Enable ignore_hole_birth by default until all known hole birth bugs
have been resolved and relevant test cases added.
Reviewed-by: Boris Protopopov <boris.protopopov@actifio.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4809Closes#5099
Authored by: George Wilson <george.wilson@delphix.com>
Reviewed by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Dan Kimmel <dan.kimmel@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: Paul Dagnelie <pcd@delphix.com>
Reviewed by: Tom Caputi <tcaputi@datto.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Ported by: David Quigley <david.quigley@intel.com>
This review covers the reading and writing of compressed arc headers, sharing
data between the arc_hdr_t and the arc_buf_t, and the implementation of a new
dbuf cache to keep frequently access data uncompressed.
I've added a new member to l1 arc hdr called b_pdata. The b_pdata always hangs
off the arc_buf_hdr_t (if an L1 hdr is in use) and points to the physical block
for that DVA. The physical block may or may not be compressed. If compressed
arc is enabled and the block on-disk is compressed, then the b_pdata will match
the block on-disk and remain compressed in memory. If the block on disk is not
compressed, then neither will the b_pdata. Lastly, if compressed arc is
disabled, then b_pdata will always be an uncompressed version of the on-disk
block.
Typically the arc will cache only the arc_buf_hdr_t and will aggressively evict
any arc_buf_t's that are no longer referenced. This means that the arc will
primarily have compressed blocks as the arc_buf_t's are considered overhead and
are always uncompressed. When a consumer reads a block we first look to see if
the arc_buf_hdr_t is cached. If the hdr is cached then we allocate a new
arc_buf_t and decompress the b_pdata contents into the arc_buf_t's b_data. If
the hdr already has a arc_buf_t, then we will allocate an additional arc_buf_t
and bcopy the uncompressed contents from the first arc_buf_t to the new one.
Writing to the compressed arc requires that we first discard the b_pdata since
the physical block is about to be rewritten. The new data contents will be
passed in via an arc_buf_t (uncompressed) and during the I/O pipeline stages we
will copy the physical block contents to a newly allocated b_pdata.
When an l2arc is inuse it will also take advantage of the b_pdata. Now the
l2arc will always write the contents of b_pdata to the l2arc. This means that
when compressed arc is enabled that the l2arc blocks are identical to those
stored in the main data pool. This provides a significant advantage since we
can leverage the bp's checksum when reading from the l2arc to determine if the
contents are valid. If the compressed arc is disabled, then we must first
transform the read block to look like the physical block in the main data pool
before comparing the checksum and determining it's valid.
OpenZFS-issue: https://www.illumos.org/issues/6950
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/7fc10f0
Issue #5078
ARC will evict meta buffers that exceed the arc_meta_limit. Before a further
investigating on whether we should take special protection on meta buffers,
this tunable make arc_meta_limit adjustable for different workloads.
People can set zfs_arc_meta_limit_percent to any value while insmod zfs.ko,
so some range check is added to guarantee a suitable arc_meta_limit.
Suggested by Tim Chase, zfs_arc_dnode_limit is changed to a percent-style
tunable as well.
Signed-off-by: GeLiXin <ge.lixin@zte.com.cn>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4957
Adds a module option which disables the hole_birth optimization
which has been responsible for several recent bugs, including
issue #4050.
Original-patch: https://gist.github.com/pcd1193182/2c0cd47211f3aee623958b4698836c48
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4833
Metadata-intensive workloads can cause the ARC to become permanently
filled with dnode_t objects as they're pinned by the VFS layer.
Subsequent data-intensive workloads may only benefit from about
25% of the potential ARC (arc_c_max - arc_meta_limit).
In order to help track metadata usage more precisely, the other_size
metadata arcstat has replaced with dbuf_size, dnode_size and bonus_size.
The new zfs_arc_dnode_limit tunable, which defaults to 10% of
zfs_arc_meta_limit, defines the minimum number of bytes which is desirable
to be consumed by dnodes. Attempts to evict non-metadata will trigger
async prune tasks if the space used by dnodes exceeds this limit.
The new zfs_arc_dnode_reduce_percent tunable specifies the amount by
which the excess dnode space is attempted to be pruned as a percentage of
the amount by which zfs_arc_dnode_limit is being exceeded. By default,
it tries to unpin 10% of the dnodes.
The problem of dnode metadata pinning was observed with the following
testing procedure (in this example, zfs_arc_max is set to 4GiB):
- Create a large number of small files until arc_meta_used exceeds
arc_meta_limit (3GiB with default tuning) and arc_prune
starts increasing.
- Create a 3GiB file with dd. Observe arc_mata_used. It will still
be around 3GiB.
- Repeatedly read the 3GiB file and observe arc_meta_limit as before.
It will continue to stay around 3GiB.
With this modification, space for the 3GiB file is gradually made
available as subsequent demands on the ARC are made. The previous behavior
can be restored by setting zfs_arc_dnode_limit to the same value as the
zfs_arc_meta_limit.
Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4345
Issue #4512
Issue #4773Closes#4858
- Implementation lock replaced with atomic variable
- Trailing whitespace is removed from user specified parameter, to enhance
experience when using commands that add newline, e.g. `echo`
- raidz_test: remove dependency on `getrusage()` and RUSAGE_THREAD, Issue #4813
- silence `cppcheck` in vdev_raidz, partial solution of Issue #1392
- Minor fixes and cleanups
- Enable use of original parity methods in [fastest] configuration.
New opaque original ops structure, representing native methods, is added
to supported raidz methods. Original parity methods are executed if selected
implementation has NULL fn pointer.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #4813
Issue #1392
Builds off of 1eeb4562 (Implementation of AVX2 optimized Fletcher-4)
This commit adds another implementation of the Fletcher-4 algorithm.
It is automatically selected at module load if it benchmarks higher
than all other available implementations.
The module benchmark was also amended to analyze the performance of
the byteswap-ed version of Fletcher-4, as well as the non-byteswaped
version. The average performance of the two is used to select the
the fastest implementation available on the host system.
Adds a pair of fields to an existing zcommon module parameter:
- zfs_fletcher_4_impl (str)
"sse2" - new SSE2 implementation if available
"ssse3" - new SSSE3 implementation if available
Signed-off-by: Tyler J. Stachecki <stachecki.tyler@gmail.com>
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4789
Justification
-------------
This feature adds support for variable length dnodes. Our motivation is
to eliminate the overhead associated with using spill blocks. Spill
blocks are used to store system attribute data (i.e. file metadata) that
does not fit in the dnode's bonus buffer. By allowing a larger bonus
buffer area the use of a spill block can be avoided. Spill blocks
potentially incur an additional read I/O for every dnode in a dnode
block. As a worst case example, reading 32 dnodes from a 16k dnode block
and all of the spill blocks could issue 33 separate reads. Now suppose
those dnodes have size 1024 and therefore don't need spill blocks. Then
the worst case number of blocks read is reduced to from 33 to two--one
per dnode block. In practice spill blocks may tend to be co-located on
disk with the dnode blocks so the reduction in I/O would not be this
drastic. In a badly fragmented pool, however, the improvement could be
significant.
ZFS-on-Linux systems that make heavy use of extended attributes would
benefit from this feature. In particular, ZFS-on-Linux supports the
xattr=sa dataset property which allows file extended attribute data
to be stored in the dnode bonus buffer as an alternative to the
traditional directory-based format. Workloads such as SELinux and the
Lustre distributed filesystem often store enough xattr data to force
spill bocks when xattr=sa is in effect. Large dnodes may therefore
provide a performance benefit to such systems.
Other use cases that may benefit from this feature include files with
large ACLs and symbolic links with long target names. Furthermore,
this feature may be desirable on other platforms in case future
applications or features are developed that could make use of a
larger bonus buffer area.
Implementation
--------------
The size of a dnode may be a multiple of 512 bytes up to the size of
a dnode block (currently 16384 bytes). A dn_extra_slots field was
added to the current on-disk dnode_phys_t structure to describe the
size of the physical dnode on disk. The 8 bits for this field were
taken from the zero filled dn_pad2 field. The field represents how
many "extra" dnode_phys_t slots a dnode consumes in its dnode block.
This convention results in a value of 0 for 512 byte dnodes which
preserves on-disk format compatibility with older software.
Similarly, the in-memory dnode_t structure has a new dn_num_slots field
to represent the total number of dnode_phys_t slots consumed on disk.
Thus dn->dn_num_slots is 1 greater than the corresponding
dnp->dn_extra_slots. This difference in convention was adopted
because, unlike on-disk structures, backward compatibility is not a
concern for in-memory objects, so we used a more natural way to
represent size for a dnode_t.
The default size for newly created dnodes is determined by the value of
a new "dnodesize" dataset property. By default the property is set to
"legacy" which is compatible with older software. Setting the property
to "auto" will allow the filesystem to choose the most suitable dnode
size. Currently this just sets the default dnode size to 1k, but future
code improvements could dynamically choose a size based on observed
workload patterns. Dnodes of varying sizes can coexist within the same
dataset and even within the same dnode block. For example, to enable
automatically-sized dnodes, run
# zfs set dnodesize=auto tank/fish
The user can also specify literal values for the dnodesize property.
These are currently limited to powers of two from 1k to 16k. The
power-of-2 limitation is only for simplicity of the user interface.
Internally the implementation can handle any multiple of 512 up to 16k,
and consumers of the DMU API can specify any legal dnode value.
The size of a new dnode is determined at object allocation time and
stored as a new field in the znode in-memory structure. New DMU
interfaces are added to allow the consumer to specify the dnode size
that a newly allocated object should use. Existing interfaces are
unchanged to avoid having to update every call site and to preserve
compatibility with external consumers such as Lustre. The new
interfaces names are given below. The versions of these functions that
don't take a dnodesize parameter now just call the _dnsize() versions
with a dnodesize of 0, which means use the legacy dnode size.
