mirror_zfs/module/zfs/ddt.c
Allan Jude 62e7d3c89e
ddt: add support for prefetching tables into the ARC
This change adds a new `zpool prefetch -t ddt $pool` command which
causes a pool's DDT to be loaded into the ARC. The primary goal is to
remove the need to "warm" a pool's cache before deduplication stops
slowing write performance. It may also provide a way to reload portions
of a DDT if they have been flushed due to inactivity.

Sponsored-by: iXsystems, Inc.
Sponsored-by: Catalogics, Inc.
Sponsored-by: Klara, Inc.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Will Andrews <will.andrews@klarasystems.com>
Signed-off-by: Fred Weigel <fred.weigel@klarasystems.com>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Co-authored-by: Will Andrews <will.andrews@klarasystems.com>
Co-authored-by: Don Brady <don.brady@klarasystems.com>
Closes #15890
2024-07-26 09:16:18 -07:00

1317 lines
35 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2016 by Delphix. All rights reserved.
* Copyright (c) 2022 by Pawel Jakub Dawidek
* Copyright (c) 2019, 2023, Klara Inc.
*/
#include <sys/zfs_context.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/ddt.h>
#include <sys/ddt_impl.h>
#include <sys/zap.h>
#include <sys/dmu_tx.h>
#include <sys/arc.h>
#include <sys/dsl_pool.h>
#include <sys/zio_checksum.h>
#include <sys/dsl_scan.h>
#include <sys/abd.h>
/*
* # DDT: Deduplication tables
*
* The dedup subsystem provides block-level deduplication. When enabled, blocks
* to be written will have the dedup (D) bit set, which causes them to be
* tracked in a "dedup table", or DDT. If a block has been seen before (exists
* in the DDT), instead of being written, it will instead be made to reference
* the existing on-disk data, and a refcount bumped in the DDT instead.
*
* ## Dedup tables and entries
*
* Conceptually, a DDT is a dictionary or map. Each entry has a "key"
* (ddt_key_t) made up a block's checksum and certian properties, and a "value"
* (one or more ddt_phys_t) containing valid DVAs for the block's data, birth
* time and refcount. Together these are enough to track references to a
* specific block, to build a valid block pointer to reference that block (for
* freeing, scrubbing, etc), and to fill a new block pointer with the missing
* pieces to make it seem like it was written.
*
* There's a single DDT (ddt_t) for each checksum type, held in spa_ddt[].
* Within each DDT, there can be multiple storage "types" (ddt_type_t, on-disk
* object data formats, each with their own implementations) and "classes"
* (ddt_class_t, instance of a storage type object, for entries with a specific
* characteristic). An entry (key) will only ever exist on one of these objects
* at any given time, but may be moved from one to another if their type or
* class changes.
*
* The DDT is driven by the write IO pipeline (zio_ddt_write()). When a block
* is to be written, before DVAs have been allocated, ddt_lookup() is called to
* see if the block has been seen before. If its not found, the write proceeds
* as normal, and after it succeeds, a new entry is created. If it is found, we
* fill the BP with the DVAs from the entry, increment the refcount and cause
* the write IO to return immediately.
*
* Each ddt_phys_t slot in the entry represents a separate dedup block for the
* same content/checksum. The slot is selected based on the zp_copies parameter
* the block is written with, that is, the number of DVAs in the block. The
* "ditto" slot (DDT_PHYS_DITTO) used to be used for now-removed "dedupditto"
* feature. These are no longer written, and will be freed if encountered on
* old pools.
*
* ## Lifetime of an entry
*
* A DDT can be enormous, and typically is not held in memory all at once.
* Instead, the changes to an entry are tracked in memory, and written down to
* disk at the end of each txg.
*
* A "live" in-memory entry (ddt_entry_t) is a node on the live tree
* (ddt_tree). At the start of a txg, ddt_tree is empty. When an entry is
* required for IO, ddt_lookup() is called. If an entry already exists on
* ddt_tree, it is returned. Otherwise, a new one is created, and the
* type/class objects for the DDT are searched for that key. If its found, its
* value is copied into the live entry. If not, an empty entry is created.
*
* The live entry will be modified during the txg, usually by modifying the
* refcount, but sometimes by adding or updating DVAs. At the end of the txg
* (during spa_sync()), type and class are recalculated for entry (see
* ddt_sync_entry()), and the entry is written to the appropriate storage
* object and (if necessary), removed from an old one. ddt_tree is cleared and
* the next txg can start.
*
* ## Dedup quota
*
* A maximum size for all DDTs on the pool can be set with the
* dedup_table_quota property. This is determined in ddt_over_quota() and
* enforced during ddt_lookup(). If the pool is at or over its quota limit,
* ddt_lookup() will only return entries for existing blocks, as updates are
* still possible. New entries will not be created; instead, ddt_lookup() will
* return NULL. In response, the DDT write stage (zio_ddt_write()) will remove
* the D bit on the block and reissue the IO as a regular write. The block will
* not be deduplicated.
*
* Note that this is based on the on-disk size of the dedup store. Reclaiming
* this space after deleting entries relies on the ZAP "shrinking" behaviour,
* without which, no space would be recovered and the DDT would continue to be
* considered "over quota". See zap_shrink_enabled.
