mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-03 23:09:35 +03:00
ef83e07db5
12 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Matthew Ahrens
|
b8738257c2 |
make zil max block size tunable
We've observed that on some highly fragmented pools, most metaslab allocations are small (~2-8KB), but there are some large, 128K allocations. The large allocations are for ZIL blocks. If there is a lot of fragmentation, the large allocations can be hard to satisfy. The most common impact of this is that we need to check (and thus load) lots of metaslabs from the ZIL allocation code path, causing sync writes to wait for metaslabs to load, which can take a second or more. In the worst case, we may not be able to satisfy the allocation, in which case the ZIL will resort to txg_wait_synced() to ensure the change is on disk. To provide a workaround for this, this change adds a tunable that can reduce the size of ZIL blocks. External-issue: DLPX-61719 Reviewed-by: George Wilson <george.wilson@delphix.com> Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #8865 |
||
Prakash Surya
|
900d09b285 |
OpenZFS 9962 - zil_commit should omit cache thrash
As a result of the changes made in 8585, it's possible for an excessive amount of vdev flush commands to be issued under some workloads. Specifically, when the workload consists of mostly async write activity, interspersed with some sync write and/or fsync activity, we can end up issuing more flush commands to the underlying storage than is actually necessary. As a result of these flush commands, the write latency and overall throughput of the pool can be poorly impacted (latency increases, throughput decreases). Currently, any time an lwb completes, the vdev(s) written to as a result of that lwb will be issued a flush command. The intenion is so the data written to that vdev is on stable storage, prior to communicating to any waiting threads that their data is safe on disk. The problem with this scheme, is that sometimes an lwb will not have any threads waiting for it to complete. This can occur when there's async activity that gets "converted" to sync requests, as a result of calling the zil_async_to_sync() function via zil_commit_impl(). When this occurs, the current code may issue many lwbs that don't have waiters associated with them, resulting in many flush commands, potentially to the same vdev(s). For example, given a pool with a single vdev, and a single fsync() call that results in 10 lwbs being written out (e.g. due to other async writes), that will result in 10 flush commands to that single vdev (a flush issued after each lwb write completes). Ideally, we'd only issue a single flush command to that vdev, after all 10 lwb writes completed. Further, and most important as it pertains to this change, since the flush commands are often very impactful to the performance of the pool's underlying storage, unnecessarily issuing these flush commands can poorly impact the performance of the lwb writes themselves. Thus, we need to avoid issuing flush commands when possible, in order to acheive the best possible performance out of the pool's underlying storage. This change attempts to address this problem by changing the ZIL's logic to only issue a vdev flush command when it detects an lwb that has a thread waiting for it to complete. When an lwb does not have threads waiting for it, the responsibility of issuing the flush command to the vdevs involved with that lwb's write is passed on to the "next" lwb. It's only once a write for an lwb with waiters completes, do we issue the vdev flush command(s). As a result, now when we issue the flush(s), we will issue them to the vdevs involved with that specific lwb's write, but potentially also to vdevs involved with "previous" lwb writes (i.e. if the previous lwbs did not have waiters associated with them). Thus, in our prior example with 10 lwbs, it's only once the last lwb completes (which will be the lwb containing the waiter for the thread that called fsync) will we issue the vdev flush command; all of the other lwbs will find they have no waiters, so they'll pass the responsibility of the flush to the "next" lwb (until reaching the last lwb that has the waiter). Porting Notes: * Reconciled conflicts with the fastwrite feature. Authored by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Matt Ahrens <matt@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Reviewed by: Patrick Mooney <patrick.mooney@joyent.com> Reviewed by: Jerry Jelinek <jerry.jelinek@joyent.com> Approved by: Joshua M. Clulow <josh@sysmgr.org> Ported-by: Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/9962 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/545190c6 Closes #8188 |
