Illumos #4045 write throttle & i/o scheduler performance work

4045 zfs write throttle & i/o scheduler performance work

1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver.  The scheduler
issues a number of concurrent i/os from each class to the device.  Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes).  The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is.  See the block comment in vdev_queue.c (reproduced
below) for more details.

2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load.  The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system.  When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount.  This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens.  One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync().  Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes.  See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.

This diff has several other effects, including:

 * the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.

 * the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently.  There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.

 * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc.  This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).

--matt

APPENDIX: problems with the current i/o scheduler

The current ZFS i/o scheduler (vdev_queue.c) is deadline based.  The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.

For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due".  One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).

If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os.  This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future.  If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due.  Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).

Notes on porting to ZFS on Linux:

- zio_t gained new members io_physdone and io_phys_children.  Because
  object caches in the Linux port call the constructor only once at
  allocation time, objects may contain residual data when retrieved
  from the cache. Therefore zio_create() was updated to zero out the two
  new fields.

- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
  (vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
  This tree has been replaced by vq->vq_active_tree which is now used
  for the same purpose.

- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
  the number of vdev I/O buffers to pre-allocate.  That global no longer
  exists, so we instead use the sum of the *_max_active values for each of
  the five I/O classes described above.

- The Illumos implementation of dmu_tx_delay() delays a transaction by
  sleeping in condition variable embedded in the thread
  (curthread->t_delay_cv).  We do not have an equivalent CV to use in
  Linux, so this change replaced the delay logic with a wrapper called
  zfs_sleep_until(). This wrapper could be adopted upstream and in other
  downstream ports to abstract away operating system-specific delay logic.

- These tunables are added as module parameters, and descriptions added
  to the zfs-module-parameters.5 man page.

  spa_asize_inflation
  zfs_deadman_synctime_ms
  zfs_vdev_max_active
  zfs_vdev_async_write_active_min_dirty_percent
  zfs_vdev_async_write_active_max_dirty_percent
  zfs_vdev_async_read_max_active
  zfs_vdev_async_read_min_active
  zfs_vdev_async_write_max_active
  zfs_vdev_async_write_min_active
  zfs_vdev_scrub_max_active
  zfs_vdev_scrub_min_active
  zfs_vdev_sync_read_max_active
  zfs_vdev_sync_read_min_active
  zfs_vdev_sync_write_max_active
  zfs_vdev_sync_write_min_active
  zfs_dirty_data_max_percent
  zfs_delay_min_dirty_percent
  zfs_dirty_data_max_max_percent
  zfs_dirty_data_max
  zfs_dirty_data_max_max
  zfs_dirty_data_sync
  zfs_delay_scale

  The latter four have type unsigned long, whereas they are uint64_t in
  Illumos.  This accommodates Linux's module_param() supported types, but
  means they may overflow on 32-bit architectures.

  The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
  likely to overflow on 32-bit systems, since they express physical RAM
  sizes in bytes.  In fact, Illumos initializes zfs_dirty_data_max_max to
  2^32 which does overflow. To resolve that, this port instead initializes
  it in arc_init() to 25% of physical RAM, and adds the tunable
  zfs_dirty_data_max_max_percent to override that percentage.  While this
  solution doesn't completely avoid the overflow issue, it should be a
  reasonable default for most systems, and the minority of affected
  systems can work around the issue by overriding the defaults.

- Fixed reversed logic in comment above zfs_delay_scale declaration.

- Clarified comments in vdev_queue.c regarding when per-queue minimums take
  effect.

- Replaced dmu_tx_write_limit in the dmu_tx kstat file
  with dmu_tx_dirty_delay and dmu_tx_dirty_over_max.  The first counts
  how many times a transaction has been delayed because the pool dirty
  data has exceeded zfs_delay_min_dirty_percent.  The latter counts how
  many times the pool dirty data has exceeded zfs_dirty_data_max (which
  we expect to never happen).

- The original patch would have regressed the bug fixed in
  zfsonlinux/zfs@c418410, which prevented users from setting the
  zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
  A similar fix is added to vdev_queue_aggregate().

- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
  heap instead of the stack.  In Linux we can't afford such large
  structures on the stack.

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>

References:
  http://www.illumos.org/issues/4045
  illumos/illumos-gate@69962b5647

Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #1913
This commit is contained in:
Matthew Ahrens 2013-08-28 20:01:20 -07:00 committed by Brian Behlendorf
parent 384f8a09f8
commit e8b96c6007
38 changed files with 1967 additions and 870 deletions

View File

@ -62,6 +62,7 @@ COMMON_H = \
$(top_srcdir)/include/sys/zfs_context.h \
$(top_srcdir)/include/sys/zfs_ctldir.h \
$(top_srcdir)/include/sys/zfs_debug.h \
$(top_srcdir)/include/sys/zfs_delay.h \
$(top_srcdir)/include/sys/zfs_dir.h \
$(top_srcdir)/include/sys/zfs_fuid.h \
$(top_srcdir)/include/sys/zfs_rlock.h \

View File

@ -145,12 +145,13 @@ int arc_referenced(arc_buf_t *buf);
#endif
int arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
arc_done_func_t *done, void *private, int priority, int flags,
arc_done_func_t *done, void *private, zio_priority_t priority, int flags,
uint32_t *arc_flags, const zbookmark_t *zb);
zio_t *arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *done,
void *private, int priority, int zio_flags, const zbookmark_t *zb);
const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
arc_done_func_t *done, void *private, zio_priority_t priority,
int zio_flags, const zbookmark_t *zb);
arc_prune_t *arc_add_prune_callback(arc_prune_func_t *func, void *private);
void arc_remove_prune_callback(arc_prune_t *p);
@ -179,11 +180,6 @@ void l2arc_fini(void);
void l2arc_start(void);
void l2arc_stop(void);
/* Global tunings */
extern int zfs_write_limit_shift;
extern unsigned long zfs_write_limit_max;
extern kmutex_t zfs_write_limit_lock;
#ifndef _KERNEL
extern boolean_t arc_watch;
#endif

View File

@ -112,6 +112,9 @@ typedef struct dbuf_dirty_record {
/* pointer to parent dirty record */
struct dbuf_dirty_record *dr_parent;
/* How much space was changed to dsl_pool_dirty_space() for this? */
unsigned int dr_accounted;
union dirty_types {
struct dirty_indirect {
@ -252,7 +255,7 @@ dmu_buf_impl_t *dbuf_hold_level(struct dnode *dn, int level, uint64_t blkid,
int dbuf_hold_impl(struct dnode *dn, uint8_t level, uint64_t blkid, int create,
void *tag, dmu_buf_impl_t **dbp);
void dbuf_prefetch(struct dnode *dn, uint64_t blkid);
void dbuf_prefetch(struct dnode *dn, uint64_t blkid, zio_priority_t prio);
void dbuf_add_ref(dmu_buf_impl_t *db, void *tag);
uint64_t dbuf_refcount(dmu_buf_impl_t *db);

View File

@ -218,6 +218,7 @@ typedef enum dmu_object_type {
typedef enum txg_how {
TXG_WAIT = 1,
TXG_NOWAIT,
TXG_WAITED,
} txg_how_t;
void byteswap_uint64_array(void *buf, size_t size);

View File

@ -23,7 +23,7 @@
* Use is subject to license terms.
*/
/*
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#ifndef _SYS_DMU_TX_H
@ -60,8 +60,22 @@ struct dmu_tx {
txg_handle_t tx_txgh;
void *tx_tempreserve_cookie;
struct dmu_tx_hold *tx_needassign_txh;
list_t tx_callbacks; /* list of dmu_tx_callback_t on this dmu_tx */
uint8_t tx_anyobj;
/* list of dmu_tx_callback_t on this dmu_tx */
list_t tx_callbacks;
/* placeholder for syncing context, doesn't need specific holds */
boolean_t tx_anyobj;
/* has this transaction already been delayed? */
boolean_t tx_waited;
/* time this transaction was created */
hrtime_t tx_start;
/* need to wait for sufficient dirty space */
boolean_t tx_wait_dirty;
int tx_err;
#ifdef DEBUG_DMU_TX
uint64_t tx_space_towrite;
@ -121,7 +135,8 @@ typedef struct dmu_tx_stats {
kstat_named_t dmu_tx_memory_reclaim;
kstat_named_t dmu_tx_memory_inflight;
kstat_named_t dmu_tx_dirty_throttle;
kstat_named_t dmu_tx_write_limit;
kstat_named_t dmu_tx_dirty_delay;
kstat_named_t dmu_tx_dirty_over_max;
kstat_named_t dmu_tx_quota;
} dmu_tx_stats_t;

View File

@ -20,7 +20,7 @@
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#ifndef _SYS_DSL_DIR_H

View File

@ -20,7 +20,7 @@
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#ifndef _SYS_DSL_POOL_H
@ -51,6 +51,14 @@ struct dsl_pool;
struct dmu_tx;
struct dsl_scan;
extern unsigned long zfs_dirty_data_max;
extern unsigned long zfs_dirty_data_max_max;
extern unsigned long zfs_dirty_data_sync;
extern int zfs_dirty_data_max_percent;
extern int zfs_dirty_data_max_max_percent;
extern int zfs_delay_min_dirty_percent;
extern unsigned long zfs_delay_scale;
/* These macros are for indexing into the zfs_all_blkstats_t. */
#define DMU_OT_DEFERRED DMU_OT_NONE
#define DMU_OT_OTHER DMU_OT_NUMTYPES /* place holder for DMU_OT() types */
@ -85,9 +93,6 @@ typedef struct dsl_pool {
/* No lock needed - sync context only */
blkptr_t dp_meta_rootbp;
hrtime_t dp_read_overhead;
uint64_t dp_throughput; /* bytes per millisec */
uint64_t dp_write_limit;
uint64_t dp_tmp_userrefs_obj;
bpobj_t dp_free_bpobj;
uint64_t dp_bptree_obj;
@ -97,12 +102,19 @@ typedef struct dsl_pool {
/* Uses dp_lock */
kmutex_t dp_lock;
uint64_t dp_space_towrite[TXG_SIZE];
uint64_t dp_tempreserved[TXG_SIZE];
kcondvar_t dp_spaceavail_cv;
uint64_t dp_dirty_pertxg[TXG_SIZE];
uint64_t dp_dirty_total;
uint64_t dp_mos_used_delta;
uint64_t dp_mos_compressed_delta;
uint64_t dp_mos_uncompressed_delta;
/*
* Time of most recently scheduled (furthest in the future)
* wakeup for delayed transactions.
*/
hrtime_t dp_last_wakeup;
/* Has its own locking */
tx_state_t dp_tx;
txg_list_t dp_dirty_datasets;
@ -131,10 +143,8 @@ void dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg);
int dsl_pool_sync_context(dsl_pool_t *dp);
uint64_t dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree);
uint64_t dsl_pool_adjustedfree(dsl_pool_t *dp, boolean_t netfree);
int dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx);
void dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx);
void dsl_pool_memory_pressure(dsl_pool_t *dp);
void dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx);
void dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx);
void dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg);
void dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp);
void dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg,
const blkptr_t *bpp);
@ -143,6 +153,7 @@ void dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx);
void dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx);
void dsl_pool_mos_diduse_space(dsl_pool_t *dp,
int64_t used, int64_t comp, int64_t uncomp);
boolean_t dsl_pool_need_dirty_delay(dsl_pool_t *dp);
void dsl_pool_config_enter(dsl_pool_t *dp, void *tag);
void dsl_pool_config_exit(dsl_pool_t *dp, void *tag);
boolean_t dsl_pool_config_held(dsl_pool_t *dp);