*
* ## Repair IO
*
* If a read on a dedup block fails, but there are other copies of the block in
* the other ddt_phys_t slots, reads will be issued for those instead
* (zio_ddt_read_start()). If one of those succeeds, the read is returned to
* the caller, and a copy is stashed on the entry's dde_repair_abd.
*
* During the end-of-txg sync, any entries with a dde_repair_abd get a
* "rewrite" write issued for the original block pointer, with the data read
* from the alternate block. If the block is actually damaged, this will invoke
* the pool's "self-healing" mechanism, and repair the block.
*
* ## Scanning (scrub/resilver)
*
* If dedup is active, the scrub machinery will walk the dedup table first, and
* scrub all blocks with refcnt > 1 first. After that it will move on to the
* regular top-down scrub, and exclude the refcnt > 1 blocks when it sees them.
* In this way, heavily deduplicated blocks are only scrubbed once. See the
* commentary on dsl_scan_ddt() for more details.
*
* Walking the DDT is done via ddt_walk(). The current position is stored in a
* ddt_bookmark_t, which represents a stable position in the storage object.
* This bookmark is stored by the scan machinery, and must reference the same
* position on the object even if the object changes, the pool is exported, or
* OpenZFS is upgraded.
*
* ## Interaction with block cloning
*
* If block cloning and dedup are both enabled on a pool, BRT will look for the
* dedup bit on an incoming block pointer. If set, it will call into the DDT
* (ddt_addref()) to add a reference to the block, instead of adding a
* reference to the BRT. See brt_pending_apply().
*/
/*
* These are the only checksums valid for dedup. They must match the list
* from dedup_table in zfs_prop.c
*/
#define DDT_CHECKSUM_VALID(c) \
(c == ZIO_CHECKSUM_SHA256 || c == ZIO_CHECKSUM_SHA512 || \
c == ZIO_CHECKSUM_SKEIN || c == ZIO_CHECKSUM_EDONR || \
c == ZIO_CHECKSUM_BLAKE3)
static kmem_cache_t *ddt_cache;
static kmem_cache_t *ddt_entry_cache;
/*
* Enable/disable prefetching of dedup-ed blocks which are going to be freed.
*/
int zfs_dedup_prefetch = 0;
/*
* If the dedup class cannot satisfy a DDT allocation, treat as over quota
* for this many TXGs.
*/
uint_t dedup_class_wait_txgs = 5;
static const ddt_ops_t *const ddt_ops[DDT_TYPES] = {
&ddt_zap_ops,
};
static const char *const ddt_class_name[DDT_CLASSES] = {
"ditto",
"duplicate",
"unique",
};
static void
ddt_object_create(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
dmu_tx_t *tx)
{
spa_t *spa = ddt->ddt_spa;
objset_t *os = ddt->ddt_os;
uint64_t *objectp = &ddt->ddt_object[type][class];
boolean_t prehash = zio_checksum_table[ddt->ddt_checksum].ci_flags &
ZCHECKSUM_FLAG_DEDUP;
char name[DDT_NAMELEN];
ddt_object_name(ddt, type, class, name);
ASSERT3U(*objectp, ==, 0);
VERIFY0(ddt_ops[type]->ddt_op_create(os, objectp, tx, prehash));
ASSERT3U(*objectp, !=, 0);
VERIFY0(zap_add(os, DMU_POOL_DIRECTORY_OBJECT, name,
sizeof (uint64_t), 1, objectp, tx));
VERIFY0(zap_add(os, spa->spa_ddt_stat_object, name,
sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
&ddt->ddt_histogram[type][class], tx));
}
static void
ddt_object_destroy(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
dmu_tx_t *tx)
{
spa_t *spa = ddt->ddt_spa;
objset_t *os = ddt->ddt_os;
uint64_t *objectp = &ddt->ddt_object[type][class];
uint64_t count;
char name[DDT_NAMELEN];
ddt_object_name(ddt, type, class, name);
ASSERT3U(*objectp, !=, 0);
ASSERT(ddt_histogram_empty(&ddt->ddt_histogram[type][class]));
VERIFY0(ddt_object_count(ddt, type, class, &count));
VERIFY0(count);
VERIFY0(zap_remove(os, DMU_POOL_DIRECTORY_OBJECT, name, tx));
VERIFY0(zap_remove(os, spa->spa_ddt_stat_object, name, tx));
VERIFY0(ddt_ops[type]->ddt_op_destroy(os, *objectp, tx));
memset(&ddt->ddt_object_stats[type][class], 0, sizeof (ddt_object_t));
*objectp = 0;
}
static int
ddt_object_load(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
{
ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
dmu_object_info_t doi;
uint64_t count;
char name[DDT_NAMELEN];
int error;
ddt_object_name(ddt, type, class, name);
error = zap_lookup(ddt->ddt_os, DMU_POOL_DIRECTORY_OBJECT, name,
sizeof (uint64_t), 1, &ddt->ddt_object[type][class]);
if (error != 0)
return (error);
error = zap_lookup(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
&ddt->ddt_histogram[type][class]);
if (error != 0)
return (error);
/*
* Seed the cached statistics.
