Commit Graph

67 Commits

Author SHA1 Message Date
Brian Behlendorf
285b29d959 Revert "Pre-allocate vdev I/O buffers"
Commit 86dd0fd added preallocated I/O buffers.  This is no longer
required after the recent kmem changes designed to make our memory
allocation interfaces behave more like those found on Illumos.  A
deadlock in this situation is no longer possible.

However, these allocations still have the potential to be expensive.
So a potential future optimization might be to perform then KM_NOSLEEP
so that they either succeed of fail quicky.  Either case is acceptable
here because we can safely abort the aggregation.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2015-01-16 14:41:28 -08:00
Alex Reece
b02fe35d37 Illumos 4958 zdb trips assert on pools with ashift >= 0xe
4958 zdb trips assert on pools with ashift >= 0xe
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Max Grossman <max.grossman@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

References:
  https://www.illumos.org/issues/4958
  https://github.com/illumos/illumos-gate/commit/2a104a5

Porting notes:

Keep the ZIO_FLAG_FASTWRITE define.  This is for a feature present
in Linux but not yet in *BSD.

Ported by: Turbo Fredriksson <turbo@bayour.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2697
2014-10-23 15:30:32 -07:00
Brian Behlendorf
50b25b2187 Avoid dynamic allocation of 'search zio'
As part of commit e8b96c6 the search zio used by the
vdev_queue_io_to_issue() function was moved to the heap
to minimize stack usage.  Functionally this is fine, but
to maximize performance it's best to minimize the number
of dynamic allocations.

To avoid this allocation temporary space for the search
zio has been reserved in the vdev_queue structure.  All
access must be serialized through the vq_lock.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes #2572
2014-08-11 08:44:54 -07:00
George Wilson
93cf20764a Illumos #4101, #4102, #4103, #4105, #4106
4101 metaslab_debug should allow for fine-grained control
4102 space_maps should store more information about themselves
4103 space map object blocksize should be increased
4105 removing a mirrored log device results in a leaked object
4106 asynchronously load metaslab
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Sebastien Roy <seb@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

Prior to this patch, space_maps were preferred solely based on the
amount of free space left in each. Unfortunately, this heuristic didn't
contain any information about the make-up of that free space, which
meant we could keep preferring and loading a highly fragmented space map
that wouldn't actually have enough contiguous space to satisfy the
allocation; then unloading that space_map and repeating the process.

This change modifies the space_map's to store additional information
about the contiguous space in the space_map, so that we can use this
information to make a better decision about which space_map to load.
This requires reallocating all space_map objects to increase their
bonus buffer size sizes enough to fit the new metadata.

The above feature can be enabled via a new feature flag introduced by
this change: com.delphix:spacemap_histogram

In addition to the above, this patch allows the space_map block size to
be increase. Currently the block size is set to be 4K in size, which has
certain implications including the following:

    * 4K sector devices will not see any compression benefit
    * large space_maps require more metadata on-disk
    * large space_maps require more time to load (typically random reads)

Now the space_map block size can adjust as needed up to the maximum size
set via the space_map_max_blksz variable.

A bug was fixed which resulted in potentially leaking an object when
removing a mirrored log device. The previous logic for vdev_remove() did
not deal with removing top-level vdevs that are interior vdevs (i.e.
mirror) correctly. The problem would occur when removing a mirrored log
device, and result in the DTL space map object being leaked; because
top-level vdevs don't have DTL space map objects associated with them.

References:
  https://www.illumos.org/issues/4101
  https://www.illumos.org/issues/4102
  https://www.illumos.org/issues/4103
  https://www.illumos.org/issues/4105
  https://www.illumos.org/issues/4106
  https://github.com/illumos/illumos-gate/commit/0713e23

Porting notes:

A handful of kmem_alloc() calls were converted to kmem_zalloc(). Also,
the KM_PUSHPAGE and TQ_PUSHPAGE flags were used as necessary.

Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Prakash Surya <surya1@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2488
2014-07-22 09:39:16 -07:00
Chunwei Chen
0b75bdb369 Use ddi_time_after and friends to compare time
Also, make sure we use clock_t for ddi_get_lbolt to prevent type conversion
from screwing things.

Signed-off-by: Chunwei Chen <tuxoko@gmail.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #2142
2014-04-14 13:27:56 -07:00
Matthew Ahrens
e8b96c6007 Illumos #4045 write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work

1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver.  The scheduler
issues a number of concurrent i/os from each class to the device.  Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes).  The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is.  See the block comment in vdev_queue.c (reproduced
below) for more details.