New DMU interfaces:
dmu_object_alloc_dnsize()
dmu_object_claim_dnsize()
dmu_object_reclaim_dnsize()
New ZAP interfaces:
zap_create_dnsize()
zap_create_norm_dnsize()
zap_create_flags_dnsize()
zap_create_claim_norm_dnsize()
zap_create_link_dnsize()
The constant DN_MAX_BONUSLEN is renamed to DN_OLD_MAX_BONUSLEN. The
spa_maxdnodesize() function should be used to determine the maximum
bonus length for a pool.
These are a few noteworthy changes to key functions:
* The prototype for dnode_hold_impl() now takes a "slots" parameter.
When the DNODE_MUST_BE_FREE flag is set, this parameter is used to
ensure the hole at the specified object offset is large enough to
hold the dnode being created. The slots parameter is also used
to ensure a dnode does not span multiple dnode blocks. In both of
these cases, if a failure occurs, ENOSPC is returned. Keep in mind,
these failure cases are only possible when using DNODE_MUST_BE_FREE.
If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
dnode_hold_impl() will check if the requested dnode is already
consumed as an extra dnode slot by an large dnode, in which case
it returns ENOENT.
* The function dmu_object_alloc() advances to the next dnode block
if dnode_hold_impl() returns an error for a requested object.
This is because the beginning of the next dnode block is the only
location it can safely assume to either be a hole or a valid
starting point for a dnode.
* dnode_next_offset_level() and other functions that iterate
through dnode blocks may no longer use a simple array indexing
scheme. These now use the current dnode's dn_num_slots field to
advance to the next dnode in the block. This is to ensure we
properly skip the current dnode's bonus area and don't interpret it
as a valid dnode.
zdb
---
The zdb command was updated to display a dnode's size under the
"dnsize" column when the object is dumped.
For ZIL create log records, zdb will now display the slot count for
the object.
ztest
-----
Ztest chooses a random dnodesize for every newly created object. The
random distribution is more heavily weighted toward small dnodes to
better simulate real-world datasets.
Unused bonus buffer space is filled with non-zero values computed from
the object number, dataset id, offset, and generation number. This
helps ensure that the dnode traversal code properly skips the interior
regions of large dnodes, and that these interior regions are not
overwritten by data belonging to other dnodes. A new test visits each
object in a dataset. It verifies that the actual dnode size matches what
was stored in the ztest block tag when it was created. It also verifies
that the unused bonus buffer space is filled with the expected data
patterns.
ZFS Test Suite
--------------
Added six new large dnode-specific tests, and integrated the dnodesize
property into existing tests for zfs allow and send/recv.
Send/Receive
------------
ZFS send streams for datasets containing large dnodes cannot be received
on pools that don't support the large_dnode feature. A send stream with
large dnodes sets a DMU_BACKUP_FEATURE_LARGE_DNODE flag which will be
unrecognized by an incompatible receiving pool so that the zfs receive
will fail gracefully.
While not implemented here, it may be possible to generate a
backward-compatible send stream from a dataset containing large
dnodes. The implementation may be tricky, however, because the send
object record for a large dnode would need to be resized to a 512
byte dnode, possibly kicking in a spill block in the process. This
means we would need to construct a new SA layout and possibly
register it in the SA layout object. The SA layout is normally just
sent as an ordinary object record. But if we are constructing new
layouts while generating the send stream we'd have to build the SA
layout object dynamically and send it at the end of the stream.
For sending and receiving between pools that do support large dnodes,
the drr_object send record type is extended with a new field to store
the dnode slot count. This field was repurposed from unused padding
in the structure.
ZIL Replay
----------
The dnode slot count is stored in the uppermost 8 bits of the lr_foid
field. The bits were unused as the object id is currently capped at
48 bits.
Resizing Dnodes
---------------
It should be possible to resize a dnode when it is dirtied if the
current dnodesize dataset property differs from the dnode's size, but
this functionality is not currently implemented. Clearly a dnode can
only grow if there are sufficient contiguous unused slots in the
dnode block, but it should always be possible to shrink a dnode.
Growing dnodes may be useful to reduce fragmentation in a pool with
many spill blocks in use. Shrinking dnodes may be useful to allow
sending a dataset to a pool that doesn't support the large_dnode
feature.
Feature Reference Counting
--------------------------
The reference count for the large_dnode pool feature tracks the
number of datasets that have ever contained a dnode of size larger
than 512 bytes. The first time a large dnode is created in a dataset
the dataset is converted to an extensible dataset. This is a one-way
operation and the only way to decrement the feature count is to
destroy the dataset, even if the dataset no longer contains any large
dnodes. The complexity of reference counting on a per-dnode basis was
too high, so we chose to track it on a per-dataset basis similarly to
the large_block feature.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3542
This is a new implementation of RAIDZ1/2/3 routines using x86_64
scalar, SSE, and AVX2 instruction sets. Included are 3 parity
generation routines (P, PQ, and PQR) and 7 reconstruction routines,
for all RAIDZ level. On module load, a quick benchmark of supported
routines will select the fastest for each operation and they will
be used at runtime. Original implementation is still present and
can be selected via module parameter.