*/
error = ddt_object_info(ddt, type, class, &doi);
if (error)
return (error);
error = ddt_object_count(ddt, type, class, &count);
if (error)
return (error);
ddo->ddo_count = count;
ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
return (0);
}
static void
ddt_object_sync(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
dmu_tx_t *tx)
{
ddt_object_t *ddo = &ddt->ddt_object_stats[type][class];
dmu_object_info_t doi;
uint64_t count;
char name[DDT_NAMELEN];
ddt_object_name(ddt, type, class, name);
VERIFY0(zap_update(ddt->ddt_os, ddt->ddt_spa->spa_ddt_stat_object, name,
sizeof (uint64_t), sizeof (ddt_histogram_t) / sizeof (uint64_t),
&ddt->ddt_histogram[type][class], tx));
/*
* Cache DDT statistics; this is the only time they'll change.
*/
VERIFY0(ddt_object_info(ddt, type, class, &doi));
VERIFY0(ddt_object_count(ddt, type, class, &count));
ddo->ddo_count = count;
ddo->ddo_dspace = doi.doi_physical_blocks_512 << 9;
ddo->ddo_mspace = doi.doi_fill_count * doi.doi_data_block_size;
}
static boolean_t
ddt_object_exists(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
{
return (!!ddt->ddt_object[type][class]);
}
static int
ddt_object_lookup(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
ddt_entry_t *dde)
{
if (!ddt_object_exists(ddt, type, class))
return (SET_ERROR(ENOENT));
return (ddt_ops[type]->ddt_op_lookup(ddt->ddt_os,
ddt->ddt_object[type][class], &dde->dde_key,
dde->dde_phys, sizeof (dde->dde_phys)));
}
static int
ddt_object_contains(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
const ddt_key_t *ddk)
{
if (!ddt_object_exists(ddt, type, class))
return (SET_ERROR(ENOENT));
return (ddt_ops[type]->ddt_op_contains(ddt->ddt_os,
ddt->ddt_object[type][class], ddk));
}
static void
ddt_object_prefetch(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
const ddt_key_t *ddk)
{
if (!ddt_object_exists(ddt, type, class))
return;
ddt_ops[type]->ddt_op_prefetch(ddt->ddt_os,
ddt->ddt_object[type][class], ddk);
}
static void
ddt_object_prefetch_all(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
{
if (!ddt_object_exists(ddt, type, class))
return;
ddt_ops[type]->ddt_op_prefetch_all(ddt->ddt_os,
ddt->ddt_object[type][class]);
}
static int
ddt_object_update(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
ddt_entry_t *dde, dmu_tx_t *tx)
{
ASSERT(ddt_object_exists(ddt, type, class));
return (ddt_ops[type]->ddt_op_update(ddt->ddt_os,
ddt->ddt_object[type][class], &dde->dde_key, dde->dde_phys,
sizeof (dde->dde_phys), tx));
}
static int
ddt_object_remove(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
const ddt_key_t *ddk, dmu_tx_t *tx)
{
ASSERT(ddt_object_exists(ddt, type, class));
return (ddt_ops[type]->ddt_op_remove(ddt->ddt_os,
ddt->ddt_object[type][class], ddk, tx));
}
int
ddt_object_walk(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
uint64_t *walk, ddt_entry_t *dde)
{
ASSERT(ddt_object_exists(ddt, type, class));
return (ddt_ops[type]->ddt_op_walk(ddt->ddt_os,
ddt->ddt_object[type][class], walk, &dde->dde_key,
dde->dde_phys, sizeof (dde->dde_phys)));
}
int
ddt_object_count(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
uint64_t *count)
{
ASSERT(ddt_object_exists(ddt, type, class));
return (ddt_ops[type]->ddt_op_count(ddt->ddt_os,
ddt->ddt_object[type][class], count));
}
int
ddt_object_info(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
dmu_object_info_t *doi)
{
if (!ddt_object_exists(ddt, type, class))
return (SET_ERROR(ENOENT));
return (dmu_object_info(ddt->ddt_os, ddt->ddt_object[type][class],
doi));
}
void
ddt_object_name(ddt_t *ddt, ddt_type_t type, ddt_class_t class,
char *name)
{
(void) snprintf(name, DDT_NAMELEN, DMU_POOL_DDT,
zio_checksum_table[ddt->ddt_checksum].ci_name,
ddt_ops[type]->ddt_op_name, ddt_class_name[class]);
}
void
ddt_bp_fill(const ddt_phys_t *ddp, blkptr_t *bp, uint64_t txg)
{
ASSERT3U(txg, !=, 0);
for (int d = 0; d < SPA_DVAS_PER_BP; d++)
bp->blk_dva[d] = ddp->ddp_dva[d];
BP_SET_BIRTH(bp, txg, ddp->ddp_phys_birth);
}
/*
* The bp created via this function may be used for repairs and scrub, but it
* will be missing the salt / IV required to do a full decrypting read.