||
Prakash Surya
|
2fe61a7ecc |
OpenZFS 8909 - 8585 can cause a use-after-free kernel panic
Authored by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: John Kennedy <jwk404@gmail.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Reviewed by: Igor Kozhukhov <igor@dilos.org> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Robert Mustacchi <rm@joyent.com> Ported-by: Prakash Surya <prakash.surya@delphix.com> PROBLEM ======= There's a race condition that exists if `zil_free_lwb` races with either `zil_commit_waiter_timeout` and/or `zil_lwb_flush_vdevs_done`. Here's an example panic due to this bug: > ::status debugging crash dump vmcore.0 (64-bit) from ip-10-110-205-40 operating system: 5.11 dlpx-5.2.2.0_2017-12-04-17-28-32b6ba51fb (i86pc) image uuid: 4af0edfb-e58e-6ed8-cafc-d3e9167c7513 panic message: BAD TRAP: type=e (#pf Page fault) rp=ffffff0010555970 addr=60 occurred in module "zfs" due to a NULL pointer dereference dump content: kernel pages only > $c zio_shrink+0x12() zil_lwb_write_issue+0x30d(ffffff03dcd15cc0, ffffff03e0730e20) zil_commit_waiter_timeout+0xa2(ffffff03dcd15cc0, ffffff03d97ffcf8) zil_commit_waiter+0xf3(ffffff03dcd15cc0, ffffff03d97ffcf8) zil_commit+0x80(ffffff03dcd15cc0, 9a9) zfs_write+0xc34(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0) fop_write+0x5b(ffffff03dc38b140, ffffff0010555e60, 40, ffffff03e00fb758, 0) write+0x250(42, fffffd7ff4832000, 2000) sys_syscall+0x177() If there's an outstanding lwb that's in `zil_commit_waiter_timeout` waiting to timeout, waiting on it's waiter's CV, we must be sure not to call `zil_free_lwb`. If we end up calling `zil_free_lwb`, then that LWB may be freed and can result in a use-after-free situation where the stale lwb pointer stored in the `zil_commit_waiter_t` structure of the thread waiting on the waiter's CV is used. A similar situation can occur if an lwb is issued to disk, and thus in the `LWB_STATE_ISSUED` state, and `zil_free_lwb` is called while the disk is servicing that lwb. In this situation, the lwb will be freed by `zil_free_lwb`, which will result in a use-after-free situation when the lwb's zio completes, and `zil_lwb_flush_vdevs_done` is called. This race condition is prevented in `zil_close` by calling `zil_commit` before `zil_free_lwb` is called, which will ensure all outstanding (i.e. all lwb's in the `LWB_STATE_OPEN` and/or `LWB_STATE_ISSUED` states) reach the `LWB_STATE_DONE` state before the lwb's are freed (`zil_commit` will not return untill all the lwb's are `LWB_STATE_DONE`). Further, this race condition is prevented in `zil_sync` by only calling `zil_free_lwb` for lwb's that do not have their `lwb_buf` pointer set. All lwb's not in the `LWB_STATE_DONE` state will have a non-null value for this pointer; the pointer is only cleared in `zil_lwb_flush_vdevs_done`, at which point the lwb's state will be changed to `LWB_STATE_DONE`. This race *is* present in `zil_suspend`, leading to this bug. At first glance, it would appear as though this would not be true because `zil_suspend` will call `zil_commit`, just like `zil_close`, but the problem is that `zil_suspend` will set the zilog's `zl_suspend` field prior to calling `zil_commit`. Further, in `zil_commit`, if `zl_suspend` is set, `zil_commit` will take a special branch of logic and use `txg_wait_synced` instead of performing the normal `zil_commit` logic. This call to `txg_wait_synced` might be good enough for the data to reach disk safely before it returns, but it does not ensure that all outstanding lwb's reach the `LWB_STATE_DONE` state before it returns. This is because, if there's an lwb "stuck" in `zil_commit_waiter_timeout`, waiting for it's lwb to timeout, it will maintain a non-null value for it's `lwb_buf` field and thus `zil_sync` will not free that lwb. Thus, even though the lwb's data is already on disk, the lwb will be left lingering, waiting on the CV, and will eventually