Patch contains:
- specialized gen/rec routines for all RAIDZ levels,
- new scalar raidz implementation (unrolled),
- two x86_64 SIMD implementations (SSE and AVX2 instructions sets),
- fastest routines selected on module load (benchmark).
- cmd/raidz_test - verify and benchmark all implementations
- added raidz_test to the ZFS Test Suite
New zfs module parameters:
- zfs_vdev_raidz_impl (str): selects the implementation to use. On
module load, the parameter will only accept first 3 options, and
the other implementations can be set once module is finished
loading. Possible values for this option are:
"fastest" - use the fastest math available
"original" - use the original raidz code
"scalar" - new scalar impl
"sse" - new SSE impl if available
"avx2" - new AVX2 impl if available
See contents of `/sys/module/zfs/parameters/zfs_vdev_raidz_impl` to
get the list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Gvozden Neskovic <neskovic@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4328
New functionality:
- Preserves existing scalar implementation.
- Adds AVX2 optimized Fletcher-4 computation.
- Fastest routines selected on module load (benchmark).
- Test case for Fletcher-4 added to ztest.
New zcommon module parameters:
- zfs_fletcher_4_impl (str): selects the implementation to use.
"fastest" - use the fastest version available
"cycle" - cycle trough all available impl for ztest
"scalar" - use the original version
"avx2" - new AVX2 implementation if available
Performance comparison (Intel i7 CPU, 1MB data buffers):
- Scalar: 4216 MB/s
- AVX2: 14499 MB/s
See contents of `/sys/module/zcommon/parameters/zfs_fletcher_4_impl`
to get list of supported values. If an implementation is not supported
on the system, it will not be shown. Currently selected option is
enclosed in `[]`.
Signed-off-by: Jinshan Xiong <jinshan.xiong@intel.com>
Signed-off-by: Andreas Dilger <andreas.dilger@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4330
Various rewrites to the descriptions of module parameters. Corrects
spelling mistakes, makes descriptions them more user-friendly and
describes some ZFS quirks which should be understood before changing
parameter values.
Signed-off-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4671
The existing algorithm selects a preferred leaf vdev based on offset of the zio
request modulo the number of members in the mirror. It assumes the devices are
of equal performance and that spreading the requests randomly over both drives
will be sufficient to saturate them. In practice this results in the leaf vdevs
being under utilized.
The new algorithm takes into the following additional factors:
* Load of the vdevs (number outstanding I/O requests)
* The locality of last queued I/O vs the new I/O request.
Within the locality calculation additional knowledge about the underlying vdev
is considered such as; is the device backing the vdev a rotating media device.
This results in performance increases across the board as well as significant
increases for predominantly streaming loads and for configurations which don't
have evenly performing devices.
The following are results from a setup with 3 Way Mirror with 2 x HD's and
1 x SSD from a basic test running multiple parrallel dd's.
With pre-fetch disabled (vfs.zfs.prefetch_disable=1):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s
With pre-fetch enabled (vfs.zfs.prefetch_disable=0):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s
In addition to the performance changes the code was also restructured, with
the help of Justin Gibbs, to provide a more logical flow which also ensures
vdevs loads are only calculated from the set of valid candidates.
The following additional sysctls where added to allow the administrator
to tune the behaviour of the load algorithm:
* vfs.zfs.vdev.mirror.rotating_inc
* vfs.zfs.vdev.mirror.rotating_seek_inc
* vfs.zfs.vdev.mirror.rotating_seek_offset
* vfs.zfs.vdev.mirror.non_rotating_inc
* vfs.zfs.vdev.mirror.non_rotating_seek_inc
These changes where based on work started by the zfsonlinux developers:
https://github.com/zfsonlinux/zfs/pull/1487
Reviewed by: gibbs, mav, will
MFC after: 2 weeks
Sponsored by: Multiplay
References:
https://github.com/freebsd/freebsd@5c7a6f5dhttps://github.com/freebsd/freebsd@31b7f68dhttps://github.com/freebsd/freebsd@e186f564
Performance Testing:
https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141
Porting notes:
- The tunables were adjusted to have ZoL-style names.
- The code was modified to use ZoL's vd_nonrot.
- Fixes were done to make cstyle.pl happy
- Merge conflicts were handled manually
- freebsd/freebsd@e186f564bc by my
collegue Andriy Gapon has been included. It applied perfectly, but
added a cstyle regression.
- This replaces 556011dbec entirely.
- A typo "IO'a" has been corrected to say "IO's"
- Descriptions of new tunables were added to man/man5/zfs-module-parameters.5.
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4334
Set a limit for the largest compressed block which can be written
to an L2ARC device. By default this limit is set to 16M so there
is no change in behavior.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Elling <Richard.Elling@RichardElling.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes#4323
Reintroduce a slightly adapted version of the Illumos logic for
synchronous unlinks. The basic idea here is that only files
smaller than zfs_delete_blocks (20480) blocks should be deleted
synchronously. Unlinking larger files should be handled
asynchronously to minimize impact to the caller.