2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load.  The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system.  When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount.  This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens.  One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync().  Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes.  See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.

This diff has several other effects, including:

 * the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.

 * the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently.  There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.

 * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc.  This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).

--matt

APPENDIX: problems with the current i/o scheduler

The current ZFS i/o scheduler (vdev_queue.c) is deadline based.  The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.

For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due".  One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).

If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os.  This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future.  If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due.  Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).

Notes on porting to ZFS on Linux:

- zio_t gained new members io_physdone and io_phys_children.  Because
  object caches in the Linux port call the constructor only once at
  allocation time, objects may contain residual data when retrieved
  from the cache. Therefore zio_create() was updated to zero out the two
  new fields.

- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
  (vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
  This tree has been replaced by vq->vq_active_tree which is now used
  for the same purpose.

- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
  the number of vdev I/O buffers to pre-allocate.  That global no longer
  exists, so we instead use the sum of the *_max_active values for each of
  the five I/O classes described above.

- The Illumos implementation of dmu_tx_delay() delays a transaction by
  sleeping in condition variable embedded in the thread
  (curthread->t_delay_cv).  We do not have an equivalent CV to use in
  Linux, so this change replaced the delay logic with a wrapper called
  zfs_sleep_until(). This wrapper could be adopted upstream and in other
  downstream ports to abstract away operating system-specific delay logic.

- These tunables are added as module parameters, and descriptions added
  to the zfs-module-parameters.5 man page.

  spa_asize_inflation
  zfs_deadman_synctime_ms
  zfs_vdev_max_active
  zfs_vdev_async_write_active_min_dirty_percent
  zfs_vdev_async_write_active_max_dirty_percent
  zfs_vdev_async_read_max_active
  zfs_vdev_async_read_min_active
  zfs_vdev_async_write_max_active
  zfs_vdev_async_write_min_active
  zfs_vdev_scrub_max_active
  zfs_vdev_scrub_min_active
  zfs_vdev_sync_read_max_active
  zfs_vdev_sync_read_min_active
  zfs_vdev_sync_write_max_active
  zfs_vdev_sync_write_min_active
  zfs_dirty_data_max_percent
  zfs_delay_min_dirty_percent
  zfs_dirty_data_max_max_percent
  zfs_dirty_data_max
  zfs_dirty_data_max_max
  zfs_dirty_data_sync
  zfs_delay_scale

  The latter four have type unsigned long, whereas they are uint64_t in
  Illumos.  This accommodates Linux's module_param() supported types, but
  means they may overflow on 32-bit architectures.

  The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
  likely to overflow on 32-bit systems, since they express physical RAM
  sizes in bytes.  In fact, Illumos initializes zfs_dirty_data_max_max to
  2^32 which does overflow. To resolve that, this port instead initializes
  it in arc_init() to 25% of physical RAM, and adds the tunable
  zfs_dirty_data_max_max_percent to override that percentage.  While this
  solution doesn't completely avoid the overflow issue, it should be a
  reasonable default for most systems, and the minority of affected
  systems can work around the issue by overriding the defaults.

- Fixed reversed logic in comment above zfs_delay_scale declaration.

- Clarified comments in vdev_queue.c regarding when per-queue minimums take
  effect.

- Replaced dmu_tx_write_limit in the dmu_tx kstat file
  with dmu_tx_dirty_delay and dmu_tx_dirty_over_max.  The first counts
  how many times a transaction has been delayed because the pool dirty
  data has exceeded zfs_delay_min_dirty_percent.  The latter counts how
  many times the pool dirty data has exceeded zfs_dirty_data_max (which
  we expect to never happen).

- The original patch would have regressed the bug fixed in
  zfsonlinux/zfs@c418410, which prevented users from setting the
  zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
  A similar fix is added to vdev_queue_aggregate().

- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
  heap instead of the stack.  In Linux we can't afford such large
  structures on the stack.