timeout and be issued to disk even though the write is unnecessary. So, after `zil_commit` is called from `zil_suspend`, we incorrectly assume that there are not outstanding lwb's, and proceed to free all lwb's found on the zilog's lwb list. As a result, we free the lwb that will later be used `zil_commit_waiter_timeout`. SOLUTION ======== The solution to this, is to ensure all outstanding lwb's complete before calling `zil_free_lwb` via `zil_destroy` in `zil_suspend`. This patch accomplishes this goal by forcing the normal `zil_commit` logic when called from `zil_sync`. Now, `zil_suspend` will call `zil_commit_impl` which will always use the normal logic of waiting/issuing lwb's to disk before it returns. As a result, any lwb's outstanding when `zil_commit_impl` is called will be guaranteed to reach the `LWB_STATE_DONE` state by the time it returns. Further, no new lwb's will be created via `zil_commit` since the zilog's `zl_suspend` flag will be set. This will force all new callers of `zil_commit` to use `txg_wait_synced` instead of creating and issuing new lwb's. Thus, all lwb's left on the zilog's lwb list when `zil_destroy` is called will be in the `LWB_STATE_DONE` state, and we'll avoid this race condition. OpenZFS-issue: https://www.illumos.org/issues/8909 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/ece62b6f8d Closes #6940 |
||
Prakash Surya
|
1b2b0acab5 |
OpenZFS 8603 - rename zilog's "zl_writer_lock" to "zl_issuer_lock"
This is a purely cosmetic change. The zilog's "zl_writer_lock" field is being renamed to "zl_issuer_lock" to try and make the code easier to understand; no other changes are made. Authored by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: C Fraire <cfraire@me.com> Approved by: Dan McDonald <danmcd@joyent.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8603 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/2daf06546b Closes #6927 |
||
Prakash Surya
|
1ce23dcaff |
OpenZFS 8585 - improve batching done in zil_commit()
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Prakash Surya <prakash.surya@delphix.com>
Problem
=======
The current implementation of zil_commit() can introduce significant
latency, beyond what is inherent due to the latency of the underlying
storage. The additional latency comes from two main problems:
1. When there's outstanding ZIL blocks being written (i.e. there's
already a "writer thread" in progress), then any new calls to
zil_commit() will block waiting for the currently oustanding ZIL
blocks to complete. The blocks written for each "writer thread" is
coined a "batch", and there can only ever be a single "batch" being
written at a time. When a batch is being written, any new ZIL
transactions will have to wait for the next batch to be written,
which won't occur until the current batch finishes.
As a result, the underlying storage may not be used as efficiently
as possible. While "new" threads enter zil_commit() and are blocked
waiting for the next batch, it's possible that the underlying
storage isn't fully utilized by the current batch of ZIL blocks. In
that case, it'd be better to allow these new threads to generate
(and issue) a new ZIL block, such that it could be serviced by the
underlying storage concurrently with the other ZIL blocks that are
being serviced.
2. Any call to zil_commit() must wait for all ZIL blocks in its "batch"
to complete, prior to zil_commit() returning. The size of any given
batch is proportional to the number of ZIL transaction in the queue
at the time that the batch starts processing the queue; which
doesn't occur until the previous batch completes. Thus, if there's a
lot of transactions in the queue, the batch could be composed of
many ZIL blocks, and each call to zil_commit() will have to wait for
all of these writes to complete (even if the thread calling
zil_commit() only cared about one of the transactions in the batch).
To further complicate the situation, these two issues result in the
following side effect:
3. If a given batch takes longer to complete than normal, this results
in larger batch sizes, which then take longer to complete and
further drive up the latency of zil_commit(). This can occur for a
number of reasons, including (but not limited to): transient changes
in the workload, and storage latency irregularites.