To accomplish this iput() which is responsible for calling
zfs_znode_delete() on Linux is only called in the delete_now
path. Otherwise zfs_async_iput() is used which allows the
last reference to be dropped by a taskq thread effectively
making the removal asynchronous.
Porting notes:
- Add zfs_delete_blocks module option for performance analysis.
The default value is DMU_MAX_DELETEBLKCNT which is the same
as upstream. Reducing this value means that smaller files
will be unlinked asynchronously like large files.
- All occurrences of zfsvfs changes to zsb.
Ported-by: KernelOfTruth kerneloftruth@gmail.com
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Adds zio_taskq_batch_pct as an exported module parameter,
allowing users to modify it at module load time.
Signed-off-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4110
Correct some misspelled words and grammatical errors, and remove
trailing white space in the man pages.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#4115
When adding a zvol to the system prefetch zvol_prefetch_bytes from the
start and end of the volume. Prefetching these regions of the volume is
desirable because they are likely to be accessed immediately by blkid(8),
the kernel scanning for a partition table, or another task which probes
the devices.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #3659
Internally ZFS keeps a small log to facilitate debugging. By default
the log is disabled, to enable it set zfs_dbgmsg_enable=1. The contents
of the log can be accessed by reading the /proc/spl/kstat/zfs/dbgmsg file.
Writing 0 to this proc file clears the log.
$ echo 1 >/sys/module/zfs/parameters/zfs_dbgmsg_enable
$ echo 0 >/proc/spl/kstat/zfs/dbgmsg
$ zpool import tank
$ cat /proc/spl/kstat/zfs/dbgmsg
1 0 0x01 -1 0 2492357525542 2525836565501
timestamp message
1441141408 spa=tank async request task=1
1441141408 txg 70 open pool version 5000; software version 5000/5; ...
1441141409 spa=tank async request task=32
1441141409 txg 72 import pool version 5000; software version 5000/5; ...
1441141414 command: lt-zpool import tank
Note the zfs_dbgmsg() and dprintf() functions are both now mapped to
the same log. As mentioned above the kernel debug log can be accessed
though the /proc/spl/kstat/zfs/dbgmsg kstat. For user space consumers
log messages are immediately written to stdout after applying the
ZFS_DEBUG environment variable.
$ ZFS_DEBUG=on ./cmd/ztest/ztest -V
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#3728
This patch is based on the previous work done by @andrey-ve and
@yshui. It triggers the automount by using kern_path() to traverse
to the known snapshout mount point. Once the snapshot is mounted
NFS can access the contents of the snapshot.
Allowing NFS clients to access to the .zfs/snapshot directory would
normally mean that a root user on a client mounting an export with
'no_root_squash' would be able to use mkdir/rmdir/mv to manipulate
snapshots on the server. To prevent configuration mistakes a
zfs_admin_snapshot module option was added which disables the
mkdir/rmdir/mv functionally. System administators desiring this
functionally must explicitly enable it.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2797Closes#1655Closes#616
Internally, zvols are files exposed through the block device API. This
is intended to reduce overhead when things require block devices.
However, the ZoL zvol code emulates a traditional block device in that
it has a top half and a bottom half. This is an unnecessary source of
overhead that does not exist on any other OpenZFS platform does this.
This patch removes it. Early users of this patch reported double digit
performance gains in IOPS on zvols in the range of 50% to 80%.
Comments in the code suggest that the current implementation was done to
obtain IO merging from Linux's IO elevator. However, the DMU already
does write merging while arc_read() should implicitly merge read IOs
because only 1 thread is permitted to fetch the buffer into ARC. In
addition, commercial ZFSOnLinux distributions report that regular files
are more performant than zvols under the current implementation, and the
main consumers of zvols are VMs and iSCSI targets, which have their own
elevators to merge IOs.
Some minor refactoring allows us to register zfs_request() as our
->make_request() handler in place of the generic_make_request()
function. This eliminates the layer of code that broke IO requests on
zvols into a top half and a bottom half. This has several benefits:
1. No per zvol spinlocks.
2. No redundant IO elevator processing.
3. Interrupts are disabled only when actually necessary.
4. No redispatching of IOs when all taskq threads are busy.
5. Linux's page out routines will properly block.
6. Many autotools checks become obsolete.
An unfortunate consequence of eliminating the layer that
generic_make_request() is that we no longer calls the instrumentation
hooks for block IO accounting. Those hooks are GPL-exported, so we
cannot call them ourselves and consequently, we lose the ability to do
IO monitoring via iostat. Since zvols are internally files mapped as
block devices, this should be okay. Anyone who is willing to accept the
performance penalty for the block IO layer's accounting could use the
loop device in between the zvol and its consumer. Alternatively, perf
and ftrace likely could be used. Also, tools like latencytop will still
work. Tools such as latencytop sometimes provide a better view of
performance bottlenecks than the traditional block IO accounting tools
do.