*/
void
ddt_bp_create(enum zio_checksum checksum,
const ddt_key_t *ddk, const ddt_phys_t *ddp, blkptr_t *bp)
{
BP_ZERO(bp);
if (ddp != NULL)
ddt_bp_fill(ddp, bp, ddp->ddp_phys_birth);
bp->blk_cksum = ddk->ddk_cksum;
BP_SET_LSIZE(bp, DDK_GET_LSIZE(ddk));
BP_SET_PSIZE(bp, DDK_GET_PSIZE(ddk));
BP_SET_COMPRESS(bp, DDK_GET_COMPRESS(ddk));
BP_SET_CRYPT(bp, DDK_GET_CRYPT(ddk));
BP_SET_FILL(bp, 1);
BP_SET_CHECKSUM(bp, checksum);
BP_SET_TYPE(bp, DMU_OT_DEDUP);
BP_SET_LEVEL(bp, 0);
BP_SET_DEDUP(bp, 1);
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
}
void
ddt_key_fill(ddt_key_t *ddk, const blkptr_t *bp)
{
ddk->ddk_cksum = bp->blk_cksum;
ddk->ddk_prop = 0;
ASSERT(BP_IS_ENCRYPTED(bp) || !BP_USES_CRYPT(bp));
DDK_SET_LSIZE(ddk, BP_GET_LSIZE(bp));
DDK_SET_PSIZE(ddk, BP_GET_PSIZE(bp));
DDK_SET_COMPRESS(ddk, BP_GET_COMPRESS(bp));
DDK_SET_CRYPT(ddk, BP_USES_CRYPT(bp));
}
void
ddt_phys_fill(ddt_phys_t *ddp, const blkptr_t *bp)
{
ASSERT0(ddp->ddp_phys_birth);
for (int d = 0; d < SPA_DVAS_PER_BP; d++)
ddp->ddp_dva[d] = bp->blk_dva[d];
ddp->ddp_phys_birth = BP_GET_BIRTH(bp);
}
void
ddt_phys_clear(ddt_phys_t *ddp)
{
memset(ddp, 0, sizeof (*ddp));
}
void
ddt_phys_addref(ddt_phys_t *ddp)
{
ddp->ddp_refcnt++;
}
void
ddt_phys_decref(ddt_phys_t *ddp)
{
if (ddp) {
ASSERT3U(ddp->ddp_refcnt, >, 0);
ddp->ddp_refcnt--;
}
}
static void
ddt_phys_free(ddt_t *ddt, ddt_key_t *ddk, ddt_phys_t *ddp, uint64_t txg)
{
blkptr_t blk;
ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
/*
* We clear the dedup bit so that zio_free() will actually free the
* space, rather than just decrementing the refcount in the DDT.
*/
BP_SET_DEDUP(&blk, 0);
ddt_phys_clear(ddp);
zio_free(ddt->ddt_spa, txg, &blk);
}
ddt_phys_t *
ddt_phys_select(const ddt_entry_t *dde, const blkptr_t *bp)
{
ddt_phys_t *ddp = (ddt_phys_t *)dde->dde_phys;
for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
if (DVA_EQUAL(BP_IDENTITY(bp), &ddp->ddp_dva[0]) &&
BP_GET_BIRTH(bp) == ddp->ddp_phys_birth)
return (ddp);
}
return (NULL);
}
uint64_t
ddt_phys_total_refcnt(const ddt_entry_t *dde)
{
uint64_t refcnt = 0;
for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++)
refcnt += dde->dde_phys[p].ddp_refcnt;
return (refcnt);
}
ddt_t *
ddt_select(spa_t *spa, const blkptr_t *bp)
{
ASSERT(DDT_CHECKSUM_VALID(BP_GET_CHECKSUM(bp)));
return (spa->spa_ddt[BP_GET_CHECKSUM(bp)]);
}
void
ddt_enter(ddt_t *ddt)
{
mutex_enter(&ddt->ddt_lock);
}
void
ddt_exit(ddt_t *ddt)
{
mutex_exit(&ddt->ddt_lock);
}
void
ddt_init(void)
{
ddt_cache = kmem_cache_create("ddt_cache",
sizeof (ddt_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
ddt_entry_cache = kmem_cache_create("ddt_entry_cache",
sizeof (ddt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
}
void
ddt_fini(void)
{
kmem_cache_destroy(ddt_entry_cache);
kmem_cache_destroy(ddt_cache);
}
static ddt_entry_t *
ddt_alloc(const ddt_key_t *ddk)
{
ddt_entry_t *dde;
dde = kmem_cache_alloc(ddt_entry_cache, KM_SLEEP);
memset(dde, 0, sizeof (ddt_entry_t));
cv_init(&dde->dde_cv, NULL, CV_DEFAULT, NULL);
dde->dde_key = *ddk;
return (dde);
}
static void
ddt_free(ddt_entry_t *dde)
{
for (int p = 0; p < DDT_PHYS_TYPES; p++)
ASSERT3P(dde->dde_lead_zio[p], ==, NULL);
if (dde->dde_repair_abd != NULL)
abd_free(dde->dde_repair_abd);
cv_destroy(&dde->dde_cv);
kmem_cache_free(ddt_entry_cache, dde);
}
void
ddt_remove(ddt_t *ddt, ddt_entry_t *dde)
{
ASSERT(MUTEX_HELD(&ddt->ddt_lock));
avl_remove(&ddt->ddt_tree, dde);
ddt_free(dde);
}
static boolean_t
ddt_special_over_quota(spa_t *spa, metaslab_class_t *mc)
{
if (mc != NULL && metaslab_class_get_space(mc) > 0) {
/* Over quota if allocating outside of this special class */
if (spa_syncing_txg(spa) <= spa->spa_dedup_class_full_txg +
dedup_class_wait_txgs) {
/* Waiting for some deferred frees to be processed */
return (B_TRUE);
}
/*
* We're considered over quota when we hit 85% full, or for
* larger drives, when there is less than 8GB free.
