Interestingly this looks like an upstream bug as well. If for some
reason we are unable to get a zvols statistics, because perhaps the
zpool is hopelessly corrupt, we would trigger the VERIFY. This
commit adds the proper error handling just to propagate the error
back to user space. Now the user space tools still must handle this
properly but in the worst case the tool will crash or perhaps have
some missing output. That's far far better than crashing the host.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The zio_taskq_dispatch() function may be called at interrupt time
and it is critical that we never sleep.
Additionally, wrap taskq_dispatch() in a while loop because it may
fail. This is non optimal but is OK for now.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
This look like a typo. The intention was to use strlcat() however
strncat() was used instead accidentally this may lead to a buffer
overflow. This was caught by gcc -D_FORTIFY_SOURCE=2.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Do not use zmod.h in userspace.
This has also been filed with the ZFS team. It makes the userspace
libzpool code use the zlib API, instead of the Solaris-only and
non-standard zmod.h. The zlib API is almost identical and is a de
facto standard, so this is a no-brainer.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
If your only going to allow one allocator to be used and it is defined
at compile time there is no point including the others in the build.
This patch could/should be refined for Linux to make the metaslab
configurable at run time. That might be a bit tricky however since
you would need to quiese all IO. Short of that making it configurable
as a module load option would be a reasonable compromise.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Remove all instances of list handling where the API is not used
and instead list data members are directly accessed. Doing this
sort of thing is bad for portability.
Additionally, ensure that list_link_init() is called on newly
created list nodes. This ensures the node is properly initialized
and does not rely on the assumption that zero'ing the list_node_t
via kmem_zalloc() is the same as proper initialization.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Move xiou stat structures from a header to the dmu.c source as is
done with all the other kstat interfaces. This information is local
to dmu.c registered the xuio kstat and should stay that way.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Replace non-fatal assertion with warning. This was being observed
during testing and it should not be fatal.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
1) In vn_open(), if fstat64() returned an error, the real errno
was being obscured by calling close().
2) Add error handling for both pwrite64() calls in vn_rdwr().
Signed-off-by: Ricardo M. Correia <Ricardo.M.Correia@Sun.COM>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Remove deadcode. It's possible the code should be in use
somewhere, but as the source code is laid out it currently
is not.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
In the linux kernel 'current' is defined to mean the current process
and can never be used as a local variable in a function. Simply
replace all usage of 'current' with 'curr' in this function.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The upstream commit cb code had a few bugs:
1) The arguments of the list_move_tail() call in txg_dispatch_callbacks()
were reversed by mistake. This caused the commit callbacks to not be
called at all.
2) ztest had a bug in ztest_dmu_commit_callbacks() where "error" was not
initialized correctly. This seems to have caused the test to always take
the simulated error code path, which made ztest unable to detect whether
commit cbs were being called for transactions that successfuly complete.
3) ztest had another bug in ztest_dmu_commit_callbacks() where the commit
cb threshold was not being compared correctly.
4) The commit cb taskq was using 'max_ncpus * 2' as the maxalloc argument
of taskq_create(), which could have caused unnecessary delays in the txg
sync thread.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Use constructor attribute on non-Solaris platforms.
The #pragma init/fini ->__attribute__((constructor/destructor))
conversions, these should go upstream.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Resolve issues uncovered by -D_FORTIFY_SOURCE=2, the default redhat
macro's file adds this option to the cflags. This causes warnings
of the following type designed to keep the developer honest:
warning: ignoring return value of 'foo', declared
with attribute warn_unused_result
The short term fix is to wrap these calls in VERIFY() to check the
return code. The code was already assusing these would never fail.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Fix non-c90 compliant code, for the most part these changes
simply deal with where a particular variable is declared.
Under c90 it must alway be done at the very start of a block.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The list_link_replace() function with swap a new item it to the place
of an old item in a list. It is the callers responsibility to ensure
all lists involved are locked properly.
At some point we are going to need to implement the kmem cache
move callbacks to allow for kmem cache defragmentation. This
commit simply lays a small part of the API ground work, it does
not actually implement any of this feature. This is safe for
now because the move callbacks are just an optimization. Even
if they are registered we don't ever really have to call them.