View File

@ -20,7 +20,7 @@
*/
/*
* Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#ifndef _SYS_SA_IMPL_H
@ -153,7 +153,7 @@ struct sa_os {
*
* The header has a fixed portion with a variable number
* of "lengths" depending on the number of variable sized
* attribues which are determined by the "layout number"
* attributes which are determined by the "layout number"
*/
#define SA_MAGIC 0x2F505A /* ZFS SA */

View File

@ -20,7 +20,7 @@
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
@ -234,7 +234,7 @@ struct spa {
uint64_t spa_feat_desc_obj; /* Feature descriptions */
taskqid_t spa_deadman_tqid; /* Task id */
uint64_t spa_deadman_calls; /* number of deadman calls */
uint64_t spa_sync_starttime; /* starting time fo spa_sync */
hrtime_t spa_sync_starttime; /* starting time of spa_sync */
uint64_t spa_deadman_synctime; /* deadman expiration timer */
spa_stats_t spa_stats; /* assorted spa statistics */

View File

@ -23,7 +23,7 @@
* Use is subject to license terms.
*/
/*
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#ifndef _SYS_TXG_H
@ -76,6 +76,7 @@ extern void txg_register_callbacks(txg_handle_t *txghp, list_t *tx_callbacks);
extern void txg_delay(struct dsl_pool *dp, uint64_t txg, hrtime_t delta,
hrtime_t resolution);
extern void txg_kick(struct dsl_pool *dp);
/*
* Wait until the given transaction group has finished syncing.

View File

@ -18,6 +18,7 @@
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
@ -89,11 +90,14 @@ struct tx_cpu {
typedef struct tx_state {
tx_cpu_t *tx_cpu; /* protects access to tx_open_txg */
kmutex_t tx_sync_lock; /* protects the rest of this struct */
uint64_t tx_open_txg; /* currently open txg id */
uint64_t tx_quiesced_txg; /* quiesced txg waiting for sync */
uint64_t tx_syncing_txg; /* currently syncing txg id */
uint64_t tx_synced_txg; /* last synced txg id */
hrtime_t tx_open_time; /* start time of tx_open_txg */
uint64_t tx_sync_txg_waiting; /* txg we're waiting to sync */
uint64_t tx_quiesce_txg_waiting; /* txg we're waiting to open */

View File

@ -100,12 +100,22 @@ struct vdev_cache {
kmutex_t vc_lock;
};
typedef struct vdev_queue_class {
uint32_t vqc_active;
/*
* Sorted by offset or timestamp, depending on if the queue is
* LBA-ordered vs FIFO.
*/
avl_tree_t vqc_queued_tree;
} vdev_queue_class_t;
struct vdev_queue {
avl_tree_t vq_deadline_tree;
avl_tree_t vq_read_tree;
avl_tree_t vq_write_tree;
avl_tree_t vq_pending_tree;
hrtime_t vq_io_complete_ts;
vdev_t *vq_vdev;
vdev_queue_class_t vq_class[ZIO_PRIORITY_NUM_QUEUEABLE];
avl_tree_t vq_active_tree;
uint64_t vq_last_offset;
hrtime_t vq_io_complete_ts; /* time last i/o completed */
hrtime_t vq_io_delta_ts;
list_t vq_io_list;
kmutex_t vq_lock;

View File

@ -25,7 +25,7 @@
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2012, Joyent, Inc. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#ifndef _SYS_ZFS_CONTEXT_H
@ -61,6 +61,7 @@
#include <sys/zone.h>
#include <sys/sdt.h>
#include <sys/zfs_debug.h>
#include <sys/zfs_delay.h>
#include <sys/fm/fs/zfs.h>
#include <sys/sunddi.h>
#include <sys/ctype.h>
@ -224,6 +225,8 @@ typedef void (*thread_func_t)(void *);
typedef void (*thread_func_arg_t)(void *);
typedef pthread_t kt_did_t;
#define kpreempt(x) ((void)0)
typedef struct kthread {
kt_did_t t_tid;
thread_func_t t_func;
@ -708,6 +711,15 @@ void ksiddomain_rele(ksiddomain_t *);
#define ddi_log_sysevent(_a, _b, _c, _d, _e, _f, _g) \
sysevent_post_event(_c, _d, _b, "libzpool", _e, _f)
#define zfs_sleep_until(wakeup) \
do { \
hrtime_t delta = wakeup - gethrtime(); \
struct timespec ts; \
ts.tv_sec = delta / NANOSEC; \
ts.tv_nsec = delta % NANOSEC; \
(void) nanosleep(&ts, NULL); \
} while (0)
#endif /* _KERNEL */
#endif /* _SYS_ZFS_CONTEXT_H */

41
include/sys/zfs_delay.h Normal file
View File

@ -0,0 +1,41 @@
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
#ifndef _SYS_FS_ZFS_DELAY_H
#define _SYS_FS_ZFS_DELAY_H
#include <linux/delay_compat.h>
/*
* Generic wrapper to sleep until a given time.
*/
#define zfs_sleep_until(wakeup) \
do { \
hrtime_t delta = wakeup - gethrtime(); \
\
if (delta > 0) { \
unsigned long delta_us; \
delta_us = delta / (NANOSEC / MICROSEC); \
usleep_range(delta_us, delta_us + 100); \
} \
} while (0)
#endif /* _SYS_FS_ZFS_DELAY_H */

View File

@ -22,7 +22,7 @@
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
*/
@ -130,19 +130,16 @@ enum zio_compress {
#define ZIO_FAILURE_MODE_CONTINUE 1
#define ZIO_FAILURE_MODE_PANIC 2
#define ZIO_PRIORITY_NOW (zio_priority_table[0])
#define ZIO_PRIORITY_SYNC_READ (zio_priority_table[1])
#define ZIO_PRIORITY_SYNC_WRITE (zio_priority_table[2])
#define ZIO_PRIORITY_LOG_WRITE (zio_priority_table[3])
#define ZIO_PRIORITY_CACHE_FILL (zio_priority_table[4])
#define ZIO_PRIORITY_AGG (zio_priority_table[5])
#define ZIO_PRIORITY_FREE (zio_priority_table[6])
#define ZIO_PRIORITY_ASYNC_WRITE (zio_priority_table[7])
#define ZIO_PRIORITY_ASYNC_READ (zio_priority_table[8])
#define ZIO_PRIORITY_RESILVER (zio_priority_table[9])
#define ZIO_PRIORITY_SCRUB (zio_priority_table[10])
#define ZIO_PRIORITY_DDT_PREFETCH (zio_priority_table[11])
#define ZIO_PRIORITY_TABLE_SIZE 12
typedef enum zio_priority {
ZIO_PRIORITY_SYNC_READ,
ZIO_PRIORITY_SYNC_WRITE, /* ZIL */
ZIO_PRIORITY_ASYNC_READ, /* prefetch */
ZIO_PRIORITY_ASYNC_WRITE, /* spa_sync() */
ZIO_PRIORITY_SCRUB, /* asynchronous scrub/resilver reads */
ZIO_PRIORITY_NUM_QUEUEABLE,
ZIO_PRIORITY_NOW /* non-queued i/os (e.g. free) */
} zio_priority_t;
#define ZIO_PIPELINE_CONTINUE 0x100
#define ZIO_PIPELINE_STOP 0x101
@ -198,7 +195,8 @@ enum zio_flag {
ZIO_FLAG_GODFATHER = 1 << 24,
ZIO_FLAG_NOPWRITE = 1 << 25,
ZIO_FLAG_REEXECUTED = 1 << 26,
ZIO_FLAG_FASTWRITE = 1 << 27
ZIO_FLAG_DELEGATED = 1 << 27,
ZIO_FLAG_FASTWRITE = 1 << 28
};
#define ZIO_FLAG_MUSTSUCCEED 0
@ -238,8 +236,7 @@ enum zio_wait_type {
typedef void zio_done_func_t(zio_t *zio);
extern uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE];
extern char *zio_type_name[ZIO_TYPES];
extern const char *zio_type_name[ZIO_TYPES];
/*
* A bookmark is a four-tuple <objset, object, level, blkid> that uniquely
@ -381,7 +378,7 @@ struct zio {
zio_type_t io_type;
enum zio_child io_child_type;
int io_cmd;
uint8_t io_priority;
zio_priority_t io_priority;
uint8_t io_reexecute;
uint8_t io_state[ZIO_WAIT_TYPES];
uint64_t io_txg;
@ -396,7 +393,8 @@ struct zio {
zio_transform_t *io_transform_stack;
/* Callback info */
zio_done_func_t *io_ready;
zio_done_func_t *io_ready;
zio_done_func_t *io_physdone;
zio_done_func_t *io_done;
void *io_private;
int64_t io_prev_space_delta; /* DMU private */
@ -414,13 +412,10 @@ struct zio {
const zio_vsd_ops_t *io_vsd_ops;
uint64_t io_offset;
uint64_t io_deadline; /* expires at timestamp + deadline */
hrtime_t io_timestamp; /* submitted at */
hrtime_t io_delta; /* vdev queue service delta */
uint64_t io_delay; /* vdev disk service delta (ticks) */
avl_node_t io_offset_node;
avl_node_t io_deadline_node;
avl_tree_t *io_vdev_tree;
avl_node_t io_queue_node;
/* Internal pipeline state */
enum zio_flag io_flags;
@ -433,6 +428,7 @@ struct zio {
int io_child_error[ZIO_CHILD_TYPES];
uint64_t io_children[ZIO_CHILD_TYPES][ZIO_WAIT_TYPES];
uint64_t io_child_count;
uint64_t io_phys_children;
uint64_t io_parent_count;
uint64_t *io_stall;
zio_t *io_gang_leader;
@ -458,16 +454,17 @@ extern zio_t *zio_root(spa_t *spa,
extern zio_t *zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, void *data,
uint64_t size, zio_done_func_t *done, void *private,
int priority, enum zio_flag flags, const zbookmark_t *zb);
zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb);
extern zio_t *zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
void *data, uint64_t size, const zio_prop_t *zp,
zio_done_func_t *ready, zio_done_func_t *done, void *private,
int priority, enum zio_flag flags, const zbookmark_t *zb);
zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
void *private,
zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb);
extern zio_t *zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
void *data, uint64_t size, zio_done_func_t *done, void *private,
int priority, enum zio_flag flags, zbookmark_t *zb);
zio_priority_t priority, enum zio_flag flags, zbookmark_t *zb);
extern void zio_write_override(zio_t *zio, blkptr_t *bp, int copies,
boolean_t nopwrite);
@ -479,17 +476,17 @@ extern zio_t *zio_claim(zio_t *pio, spa_t *spa, uint64_t txg,
zio_done_func_t *done, void *private, enum zio_flag flags);
extern zio_t *zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
zio_done_func_t *done, void *private, int priority, enum zio_flag flags);
zio_done_func_t *done, void *private, enum zio_flag flags);
extern zio_t *zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset,
uint64_t size, void *data, int checksum,
zio_done_func_t *done, void *private, int priority, enum zio_flag flags,
boolean_t labels);
zio_done_func_t *done, void *private, zio_priority_t priority,
enum zio_flag flags, boolean_t labels);
extern zio_t *zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset,
uint64_t size, void *data, int checksum,
zio_done_func_t *done, void *private, int priority, enum zio_flag flags,
boolean_t labels);
zio_done_func_t *done, void *private, zio_priority_t priority,
enum zio_flag flags, boolean_t labels);
extern zio_t *zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg,
const blkptr_t *bp, enum zio_flag flags);
@ -520,11 +517,12 @@ extern void zio_vdev_free(void *buf);
extern void zio_resubmit_stage_async(void *);
extern zio_t *zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd,
uint64_t offset, void *data, uint64_t size, int type, int priority,
enum zio_flag flags, zio_done_func_t *done, void *private);
uint64_t offset, void *data, uint64_t size, int type,
zio_priority_t priority, enum zio_flag flags,
zio_done_func_t *done, void *private);
extern zio_t *zio_vdev_delegated_io(vdev_t *vd, uint64_t offset,
void *data, uint64_t size, int type, int priority,
void *data, uint64_t size, int type, zio_priority_t priority,
enum zio_flag flags, zio_done_func_t *done, void *private);
extern void zio_vdev_io_bypass(zio_t *zio);