*/
uint64_t allocated = metaslab_class_get_alloc(mc);
uint64_t capacity = metaslab_class_get_space(mc);
uint64_t limit = MAX(capacity * 85 / 100,
(capacity > (1LL<<33)) ? capacity - (1LL<<33) : 0);
return (allocated >= limit);
}
return (B_FALSE);
}
/*
* Check if the DDT is over its quota. This can be due to a few conditions:
* 1. 'dedup_table_quota' property is not 0 (none) and the dedup dsize
* exceeds this limit
*
* 2. 'dedup_table_quota' property is set to automatic and
* a. the dedup or special allocation class could not satisfy a DDT
* allocation in a recent transaction
* b. the dedup or special allocation class has exceeded its 85% limit
*/
static boolean_t
ddt_over_quota(spa_t *spa)
{
if (spa->spa_dedup_table_quota == 0)
return (B_FALSE);
if (spa->spa_dedup_table_quota != UINT64_MAX)
return (ddt_get_ddt_dsize(spa) > spa->spa_dedup_table_quota);
/*
* For automatic quota, table size is limited by dedup or special class
*/
if (ddt_special_over_quota(spa, spa_dedup_class(spa)))
return (B_TRUE);
else if (spa_special_has_ddt(spa) &&
ddt_special_over_quota(spa, spa_special_class(spa)))
return (B_TRUE);
return (B_FALSE);
}
void
ddt_prefetch_all(spa_t *spa)
{
/*
* Load all DDT entries for each type/class combination. This is
* indended to perform a prefetch on all such blocks. For the same
* reason that ddt_prefetch isn't locked, this is also not locked.
*/
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
ddt_t *ddt = spa->spa_ddt[c];
if (!ddt)
continue;
for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
for (ddt_class_t class = 0; class < DDT_CLASSES;
class++) {
ddt_object_prefetch_all(ddt, type, class);
}
}
}
}
ddt_entry_t *
ddt_lookup(ddt_t *ddt, const blkptr_t *bp, boolean_t add)
{
spa_t *spa = ddt->ddt_spa;
ddt_key_t search;
ddt_entry_t *dde;
ddt_type_t type;
ddt_class_t class;
avl_index_t where;
int error;
ASSERT(MUTEX_HELD(&ddt->ddt_lock));
ddt_key_fill(&search, bp);
/* Find an existing live entry */
dde = avl_find(&ddt->ddt_tree, &search, &where);
if (dde != NULL) {
/* If we went over quota, act like we didn't find it */
if (dde->dde_flags & DDE_FLAG_OVERQUOTA)
return (NULL);
/* If it's already loaded, we can just return it. */
if (dde->dde_flags & DDE_FLAG_LOADED)
return (dde);
/* Someone else is loading it, wait for it. */
dde->dde_waiters++;
while (!(dde->dde_flags & DDE_FLAG_LOADED))
cv_wait(&dde->dde_cv, &ddt->ddt_lock);
dde->dde_waiters--;
/* Loaded but over quota, forget we were ever here */
if (dde->dde_flags & DDE_FLAG_OVERQUOTA) {
if (dde->dde_waiters == 0) {
avl_remove(&ddt->ddt_tree, dde);
ddt_free(dde);
}
return (NULL);
}
return (dde);
}
/* Not found. */
if (!add)
return (NULL);
/* Time to make a new entry. */
dde = ddt_alloc(&search);
avl_insert(&ddt->ddt_tree, dde, where);
/*
* ddt_tree is now stable, so unlock and let everyone else keep moving.
* Anyone landing on this entry will find it without DDE_FLAG_LOADED,
* and go to sleep waiting for it above.
*/
ddt_exit(ddt);
/* Search all store objects for the entry. */
error = ENOENT;
for (type = 0; type < DDT_TYPES; type++) {
for (class = 0; class < DDT_CLASSES; class++) {
error = ddt_object_lookup(ddt, type, class, dde);
if (error != ENOENT) {
ASSERT0(error);
break;
}
}
if (error != ENOENT)
break;
}
ddt_enter(ddt);
ASSERT(!(dde->dde_flags & DDE_FLAG_LOADED));
dde->dde_type = type; /* will be DDT_TYPES if no entry found */
dde->dde_class = class; /* will be DDT_CLASSES if no entry found */
if (dde->dde_type == DDT_TYPES &&
dde->dde_class == DDT_CLASSES &&
ddt_over_quota(spa)) {
/* Over quota. If no one is waiting, clean up right now. */
if (dde->dde_waiters == 0) {
avl_remove(&ddt->ddt_tree, dde);
ddt_free(dde);
return (NULL);
}
/* Flag cleanup required */
dde->dde_flags |= DDE_FLAG_OVERQUOTA;
} else if (error == 0) {
ddt_stat_update(ddt, dde, -1ULL);
}
/* Entry loaded, everyone can proceed now */
dde->dde_flags |= DDE_FLAG_LOADED;
cv_broadcast(&dde->dde_cv);
return (dde->dde_flags & DDE_FLAG_OVERQUOTA ? NULL : dde);
}
void
ddt_prefetch(spa_t *spa, const blkptr_t *bp)
{
ddt_t *ddt;
ddt_key_t ddk;
if (!zfs_dedup_prefetch || bp == NULL || !BP_GET_DEDUP(bp))
return;
/*
* We only remove the DDT once all tables are empty and only
* prefetch dedup blocks when there are entries in the DDT.
* Thus no locking is required as the DDT can't disappear on us.