These functions were not previous needed so they were not added.
Now they are so add the full set.
atomic_inc_32_nv()
atomic_dec_32_nv()
atomic_inc_64_nv()
atomic_dec_64_nv()
These notes describe how to use TopGit with this repo. As of
this point TopGit is no longer used so the notes have been removed.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Unless __GFP_IO and __GFP_FS are removed from the file mapping gfp
mask we may enter memory reclaim during IO. In this case shrink_slab()
entered another file system which is notoriously hungry for stack.
This additional stack usage may cause a stack overflow. This patch
removes __GFP_IO and __GFP_FS from the mapping gfp mask of each file
during vn_open() to avoid any reclaim in the vn_rdwr() IO path. The
original mask is then restored at vn_close() time. Hats off to the
loop driver which does something similiar for the same reason.
[...]
shrink_slab+0xdc/0x153
try_to_free_pages+0x1da/0x2d7
__alloc_pages+0x1d7/0x2da
do_generic_mapping_read+0x2c9/0x36f
file_read_actor+0x0/0x145
__generic_file_aio_read+0x14f/0x19b
generic_file_aio_read+0x34/0x39
do_sync_read+0xc7/0x104
vfs_read+0xcb/0x171
:spl:vn_rdwr+0x2b8/0x402
:zfs:vdev_file_io_start+0xad/0xe1
[...]
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
A race condition in rwsem_is_locked() was fixed in Linux 2.6.33 and the fix was
backported to RHEL5 as of kernel 2.6.18-190.el5. Details can be found here:
https://bugzilla.redhat.com/show_bug.cgi?id=526092
The race condition was fixed in the kernel by acquiring the semaphore's
wait_lock inside rwsem_is_locked(). The SPL worked around the race condition
by acquiring the wait_lock before calling that function, but with the fix in
place it must not do that.
This commit implements an autoconf test to detect whether the fixed version of
rwsem_is_locked() is present. The previous version of rwsem_is_locked() was an
inline static function while the new version is exported as a symbol which we
can check for in module.symvers. Depending on the result we correctly
implement the needed compatibility macros for proper spinlock handling.
Finally, we do the right thing with spin locks in RW_*_HELD() by using the
new compatibility macros. We only only acquire the semaphore's wait_lock if
it is calling a rwsem_is_locked() that does not itself try to acquire the lock.
Some new overhead and a small harmless race is introduced by this change.
This is because RW_READ_HELD() and RW_WRITE_HELD() now acquire and release
the wait_lock twice: once for the call to rwsem_is_locked() and once for
the call to rw_owner(). This can't be avoided if calling a rwsem_is_locked()
that takes the wait_lock, as it will in more recent kernels.
The other case which only occurs in legacy kernels could be optimized by
taking the lock only once, as was done prior to this commit. However, I
decided that the performance gain probably wasn't significant enough to
justify the messy special cases required.
The function spl_rw_get_owner() was only used to enable the afore-mentioned
optimization. Since it is no longer used, I removed it.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
The RHEL5 2.6.18-194.7.1.el5 kernel added atomic64_cmpxchg to
asm-x86_64/atomic.h. That macro is defined in terms of cmpxchg which
is provided by asm/system.h. However, asm/system.h is not #included by
atomic.h in this kernel nor by the autoconf test for atomic64_cmpxchg, so
the test failed with "implicit declaration of function 'cmpxchg'". This
leads the build system to erroneously conclude that the kernel does not
define atomic64_cmpxchg and enable the built-in definition. This in
turn produces a '"atomic64_cmpxchg" redefined' build warning which is fatal
when building with --enable-debug. This commit fixes this by including
asm/system.h in the autoconf test.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
When TQ_SLEEP is used, taskq_dispatch() should always succeed even if the
number of pending tasks is above tq->tq_maxalloc. This semantic is similar
to KM_SLEEP in kmem allocations, which also always succeed.
However, we cannot block forever otherwise there is a risk of deadlock.
Therefore, we still allow the number of pending tasks to go above
tq->tq_maxalloc with TQ_SLEEP, but we may sleep up to 1 second per task
dispatch, thereby throttling the task dispatch rate.