Solution
========
The solution attempted by this change has the following goals:
1. no on-disk changes; maintain current on-disk format.
2. modify the "batch size" to be equal to the "ZIL block size".
3. allow new batches to be generated and issued to disk, while there's
already batches being serviced by the disk.
4. allow zil_commit() to wait for as few ZIL blocks as possible.
5. use as few ZIL blocks as possible, for the same amount of ZIL
transactions, without introducing significant latency to any
individual ZIL transaction. i.e. use fewer, but larger, ZIL blocks.
In theory, with these goals met, the new allgorithm will allow the
following improvements:
1. new ZIL blocks can be generated and issued, while there's already
oustanding ZIL blocks being serviced by the storage.
2. the latency of zil_commit() should be proportional to the underlying
storage latency, rather than the incoming synchronous workload.
Porting Notes
=============
Due to the changes made in commit
|
||
Brian Behlendorf
|
a032ac4b38 |
OpenZFS 8558, 8602 - lwp_create() returns EAGAIN
8558 lwp_create() returns EAGAIN on system with more than 80K ZFS filesystems On a system with more than 80K ZFS filesystems, we've seen cases where lwp_create() will start to fail by returning EAGAIN. The problem being, for each of those 80K ZFS filesystems, a taskq will be created for each dataset as part of the ZIL for each dataset. Porting Notes: - The new nomem taskq kstat was dropped. - Added module options and documentation for new tunings zfs_zil_clean_taskq_nthr_pct, zfs_zil_clean_taskq_minalloc, zfs_zil_clean_taskq_maxalloc, and zfs_sync_taskq_batch_pct. Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Authored by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: George Melikov <mail@gmelikov.ru> Reviewed-by: Chris Dunlop <chris@onthe.net.au> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8558 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/216d772 8602 remove unused "dp_early_sync_tasks" field from "dsl_pool" structure Reviewed by: Serapheim Dimitropoulos <serapheim@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Approved by: Robert Mustacchi <rm@joyent.com> Authored by: Prakash Surya <prakash.surya@delphix.com> Reviewed-by: George Melikov <mail@gmelikov.ru> Reviewed-by: Chris Dunlop <chris@onthe.net.au> Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/8602 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/2bcb545 Closes #6779 |
||
Giuseppe Di Natale
|
1b7c1e5ce9 |
OpenZFS 7578 - Fix/improve some aspects of ZIL writing
- After some ZIL changes 6 years ago zil_slog_limit got partially broken due to zl_itx_list_sz not updated when async itx'es upgraded to sync. Actually because of other changes about that time zl_itx_list_sz is not really required to implement the functionality, so this patch removes some unneeded broken code and variables. - Original idea of zil_slog_limit was to reduce chance of SLOG abuse by single heavy logger, that increased latency for other (more latency critical) loggers, by pushing heavy log out into the main pool instead of SLOG. Beside huge latency increase for heavy writers, this implementation caused double write of all data, since the log records were explicitly prepared for SLOG. Since we now have I/O scheduler, I've found it can be much more efficient to reduce priority of heavy logger SLOG writes from ZIO_PRIORITY_SYNC_WRITE to ZIO_PRIORITY_ASYNC_WRITE, while still leave them on SLOG. - Existing ZIL implementation had problem with space efficiency when it has to write large chunks of data into log blocks of limited size. In some cases efficiency stopped to almost as low as 50%. In case of ZIL stored on spinning rust, that also reduced log write speed in half, since head had to uselessly fly over allocated but not written areas. This change improves the situation by offloading problematic operations from z*_log_write() to zil_lwb_commit(), which knows real situation of log blocks allocation and can split large requests into pieces much more efficiently. Also as side