View File

@ -156,6 +156,22 @@ SPA config file
Default value: \fB/etc/zfs/zpool.cache\fR.
.RE
.sp
.ne 2
.na
\fBspa_asize_inflation\fR (int)
.ad
.RS 12n
Multiplication factor used to estimate actual disk consumption from the
size of data being written. The default value is a worst case estimate,
but lower values may be valid for a given pool depending on its
configuration. Pool administrators who understand the factors involved
may wish to specify a more realistic inflation factor, particularly if
they operate close to quota or capacity limits.
.sp
Default value: 24
.RE
.sp
.ne 2
.na
@ -335,12 +351,17 @@ Use \fB1\fR for yes (default) and \fB0\fR to disable.
.sp
.ne 2
.na
\fBzfs_deadman_synctime\fR (ulong)
\fBzfs_deadman_synctime_ms\fR (ulong)
.ad
.RS 12n
Expire in units of zfs_txg_synctime_ms
Expiration time in milliseconds. This value has two meanings. First it is
used to determine when the spa_deadman() logic should fire. By default the
spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
Secondly, the value determines if an I/O is considered "hung". Any I/O that
has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
in a zevent being logged.
.sp
Default value: \fB1,000\fR.
Default value: \fB1,000,000\fR.
.RE
.sp
@ -354,6 +375,272 @@ Enable prefetching dedup-ed blks
Use \fB1\fR for yes (default) and \fB0\fR to disable.
.RE
.sp
.ne 2
.na
\fBzfs_delay_min_dirty_percent\fR (int)
.ad
.RS 12n
Start to delay each transaction once there is this amount of dirty data,
expressed as a percentage of \fBzfs_dirty_data_max\fR.
This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
See the section "ZFS TRANSACTION DELAY".
.sp
Default value: \fB60\fR.
.RE
.sp
.ne 2
.na
\fBzfs_delay_scale\fR (int)
.ad
.RS 12n
This controls how quickly the transaction delay approaches infinity.
Larger values cause longer delays for a given amount of dirty data.
.sp
For the smoothest delay, this value should be about 1 billion divided
by the maximum number of operations per second. This will smoothly
handle between 10x and 1/10th this number.
.sp
See the section "ZFS TRANSACTION DELAY".
.sp
Note: \fBzfs_delay_scale\fR * \fBzfs_dirty_data_max\fR must be < 2^64.
.sp
Default value: \fB500,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_dirty_data_max\fR (int)
.ad
.RS 12n
Determines the dirty space limit in bytes. Once this limit is exceeded, new
writes are halted until space frees up. This parameter takes precedence
over \fBzfs_dirty_data_max_percent\fR.
See the section "ZFS TRANSACTION DELAY".
.sp
Default value: 10 percent of all memory, capped at \fBzfs_dirty_data_max_max\fR.
.RE
.sp
.ne 2
.na
\fBzfs_dirty_data_max_max\fR (int)
.ad
.RS 12n
Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed in bytes.
This limit is only enforced at module load time, and will be ignored if
\fBzfs_dirty_data_max\fR is later changed. This parameter takes
precedence over \fBzfs_dirty_data_max_max_percent\fR. See the section
"ZFS TRANSACTION DELAY".
.sp
Default value: 25% of physical RAM.
.RE
.sp
.ne 2
.na
\fBzfs_dirty_data_max_max_percent\fR (int)
.ad
.RS 12n
Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed as a
percentage of physical RAM. This limit is only enforced at module load
time, and will be ignored if \fBzfs_dirty_data_max\fR is later changed.
The parameter \fBzfs_dirty_data_max_max\fR takes precedence over this
one. See the section "ZFS TRANSACTION DELAY".
.sp
Default value: 25
.RE
.sp
.ne 2
.na
\fBzfs_dirty_data_max_percent\fR (int)
.ad
.RS 12n
Determines the dirty space limit, expressed as a percentage of all
memory. Once this limit is exceeded, new writes are halted until space frees
up. The parameter \fBzfs_dirty_data_max\fR takes precedence over this
one. See the section "ZFS TRANSACTION DELAY".
.sp
Default value: 10%, subject to \fBzfs_dirty_data_max_max\fR.
.RE
.sp
.ne 2
.na
\fBzfs_dirty_data_sync\fR (int)
.ad
.RS 12n
Start syncing out a transaction group if there is at least this much dirty data.
.sp
Default value: \fB67,108,864\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_read_max_active\fR (int)
.ad
.RS 12n
Maxium asynchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB3\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_read_min_active\fR (int)
.ad
.RS 12n
Minimum asynchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_write_active_max_dirty_percent\fR (int)
.ad
.RS 12n
When the pool has more than
\fBzfs_vdev_async_write_active_max_dirty_percent\fR dirty data, use
\fBzfs_vdev_async_write_max_active\fR to limit active async writes. If
the dirty data is between min and max, the active I/O limit is linearly
interpolated. See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB60\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_write_active_min_dirty_percent\fR (int)
.ad
.RS 12n
When the pool has less than
\fBzfs_vdev_async_write_active_min_dirty_percent\fR dirty data, use
\fBzfs_vdev_async_write_min_active\fR to limit active async writes. If
the dirty data is between min and max, the active I/O limit is linearly
interpolated. See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB30\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_write_max_active\fR (int)
.ad
.RS 12n
Maxium asynchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_async_write_min_active\fR (int)
.ad
.RS 12n
Minimum asynchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_max_active\fR (int)
.ad
.RS 12n
The maximum number of I/Os active to each device. Ideally, this will be >=
the sum of each queue's max_active. It must be at least the sum of each
queue's min_active. See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_scrub_max_active\fR (int)
.ad
.RS 12n
Maxium scrub I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB2\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_scrub_min_active\fR (int)
.ad
.RS 12n
Minimum scrub I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB1\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_sync_read_max_active\fR (int)
.ad
.RS 12n
Maxium synchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_sync_read_min_active\fR (int)
.ad
.RS 12n
Minimum synchronous read I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_sync_write_max_active\fR (int)
.ad
.RS 12n
Maxium synchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_sync_write_min_active\fR (int)
.ad
.RS 12n
Minimum synchronous write I/Os active to each device.
See the section "ZFS I/O SCHEDULER".
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
@ -442,17 +729,6 @@ Set for no scrub prefetching
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
\fBzfs_no_write_throttle\fR (int)
.ad
.RS 12n
Disable write throttling
.sp
Use \fB1\fR for yes and \fB0\fR for no (default).
.RE
.sp
.ne 2
.na
@ -652,17 +928,6 @@ Historic statistics for the last N txgs
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_txg_synctime_ms\fR (int)
.ad
.RS 12n
Target milliseconds between txg sync
.sp
Default value: \fB1,000\fR.
.RE
.sp
.ne 2
.na
@ -716,28 +981,6 @@ Total size of the per-disk cache
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_max_pending\fR (int)
.ad
.RS 12n
Max pending per-vdev I/Os
.sp
Default value: \fB10\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_min_pending\fR (int)
.ad
.RS 12n
Min pending per-vdev I/Os
.sp
Default value: \fB4\fR.
.RE
.sp
.ne 2
.na
@ -749,17 +992,6 @@ Switch mirrors every N usecs
Default value: \fB10,000\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_ramp_rate\fR (int)
.ad
.RS 12n
Exponential I/O issue ramp-up rate
.sp
Default value: \fB2\fR.
.RE
.sp
.ne 2
.na
@ -782,17 +1014,6 @@ I/O scheduler
Default value: \fBnoop\fR.
.RE
.sp
.ne 2
.na
\fBzfs_vdev_time_shift\fR (int)
.ad
.RS 12n
Deadline time shift for vdev I/O
.sp
Default value: \fB29\fR (each bucket is 0.537 seconds).
.RE
.sp
.ne 2
.na
@ -804,61 +1025,6 @@ Aggregate write I/O over gap
Default value: \fB4,096\fR.
.RE
.sp
.ne 2
.na
\fBzfs_write_limit_inflated\fR (ulong)
.ad
.RS 12n
Inflated txg write limit
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_write_limit_max\fR (ulong)
.ad
.RS 12n
Max txg write limit
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_write_limit_min\fR (ulong)
.ad
.RS 12n
Min txg write limit
.sp
Default value: \fB33,554,432\fR.
.RE
.sp
.ne 2
.na
\fBzfs_write_limit_override\fR (ulong)
.ad
.RS 12n
Override txg write limit
.sp
Default value: \fB0\fR.
.RE
.sp
.ne 2
.na
\fBzfs_write_limit_shift\fR (int)
.ad
.RS 12n
log2(fraction of memory) per txg
.sp
Default value: \fB3\fR.
.RE
.sp
.ne 2
.na
@ -1002,3 +1168,186 @@ Number of threads for zvol device
Default value: \fB32\fR.
.RE
.SH ZFS I/O SCHEDULER
ZFS issues I/O operations to leaf vdevs to satisfy and complete I/Os.
The I/O scheduler determines when and in what order those operations are
issued. The I/O scheduler divides operations into five I/O classes
prioritized in the following order: sync read, sync write, async read,
async write, and scrub/resilver. Each queue defines the minimum and
maximum number of concurrent operations that may be issued to the
device. In addition, the device has an aggregate maximum,
\fBzfs_vdev_max_active\fR. Note that the sum of the per-queue minimums
must not exceed the aggregate maximum. If the sum of the per-queue
maximums exceeds the aggregate maximum, then the number of active I/Os
may reach \fBzfs_vdev_max_active\fR, in which case no further I/Os will
be issued regardless of whether all per-queue minimums have been met.
.sp
For many physical devices, throughput increases with the number of
concurrent operations, but latency typically suffers. Further, physical
devices typically have a limit at which more concurrent operations have no
effect on throughput or can actually cause it to decrease.
.sp
The scheduler selects the next operation to issue by first looking for an
I/O class whose minimum has not been satisfied. Once all are satisfied and
the aggregate maximum has not been hit, the scheduler looks for classes
whose maximum has not been satisfied. Iteration through the I/O classes is
done in the order specified above. No further operations are issued if the
aggregate maximum number of concurrent operations has been hit or if there
are no operations queued for an I/O class that has not hit its maximum.
Every time an I/O is queued or an operation completes, the I/O scheduler
looks for new operations to issue.
.sp
In general, smaller max_active's will lead to lower latency of synchronous
operations. Larger max_active's may lead to higher overall throughput,
depending on underlying storage.
.sp
The ratio of the queues' max_actives determines the balance of performance
between reads, writes, and scrubs. E.g., increasing
\fBzfs_vdev_scrub_max_active\fR will cause the scrub or resilver to complete
more quickly, but reads and writes to have higher latency and lower throughput.
.sp
All I/O classes have a fixed maximum number of outstanding operations
except for the async write class. Asynchronous writes represent the data
that is committed to stable storage during the syncing stage for
transaction groups. Transaction groups enter the syncing state
periodically so the number of queued async writes will quickly burst up
and then bleed down to zero. Rather than servicing them as quickly as
possible, the I/O scheduler changes the maximum number of active async
write I/Os according to the amount of dirty data in the pool. Since
both throughput and latency typically increase with the number of
concurrent operations issued to physical devices, reducing the
burstiness in the number of concurrent operations also stabilizes the
response time of operations from other -- and in particular synchronous
-- queues. In broad strokes, the I/O scheduler will issue more
concurrent operations from the async write queue as there's more dirty
data in the pool.
.sp
Async Writes
.sp
The number of concurrent operations issued for the async write I/O class
follows a piece-wise linear function defined by a few adjustable points.
.nf
| o---------| <-- zfs_vdev_async_write_max_active
^ | /^ |
| | / | |
active | / | |
I/O | / | |
count | / | |
| / | |
|-------o | | <-- zfs_vdev_async_write_min_active
0|_______^______|_________|
0% | | 100% of zfs_dirty_data_max
| |
| `-- zfs_vdev_async_write_active_max_dirty_percent
`--------- zfs_vdev_async_write_active_min_dirty_percent
.fi
Until the amount of dirty data exceeds a minimum percentage of the dirty
data allowed in the pool, the I/O scheduler will limit the number of
concurrent operations to the minimum. As that threshold is crossed, the
number of concurrent operations issued increases linearly to the maximum at
the specified maximum percentage of the dirty data allowed in the pool.
.sp
Ideally, the amount of dirty data on a busy pool will stay in the sloped
part of the function between \fBzfs_vdev_async_write_active_min_dirty_percent\fR
and \fBzfs_vdev_async_write_active_max_dirty_percent\fR. If it exceeds the
maximum percentage, this indicates that the rate of incoming data is
greater than the rate that the backend storage can handle. In this case, we
must further throttle incoming writes, as described in the next section.
.SH ZFS TRANSACTION DELAY
We delay transactions when we've determined that the backend storage
isn't able to accommodate the rate of incoming writes.
.sp
If there is already a transaction waiting, we delay relative to when
that transaction will finish waiting. This way the calculated delay time
is independent of the number of threads concurrently executing
transactions.
.sp
If we are the only waiter, wait relative to when the transaction
started, rather than the current time. This credits the transaction for
"time already served", e.g. reading indirect blocks.
.sp
The minimum time for a transaction to take is calculated as:
.nf
min_time = zfs_delay_scale * (dirty - min) / (max - dirty)
min_time is then capped at 100 milliseconds.
.fi
.sp
The delay has two degrees of freedom that can be adjusted via tunables. The
percentage of dirty data at which we start to delay is defined by
\fBzfs_delay_min_dirty_percent\fR. This should typically be at or above
\fBzfs_vdev_async_write_active_max_dirty_percent\fR so that we only start to
delay after writing at full speed has failed to keep up with the incoming write
rate. The scale of the curve is defined by \fBzfs_delay_scale\fR. Roughly speaking,
this variable determines the amount of delay at the midpoint of the curve.
.sp
.nf
delay
10ms +-------------------------------------------------------------*+
| *|
9ms + *+
| *|
8ms + *+
| * |
7ms + * +
| * |
6ms + * +
| * |
5ms + * +
| * |
4ms + * +
| * |
3ms + * +
| * |
2ms + (midpoint) * +
| | ** |
1ms + v *** +
| zfs_delay_scale ----------> ******** |
0 +-------------------------------------*********----------------+
0% <- zfs_dirty_data_max -> 100%
.fi
.sp
Note that since the delay is added to the outstanding time remaining on the
most recent transaction, the delay is effectively the inverse of IOPS.
Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
was chosen such that small changes in the amount of accumulated dirty data
in the first 3/4 of the curve yield relatively small differences in the
amount of delay.
.sp
The effects can be easier to understand when the amount of delay is
represented on a log scale:
.sp
.nf
delay
100ms +-------------------------------------------------------------++
+ +
| |
+ *+
10ms + *+
+ ** +
| (midpoint) ** |
+ | ** +
1ms + v **** +
+ zfs_delay_scale ----------> ***** +
| **** |
+ **** +
100us + ** +
+ * +
| * |
+ * +
10us + * +
+ +
| |
+ +
+--------------------------------------------------------------+
0% <- zfs_dirty_data_max -> 100%
.fi
.sp
Note here that only as the amount of dirty data approaches its limit does
the delay start to increase rapidly. The goal of a properly tuned system
should be to keep the amount of dirty data out of that range by first
ensuring that the appropriate limits are set for the I/O scheduler to reach
optimal throughput on the backend storage, and then by changing the value
of \fBzfs_delay_scale\fR to increase the steepness of the curve.

