd_sums.abdstat_scatter_orders[i], 0);
|
|
wmsum_init(&abd_sums.abdstat_scatter_page_multi_chunk, 0);
|
|
wmsum_init(&abd_sums.abdstat_scatter_page_multi_zone, 0);
|
|
wmsum_init(&abd_sums.abdstat_scatter_page_alloc_retry, 0);
|
|
wmsum_init(&abd_sums.abdstat_scatter_sg_table_retry, 0);
|
|
|
|
abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
|
|
sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
|
|
if (abd_ksp != NULL) {
|
|
for (i = 0; i < MAX_ORDER; i++) {
|
|
snprintf(abd_stats.abdstat_scatter_orders[i].name,
|
|
KSTAT_STRLEN, "scatter_order_%d", i);
|
|
abd_stats.abdstat_scatter_orders[i].data_type =
|
|
KSTAT_DATA_UINT64;
|
|
}
|
|
abd_ksp->ks_data = &abd_stats;
|
|
abd_ksp->ks_update = abd_kstats_update;
|
|
kstat_install(abd_ksp);
|
|
}
|
|
|
|
abd_alloc_zero_scatter();
|
|
}
|
|
|
|
void
|
|
abd_fini(void)
|
|
{
|
|
abd_free_zero_scatter();
|
|
|
|
if (abd_ksp != NULL) {
|
|
kstat_delete(abd_ksp);
|
|
abd_ksp = NULL;
|
|
}
|
|
|
|
wmsum_fini(&abd_sums.abdstat_struct_size);
|
|
wmsum_fini(&abd_sums.abdstat_linear_cnt);
|
|
wmsum_fini(&abd_sums.abdstat_linear_data_size);
|
|
wmsum_fini(&abd_sums.abdstat_scatter_cnt);
|
|
wmsum_fini(&abd_sums.abdstat_scatter_data_size);
|
|
wmsum_fini(&abd_sums.abdstat_scatter_chunk_waste);
|
|
for (int i = 0; i < MAX_ORDER; i++)
|
|
wmsum_fini(&abd_sums.abdstat_scatter_orders[i]);
|
|
wmsum_fini(&abd_sums.abdstat_scatter_page_multi_chunk);
|
|
wmsum_fini(&abd_sums.abdstat_scatter_page_multi_zone);
|
|
wmsum_fini(&abd_sums.abdstat_scatter_page_alloc_retry);
|
|
wmsum_fini(&abd_sums.abdstat_scatter_sg_table_retry);
|
|
|
|
if (abd_cache) {
|
|
kmem_cache_destroy(abd_cache);
|
|
abd_cache = NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
abd_free_linear_page(abd_t *abd)
|
|
{
|
|
/* Transform it back into a scatter ABD for freeing */
|
|
struct scatterlist *sg = abd->abd_u.abd_linear.abd_sgl;
|
|
abd->abd_flags &= ~ABD_FLAG_LINEAR;
|
|
abd->abd_flags &= ~ABD_FLAG_LINEAR_PAGE;
|
|
ABD_SCATTER(abd).abd_nents = 1;
|
|
ABD_SCATTER(abd).abd_offset = 0;
|
|
ABD_SCATTER(abd).abd_sgl = sg;
|
|
abd_free_chunks(abd);
|
|
|
|
abd_update_scatter_stats(abd, ABDSTAT_DECR);
|
|
}
|
|
|
|
/*
|
|
* If we're going to use this ABD for doing I/O using the block layer, the
|
|
* consumer of the ABD data doesn't care if it's scattered or not, and we don't
|
|
* plan to store this ABD in memory for a long period of time, we should
|
|
* allocate the ABD type that requires the least data copying to do the I/O.
|
|
*
|
|
* On Linux the optimal thing to do would be to use abd_get_offset() and
|
|
* construct a new ABD which shares the original pages thereby eliminating
|
|
* the copy. But for the moment a new linear ABD is allocated until this
|
|
* performance optimization can be implemented.
|
|
*/
|
|
abd_t *
|
|
abd_alloc_for_io(size_t size, boolean_t is_metadata)
|
|
{
|
|
return (abd_alloc(size, is_metadata));
|
|
}
|
|
|
|
abd_t *
|
|
abd_get_offset_scatter(abd_t *abd, abd_t *sabd, size_t off,
|
|
size_t size)
|
|
{
|
|
(void) size;
|
|
int i = 0;
|
|
struct scatterlist *sg = NULL;
|
|
|
|
abd_verify(sabd);
|
|
ASSERT3U(off, <=, sabd->abd_size);
|
|
|
|
size_t new_offset = ABD_SCATTER(sabd).abd_offset + off;
|
|
|
|
if (abd == NULL)
|
|
abd = abd_alloc_struct(0);
|
|
|
|
/*
|
|
* Even if this buf is filesystem metadata, we only track that
|
|
* if we own the underlying data buffer, which is not true in
|
|
* this case. Therefore, we don't ever use ABD_FLAG_META here.