effect it removes one of two data copy operations done by ZIL code WR_COPIED case. - While there, untangle and unify code of z*_log_write() functions. Also zfs_log_write() alike to zvol_log_write() can now handle writes crossing block boundary, that may also improve efficiency if ZPL is made to do that. Sponsored by: iXsystems, Inc. Authored by: Alexander Motin <mav@FreeBSD.org> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Andriy Gapon <avg@FreeBSD.org> Reviewed by: Steven Hartland <steven.hartland@multiplay.co.uk> Reviewed by: Brad Lewis <brad.lewis@delphix.com> Reviewed by: Richard Elling <Richard.Elling@RichardElling.com> Approved by: Robert Mustacchi <rm@joyent.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Richard Yao <ryao@gentoo.org> Ported-by: Giuseppe Di Natale <dinatale2@llnl.gov> OpenZFS-issue: https://www.illumos.org/issues/7578 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/aeb13ac Closes #6191 |
||
Matthew Ahrens
|
f1512ee61e |
Illumos 5027 - zfs large block support
5027 zfs large block support Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com> Reviewed by: George Wilson <george.wilson@delphix.com> Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com> Reviewed by: Richard Elling <richard.elling@richardelling.com> Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com> Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov> Approved by: Dan McDonald <danmcd@omniti.com> References: https://www.illumos.org/issues/5027 https://github.com/illumos/illumos-gate/commit/b515258 Porting Notes: * Included in this patch is a tiny ISP2() cleanup in zio_init() from Illumos 5255. * Unlike the upstream Illumos commit this patch does not impose an arbitrary 128K block size limit on volumes. Volumes, like filesystems, are limited by the zfs_max_recordsize=1M module option. * By default the maximum record size is limited to 1M by the module option zfs_max_recordsize. This value may be safely increased up to 16M which is the largest block size supported by the on-disk format. At the moment, 1M blocks clearly offer a significant performance improvement but the benefits of going beyond this for the majority of workloads are less clear. * The illumos version of this patch increased DMU_MAX_ACCESS to 32M. This was determined not to be large enough when using 16M blocks because the zfs_make_xattrdir() function will fail (EFBIG) when assigning a TX. This was immediately observed under Linux because all newly created files must have a security xattr created and that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M. * On 32-bit platforms a hard limit of 1M is set for blocks due to the limited virtual address space. We should be able to relax this one the ABD patches are merged. Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #354 |
||
Michael Kjorling
|
d1d7e2689d |
cstyle: Resolve C style issues
The vast majority of these changes are in Linux specific code. They are the result of not having an automated style checker to validate the code when it was originally written. Others were caused when the common code was slightly adjusted for Linux. This patch contains no functional changes. It only refreshes the code to conform to style guide. Everyone submitting patches for inclusion upstream should now run 'make checkstyle' and resolve any warning prior to opening a pull request. The automated builders have been updated to fail a build if when 'make checkstyle' detects an issue. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #1821 |
||
Matthew Ahrens
|
29809a6cba |
Illumos #3086: unnecessarily setting DS_FLAG_INCONSISTENT on async
3086 unnecessarily setting DS_FLAG_INCONSISTENT on async destroyed datasets Reviewed by: Christopher Siden <chris.siden@delphix.com> Approved by: Eric Schrock <Eric.Schrock@delphix.com> References: illumos/illumos-gate@ce636f8b38 illumos changeset: 13776:cd512c80fd75 https://www.illumos.org/issues/3086 Ported-by: Brian Behlendorf <behlendorf1@llnl.gov> |
||
Etienne Dechamps
|
920dd524fb |
Add FASTWRITE algorithm for synchronous writes.