View File

@ -134,6 +134,7 @@
#include <sys/arc.h>
#include <sys/vdev.h>
#include <sys/vdev_impl.h>
#include <sys/dsl_pool.h>
#ifdef _KERNEL
#include <sys/vmsystm.h>
#include <vm/anon.h>
@ -162,6 +163,12 @@ typedef enum arc_reclaim_strategy {
ARC_RECLAIM_CONS /* Conservative reclaim strategy */
} arc_reclaim_strategy_t;
/*
* The number of iterations through arc_evict_*() before we
* drop & reacquire the lock.
*/
int arc_evict_iterations = 100;
/* number of seconds before growing cache again */
int zfs_arc_grow_retry = 5;
@ -183,6 +190,11 @@ int zfs_arc_memory_throttle_disable = 1;
/* disable duplicate buffer eviction */
int zfs_disable_dup_eviction = 0;
/*
* If this percent of memory is free, don't throttle.
*/
int arc_lotsfree_percent = 10;
static int arc_dead;
/* expiration time for arc_no_grow */
@ -519,6 +531,7 @@ typedef struct arc_write_callback arc_write_callback_t;
struct arc_write_callback {
void *awcb_private;
arc_done_func_t *awcb_ready;
arc_done_func_t *awcb_physdone;
arc_done_func_t *awcb_done;
arc_buf_t *awcb_buf;
};
@ -1253,7 +1266,7 @@ arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
uint64_t from_delta, to_delta;
ASSERT(MUTEX_HELD(hash_lock));
ASSERT(new_state != old_state);
ASSERT3P(new_state, !=, old_state);
ASSERT(refcnt == 0 || ab->b_datacnt > 0);
ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
@ -1859,6 +1872,8 @@ arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
kmutex_t *hash_lock;
boolean_t have_lock;
void *stolen = NULL;
arc_buf_hdr_t marker = {{{ 0 }}};
int count = 0;
ASSERT(state == arc_mru || state == arc_mfu);
@ -1882,6 +1897,33 @@ arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
if (recycle && ab->b_size != bytes &&
ab_prev && ab_prev->b_size == bytes)
continue;
/* ignore markers */
if (ab->b_spa == 0)
continue;
/*
* It may take a long time to evict all the bufs requested.
* To avoid blocking all arc activity, periodically drop
* the arcs_mtx and give other threads a chance to run
* before reacquiring the lock.
*
* If we are looking for a buffer to recycle, we are in
* the hot code path, so don't sleep.
*/
if (!recycle && count++ > arc_evict_iterations) {
list_insert_after(list, ab, &marker);
mutex_exit(&evicted_state->arcs_mtx);
mutex_exit(&state->arcs_mtx);
kpreempt(KPREEMPT_SYNC);
mutex_enter(&state->arcs_mtx);
mutex_enter(&evicted_state->arcs_mtx);
ab_prev = list_prev(list, &marker);
list_remove(list, &marker);
count = 0;
continue;
}
hash_lock = HDR_LOCK(ab);
have_lock = MUTEX_HELD(hash_lock);
if (have_lock || mutex_tryenter(hash_lock)) {
@ -1963,27 +2005,11 @@ arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
ARCSTAT_INCR(arcstat_mutex_miss, missed);
/*
* We have just evicted some data into the ghost state, make
* sure we also adjust the ghost state size if necessary.
* Note: we have just evicted some data into the ghost state,
* potentially putting the ghost size over the desired size. Rather
* that evicting from the ghost list in this hot code path, leave
* this chore to the arc_reclaim_thread().
*/
if (arc_no_grow &&
arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size > arc_c) {
int64_t mru_over = arc_anon->arcs_size + arc_mru->arcs_size +
arc_mru_ghost->arcs_size - arc_c;
if (mru_over > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
int64_t todelete =
MIN(arc_mru_ghost->arcs_lsize[type], mru_over);
arc_evict_ghost(arc_mru_ghost, 0, todelete,
ARC_BUFC_DATA);
} else if (arc_mfu_ghost->arcs_lsize[type] > 0) {
int64_t todelete = MIN(arc_mfu_ghost->arcs_lsize[type],
arc_mru_ghost->arcs_size +
arc_mfu_ghost->arcs_size - arc_c);
arc_evict_ghost(arc_mfu_ghost, 0, todelete,
ARC_BUFC_DATA);
}
}
return (stolen);
}
@ -2002,6 +2028,7 @@ arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes,
kmutex_t *hash_lock;
uint64_t bytes_deleted = 0;
uint64_t bufs_skipped = 0;
int count = 0;
ASSERT(GHOST_STATE(state));
bzero(&marker, sizeof(marker));
@ -2009,6 +2036,8 @@ top:
mutex_enter(&state->arcs_mtx);
for (ab = list_tail(list); ab; ab = ab_prev) {
ab_prev = list_prev(list, ab);
if (ab->b_type > ARC_BUFC_NUMTYPES)
panic("invalid ab=%p", (void *)ab);
if (spa && ab->b_spa != spa)
continue;
@ -2020,6 +2049,23 @@ top:
/* caller may be trying to modify this buffer, skip it */
if (MUTEX_HELD(hash_lock))
continue;
/*
* It may take a long time to evict all the bufs requested.
* To avoid blocking all arc activity, periodically drop
* the arcs_mtx and give other threads a chance to run
* before reacquiring the lock.
*/
if (count++ > arc_evict_iterations) {
list_insert_after(list, ab, &marker);
mutex_exit(&state->arcs_mtx);
kpreempt(KPREEMPT_SYNC);
mutex_enter(&state->arcs_mtx);
ab_prev = list_prev(list, &marker);
list_remove(list, &marker);
count = 0;
continue;
}
if (mutex_tryenter(hash_lock)) {
ASSERT(!HDR_IO_IN_PROGRESS(ab));
ASSERT(ab->b_buf == NULL);
@ -2055,8 +2101,9 @@ top:
mutex_enter(&state->arcs_mtx);
ab_prev = list_prev(list, &marker);
list_remove(list, &marker);
} else
} else {
bufs_skipped += 1;
}
}
mutex_exit(&state->arcs_mtx);
@ -3050,7 +3097,7 @@ arc_read_done(zio_t *zio)
*/
int
arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
void *private, int priority, int zio_flags, uint32_t *arc_flags,
void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
const zbookmark_t *zb)
{
arc_buf_hdr_t *hdr;
@ -3702,6 +3749,18 @@ arc_write_ready(zio_t *zio)
hdr->b_flags |= ARC_IO_IN_PROGRESS;
}
/*
* The SPA calls this callback for each physical write that happens on behalf
* of a logical write. See the comment in dbuf_write_physdone() for details.
*/
static void
arc_write_physdone(zio_t *zio)
{
arc_write_callback_t *cb = zio->io_private;
if (cb->awcb_physdone != NULL)
cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
}
static void
arc_write_done(zio_t *zio)
{
@ -3782,8 +3841,9 @@ arc_write_done(zio_t *zio)
zio_t *
arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *done,
void *private, int priority, int zio_flags, const zbookmark_t *zb)
const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
arc_done_func_t *done, void *private, zio_priority_t priority,
int zio_flags, const zbookmark_t *zb)
{
arc_buf_hdr_t *hdr = buf->b_hdr;
arc_write_callback_t *callback;
@ -3800,39 +3860,30 @@ arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
hdr->b_flags |= ARC_L2COMPRESS;
callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_PUSHPAGE);
callback->awcb_ready = ready;
callback->awcb_physdone = physdone;
callback->awcb_done = done;
callback->awcb_private = private;
callback->awcb_buf = buf;
zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
arc_write_ready, arc_write_done, callback, priority, zio_flags, zb);
arc_write_ready, arc_write_physdone, arc_write_done, callback,
priority, zio_flags, zb);
return (zio);
}
static int
arc_memory_throttle(uint64_t reserve, uint64_t inflight_data, uint64_t txg)
arc_memory_throttle(uint64_t reserve, uint64_t txg)
{
#ifdef _KERNEL
uint64_t available_memory;
if (zfs_arc_memory_throttle_disable)
return (0);
/* Easily reclaimable memory (free + inactive + arc-evictable) */
available_memory = ptob(spl_kmem_availrmem()) + arc_evictable_memory();
if (available_memory <= zfs_write_limit_max) {
if (freemem <= physmem * arc_lotsfree_percent / 100) {
ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
return (SET_ERROR(EAGAIN));
}
if (inflight_data > available_memory / 4) {
ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
DMU_TX_STAT_BUMP(dmu_tx_memory_inflight);