|
|
*/
|
|
|
|
abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
|
|
if (new_offset < sg->length)
|
|
break;
|
|
new_offset -= sg->length;
|
|
}
|
|
|
|
ABD_SCATTER(abd).abd_sgl = sg;
|
|
ABD_SCATTER(abd).abd_offset = new_offset;
|
|
ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
|
|
|
|
return (abd);
|
|
}
|
|
|
|
/*
|
|
* Initialize the abd_iter.
|
|
*/
|
|
void
|
|
abd_iter_init(struct abd_iter *aiter, abd_t *abd)
|
|
{
|
|
ASSERT(!abd_is_gang(abd));
|
|
abd_verify(abd);
|
|
aiter->iter_abd = abd;
|
|
aiter->iter_mapaddr = NULL;
|
|
aiter->iter_mapsize = 0;
|
|
aiter->iter_pos = 0;
|
|
if (abd_is_linear(abd)) {
|
|
aiter->iter_offset = 0;
|
|
aiter->iter_sg = NULL;
|
|
} else {
|
|
aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
|
|
aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is just a helper function to see if we have exhausted the
|
|
* abd_iter and reached the end.
|
|
*/
|
|
boolean_t
|
|
abd_iter_at_end(struct abd_iter *aiter)
|
|
{
|
|
return (aiter->iter_pos == aiter->iter_abd->abd_size);
|
|
}
|
|
|
|
/*
|
|
* Advance the iterator by a certain amount. Cannot be called when a chunk is
|
|
* in use. This can be safely called when the aiter has already exhausted, in
|
|
* which case this does nothing.
|
|
*/
|
|
void
|
|
abd_iter_advance(struct abd_iter *aiter, size_t amount)
|
|
{
|
|
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
|
|
ASSERT0(aiter->iter_mapsize);
|
|
|
|
/* There's nothing left to advance to, so do nothing */
|
|
if (abd_iter_at_end(aiter))
|
|
return;
|
|
|
|
aiter->iter_pos += amount;
|
|
aiter->iter_offset += amount;
|
|
if (!abd_is_linear(aiter->iter_abd)) {
|
|
while (aiter->iter_offset >= aiter->iter_sg->length) {
|
|
aiter->iter_offset -= aiter->iter_sg->length;
|
|
aiter->iter_sg = sg_next(aiter->iter_sg);
|
|
if (aiter->iter_sg == NULL) {
|
|
ASSERT0(aiter->iter_offset);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map the current chunk into aiter. This can be safely called when the aiter
|
|
* has already exhausted, in which case this does nothing.
|
|
*/
|
|
void
|
|
abd_iter_map(struct abd_iter *aiter)
|
|
{
|
|
void *paddr;
|
|
size_t offset = 0;
|
|
|
|
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
|
|
ASSERT0(aiter->iter_mapsize);
|
|
|
|
/* There's nothing left to iterate over, so do nothing */
|
|
if (abd_iter_at_end(aiter))
|
|
return;
|
|
|
|
if (abd_is_linear(aiter->iter_abd)) {
|
|
ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
|
|
offset = aiter->iter_offset;
|
|
aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
|
|
paddr = ABD_LINEAR_BUF(aiter->iter_abd);
|
|
} else {
|
|
offset = aiter->iter_offset;
|
|
aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
|
|
aiter->iter_abd->abd_size - aiter->iter_pos);
|
|
|
|
paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg));
|
|
}
|
|
|
|
aiter->iter_mapaddr = (char *)paddr + offset;
|
|
}
|
|
|
|
/*
|
|
* Unmap the current chunk from aiter. This can be safely called when the aiter
|
|
* has already exhausted, in which case this does nothing.
|
|
*/
|
|
void
|
|
abd_iter_unmap(struct abd_iter *aiter)
|
|
{
|
|
/* There's nothing left to unmap, so do nothing */
|
|
if (abd_iter_at_end(aiter))
|
|
return;
|
|
|
|
if (!abd_is_linear(aiter->iter_abd)) {
|
|
/* LINTED E_FUNC_SET_NOT_USED */
|
|
zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset);
|
|
}
|
|
|
|
ASSERT3P(aiter->iter_mapaddr, !=, NULL);
|
|
ASSERT3U(aiter->iter_mapsize, >, 0);
|
|
|
|
aiter->iter_mapaddr = NULL;
|
|
aiter->iter_mapsize = 0;
|
|
}
|
|
|
|
void
|
|
abd_cache_reap_now(void)
|
|
{
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
/*
|
|
* bio_nr_pages for ABD.