Currently, ZIL blocks are spread over vdevs using hint block pointers managed by the ZIL commit code and passed to metaslab_alloc(). Spreading log blocks accross vdevs is important for performance: indeed, using mutliple disks in parallel decreases the ZIL commit latency, which is the main performance metric for synchronous writes. However, the current implementation suffers from the following issues: 1) It would be best if the ZIL module was not aware of such low-level details. They should be handled by the ZIO and metaslab modules; 2) Because the hint block pointer is managed per log, simultaneous commits from multiple logs might use the same vdevs at the same time, which is inefficient; 3) Because dmu_write() does not honor the block pointer hint, indirect writes are not spread. The naive solution of rotating the metaslab rotor each time a block is allocated for the ZIL or dmu_sync() doesn't work in practice because the first ZIL block to be written is actually allocated during the previous commit. Consequently, when metaslab_alloc() decides the vdev for this block, it will do so while a bunch of other allocations are happening at the same time (from dmu_sync() and other ZILs). This means the vdev for this block is chosen more or less at random. When the next commit happens, there is a high chance (especially when the number of blocks per commit is slightly less than the number of the disks) that one disk will have to write two blocks (with a potential seek) while other disks are sitting idle, which defeats spreading and increases the commit latency. This commit introduces a new concept in the metaslab allocator: fastwrites. Basically, each top-level vdev maintains a counter indicating the number of synchronous writes (from dmu_sync() and the ZIL) which have been allocated but not yet completed. When the metaslab is called with the FASTWRITE flag, it will choose the vdev with the least amount of pending synchronous writes. If there are multiple vdevs with the same value, the first matching vdev (starting from the rotor) is used. Once metaslab_alloc() has decided which vdev the block is allocated to, it updates the fastwrite counter for this vdev. The rationale goes like this: when an allocation is done with FASTWRITE, it "reserves" the vdev until the data is written. Until then, all future allocations will naturally avoid this vdev, even after a full rotation of the rotor. As a result, pending synchronous writes at a given point in time will be nicely spread over all vdevs. This contrasts with the previous algorithm, which is based on the implicit assumption that blocks are written instantaneously after they're allocated. metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to manually increase or decrease fastwrite counters, respectively. They should be used with caution, as there is no per-BP tracking of fastwrite information, so leaks and "double-unmarks" are possible. There is, however, an assert in the vdev teardown code which will fire if the fastwrite counters are not zero when the pool is exported or the vdev removed. Note that as stated above, marking is also done implictly by metaslab_alloc(). ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to the metaslab when allocating (assuming ZIO does the allocation, which is only true in the case of dmu_sync). This flag will also trigger an unmark when zio_done() fires. A side-effect of the new algorithm is that when a ZIL stops being used, its last block can stay in the pending state (allocated but not yet written) for a long time, polluting the fastwrite counters. To avoid that, I've implemented a somewhat crude but working solution which unmarks these pending blocks in zil_sync(), thus guaranteeing that linguering fastwrites will get pruned at each sync event. The best performance improvements are observed with pools using a large number of top-level vdevs and heavy synchronous write workflows (especially indirect writes and concurrent writes from multiple ZILs). Real-life testing shows a 200% to 300% performance increase with indirect writes and various commit sizes. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Issue #1013 |
||
Brian Behlendorf
|
6283f55ea1 |
Support custom build directories and move includes
One of the neat tricks an autoconf style project is capable of is allow configurion/building in a directory other than the source directory. The major advantage to this is that you can build the project various different ways while making changes in a single source tree. For example, this project is designed to work on various different Linux distributions each of which work slightly differently. This means that changes need to verified on each of those supported distributions perferably before the change is committed to the public git repo. Using nfs and custom build directories makes this much easier. I now have a single source tree in nfs mounted on several different systems each running a supported distribution. When I make a change to the source base I suspect may break things I can concurrently build from the same source on all the systems each in their own subdirectory. wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz tar -xzf zfs-x.y.z.tar.gz cd zfs-x-y-z ------------------------- run concurrently ---------------------- <ubuntu system> <fedora system> <debian system> <rhel6 system> mkdir ubuntu mkdir fedora mkdir debian mkdir rhel6 cd ubuntu cd fedora cd debian cd rhel6 ../configure ../configure ../configure ../configure make make make make make check make check make check make check This change also moves many of the include headers from individual incude/sys directories under the modules directory in to a single top level include directory. This has the advantage of making the build rules cleaner and logically it makes a bit more sense. |