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>

References:
  http://www.illumos.org/issues/4045
  illumos/illumos-gate@69962b5647

Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
2013-12-06 09:32:43 -08:00
George Wilson
5d1f7fb647 Illumos #3956, #3957, #3958, #3959, #3960, #3961, #3962
3956 ::vdev -r should work with pipelines
3957 ztest should update the cachefile before killing itself
3958 multiple scans can lead to partial resilvering
3959 ddt entries are not always resilvered
3960 dsl_scan can skip over dedup-ed blocks if physical birth != logical birth
3961 freed gang blocks are not resilvered and can cause pool to suspend
3962 ztest should print out zfs debug buffer before exiting
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Approved by: Richard Lowe <richlowe@richlowe.net>

References:
  https://www.illumos.org/issues/3956
  https://www.illumos.org/issues/3957
  https://www.illumos.org/issues/3958
  https://www.illumos.org/issues/3959
  https://www.illumos.org/issues/3960
  https://www.illumos.org/issues/3961
  https://www.illumos.org/issues/3962
  illumos/illumos-gate@b4952e17e8

Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>

Porting notes:

1. zfs_dbgmsg_print() is only used in userland. Since we do not have
   mdb on Linux, it does not make sense to make it available in the
   kernel. This means that a build failure will occur if any future
   kernel patch depends on it. However, that is unlikely given that
   this functionality was added to support zdb.

2. zfs_dbgmsg_print() is only invoked for -VVV or greater log levels.
   This preserves the existing behavior of minimal noise when running
   with -V, and -VV.

3. In vdev_config_generate() the call to nvlist_alloc() was not
   changed to fnvlist_alloc() because we must pass KM_PUSHPAGE in
   the txg_sync context.
2013-11-05 12:23:05 -08:00
Will Andrews
d3cc8b152e Illumos #3742
3742 zfs comments need cleaner, more consistent style
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Approved by: Christopher Siden <christopher.siden@delphix.com>

References:
  https://www.illumos.org/issues/3742
  illumos/illumos-gate@f717074149

Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1775

Porting notes:

1. The change to zfs_vfsops.c was dropped because it involves
   zfs_mount_label_policy, which does not exist in the Linux port.
2013-11-04 10:55:25 -08:00
Matthew Ahrens
cb682a173a Illumos #3618 ::zio dcmd does not show timestamp data
3618 ::zio dcmd does not show timestamp data
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: George Wilson <gwilson@zfsmail.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Approved by: Dan McDonald <danmcd@nexenta.com>

References:
  http://www.illumos.org/issues/3618
  illumos/illumos-gate@c55e05cb35

Notes on porting to ZFS on Linux:

The original changeset mostly deals with mdb ::zio dcmd.
However, in order to provide the requested functionality
it modifies vdev and zio structures to keep the timing data
in nanoseconds instead of ticks. It is these changes that
are ported over in the commit in hand.

One visible change of this commit is that the default value
of 'zfs_vdev_time_shift' tunable is changed:

    zfs_vdev_time_shift = 6
        to
    zfs_vdev_time_shift = 29

The original value of 6 was inherited from OpenSolaris and
was subotimal - since it shifted the raw tick value - it
didn't compensate for different tick frequencies on Linux and
OpenSolaris. The former has HZ=1000, while the latter HZ=100.

(Which itself led to other interesting performance anomalies
under non-trivial load. The deadline scheduler delays the IO
according to its priority - the lower priority the further
the deadline is set. The delay is measured in units of
"shifted ticks". Since the HZ value was 10 times higher,
the delay units were 10 times shorter. Thus really low
priority IO like resilver (delay is 10 units) and scrub
(delay is 20 units) were scheduled much sooner than intended.
The overall effect is that resilver and scrub IO consumed
more bandwidth at the expense of the other IO.)

Now that the bookkeeping is done is nanoseconds the shift
behaves correctly for any tick frequency (HZ).

Ported-by: Cyril Plisko <cyril.plisko@mountall.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1643
2013-08-12 16:46:50 -07:00
George.Wilson
cc92e9d0c3 3246 ZFS I/O deadman thread
Reviewed by: Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

NOTES: This patch has been reworked from the original in the
following ways to accomidate Linux ZFS implementation

*) Usage of the cyclic interface was replaced by the delayed taskq
   interface.  This avoids the need to implement new compatibility
   code and allows us to rely on the existing taskq implementation.

*) An extern for zfs_txg_synctime_ms was added to sys/dsl_pool.h
   because declaring externs in source files as was done in the
   original patch is just plain wrong.

*) Instead of panicing the system when the deadman triggers a
   zevent describing the blocked vdev and the first pending I/O
   is posted.  If the panic behavior is desired Linux provides
   other generic methods to panic the system when threads are
   observed to hang.

*) For reference, to delay zios by 30 seconds for testing you can
   use zinject as follows: 'zinject -d <vdev> -D30 <pool>'

References:
  illumos/illumos-gate@283b84606b
  https://www.illumos.org/issues/3246

Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1396
2013-05-01 17:05:52 -07:00
Richard Yao
b01615d5ac Constify structures containing function pointers
The PaX team modified the kernel's modpost to report writeable function
pointers as section mismatches because they are potential exploit
targets. We could ignore the warnings, but their presence can obscure
actual issues. Proper const correctness can also catch programming
mistakes.