return (ERESTART);
}
#endif
return (0);
}
@ -3850,15 +3901,6 @@ arc_tempreserve_space(uint64_t reserve, uint64_t txg)
int error;
uint64_t anon_size;
#ifdef ZFS_DEBUG
/*
* Once in a while, fail for no reason. Everything should cope.
*/
if (spa_get_random(10000) == 0) {
dprintf("forcing random failure\n");
return (ERESTART);
}
#endif
if (reserve > arc_c/4 && !arc_no_grow)
arc_c = MIN(arc_c_max, reserve * 4);
if (reserve > arc_c) {
@ -3878,7 +3920,8 @@ arc_tempreserve_space(uint64_t reserve, uint64_t txg)
* in order to compress/encrypt/etc the data. We therefore need to
* make sure that there is sufficient available memory for this.
*/
if ((error = arc_memory_throttle(reserve, anon_size, txg)))
error = arc_memory_throttle(reserve, txg);
if (error != 0)
return (error);
/*
@ -4075,11 +4118,24 @@ arc_init(void)
arc_dead = FALSE;
arc_warm = B_FALSE;
if (zfs_write_limit_max == 0)
zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
else
zfs_write_limit_shift = 0;
mutex_init(&zfs_write_limit_lock, NULL, MUTEX_DEFAULT, NULL);
/*
* Calculate maximum amount of dirty data per pool.
*
* If it has been set by a module parameter, take that.
* Otherwise, use a percentage of physical memory defined by
* zfs_dirty_data_max_percent (default 10%) with a cap at
* zfs_dirty_data_max_max (default 25% of physical memory).
*/
if (zfs_dirty_data_max_max == 0)
zfs_dirty_data_max_max = physmem * PAGESIZE *
zfs_dirty_data_max_max_percent / 100;
if (zfs_dirty_data_max == 0) {
zfs_dirty_data_max = physmem * PAGESIZE *
zfs_dirty_data_max_percent / 100;
zfs_dirty_data_max = MIN(zfs_dirty_data_max,
zfs_dirty_data_max_max);
}
}
void
@ -4137,8 +4193,6 @@ arc_fini(void)
mutex_destroy(&arc_mfu_ghost->arcs_mtx);
mutex_destroy(&arc_l2c_only->arcs_mtx);
mutex_destroy(&zfs_write_limit_lock);
buf_fini();
ASSERT(arc_loaned_bytes == 0);

View File

@ -891,7 +891,7 @@ dbuf_free_range(dnode_t *dn, uint64_t start, uint64_t end, dmu_tx_t *tx)
atomic_inc_64(&zfs_free_range_recv_miss);
}
for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
for (db = list_head(&dn->dn_dbufs); db != NULL; db = db_next) {
db_next = list_next(&dn->dn_dbufs, db);
ASSERT(db->db_blkid != DMU_BONUS_BLKID);
@ -1238,6 +1238,8 @@ dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
sizeof (dbuf_dirty_record_t),
offsetof(dbuf_dirty_record_t, dr_dirty_node));
}
if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
dr->dr_accounted = db->db.db_size;
dr->dr_dbuf = db;
dr->dr_txg = tx->tx_txg;
dr->dr_next = *drp;
@ -1321,7 +1323,10 @@ dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
dbuf_rele(parent, FTAG);
mutex_enter(&db->db_mtx);
/* possible race with dbuf_undirty() */
/*
* Since we've dropped the mutex, it's possible that
* dbuf_undirty() might have changed this out from under us.
*/
if (db->db_last_dirty == dr ||
dn->dn_object == DMU_META_DNODE_OBJECT) {
mutex_enter(&di->dt.di.dr_mtx);
@ -1391,7 +1396,11 @@ dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
ASSERT(db->db.db_size != 0);
/* XXX would be nice to fix up dn_towrite_space[] */
/*
* Any space we accounted for in dp_dirty_* will be cleaned up by
* dsl_pool_sync(). This is relatively rare so the discrepancy
* is not a big deal.
*/
*drp = dr->dr_next;
@ -1571,7 +1580,7 @@ dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
/*
* "Clear" the contents of this dbuf. This will mark the dbuf
* EVICTING and clear *most* of its references. Unfortunetely,
* EVICTING and clear *most* of its references. Unfortunately,
* when we are not holding the dn_dbufs_mtx, we can't clear the
* entry in the dn_dbufs list. We have to wait until dbuf_destroy()
* in this case. For callers from the DMU we will usually see:
@ -1768,7 +1777,7 @@ dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
db->db.db_offset = 0;
} else {
int blocksize =
db->db_level ? 1<<dn->dn_indblkshift : dn->dn_datablksz;
db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
db->db.db_size = blocksize;
db->db.db_offset = db->db_blkid * blocksize;
}
@ -1877,7 +1886,7 @@ dbuf_destroy(dmu_buf_impl_t *db)
}
void
dbuf_prefetch(dnode_t *dn, uint64_t blkid)
dbuf_prefetch(dnode_t *dn, uint64_t blkid, zio_priority_t prio)
{
dmu_buf_impl_t *db = NULL;
blkptr_t *bp = NULL;
@ -1901,8 +1910,6 @@ dbuf_prefetch(dnode_t *dn, uint64_t blkid)
if (dbuf_findbp(dn, 0, blkid, TRUE, &db, &bp, NULL) == 0) {
if (bp && !BP_IS_HOLE(bp)) {
int priority = dn->dn_type == DMU_OT_DDT_ZAP ?
ZIO_PRIORITY_DDT_PREFETCH : ZIO_PRIORITY_ASYNC_READ;
dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
uint32_t aflags = ARC_NOWAIT | ARC_PREFETCH;
zbookmark_t zb;
@ -1911,7 +1918,7 @@ dbuf_prefetch(dnode_t *dn, uint64_t blkid)
dn->dn_object, 0, blkid);
(void) arc_read(NULL, dn->dn_objset->os_spa,
bp, NULL, NULL, priority,
bp, NULL, NULL, prio,
ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
&aflags, &zb);
}
@ -2647,6 +2654,38 @@ dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
mutex_exit(&db->db_mtx);
}
/*
* The SPA will call this callback several times for each zio - once
* for every physical child i/o (zio->io_phys_children times). This
* allows the DMU to monitor the progress of each logical i/o. For example,
* there may be 2 copies of an indirect block, or many fragments of a RAID-Z
* block. There may be a long delay before all copies/fragments are completed,
* so this callback allows us to retire dirty space gradually, as the physical
* i/os complete.
*/
/* ARGSUSED */
static void
dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
{
dmu_buf_impl_t *db = arg;
objset_t *os = db->db_objset;
dsl_pool_t *dp = dmu_objset_pool(os);
dbuf_dirty_record_t *dr;
int delta = 0;
dr = db->db_data_pending;
ASSERT3U(dr->dr_txg, ==, zio->io_txg);
/*
* The callback will be called io_phys_children times. Retire one
* portion of our dirty space each time we are called. Any rounding
* error will be cleaned up by dsl_pool_sync()'s call to
* dsl_pool_undirty_space().
*/
delta = dr->dr_accounted / zio->io_phys_children;
dsl_pool_undirty_space(dp, delta, zio->io_txg);
}
/* ARGSUSED */
static void
dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
@ -2741,6 +2780,7 @@ dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
ASSERT(db->db_dirtycnt > 0);
db->db_dirtycnt -= 1;
db->db_data_pending = NULL;
dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
}
@ -2859,8 +2899,8 @@ dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
ASSERT(db->db_state != DB_NOFILL);
dr->dr_zio = zio_write(zio, os->os_spa, txg,
db->db_blkptr, data->b_data, arc_buf_size(data), &zp,
dbuf_write_override_ready, dbuf_write_override_done, dr,
ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
dbuf_write_override_ready, NULL, dbuf_write_override_done,
dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
mutex_enter(&db->db_mtx);
dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
@ -2870,7 +2910,7 @@ dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF);
dr->dr_zio = zio_write(zio, os->os_spa, txg,
db->db_blkptr, NULL, db->db.db_size, &zp,
dbuf_write_nofill_ready, dbuf_write_nofill_done, db,
dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
} else {
@ -2878,8 +2918,8 @@ dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
dr->dr_zio = arc_write(zio, os->os_spa, txg,
db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_MUSTSUCCEED, &zb);
dbuf_write_physdone, dbuf_write_done, db,
ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
}
}