Lastly, if direct reclaim occurs during spacemap loading and swap is on
a zvol, this code will deadlock. That deadlock could already occur with
sync=always on zvols. Given that swap on zvols is not yet production
ready, this is not a blocker.
Signed-off-by: Richard Yao <ryao@gentoo.org>
Allow for easy turning of a pools reserved free space. Previous
versions of ZFS (v0.6.4 and earlier) held 1/64 of the pools capacity
in reserve. Commits 3d45fdd and 0c60cc3 increased this to 1/32.
Setting spa_slop_shift=6 will restore the previous default setting.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3724
Add new keyword 'slot' to vdev_id.conf
This selects from where to get the slot number for a SAS/SATA disk
Needed to enable access to the physical position of a disk in a
Supermicro 2027R-AR24NV .
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes#3693
This brings the behavior of arc_memory_throttle() back in sync with
illumos. The updated memory throttling policy roughly goes like this:
* Never throttle if more than 10% of memory is free. This threshold
is configurable with the zfs_arc_lotsfree_percent module option.
* Minimize any throttling of kswapd even when free memory is below
the set threshold. Allow it to write out pages as quickly as
possible to help alleviate the memory pressure.
* Delay all other threads when free memory is below the set threshold
in order to avoid compounding the memory pressure. Buffers will be
evicted from the ARC to reduce the issue.
The Linux specific zfs_arc_memory_throttle_disable module option has
been removed in favor of the existing zfs_arc_lotsfree_percent tuning.
Setting zfs_arc_lotsfree_percent=0 will have the same effect as
zfs_arc_memory_throttle_disable and it was therefore redundant.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3637
While Linux doesn't provide detailed information about the state of
the VM it does provide us total free pages. This information should
be incorporated in to the arc_available_memory() calculation rather
than solely relying on a signal from direct reclaim. Conceptually
this brings arc_available_memory() back in sync with illumos.
It is also desirable that the target amount of free memory be tunable
on a system. While the default values are expected to work well
for most workloads there may be cases where custom values are needed.
The zfs_arc_sys_free module option was added for this purpose.
zfs_arc_sys_free - The target number of bytes the ARC should leave
as free memory on the system. This value can
checked in /proc/spl/kstat/zfs/arcstats and
setting this module option will override the
default value.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3637
The zvol_threads module option should be bounded to a reasonable
range. The taskq must have at least 1 thread and shouldn't have
more than 1,024 at most. The default value of 32 is a reasonable
default.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3614
Commit f521ce1 removed the minimum value for "arc_p" allowing it to
drop to zero or grow to "arc_c". This was done to improve specific
workload which constantly dirties new "metadata" but also frequently
touches a "small" amount of mfu data (e.g. mkdir's).
This change may still be desirable but it needs to be re-investigated.
in the context of the recent ARC changes from upstream. Therefore
this code is being restored to facilitate benchmarking. By setting
"zfs_arc_p_min_shift=64" we easily compare the performance.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #3533
A few minor mistakes than should be fixed:
zpool:
compatability -> compatibility
zfs:
accessable -> accessible
availible -> available
zfs-events:
availible -> available
zfs-module-parameters:
proceding -> proceeding
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3544
This seems generally useful. metaslab_aliquot is the ZFS allocation
granularity, which is roughly equivalent to what is called the stripe
size in traditional RAID arrays. It seems relevant to performance
tuning.
Signed-off-by: Etienne Dechamps <etienne@edechamps.fr>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Approved by: Dan McDonald <danmcd@omniti.com>
Porting notes and other significant code changes:
The illumos 5368 patch (ARC should cache more metadata), which
was never picked up by ZoL, is mostly reverted by this patch.
Since ZoL relies on the kernel asynchronously calling the shrinker to
actually reap memory, the shrinker wakes up arc_reclaim_waiters_cv every
time it runs.
The arc_adapt_thread() function no longer calls arc_do_user_evicts()
since the newly-added arc_user_evicts_thread() calls it periodically.
Notable conflicting ZoL commits which conflicted with this patch or
whose effects are either duplicated or un-done by this patch:
302f753 - Integrate ARC more tightly with Linux
39e055c - Adjust arc_p based on "bytes" in arc_shrink
f521ce1 - Allow "arc_p" to drop to zero or grow to "arc_c"
77765b5 - Remove "arc_meta_used" from arc_adjust calculation
94520ca - Prune metadata from ghost lists in arc_adjust_meta
Trace support for multilist_insert() and multilist_remove() has been
added and produces the following output:
fio-12498 [077] .... 112936.448324: zfs_multilist__insert: ml { offset 240 numsublists 80 sublistidx 63 }
fio-12498 [077] .... 112936.448347: zfs_multilist__remove: ml { offset 240 numsublists 80 sublistidx 29 }
The following arcstats have been removed:
recycle_miss - Used by arcstat.py and arc_summary.py, both of which
have been updated appropriately.
l2_writes_hdr_miss
The following arcstats have been added:
evict_not_enough - Number of times arc_evict_state() was unable to
evict enough buffers to reach its target amount.
evict_l2_skip - Number of times arc_evict_hdr() skipped eviction
because it was being written to the l2arc.
l2_writes_lock_retry - Replaces l2_writes_hdr_miss. Number of times
l2arc_write_done() failed to acquire hash_lock (and re-tries).
arc_meta_min - Shows the value of the zfs_arc_meta_min module
parameter (see below).