*/
ddt = ddt_select(spa, bp);
ddt_key_fill(&ddk, bp);
for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
ddt_object_prefetch(ddt, type, class, &ddk);
}
}
}
/*
* Key comparison. Any struct wanting to make use of this function must have
* the key as the first element.
*/
#define DDT_KEY_CMP_LEN (sizeof (ddt_key_t) / sizeof (uint16_t))
typedef struct ddt_key_cmp {
uint16_t u16[DDT_KEY_CMP_LEN];
} ddt_key_cmp_t;
int
ddt_key_compare(const void *x1, const void *x2)
{
const ddt_key_cmp_t *k1 = (const ddt_key_cmp_t *)x1;
const ddt_key_cmp_t *k2 = (const ddt_key_cmp_t *)x2;
int32_t cmp = 0;
for (int i = 0; i < DDT_KEY_CMP_LEN; i++) {
cmp = (int32_t)k1->u16[i] - (int32_t)k2->u16[i];
if (likely(cmp))
break;
}
return (TREE_ISIGN(cmp));
}
static ddt_t *
ddt_table_alloc(spa_t *spa, enum zio_checksum c)
{
ddt_t *ddt;
ddt = kmem_cache_alloc(ddt_cache, KM_SLEEP);
memset(ddt, 0, sizeof (ddt_t));
mutex_init(&ddt->ddt_lock, NULL, MUTEX_DEFAULT, NULL);
avl_create(&ddt->ddt_tree, ddt_key_compare,
sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
avl_create(&ddt->ddt_repair_tree, ddt_key_compare,
sizeof (ddt_entry_t), offsetof(ddt_entry_t, dde_node));
ddt->ddt_checksum = c;
ddt->ddt_spa = spa;
ddt->ddt_os = spa->spa_meta_objset;
return (ddt);
}
static void
ddt_table_free(ddt_t *ddt)
{
ASSERT0(avl_numnodes(&ddt->ddt_tree));
ASSERT0(avl_numnodes(&ddt->ddt_repair_tree));
avl_destroy(&ddt->ddt_tree);
avl_destroy(&ddt->ddt_repair_tree);
mutex_destroy(&ddt->ddt_lock);
kmem_cache_free(ddt_cache, ddt);
}
void
ddt_create(spa_t *spa)
{
spa->spa_dedup_checksum = ZIO_DEDUPCHECKSUM;
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
if (DDT_CHECKSUM_VALID(c))
spa->spa_ddt[c] = ddt_table_alloc(spa, c);
}
}
int
ddt_load(spa_t *spa)
{
int error;
ddt_create(spa);
error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_DDT_STATS, sizeof (uint64_t), 1,
&spa->spa_ddt_stat_object);
if (error)
return (error == ENOENT ? 0 : error);
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
if (!DDT_CHECKSUM_VALID(c))
continue;
ddt_t *ddt = spa->spa_ddt[c];
for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
for (ddt_class_t class = 0; class < DDT_CLASSES;
class++) {
error = ddt_object_load(ddt, type, class);
if (error != 0 && error != ENOENT)
return (error);
}
}
/*
* Seed the cached histograms.
*/
memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
sizeof (ddt->ddt_histogram));
spa->spa_dedup_dspace = ~0ULL;
spa->spa_dedup_dsize = ~0ULL;
}
return (0);
}
void
ddt_unload(spa_t *spa)
{
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
if (spa->spa_ddt[c]) {
ddt_table_free(spa->spa_ddt[c]);
spa->spa_ddt[c] = NULL;
}
}
}
boolean_t
ddt_class_contains(spa_t *spa, ddt_class_t max_class, const blkptr_t *bp)
{
ddt_t *ddt;
ddt_key_t ddk;
if (!BP_GET_DEDUP(bp))
return (B_FALSE);
if (max_class == DDT_CLASS_UNIQUE)
return (B_TRUE);
ddt = spa->spa_ddt[BP_GET_CHECKSUM(bp)];
ddt_key_fill(&ddk, bp);
for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
for (ddt_class_t class = 0; class <= max_class; class++) {
if (ddt_object_contains(ddt, type, class, &ddk) == 0)
return (B_TRUE);
}
}
return (B_FALSE);
}
ddt_entry_t *
ddt_repair_start(ddt_t *ddt, const blkptr_t *bp)
{
ddt_key_t ddk;
ddt_entry_t *dde;
ddt_key_fill(&ddk, bp);
dde = ddt_alloc(&ddk);
for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
/*
* We can only do repair if there are multiple copies
* of the block. For anything in the UNIQUE class,
* there's definitely only one copy, so don't even try.