View File

@ -370,13 +370,11 @@ static int
dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
{
dsl_pool_t *dp = NULL;
dmu_buf_t **dbp;
uint64_t blkid, nblks, i;
uint32_t dbuf_flags;
int err;
zio_t *zio;
hrtime_t start = 0;
ASSERT(length <= DMU_MAX_ACCESS);
@ -404,9 +402,6 @@ dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
}
dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_PUSHPAGE | KM_NODEBUG);
if (dn->dn_objset->os_dsl_dataset)
dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool;
start = gethrtime();
zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
blkid = dbuf_whichblock(dn, offset);
for (i = 0; i < nblks; i++) {
@ -427,9 +422,6 @@ dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
/* wait for async i/o */
err = zio_wait(zio);
/* track read overhead when we are in sync context */
if (dp && dsl_pool_sync_context(dp))
dp->dp_read_overhead += gethrtime() - start;
if (err) {
dmu_buf_rele_array(dbp, nblks, tag);
return (err);
@ -511,12 +503,22 @@ dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
}
/*
* Issue prefetch i/os for the given blocks.
*
* Note: The assumption is that we *know* these blocks will be needed
* almost immediately. Therefore, the prefetch i/os will be issued at
* ZIO_PRIORITY_SYNC_READ
*
* Note: indirect blocks and other metadata will be read synchronously,
* causing this function to block if they are not already cached.
*/
void
dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
{
dnode_t *dn;
uint64_t blkid;
int nblks, i, err;
int nblks, err;
if (zfs_prefetch_disable)
return;
@ -529,7 +531,7 @@ dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
rw_enter(&dn->dn_struct_rwlock, RW_READER);
blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
dbuf_prefetch(dn, blkid);
dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
rw_exit(&dn->dn_struct_rwlock);
return;
}
@ -546,16 +548,18 @@ dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
rw_enter(&dn->dn_struct_rwlock, RW_READER);
if (dn->dn_datablkshift) {
int blkshift = dn->dn_datablkshift;
nblks = (P2ROUNDUP(offset+len, 1<<blkshift) -
P2ALIGN(offset, 1<<blkshift)) >> blkshift;
nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
P2ALIGN(offset, 1 << blkshift)) >> blkshift;
} else {
nblks = (offset < dn->dn_datablksz);
}
if (nblks != 0) {
int i;
blkid = dbuf_whichblock(dn, offset);
for (i = 0; i < nblks; i++)
dbuf_prefetch(dn, blkid+i);
dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
}
rw_exit(&dn->dn_struct_rwlock);
@ -1559,7 +1563,7 @@ dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa,
dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, zb));
return (0);
@ -1699,8 +1703,9 @@ dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
zio_nowait(arc_write(pio, os->os_spa, txg,
bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready, dmu_sync_done,
dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb));
DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
ZIO_FLAG_CANFAIL, &zb));
return (0);
}

View File

@ -1032,7 +1032,7 @@ dmu_objset_sync(objset_t *os, zio_t *pio, dmu_tx_t *tx)
zio = arc_write(pio, os->os_spa, tx->tx_txg,
os->os_rootbp, os->os_phys_buf, DMU_OS_IS_L2CACHEABLE(os),
DMU_OS_IS_L2COMPRESSIBLE(os), &zp, dmu_objset_write_ready,
dmu_objset_write_done, os, ZIO_PRIORITY_ASYNC_WRITE,
NULL, dmu_objset_write_done, os, ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_MUSTSUCCEED, &zb);
/*

View File

@ -53,7 +53,8 @@ dmu_tx_stats_t dmu_tx_stats = {
{ "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 },
{ "dmu_tx_memory_inflight", KSTAT_DATA_UINT64 },
{ "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 },
{ "dmu_tx_write_limit", KSTAT_DATA_UINT64 },
{ "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 },
{ "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 },
{ "dmu_tx_quota", KSTAT_DATA_UINT64 },
};
@ -70,6 +71,7 @@ dmu_tx_create_dd(dsl_dir_t *dd)
offsetof(dmu_tx_hold_t, txh_node));
list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
offsetof(dmu_tx_callback_t, dcb_node));
tx->tx_start = gethrtime();
#ifdef DEBUG_DMU_TX
refcount_create(&tx->tx_space_written);
refcount_create(&tx->tx_space_freed);
@ -614,6 +616,7 @@ dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
if (txh == NULL)
return;
dn = txh->txh_dnode;
dmu_tx_count_dnode(txh);
if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz)
return;
@ -931,6 +934,142 @@ dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
}
#endif
/*
* If we can't do 10 iops, something is wrong. Let us go ahead
* and hit zfs_dirty_data_max.
*/
hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
/*
* We delay transactions when we've determined that the backend storage
* isn't able to accommodate the rate of incoming writes.
*
* If there is already a transaction waiting, we delay relative to when
* that transaction finishes waiting. This way the calculated min_time
* is independent of the number of threads concurrently executing
* transactions.
*
* If we are the only waiter, wait relative to when the transaction
* started, rather than the current time. This credits the transaction for
* "time already served", e.g. reading indirect blocks.
*
* The minimum time for a transaction to take is calculated as:
* min_time = scale * (dirty - min) / (max - dirty)
* min_time is then capped at zfs_delay_max_ns.
*
* The delay has two degrees of freedom that can be adjusted via tunables.
* The percentage of dirty data at which we start to delay is defined by
* zfs_delay_min_dirty_percent. This should typically be at or above
* zfs_vdev_async_write_active_max_dirty_percent so that we only start to
* delay after writing at full speed has failed to keep up with the incoming
* write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
* speaking, this variable determines the amount of delay at the midpoint of
* the curve.
*
* delay
* 10ms +-------------------------------------------------------------*+
* | *|
* 9ms + *+
* | *|
* 8ms + *+
* | * |
* 7ms + * +
* | * |
* 6ms + * +
* | * |
* 5ms + * +
* | * |
* 4ms + * +
* | * |
* 3ms + * +
* | * |
* 2ms + (midpoint) * +
* | | ** |
* 1ms + v *** +
* | zfs_delay_scale ----------> ******** |
* 0 +-------------------------------------*********----------------+
* 0% <- zfs_dirty_data_max -> 100%
*
* Note that since the delay is added to the outstanding time remaining on the
* most recent transaction, the delay is effectively the inverse of IOPS.
* Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
* was chosen such that small changes in the amount of accumulated dirty data
* in the first 3/4 of the curve yield relatively small differences in the
* amount of delay.
*
* The effects can be easier to understand when the amount of delay is
* represented on a log scale:
*
* delay
* 100ms +-------------------------------------------------------------++
* + +
* | |
* + *+
* 10ms + *+
* + ** +
* | (midpoint) ** |
* + | ** +
* 1ms + v **** +
* + zfs_delay_scale ----------> ***** +
* | **** |
* + **** +
* 100us + ** +
* + * +
* | * |
* + * +
* 10us + * +
* + +
* | |
* + +
* +--------------------------------------------------------------+
* 0% <- zfs_dirty_data_max -> 100%
*
* Note here that only as the amount of dirty data approaches its limit does
* the delay start to increase rapidly. The goal of a properly tuned system
* should be to keep the amount of dirty data out of that range by first
* ensuring that the appropriate limits are set for the I/O scheduler to reach
* optimal throughput on the backend storage, and then by changing the value
* of zfs_delay_scale to increase the steepness of the curve.
*/
static void
dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
{
dsl_pool_t *dp = tx->tx_pool;
uint64_t delay_min_bytes =
zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
hrtime_t wakeup, min_tx_time, now;
if (dirty <= delay_min_bytes)
return;
/*
* The caller has already waited until we are under the max.
* We make them pass us the amount of dirty data so we don't
* have to handle the case of it being >= the max, which could
* cause a divide-by-zero if it's == the max.
*/
ASSERT3U(dirty, <, zfs_dirty_data_max);
now = gethrtime();
min_tx_time = zfs_delay_scale *
(dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
if (now > tx->tx_start + min_tx_time)
return;
DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
uint64_t, min_tx_time);
mutex_enter(&dp->dp_lock);
wakeup = MAX(tx->tx_start + min_tx_time,
dp->dp_last_wakeup + min_tx_time);
dp->dp_last_wakeup = wakeup;
mutex_exit(&dp->dp_lock);
zfs_sleep_until(wakeup);
}
static int
dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
{
@ -965,6 +1104,13 @@ dmu_tx_try_assign(dmu_tx_t *tx, txg_how_t txg_how)
return (SET_ERROR(ERESTART));
}
if (!tx->tx_waited &&
dsl_pool_need_dirty_delay(tx->tx_pool)) {
tx->tx_wait_dirty = B_TRUE;
DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
return (ERESTART);
}
tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
tx->tx_needassign_txh = NULL;
@ -1092,6 +1238,10 @@ dmu_tx_unassign(dmu_tx_t *tx)
* blocking, returns immediately with ERESTART. This should be used
* whenever you're holding locks. On an ERESTART error, the caller
* should drop locks, do a dmu_tx_wait(tx), and try again.
*
* (3) TXG_WAITED. Like TXG_NOWAIT, but indicates that dmu_tx_wait()
* has already been called on behalf of this operation (though
* most likely on a different tx).
*/
int
dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
@ -1100,11 +1250,15 @@ dmu_tx_assign(dmu_tx_t *tx, txg_how_t txg_how)
int err;
ASSERT(tx->tx_txg == 0);
ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT);
ASSERT(txg_how == TXG_WAIT || txg_how == TXG_NOWAIT ||
txg_how == TXG_WAITED);
ASSERT(!dsl_pool_sync_context(tx->tx_pool));
before = gethrtime();
if (txg_how == TXG_WAITED)
tx->tx_waited = B_TRUE;
/* If we might wait, we must not hold the config lock. */
ASSERT(txg_how != TXG_WAIT || !dsl_pool_config_held(tx->tx_pool));
@ -1128,17 +1282,47 @@ void
dmu_tx_wait(dmu_tx_t *tx)
{
spa_t *spa = tx->tx_pool->dp_spa;
dsl_pool_t *dp = tx->tx_pool;
ASSERT(tx->tx_txg == 0);
ASSERT(!dsl_pool_config_held(tx->tx_pool));
/*
* It's possible that the pool has become active after this thread
* has tried to obtain a tx. If that's the case then his
* tx_lasttried_txg would not have been assigned.
*/
if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
txg_wait_synced(tx->tx_pool, spa_last_synced_txg(spa) + 1);
if (tx->tx_wait_dirty) {
uint64_t dirty;
/*
* dmu_tx_try_assign() has determined that we need to wait
* because we've consumed much or all of the dirty buffer
* space.
*/
mutex_enter(&dp->dp_lock);
if (dp->dp_dirty_total >= zfs_dirty_data_max)
DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
while (dp->dp_dirty_total >= zfs_dirty_data_max)
cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
dirty = dp->dp_dirty_total;
mutex_exit(&dp->dp_lock);
dmu_tx_delay(tx, dirty);
tx->tx_wait_dirty = B_FALSE;
/*
* Note: setting tx_waited only has effect if the caller
* used TX_WAIT. Otherwise they are going to destroy
* this tx and try again. The common case, zfs_write(),
* uses TX_WAIT.
*/
tx->tx_waited = B_TRUE;
} else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
/*
* If the pool is suspended we need to wait until it
* is resumed. Note that it's possible that the pool
* has become active after this thread has tried to
* obtain a tx. If that's the case then tx_lasttried_txg
* would not have been set.
*/
txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
} else if (tx->tx_needassign_txh) {
dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
@ -1148,6 +1332,10 @@ dmu_tx_wait(dmu_tx_t *tx)
mutex_exit(&dn->dn_mtx);
tx->tx_needassign_txh = NULL;
} else {
/*
* A dnode is assigned to the quiescing txg. Wait for its
* transaction to complete.
*/
txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1);
}
}
@ -1268,7 +1456,6 @@ dmu_tx_pool(dmu_tx_t *tx)
return (tx->tx_pool);
}
void
dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
{