The "index" column of the "dbuf" kstat has been removed since it doesn't
have a direct analog in the new multilist scheme. Additional multilist-
related stats could be added in the future but would likely require
extensions to the mulilist API.
The following module parameters have been added:
zfs_arc_evict_batch_limit - Number of ARC headers to free per sub-list
before moving on to the next sub-list.
zfs_arc_meta_min - Enforce a floor on the amount of metadata in
the ARC.
zfs_arc_num_sublists_per_state - Number of multilist sub-lists per
ARC state.
zfs_arc_overflow_shift - Controls amount by which the ARC must exceed
the target size to be considered "overflowing".
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov
* Add information about the 'zpool events' command in zpool(8).
* More events and payloads defined in zfs-events(5).
* I/O Stages and I/O Flags sections added.
* Remove unused legacy "zio_deadline" payload define.
Signed-off-by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3467
5027 zfs large block support
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5027https://github.com/illumos/illumos-gate/commit/b515258
Porting Notes:
* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.
* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes. Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.
* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize. This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.
* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX. This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing. Therefore, we've set DMU_MAX_ACCESS to 64M.
* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space. We should be able to relax
this one the ABD patches are merged.
Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#354
3897 zfs filesystem and snapshot limits
Author: Jerry Jelinek <jerry.jelinek@joyent.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Approved by: Christopher Siden <christopher.siden@delphix.com>
References:
https://www.illumos.org/issues/3897https://github.com/illumos/illumos-gate/commit/a2afb61
Porting Notes:
dsl_dataset_snapshot_check(): reduce stack usage using kmem_alloc().
Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The default was changed in #2820.
Signed-off-by: cburroughs <chris.burroughs@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3341
Commit b738bc5 should have updated the default value of zfs_pd_bytes_max
in the zfs(8) man page. The correct default value is 50*1024*1024.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
5694 traverse_prefetcher does not prefetch enough
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Alex Reece <alex@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Bayard Bell <buffer.g.overflow@gmail.com>
Approved by: Garrett D'Amore <garrett@damore.org>
References:
https://www.illumos.org/issues/5694https://github.com/illumos/illumos-gate/commit/34d7ce05
Ported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3230
The zio_inject.c keeps zio_injection_enabled as a counter of
fault handlers, so it should not be exported to user space as
a module option.
Several EXPORT_SYMBOLs are moved from zio.c to zio_inject.c,
where the symbols are defined.
Signed-off-by: Isaac Huang <he.huang@intel.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#3199
The goal of this function is to evict enough meta data buffers from the
ARC in order to enforce the arc_meta_limit. Achieving this is slightly
more complicated than it appears because it is common for data buffers
to have holds on meta data buffers. In addition, dnode meta data buffers
will be held by the dnodes in the block preventing them from being freed.
This means we can't simply traverse the ARC and expect to always find
enough unheld meta data buffer to release.
Therefore, this function has been updated to make alternating passes
over the ARC releasing data buffers and then newly unheld meta data
buffers. This ensures forward progress is maintained and arc_meta_used
will decrease. Normally this is sufficient, but if required the ARC
will call the registered prune callbacks causing dentry and inodes to
be dropped from the VFS cache. This will make dnode meta data buffers
available for reclaim. The number of total restarts in limited by
zfs_arc_meta_adjust_restarts to prevent spinning in the rare case
where all meta data is pinned.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Pavel Snajdr <snajpa@snajpa.net>
Issue #3160
Originally when the ARC prune callback was introduced the idea was
to register a single callback for the ZPL. The ARC could invoke this
call back if it needed the ZPL to drop dentries, inodes, or other
cache objects which might be pinning buffers in the ARC. The ZPL
would iterate over all ZFS super blocks and perform the reclaim.
For the most part this design has worked well but due to limitations
in 2.6.35 and earlier kernels there were some problems. This patch
is designed to address those issues.
1) iterate_supers_type() is not provided by all kernels which makes
it impossible to safely iterate over all zpl_fs_type filesystems in
a single callback. The most straight forward and portable way to
resolve this is to register a callback per-filesystem during mount.
The arc_*_prune_callback() functions have always supported multiple
callbacks so this is functionally a very small change.
2) Commit 050d22b removed the non-portable shrink_dcache_memory()
and shrink_icache_memory() functions and didn't replace them with
equivalent functionality. This meant that for Linux 3.1 and older
kernels the ARC had no mechanism to drop dentries and inodes from
the caches if needed. This patch adds that missing functionality
by calling shrink_dcache_parent() to release dentries which may be
pinning inodes. This will result in all unused cache entries being
dropped which is a bit heavy handed but it's the only interface
available for old kernels.