*/
if (class != DDT_CLASS_UNIQUE &&
ddt_object_lookup(ddt, type, class, dde) == 0)
return (dde);
}
}
memset(dde->dde_phys, 0, sizeof (dde->dde_phys));
return (dde);
}
void
ddt_repair_done(ddt_t *ddt, ddt_entry_t *dde)
{
avl_index_t where;
ddt_enter(ddt);
if (dde->dde_repair_abd != NULL && spa_writeable(ddt->ddt_spa) &&
avl_find(&ddt->ddt_repair_tree, dde, &where) == NULL)
avl_insert(&ddt->ddt_repair_tree, dde, where);
else
ddt_free(dde);
ddt_exit(ddt);
}
static void
ddt_repair_entry_done(zio_t *zio)
{
ddt_entry_t *rdde = zio->io_private;
ddt_free(rdde);
}
static void
ddt_repair_entry(ddt_t *ddt, ddt_entry_t *dde, ddt_entry_t *rdde, zio_t *rio)
{
ddt_phys_t *ddp = dde->dde_phys;
ddt_phys_t *rddp = rdde->dde_phys;
ddt_key_t *ddk = &dde->dde_key;
ddt_key_t *rddk = &rdde->dde_key;
zio_t *zio;
blkptr_t blk;
zio = zio_null(rio, rio->io_spa, NULL,
ddt_repair_entry_done, rdde, rio->io_flags);
for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++, rddp++) {
if (ddp->ddp_phys_birth == 0 ||
ddp->ddp_phys_birth != rddp->ddp_phys_birth ||
memcmp(ddp->ddp_dva, rddp->ddp_dva, sizeof (ddp->ddp_dva)))
continue;
ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
zio_nowait(zio_rewrite(zio, zio->io_spa, 0, &blk,
rdde->dde_repair_abd, DDK_GET_PSIZE(rddk), NULL, NULL,
ZIO_PRIORITY_SYNC_WRITE, ZIO_DDT_CHILD_FLAGS(zio), NULL));
}
zio_nowait(zio);
}
static void
ddt_repair_table(ddt_t *ddt, zio_t *rio)
{
spa_t *spa = ddt->ddt_spa;
ddt_entry_t *dde, *rdde_next, *rdde;
avl_tree_t *t = &ddt->ddt_repair_tree;
blkptr_t blk;
if (spa_sync_pass(spa) > 1)
return;
ddt_enter(ddt);
for (rdde = avl_first(t); rdde != NULL; rdde = rdde_next) {
rdde_next = AVL_NEXT(t, rdde);
avl_remove(&ddt->ddt_repair_tree, rdde);
ddt_exit(ddt);
ddt_bp_create(ddt->ddt_checksum, &rdde->dde_key, NULL, &blk);
dde = ddt_repair_start(ddt, &blk);
ddt_repair_entry(ddt, dde, rdde, rio);
ddt_repair_done(ddt, dde);
ddt_enter(ddt);
}
ddt_exit(ddt);
}
static void
ddt_sync_entry(ddt_t *ddt, ddt_entry_t *dde, dmu_tx_t *tx, uint64_t txg)
{
dsl_pool_t *dp = ddt->ddt_spa->spa_dsl_pool;
ddt_phys_t *ddp = dde->dde_phys;
ddt_key_t *ddk = &dde->dde_key;
ddt_type_t otype = dde->dde_type;
ddt_type_t ntype = DDT_TYPE_DEFAULT;
ddt_class_t oclass = dde->dde_class;
ddt_class_t nclass;
uint64_t total_refcnt = 0;
ASSERT(dde->dde_flags & DDE_FLAG_LOADED);
for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
ASSERT3P(dde->dde_lead_zio[p], ==, NULL);
if (ddp->ddp_phys_birth == 0) {
ASSERT0(ddp->ddp_refcnt);
continue;
}
if (p == DDT_PHYS_DITTO) {
/*
* Note, we no longer create DDT-DITTO blocks, but we
* don't want to leak any written by older software.
*/
ddt_phys_free(ddt, ddk, ddp, txg);
continue;
}
if (ddp->ddp_refcnt == 0)
ddt_phys_free(ddt, ddk, ddp, txg);
total_refcnt += ddp->ddp_refcnt;
}
/* We do not create new DDT-DITTO blocks. */
ASSERT0(dde->dde_phys[DDT_PHYS_DITTO].ddp_phys_birth);
if (total_refcnt > 1)
nclass = DDT_CLASS_DUPLICATE;
else
nclass = DDT_CLASS_UNIQUE;
if (otype != DDT_TYPES &&
(otype != ntype || oclass != nclass || total_refcnt == 0)) {
VERIFY0(ddt_object_remove(ddt, otype, oclass, ddk, tx));
ASSERT3U(
ddt_object_contains(ddt, otype, oclass, ddk), ==, ENOENT);
}
if (total_refcnt != 0) {
dde->dde_type = ntype;
dde->dde_class = nclass;
ddt_stat_update(ddt, dde, 0);
if (!ddt_object_exists(ddt, ntype, nclass))
ddt_object_create(ddt, ntype, nclass, tx);
VERIFY0(ddt_object_update(ddt, ntype, nclass, dde, tx));
/*
* If the class changes, the order that we scan this bp
* changes. If it decreases, we could miss it, so
* scan it right now. (This covers both class changing
* while we are doing ddt_walk(), and when we are
* traversing.)