View File

@ -23,6 +23,10 @@
* Use is subject to license terms.
*/
/*
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
#include <sys/dnode.h>
#include <sys/dmu_objset.h>
@ -287,7 +291,7 @@ dmu_zfetch_fetch(dnode_t *dn, uint64_t blkid, uint64_t nblks)
fetchsz = dmu_zfetch_fetchsz(dn, blkid, nblks);
for (i = 0; i < fetchsz; i++) {
dbuf_prefetch(dn, blkid + i);
dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_ASYNC_READ);
}
return (fetchsz);

View File

@ -1789,23 +1789,22 @@ dnode_diduse_space(dnode_t *dn, int64_t delta)
}
/*
* Call when we think we're going to write/free space in open context.
* Be conservative (ie. OK to write less than this or free more than
* this, but don't write more or free less).
* Call when we think we're going to write/free space in open context to track
* the amount of memory in use by the currently open txg.
*/
void
dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
{
objset_t *os = dn->dn_objset;
dsl_dataset_t *ds = os->os_dsl_dataset;
int64_t aspace = spa_get_asize(os->os_spa, space);
if (space > 0)
space = spa_get_asize(os->os_spa, space);
if (ds != NULL) {
dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
}
if (ds)
dsl_dir_willuse_space(ds->ds_dir, space, tx);
dmu_tx_willuse_space(tx, space);
dmu_tx_willuse_space(tx, aspace);
}
/*

View File

@ -589,7 +589,6 @@ dsl_dir_space_available(dsl_dir_t *dd,
struct tempreserve {
list_node_t tr_node;
dsl_pool_t *tr_dp;
dsl_dir_t *tr_ds;
uint64_t tr_size;
};
@ -740,25 +739,24 @@ dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
tr = kmem_zalloc(sizeof (struct tempreserve), KM_PUSHPAGE);
tr->tr_size = lsize;
list_insert_tail(tr_list, tr);
err = dsl_pool_tempreserve_space(dd->dd_pool, asize, tx);
} else {
if (err == EAGAIN) {
/*
* If arc_memory_throttle() detected that pageout
* is running and we are low on memory, we delay new
* non-pageout transactions to give pageout an
* advantage.
*
* It is unfortunate to be delaying while the caller's
* locks are held.
*/
txg_delay(dd->dd_pool, tx->tx_txg,
MSEC2NSEC(10), MSEC2NSEC(10));
err = SET_ERROR(ERESTART);
}
dsl_pool_memory_pressure(dd->dd_pool);
}
if (err == 0) {
struct tempreserve *tr;
tr = kmem_zalloc(sizeof (struct tempreserve), KM_PUSHPAGE);
tr->tr_dp = dd->dd_pool;
tr->tr_size = asize;
list_insert_tail(tr_list, tr);
err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize,
FALSE, asize > usize, tr_list, tx, TRUE);
}
@ -787,10 +785,8 @@ dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
if (tr_cookie == NULL)
return;
while ((tr = list_head(tr_list))) {
if (tr->tr_dp) {
dsl_pool_tempreserve_clear(tr->tr_dp, tr->tr_size, tx);
} else if (tr->tr_ds) {
while ((tr = list_head(tr_list)) != NULL) {
if (tr->tr_ds) {
mutex_enter(&tr->tr_ds->dd_lock);
ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
tr->tr_size);
@ -806,8 +802,14 @@ dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
kmem_free(tr_list, sizeof (list_t));
}
static void
dsl_dir_willuse_space_impl(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
/*
* This should be called from open context when we think we're going to write
* or free space, for example when dirtying data. Be conservative; it's okay
* to write less space or free more, but we don't want to write more or free
* less than the amount specified.
*/
void
dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
{
int64_t parent_space;
uint64_t est_used;
@ -825,19 +827,7 @@ dsl_dir_willuse_space_impl(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
/* XXX this is potentially expensive and unnecessary... */
if (parent_space && dd->dd_parent)
dsl_dir_willuse_space_impl(dd->dd_parent, parent_space, tx);
}
/*
* Call in open context when we think we're going to write/free space,
* eg. when dirtying data. Be conservative (ie. OK to write less than
* this or free more than this, but don't write more or free less).
*/
void
dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
{
dsl_pool_willuse_space(dd->dd_pool, space, tx);
dsl_dir_willuse_space_impl(dd, space, tx);
dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
}
/* call from syncing context when we actually write/free space for this dd */