One of the existing splat tests was also augmented to test for this scenario.
The test would fail with the previous implementation but now it succeeds.
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Using kmem_free() results in deducting X bytes from the memory
accounting when --enable-debug is set. Unfortunately, currently
the counterpart kmem_asprintf() and friends do not properly
account for memory allocated, so we must do the same on free.
If we don't then we end up with a negative number of lost bytes
reported when the module is unloaded.
A better long term fix would be to add the accounting in to the
allocation side but that's a project for another day.
Extend the Makefiles with an uninstall target to cleanly
remove a package which was installed with 'make install'.
Additionally, ensure a 'depmod -a' is run as part of the
install to update the module dependency information.
The long term fix for Debian and Slackware style packaging is
to add native support for building these packages. Unfortunately,
that is a large chunk of work I don't have time for right now.
That said it would be nice to have at least basic packages for
these distributions.
As a quick short/medium term solution I've settled on using alien
to convert the RPM packages to DEB or TGZ style packages. The
build system has been updated with the following build targets
which will first build RPM packages and then convert them as
needed to the target package type:
make rpm: Create .rpm packages
make deb: Create .deb packages
make tgz: Create .tgz packages
make pkg: Create the right package type for your distribution
The solution comes with lot of caveats and your mileage may vary.
But basically the big limitations are that the resulting packages:
1) Will not have the correct dependency information.
2) Will not not include the kernel version in the release.
3) Will not handle all differences between distributions.
But the resulting packages should be easy to install and remove
from your system and take care of running 'depmod -a' and such.
As I said at the top this is not the right long term solution.
If any of the upstream distribution maintainers want to jump in
and help do this right for their distribution I'd love the help.
The Solaris semantics for kmem_alloc() and vmem_alloc() are that they
must never fail when called with KM_SLEEP. They may only fail if
called with KM_NOSLEEP otherwise they must block until memory is
available. This is quite different from how the Linux memory
allocators work, under Linux a memory allocation failure is always
possible and must be dealt with.
At one point in the past the kmem code did properly implement this
behavior, however as the code evolved this behavior was overlooked
in places. This patch goes through all three implementations of
the kmem/vmem allocation functions and ensures that they will all
block in the KM_SLEEP case when memory is not available. They
may still fail in the KM_NOSLEEP case in which case the caller
is responsible for handling the failure.
Special care is taken in vmalloc_nofail() to avoid thrashing the
system on the virtual address space spin lock. The down side of
course is if you do see a failure here, which is unlikely for
64-bit systems, your allocation will delay for an entire second.
Still this is preferable to locking up your system and it is the
best we can do given the constraints.
Additionally, the code was cleaned up to be much more readable
and comments were added to describe the various kmem-debug-*
configure options. The default configure options remain:
"--enable-debug-kmem --disable-debug-kmem-tracking"
In cmd/splat.c there was a comparison between an __u32 and an int. To
resolve the issue simply use a __u32 and strtoul() when converting the
provided user string.
In module/spl/spl-vnode.c we should explicitly cast nd->last.name to
a const char * which is what is expected by the prototype.
Commit 55abb0929e removed the never
used format1 argument of spl_debug_msg(). That in turn resulted
in some deadcode which should be removed since it's now useless.
It was being defined as the constant 64 and at first I changed it to be
NR_CPUS instead.
However, NR_CPUS can be a large value on recent kernels (4096), and this
may cause too large kmem allocations to happen.
Therefore, now we use num_possible_cpus(), which should return a (typically)
small value which represents the maximum number of CPUs than can be brought
online in the running hardware (this value is determined at boot time by
arch-specific kernel code).
Signed-off-by: Ricardo M. Correia <ricardo.correia@oracle.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
When the kvasprintf() call fails they should reset the arguments
by calling va_start()/va_copy() and va_end() inside the loop,
otherwise they'll try to read more arguments rather than starting
over and reading them from the beginning.
Signed-off-by: Ricardo M. Correia <ricardo.correia@oracle.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Under Solaris bcopy() allows overlapping memory areas so we
must use memmove() instead of memcpy().
Signed-off-by: Ricardo M. Correia <ricardo.correia@oracle.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>