*/
if (nclass < oclass) {
dsl_scan_ddt_entry(dp->dp_scan,
ddt->ddt_checksum, dde, tx);
}
}
}
static void
ddt_sync_table(ddt_t *ddt, dmu_tx_t *tx, uint64_t txg)
{
spa_t *spa = ddt->ddt_spa;
ddt_entry_t *dde;
void *cookie = NULL;
if (avl_numnodes(&ddt->ddt_tree) == 0)
return;
ASSERT3U(spa->spa_uberblock.ub_version, >=, SPA_VERSION_DEDUP);
if (spa->spa_ddt_stat_object == 0) {
spa->spa_ddt_stat_object = zap_create_link(ddt->ddt_os,
DMU_OT_DDT_STATS, DMU_POOL_DIRECTORY_OBJECT,
DMU_POOL_DDT_STATS, tx);
}
while ((dde = avl_destroy_nodes(&ddt->ddt_tree, &cookie)) != NULL) {
ddt_sync_entry(ddt, dde, tx, txg);
ddt_free(dde);
}
for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
uint64_t add, count = 0;
for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
if (ddt_object_exists(ddt, type, class)) {
ddt_object_sync(ddt, type, class, tx);
VERIFY0(ddt_object_count(ddt, type, class,
&add));
count += add;
}
}
for (ddt_class_t class = 0; class < DDT_CLASSES; class++) {
if (count == 0 && ddt_object_exists(ddt, type, class))
ddt_object_destroy(ddt, type, class, tx);
}
}
memcpy(&ddt->ddt_histogram_cache, ddt->ddt_histogram,
sizeof (ddt->ddt_histogram));
spa->spa_dedup_dspace = ~0ULL;
spa->spa_dedup_dsize = ~0ULL;
}
void
ddt_sync(spa_t *spa, uint64_t txg)
{
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
dmu_tx_t *tx;
zio_t *rio;
ASSERT3U(spa_syncing_txg(spa), ==, txg);
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
rio = zio_root(spa, NULL, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SELF_HEAL);
/*
* This function may cause an immediate scan of ddt blocks (see
* the comment above dsl_scan_ddt() for details). We set the
* scan's root zio here so that we can wait for any scan IOs in
* addition to the regular ddt IOs.
*/
ASSERT3P(scn->scn_zio_root, ==, NULL);
scn->scn_zio_root = rio;
for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
ddt_t *ddt = spa->spa_ddt[c];
if (ddt == NULL)
continue;
ddt_sync_table(ddt, tx, txg);
ddt_repair_table(ddt, rio);
}
(void) zio_wait(rio);
scn->scn_zio_root = NULL;
dmu_tx_commit(tx);
}
int
ddt_walk(spa_t *spa, ddt_bookmark_t *ddb, ddt_entry_t *dde)
{
do {
do {
do {
ddt_t *ddt = spa->spa_ddt[ddb->ddb_checksum];
if (ddt == NULL)
continue;
int error = ENOENT;
if (ddt_object_exists(ddt, ddb->ddb_type,
ddb->ddb_class)) {
error = ddt_object_walk(ddt,
ddb->ddb_type, ddb->ddb_class,
&ddb->ddb_cursor, dde);
}
dde->dde_type = ddb->ddb_type;
dde->dde_class = ddb->ddb_class;
if (error == 0)
return (0);
if (error != ENOENT)
return (error);
ddb->ddb_cursor = 0;
} while (++ddb->ddb_checksum < ZIO_CHECKSUM_FUNCTIONS);
ddb->ddb_checksum = 0;
} while (++ddb->ddb_type < DDT_TYPES);
ddb->ddb_type = 0;
} while (++ddb->ddb_class < DDT_CLASSES);
return (SET_ERROR(ENOENT));
}
/*
* This function is used by Block Cloning (brt.c) to increase reference
* counter for the DDT entry if the block is already in DDT.
*
* Return false if the block, despite having the D bit set, is not present
* in the DDT. Currently this is not possible but might be in the future.
* See the comment below.
*/
boolean_t
ddt_addref(spa_t *spa, const blkptr_t *bp)
{
ddt_t *ddt;
ddt_entry_t *dde;
boolean_t result;
spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
ddt = ddt_select(spa, bp);
ddt_enter(ddt);
dde = ddt_lookup(ddt, bp, B_TRUE);
/* Can be NULL if the entry for this block was pruned. */
if (dde == NULL) {
ddt_exit(ddt);
spa_config_exit(spa, SCL_ZIO, FTAG);
return (B_FALSE);
}
if (dde->dde_type < DDT_TYPES) {
ddt_phys_t *ddp;
ASSERT3S(dde->dde_class, <, DDT_CLASSES);
ddp = &dde->dde_phys[BP_GET_NDVAS(bp)];
/*
* This entry already existed (dde_type is real), so it must
* have refcnt >0 at the start of this txg. We are called from
* brt_pending_apply(), before frees are issued, so the refcnt
* can't be lowered yet. Therefore, it must be >0. We assert
* this because if the order of BRT and DDT interactions were
* ever to change and the refcnt was ever zero here, then
* likely further action is required to fill out the DDT entry,
* and this is a place that is likely to be missed in testing.
*/
ASSERT3U(ddp->ddp_refcnt, >, 0);
ddt_phys_addref(ddp);
result = B_TRUE;
} else {
/*
* At the time of implementating this if the block has the
* DEDUP flag set it must exist in the DEDUP table, but
* there are many advocates that want ability to remove
* entries from DDT with refcnt=1. If this will happen,
* we may have a block with the DEDUP set, but which doesn't
* have a corresponding entry in the DDT. Be ready.
*/
ASSERT3S(dde->dde_class, ==, DDT_CLASSES);
ddt_remove(ddt, dde);
result = B_FALSE;
}
ddt_exit(ddt);
spa_config_exit(spa, SCL_ZIO, FTAG);
return (result);
}
ZFS_MODULE_PARAM(zfs_dedup, zfs_dedup_, prefetch, INT, ZMOD_RW,
"Enable prefetching dedup-ed blks");