Building the kernel modules against a PaX/GrSecurity patched Linux 3.4.2
kernel reports 133 section mismatches prior to this patch. This patch
eliminates 130 of them. The quantity of writeable function pointers
eliminated by constifying each structure is as follows:

vdev_opts_t             52
zil_replay_func_t       24
zio_compress_info_t     24
zio_checksum_info_t     9
space_map_ops_t         7
arc_byteswap_func_t     5

The remaining 3 writeable function pointers cannot be addressed by this
patch. 2 of them are in zpl_fs_type. The kernel's sget function requires
that this be non-const. The final writeable function pointer is created
by SPL_SHRINKER_DECLARE. The kernel's set_shrinker() and
remove_shrinker() functions also require that this be non-const.

Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1300
2013-03-04 08:49:32 -08:00
Christopher Siden
9ae529ec5d Illumos #2619 and #2747
2619 asynchronous destruction of ZFS file systems
2747 SPA versioning with zfs feature flags
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <gwilson@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Dan Kruchinin <dan.kruchinin@gmail.com>
Approved by: Eric Schrock <Eric.Schrock@delphix.com>

References:
  illumos/illumos-gate@53089ab7c8
  illumos/illumos-gate@ad135b5d64
  illumos changeset: 13700:2889e2596bd6
  https://www.illumos.org/issues/2619
  https://www.illumos.org/issues/2747

NOTE: The grub specific changes were not ported.  This change
must be made to the Linux grub packages.

Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
2013-01-08 10:35:35 -08:00
Etienne Dechamps
920dd524fb Add FASTWRITE algorithm for synchronous writes.
Currently, ZIL blocks are spread over vdevs using hint block pointers
managed by the ZIL commit code and passed to metaslab_alloc(). Spreading
log blocks accross vdevs is important for performance: indeed, using
mutliple disks in parallel decreases the ZIL commit latency, which is
the main performance metric for synchronous writes. However, the current
implementation suffers from the following issues:

1) It would be best if the ZIL module was not aware of such low-level
details. They should be handled by the ZIO and metaslab modules;

2) Because the hint block pointer is managed per log, simultaneous
commits from multiple logs might use the same vdevs at the same time,
which is inefficient;

3) Because dmu_write() does not honor the block pointer hint, indirect
writes are not spread.

The naive solution of rotating the metaslab rotor each time a block is
allocated for the ZIL or dmu_sync() doesn't work in practice because the
first ZIL block to be written is actually allocated during the previous
commit. Consequently, when metaslab_alloc() decides the vdev for this
block, it will do so while a bunch of other allocations are happening at
the same time (from dmu_sync() and other ZILs). This means the vdev for
this block is chosen more or less at random. When the next commit
happens, there is a high chance (especially when the number of blocks
per commit is slightly less than the number of the disks) that one disk
will have to write two blocks (with a potential seek) while other disks
are sitting idle, which defeats spreading and increases the commit
latency.

This commit introduces a new concept in the metaslab allocator:
fastwrites. Basically, each top-level vdev maintains a counter
indicating the number of synchronous writes (from dmu_sync() and the
ZIL) which have been allocated but not yet completed. When the metaslab
is called with the FASTWRITE flag, it will choose the vdev with the
least amount of pending synchronous writes. If there are multiple vdevs
with the same value, the first matching vdev (starting from the rotor)
is used. Once metaslab_alloc() has decided which vdev the block is
allocated to, it updates the fastwrite counter for this vdev.

The rationale goes like this: when an allocation is done with
FASTWRITE, it "reserves" the vdev until the data is written. Until then,
all future allocations will naturally avoid this vdev, even after a full
rotation of the rotor. As a result, pending synchronous writes at a
given point in time will be nicely spread over all vdevs. This contrasts
with the previous algorithm, which is based on the implicit assumption
that blocks are written instantaneously after they're allocated.

metaslab_fastwrite_mark() and metaslab_fastwrite_unmark() are used to
manually increase or decrease fastwrite counters, respectively. They
should be used with caution, as there is no per-BP tracking of fastwrite
information, so leaks and "double-unmarks" are possible. There is,
however, an assert in the vdev teardown code which will fire if the
fastwrite counters are not zero when the pool is exported or the vdev
removed. Note that as stated above, marking is also done implictly by
metaslab_alloc().