|
|
* @off is the offset in @abd
|
|
*/
|
|
unsigned long
|
|
abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
|
|
{
|
|
unsigned long pos;
|
|
|
|
if (abd_is_gang(abd)) {
|
|
unsigned long count = 0;
|
|
|
|
for (abd_t *cabd = abd_gang_get_offset(abd, &off);
|
|
cabd != NULL && size != 0;
|
|
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
|
|
ASSERT3U(off, <, cabd->abd_size);
|
|
int mysize = MIN(size, cabd->abd_size - off);
|
|
count += abd_nr_pages_off(cabd, mysize, off);
|
|
size -= mysize;
|
|
off = 0;
|
|
}
|
|
return (count);
|
|
}
|
|
|
|
if (abd_is_linear(abd))
|
|
pos = (unsigned long)abd_to_buf(abd) + off;
|
|
else
|
|
pos = ABD_SCATTER(abd).abd_offset + off;
|
|
|
|
return (((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
|
|
(pos >> PAGE_SHIFT));
|
|
}
|
|
|
|
static unsigned int
|
|
bio_map(struct bio *bio, void *buf_ptr, unsigned int bio_size)
|
|
{
|
|
unsigned int offset, size, i;
|
|
struct page *page;
|
|
|
|
offset = offset_in_page(buf_ptr);
|
|
for (i = 0; i < bio->bi_max_vecs; i++) {
|
|
size = PAGE_SIZE - offset;
|
|
|
|
if (bio_size <= 0)
|
|
break;
|
|
|
|
if (size > bio_size)
|
|
size = bio_size;
|
|
|
|
if (is_vmalloc_addr(buf_ptr))
|
|
page = vmalloc_to_page(buf_ptr);
|
|
else
|
|
page = virt_to_page(buf_ptr);
|
|
|
|
/*
|
|
* Some network related block device uses tcp_sendpage, which
|
|
* doesn't behave well when using 0-count page, this is a
|
|
* safety net to catch them.
|
|
*/
|
|
ASSERT3S(page_count(page), >, 0);
|
|
|
|
if (bio_add_page(bio, page, size, offset) != size)
|
|
break;
|
|
|
|
buf_ptr += size;
|
|
bio_size -= size;
|
|
offset = 0;
|
|
}
|
|
|
|
return (bio_size);
|
|
}
|
|
|
|
/*
|
|
* bio_map for gang ABD.
|
|
*/
|
|
static unsigned int
|
|
abd_gang_bio_map_off(struct bio *bio, abd_t *abd,
|
|
unsigned int io_size, size_t off)
|
|
{
|
|
ASSERT(abd_is_gang(abd));
|
|
|
|
for (abd_t *cabd = abd_gang_get_offset(abd, &off);
|
|
cabd != NULL;
|
|
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
|
|
ASSERT3U(off, <, cabd->abd_size);
|
|
int size = MIN(io_size, cabd->abd_size - off);
|
|
int remainder = abd_bio_map_off(bio, cabd, size, off);
|
|
io_size -= (size - remainder);
|
|
if (io_size == 0 || remainder > 0)
|
|
return (io_size);
|
|
off = 0;
|
|
}
|
|
ASSERT0(io_size);
|
|
return (io_size);
|
|
}
|
|
|
|
/*
|
|
* bio_map for ABD.
|
|
* @off is the offset in @abd
|
|
* Remaining IO size is returned
|
|
*/
|
|
unsigned int
|
|
abd_bio_map_off(struct bio *bio, abd_t *abd,
|
|
unsigned int io_size, size_t off)
|
|
{
|
|
struct abd_iter aiter;
|
|
|
|
ASSERT3U(io_size, <=, abd->abd_size - off);
|
|
if (abd_is_linear(abd))
|
|
return (bio_map(bio, ((char *)abd_to_buf(abd)) + off, io_size));
|
|
|
|
ASSERT(!abd_is_linear(abd));
|
|
if (abd_is_gang(abd))
|
|
return (abd_gang_bio_map_off(bio, abd, io_size, off));
|
|
|
|
abd_iter_init(&aiter, abd);
|
|
abd_iter_advance(&aiter, off);
|
|
|
|
for (int i = 0; i < bio->bi_max_vecs; i++) {
|
|
struct page *pg;
|
|
size_t len, sgoff, pgoff;
|
|
struct scatterlist *sg;
|
|
|
|
if (io_size <= 0)
|
|
break;
|
|
|
|
sg = aiter.iter_sg;
|
|
sgoff = aiter.iter_offset;
|
|
pgoff = sgoff & (PAGESIZE - 1);
|
|
len = MIN(io_size, PAGESIZE - pgoff);
|
|
ASSERT(len > 0);
|
|
|
|
pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
|
|
if (bio_add_page(bio, pg, len, pgoff) != len)
|
|
break;
|
|
|
|
io_size -= len;
|
|
abd_iter_advance(&aiter, len);
|
|
}
|
|
|
|
return (io_size);
|
|
}
|
|
|
|
/* Tunable Parameters */
|
|
module_param(zfs_abd_scatter_enabled, int, 0644);
|
|
MODULE_PARM_DESC(zfs_abd_scatter_enabled,
|
|
"Toggle whether ABD allocations must be linear.");
|
|
module_param(zfs_abd_scatter_min_size, int, 0644);
|
|
MODULE_PARM_DESC(zfs_abd_scatter_min_size,
|
|
"Minimum size of scatter allocations.");
|
|
/* CSTYLED */
|
|
module_param(zfs_abd_scatter_max_order, uint, 0644);
|
|
MODULE_PARM_DESC(zfs_abd_scatter_max_order,
|
|
"Maximum order allocation used for a scatter ABD.");
|
|
#endif
|