3) A zpl_drop_inode() callback is registered for kernels older than
2.6.35 which do not support the .evict_inode callback. This ensures
that when the last reference on an inode is dropped it is immediately
removed from the cache. If this isn't done than inode can end up on
the global unused LRU with no mechanism available to ZFS to drop them.
Since the ARC buffers are not dropped the hottest inodes can still
be recreated without performing disk IO.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Pavel Snajdr <snajpa@snajpa.net>
Issue #3160
Long ago the zio_bulk_flags module parameter was introduced to
facilitate debugging and profiling the zio_buf_caches. Today
this code works well and there's no compelling reason to keep
this functionality. In fact it's preferable to revert this so
the code is more consistent with other ZFS implementations.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Issue #3063
Add a table describing the debugging flags that can be set in the zfs_flags
module parameter. Also change the module_param type to 'uint' so users aren't
shown a negative value. The updated man page text is reproduced below for
convenience.
zfs_flags (int)
Set additional debugging flags. The following flags may be
bitwise-or'd together.
+-------------------------------------------------------+
|Value Symbolic Name |
| Description |
+-------------------------------------------------------+
| 1 ZFS_DEBUG_DPRINTF |
| Enable dprintf entries in the debug log. |
+-------------------------------------------------------+
| 2 ZFS_DEBUG_DBUF_VERIFY * |
| Enable extra dbuf verifications. |
+-------------------------------------------------------+
| 4 ZFS_DEBUG_DNODE_VERIFY * |
| Enable extra dnode verifications. |
+-------------------------------------------------------+
| 8 ZFS_DEBUG_SNAPNAMES |
| Enable snapshot name verification. |
+-------------------------------------------------------+
| 16 ZFS_DEBUG_MODIFY |
| Check for illegally modified ARC buffers. |
+-------------------------------------------------------+
| 32 ZFS_DEBUG_SPA |
| Enable spa_dbgmsg entries in the debug log. |
+-------------------------------------------------------+
| 64 ZFS_DEBUG_ZIO_FREE |
| Enable verification of block frees. |
+-------------------------------------------------------+
| 128 ZFS_DEBUG_HISTOGRAM_VERIFY |
| Enable extra spacemap histogram verifications. |
+-------------------------------------------------------+
* Requires debug build.
Default value: 0.
Signed-off-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2988
Reviewed by Matthew Ahrens <mahrens@delphix.com>
Reviewed by Saso Kiselkov <skiselkov.ml@gmail.com>
Approved by: Christopher Siden <christopher.siden@delphix.com>
References:
https://github.com/illumos/illumos-gate/commit/b8289d2https://www.illumos.org/issues/3756
Porting notes:
The static function zfs_prop_activate_feature() was removed because
this change removes the only caller. The function was not removed
from Illumos but instead left as dead code. However, to keep gcc
happy it was removed from Linux and may be easily restored if needed.
Ported by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#1540
Reviewed by: Adam Leventhal <adam.leventhal@delphix.com>
Reviewed by: Mattew Ahrens <mahrens@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <jeffpc@josefsipek.net>
Reviewed by: Richard Elling <richard.elling@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Dan McDonald <danmcd@omniti.com>
References:
https://www.illumos.org/issues/5138https://github.com/illumos/illumos-gate/commit/af3465d
Porting notes:
Because support for exposing a uint64_t parameter wasn't added
until v3.17-rc1 the zfs_free_max_blocks variable has been declared
as a unsigned long. This is already far larger than required and
it allows us to avoid additional autoconf compatibility code.
The default value has been set to 100,000 on Linux instead of
ULONG_MAX which is used on Illumos. This was done to limit the
number of outstanding IOs in the system when snapshots are destroyed.
This helps ensure individual TXG sync times are kept reasonable and
memory isn't wasted managing a huge backlog of outstanding IOs.
Ported by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2675Closes#2581
5161 add tunable for number of metaslabs per vdev
Reviewed by: Alex Reece <alex.reece@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Richard Elling <richard.elling@gmail.com>
Approved by: Richard Lowe <richlowe@richlowe.net>
References:
https://www.illumos.org/issues/5161https://github.com/illumos/illumos-gate/commit/bf3e216
Ported by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2698
This gives a huge performance improvement in operations with deduped
datasets especially when the bottleneck is the amount of ram
available for zfs.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2639
4970 need controls on i/o issued by zpool import -XF
4971 zpool import -T should accept hex values
4972 zpool import -T implies extreme rewind, and thus a scrub
4973 spa_load_retry retries the same txg
4974 spa_load_verify() reads all data twice
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>
References:
https://www.illumos.org/issues/4970https://www.illumos.org/issues/4971https://www.illumos.org/issues/4972https://www.illumos.org/issues/4973https://www.illumos.org/issues/4974https://github.com/illumos/illumos-gate/commit/e42d205
Notes:
This set of patches adds a set of tunable parameters for the
"extreme rewind" mode of pool import which allows control over
the traversal performed during such an import.
Ported by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#2598