ZIO also got a new FASTWRITE flag; when it is used, ZIO will pass it to
the metaslab when allocating (assuming ZIO does the allocation, which is
only true in the case of dmu_sync). This flag will also trigger an
unmark when zio_done() fires.

A side-effect of the new algorithm is that when a ZIL stops being used,
its last block can stay in the pending state (allocated but not yet
written) for a long time, polluting the fastwrite counters. To avoid
that, I've implemented a somewhat crude but working solution which
unmarks these pending blocks in zil_sync(), thus guaranteeing that
linguering fastwrites will get pruned at each sync event.

The best performance improvements are observed with pools using a large
number of top-level vdevs and heavy synchronous write workflows
(especially indirect writes and concurrent writes from multiple ZILs).
Real-life testing shows a 200% to 300% performance increase with
indirect writes and various commit sizes.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #1013
2012-10-17 08:56:41 -07:00
Chris Siden
1bd201e70d Illumos #1948: zpool list should show more detailed pool info
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Albert Lee <trisk@nexenta.com>
Reviewed by: Dan McDonald <danmcd@nexenta.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Approved by: Eric Schrock <eric.schrock@delphix.com>

References:
  https://www.illumos.org/issues/1948

Ported by:	Martin Matuska <martin@matuska.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #685
2012-09-19 13:39:05 -07:00
Brian Behlendorf
86dd0fd922 Pre-allocate vdev I/O buffers
The vdev queue layer may require a small number of buffers
when attempting to create aggregate I/O requests.  Rather than
attempting to allocate them from the global zio buffers, which
is slow under memory pressure, it makes sense to pre-allocate
them because...

1) These buffers are short lived.  They are only required for
the life of a single I/O at which point they can be used by
the next I/O.

2) The maximum number of concurrent buffers needed by a vdev is
small.  It's roughly limited by the zfs_vdev_max_pending tunable
which defaults to 10.

By keeping a small list of these buffer per-vdev we can ensure
one is always available when we need it.  This significantly
reduces contention on the vq->vq_lock, because we no longer
need to perform a slow allocation under this lock.  This is
particularly important when memory is already low on the system.

It would probably be wise to extend the use of these buffers beyond
aggregate I/O and in to the raidz implementation.  The inability
to quickly allocate buffer for the parity stripes could result in
similiar problems.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-08-27 12:01:37 -07:00
George Wilson
5ffb9d1d05 Illumos #1951: leaking a vdev when removing an l2cache device
1952 memory leak when adding a file-based l2arc device
1954 leak in ZFS from metaslab_group_create and zfs_ereport_checksum

Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Matt Ahrens <matt@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Bill Pijewski <wdp@joyent.com>
Reviewed by: Dan McDonald <danmcd@nexenta.com>
Approved by: Eric Schrock <eric.schrock@delphix.com>

References to Illumos issues:
  https://www.illumos.org/issues/1951
  https://www.illumos.org/issues/1952
  https://www.illumos.org/issues/1954

Ported-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #650
2012-04-11 11:32:06 -07:00
Brian Behlendorf
6283f55ea1 Support custom build directories and move includes
One of the neat tricks an autoconf style project is capable of
is allow configurion/building in a directory other than the
source directory.  The major advantage to this is that you can
build the project various different ways while making changes
in a single source tree.

For example, this project is designed to work on various different
Linux distributions each of which work slightly differently.  This
means that changes need to verified on each of those supported
distributions perferably before the change is committed to the
public git repo.

Using nfs and custom build directories makes this much easier.
I now have a single source tree in nfs mounted on several different
systems each running a supported distribution.  When I make a
change to the source base I suspect may break things I can
concurrently build from the same source on all the systems each
in their own subdirectory.

wget -c http://github.com/downloads/behlendorf/zfs/zfs-x.y.z.tar.gz
tar -xzf zfs-x.y.z.tar.gz
cd zfs-x-y-z

------------------------- run concurrently ----------------------
<ubuntu system>  <fedora system>  <debian system>  <rhel6 system>
mkdir ubuntu     mkdir fedora     mkdir debian     mkdir rhel6
cd ubuntu        cd fedora        cd debian        cd rhel6
../configure     ../configure     ../configure     ../configure
make             make             make             make
make check       make check       make check       make check

This change also moves many of the include headers from individual
incude/sys directories under the modules directory in to a single
top level include directory.  This has the advantage of making
the build rules cleaner and logically it makes a bit more sense.
2010-09-08 12:38:56 -07:00