View File

@ -46,18 +46,85 @@
#include <sys/zil_impl.h>
#include <sys/dsl_userhold.h>
int zfs_no_write_throttle = 0;
int zfs_write_limit_shift = 3; /* 1/8th of physical memory */
int zfs_txg_synctime_ms = 1000; /* target millisecs to sync a txg */
/*
* ZFS Write Throttle
* ------------------
*
* ZFS must limit the rate of incoming writes to the rate at which it is able
* to sync data modifications to the backend storage. Throttling by too much
* creates an artificial limit; throttling by too little can only be sustained
* for short periods and would lead to highly lumpy performance. On a per-pool
* basis, ZFS tracks the amount of modified (dirty) data. As operations change
* data, the amount of dirty data increases; as ZFS syncs out data, the amount
* of dirty data decreases. When the amount of dirty data exceeds a
* predetermined threshold further modifications are blocked until the amount
* of dirty data decreases (as data is synced out).
*
* The limit on dirty data is tunable, and should be adjusted according to
* both the IO capacity and available memory of the system. The larger the
* window, the more ZFS is able to aggregate and amortize metadata (and data)
* changes. However, memory is a limited resource, and allowing for more dirty
* data comes at the cost of keeping other useful data in memory (for example
* ZFS data cached by the ARC).
*
* Implementation
*
* As buffers are modified dsl_pool_willuse_space() increments both the per-
* txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
* dirty space used; dsl_pool_dirty_space() decrements those values as data
* is synced out from dsl_pool_sync(). While only the poolwide value is
* relevant, the per-txg value is useful for debugging. The tunable
* zfs_dirty_data_max determines the dirty space limit. Once that value is
* exceeded, new writes are halted until space frees up.
*
* The zfs_dirty_data_sync tunable dictates the threshold at which we
* ensure that there is a txg syncing (see the comment in txg.c for a full
* description of transaction group stages).
*
* The IO scheduler uses both the dirty space limit and current amount of
* dirty data as inputs. Those values affect the number of concurrent IOs ZFS
* issues. See the comment in vdev_queue.c for details of the IO scheduler.
*
* The delay is also calculated based on the amount of dirty data. See the
* comment above dmu_tx_delay() for details.
*/
unsigned long zfs_write_limit_min = 32 << 20; /* min write limit is 32MB */
unsigned long zfs_write_limit_max = 0; /* max data payload per txg */
unsigned long zfs_write_limit_inflated = 0;
unsigned long zfs_write_limit_override = 0;
/*
* zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
* capped at zfs_dirty_data_max_max. It can also be overridden with a module
* parameter.
*/
unsigned long zfs_dirty_data_max = 0;
unsigned long zfs_dirty_data_max_max = 0;
int zfs_dirty_data_max_percent = 10;
int zfs_dirty_data_max_max_percent = 25;
kmutex_t zfs_write_limit_lock;
/*
* If there is at least this much dirty data, push out a txg.
*/
unsigned long zfs_dirty_data_sync = 64 * 1024 * 1024;
static pgcnt_t old_physmem = 0;
/*
* Once there is this amount of dirty data, the dmu_tx_delay() will kick in
* and delay each transaction.
* This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
*/
int zfs_delay_min_dirty_percent = 60;
/*
* This controls how quickly the delay approaches infinity.
* Larger values cause it to delay more for a given amount of dirty data.
* Therefore larger values will cause there to be less dirty data for a
* given throughput.
*
* For the smoothest delay, this value should be about 1 billion divided
* by the maximum number of operations per second. This will smoothly
* handle between 10x and 1/10th this number.
*
* Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
* multiply in dmu_tx_delay().
*/
unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
@ -87,7 +154,6 @@ dsl_pool_open_impl(spa_t *spa, uint64_t txg)
dp->dp_spa = spa;
dp->dp_meta_rootbp = *bp;
rrw_init(&dp->dp_config_rwlock, B_TRUE);
dp->dp_write_limit = zfs_write_limit_min;
txg_init(dp, txg);
txg_list_create(&dp->dp_dirty_datasets,
@ -100,6 +166,7 @@ dsl_pool_open_impl(spa_t *spa, uint64_t txg)
offsetof(dsl_sync_task_t, dst_node));
mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
dp->dp_iput_taskq = taskq_create("zfs_iput_taskq", 1, minclsyspri,
1, 4, 0);
@ -214,9 +281,9 @@ out:
void
dsl_pool_close(dsl_pool_t *dp)
{
/* drop our references from dsl_pool_open() */
/*
* Drop our references from dsl_pool_open().
*
* Since we held the origin_snap from "syncing" context (which
* includes pool-opening context), it actually only got a "ref"
* and not a hold, so just drop that here.
@ -346,6 +413,34 @@ deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
return (0);
}
static void
dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
{
zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
dmu_objset_sync(dp->dp_meta_objset, zio, tx);
VERIFY0(zio_wait(zio));
dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
}
static void
dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
{
ASSERT(MUTEX_HELD(&dp->dp_lock));
if (delta < 0)
ASSERT3U(-delta, <=, dp->dp_dirty_total);
dp->dp_dirty_total += delta;
/*
* Note: we signal even when increasing dp_dirty_total.
* This ensures forward progress -- each thread wakes the next waiter.
*/
if (dp->dp_dirty_total <= zfs_dirty_data_max)
cv_signal(&dp->dp_spaceavail_cv);
}
void
dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
{
@ -354,29 +449,18 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
dsl_dir_t *dd;
dsl_dataset_t *ds;
objset_t *mos = dp->dp_meta_objset;
hrtime_t start, write_time;
uint64_t data_written;
int err;
list_t synced_datasets;
list_create(&synced_datasets, sizeof (dsl_dataset_t),
offsetof(dsl_dataset_t, ds_synced_link));
/*
* We need to copy dp_space_towrite() before doing
* dsl_sync_task_sync(), because
* dsl_dataset_snapshot_reserve_space() will increase
* dp_space_towrite but not actually write anything.
*/
data_written = dp->dp_space_towrite[txg & TXG_MASK];
tx = dmu_tx_create_assigned(dp, txg);
dp->dp_read_overhead = 0;
start = gethrtime();
/*
* Write out all dirty blocks of dirty datasets.
*/
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg))) {
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
/*
* We must not sync any non-MOS datasets twice, because
* we may have taken a snapshot of them. However, we
@ -386,20 +470,25 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
list_insert_tail(&synced_datasets, ds);
dsl_dataset_sync(ds, zio, tx);
}
DTRACE_PROBE(pool_sync__1setup);
err = zio_wait(zio);
VERIFY0(zio_wait(zio));
write_time = gethrtime() - start;
ASSERT(err == 0);
DTRACE_PROBE(pool_sync__2rootzio);
/*
* We have written all of the accounted dirty data, so our
* dp_space_towrite should now be zero. However, some seldom-used
* code paths do not adhere to this (e.g. dbuf_undirty(), also
* rounding error in dbuf_write_physdone).
* Shore up the accounting of any dirtied space now.
*/
dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
/*
* After the data blocks have been written (ensured by the zio_wait()
* above), update the user/group space accounting.
*/
for (ds = list_head(&synced_datasets); ds;
ds = list_next(&synced_datasets, ds))
for (ds = list_head(&synced_datasets); ds != NULL;
ds = list_next(&synced_datasets, ds)) {
dmu_objset_do_userquota_updates(ds->ds_objset, tx);
}
/*
* Sync the datasets again to push out the changes due to
@ -409,12 +498,12 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
* about which blocks are part of the snapshot).
*/
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg))) {
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
ASSERT(list_link_active(&ds->ds_synced_link));
dmu_buf_rele(ds->ds_dbuf, ds);
dsl_dataset_sync(ds, zio, tx);
}
err = zio_wait(zio);
VERIFY0(zio_wait(zio));
/*
* Now that the datasets have been completely synced, we can
@ -423,7 +512,7 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
* - move dead blocks from the pending deadlist to the on-disk deadlist
* - release hold from dsl_dataset_dirty()
*/
while ((ds = list_remove_head(&synced_datasets))) {
while ((ds = list_remove_head(&synced_datasets)) != NULL) {
ASSERTV(objset_t *os = ds->ds_objset);
bplist_iterate(&ds->ds_pending_deadlist,
deadlist_enqueue_cb, &ds->ds_deadlist, tx);
@ -431,10 +520,9 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
dmu_buf_rele(ds->ds_dbuf, ds);
}
start = gethrtime();
while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)))
while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
dsl_dir_sync(dd, tx);
write_time += gethrtime() - start;
}
/*
* The MOS's space is accounted for in the pool/$MOS
@ -452,20 +540,10 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
dp->dp_mos_uncompressed_delta = 0;
}
start = gethrtime();
if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
dmu_objset_sync(mos, zio, tx);
err = zio_wait(zio);
ASSERT(err == 0);
dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
dsl_pool_sync_mos(dp, tx);
}
write_time += gethrtime() - start;
DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time,
hrtime_t, dp->dp_read_overhead);
write_time -= dp->dp_read_overhead;
/*
* If we modify a dataset in the same txg that we want to destroy it,
@ -476,72 +554,29 @@ dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
* The MOS data dirtied by the sync_tasks will be synced on the next
* pass.
*/
DTRACE_PROBE(pool_sync__3task);
if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
dsl_sync_task_t *dst;
/*
* No more sync tasks should have been added while we
* were syncing.
*/
ASSERT(spa_sync_pass(dp->dp_spa) == 1);
while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)))
ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
dsl_sync_task_sync(dst, tx);
}
dmu_tx_commit(tx);
dp->dp_space_towrite[txg & TXG_MASK] = 0;
ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0);
/*
* If the write limit max has not been explicitly set, set it
* to a fraction of available physical memory (default 1/8th).
* Note that we must inflate the limit because the spa
* inflates write sizes to account for data replication.
* Check this each sync phase to catch changing memory size.
*/
if (physmem != old_physmem && zfs_write_limit_shift) {
mutex_enter(&zfs_write_limit_lock);
old_physmem = physmem;
zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
zfs_write_limit_inflated = MAX(zfs_write_limit_min,
spa_get_asize(dp->dp_spa, zfs_write_limit_max));
mutex_exit(&zfs_write_limit_lock);
}
/*
* Attempt to keep the sync time consistent by adjusting the
* amount of write traffic allowed into each transaction group.
* Weight the throughput calculation towards the current value:
* thru = 3/4 old_thru + 1/4 new_thru
*
* Note: write_time is in nanosecs while dp_throughput is expressed in
* bytes per millisecond.
*/
ASSERT(zfs_write_limit_min > 0);
if (data_written > zfs_write_limit_min / 8 &&
write_time > MSEC2NSEC(1)) {
uint64_t throughput = data_written / NSEC2MSEC(write_time);
if (dp->dp_throughput)
dp->dp_throughput = throughput / 4 +
3 * dp->dp_throughput / 4;
else
dp->dp_throughput = throughput;
dp->dp_write_limit = MIN(zfs_write_limit_inflated,
MAX(zfs_write_limit_min,
dp->dp_throughput * zfs_txg_synctime_ms));
}
DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
}
void
dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
{
zilog_t *zilog;
dsl_dataset_t *ds;
while ((zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg))) {
ds = dmu_objset_ds(zilog->zl_os);
dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
zil_clean(zilog, txg);
ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
dmu_buf_rele(ds->ds_dbuf, zilog);
@ -583,86 +618,51 @@ dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
return (space - resv);
}
int
dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx)
boolean_t
dsl_pool_need_dirty_delay(dsl_pool_t *dp)
{
uint64_t reserved = 0;
uint64_t write_limit = (zfs_write_limit_override ?
zfs_write_limit_override : dp->dp_write_limit);
uint64_t delay_min_bytes =
zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
boolean_t rv;
if (zfs_no_write_throttle) {
atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK],
space);
return (0);
}
/*
* Check to see if we have exceeded the maximum allowed IO for
* this transaction group. We can do this without locks since
* a little slop here is ok. Note that we do the reserved check
* with only half the requested reserve: this is because the
* reserve requests are worst-case, and we really don't want to
* throttle based off of worst-case estimates.
*/
if (write_limit > 0) {
reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK]
+ dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2;
if (reserved && reserved > write_limit) {
DMU_TX_STAT_BUMP(dmu_tx_write_limit);
return (SET_ERROR(ERESTART));
}
}
atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space);
/*
* If this transaction group is over 7/8ths capacity, delay
* the caller 1 clock tick. This will slow down the "fill"
* rate until the sync process can catch up with us.
*/
if (reserved && reserved > (write_limit - (write_limit >> 3))) {
txg_delay(dp, tx->tx_txg, zfs_throttle_delay,
zfs_throttle_resolution);
}
return (0);
mutex_enter(&dp->dp_lock);
if (dp->dp_dirty_total > zfs_dirty_data_sync)
txg_kick(dp);
rv = (dp->dp_dirty_total > delay_min_bytes);
mutex_exit(&dp->dp_lock);
return (rv);
}
void
dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
{
ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space);
atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space);
}
void
dsl_pool_memory_pressure(dsl_pool_t *dp)
{
uint64_t space_inuse = 0;
int i;
if (dp->dp_write_limit == zfs_write_limit_min)
return;
for (i = 0; i < TXG_SIZE; i++) {
space_inuse += dp->dp_space_towrite[i];
space_inuse += dp->dp_tempreserved[i];
}
dp->dp_write_limit = MAX(zfs_write_limit_min,
MIN(dp->dp_write_limit, space_inuse / 4));
}
void
dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
{
if (space > 0) {
mutex_enter(&dp->dp_lock);
dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space;
dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
dsl_pool_dirty_delta(dp, space);
mutex_exit(&dp->dp_lock);
}
}
void
dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
{
ASSERT3S(space, >=, 0);
if (space == 0)
return;
mutex_enter(&dp->dp_lock);
if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
/* XXX writing something we didn't dirty? */
space = dp->dp_dirty_pertxg[txg & TXG_MASK];
}
ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
ASSERT3U(dp->dp_dirty_total, >=, space);
dsl_pool_dirty_delta(dp, -space);
mutex_exit(&dp->dp_lock);
}
/* ARGSUSED */
static int
upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
@ -1049,24 +1049,30 @@ dsl_pool_config_held(dsl_pool_t *dp)
EXPORT_SYMBOL(dsl_pool_config_enter);
EXPORT_SYMBOL(dsl_pool_config_exit);
module_param(zfs_no_write_throttle, int, 0644);
MODULE_PARM_DESC(zfs_no_write_throttle, "Disable write throttling");
/* zfs_dirty_data_max_percent only applied at module load time in arc_init(). */
module_param(zfs_dirty_data_max_percent, int, 0444);
MODULE_PARM_DESC(zfs_dirty_data_max_percent, "percent of ram can be dirty");
module_param(zfs_write_limit_shift, int, 0444);
MODULE_PARM_DESC(zfs_write_limit_shift, "log2(fraction of memory) per txg");
/* zfs_dirty_data_max_max_percent only applied at module load time in
* arc_init(). */
module_param(zfs_dirty_data_max_max_percent, int, 0444);
MODULE_PARM_DESC(zfs_dirty_data_max_max_percent,
"zfs_dirty_data_max upper bound as % of RAM");
module_param(zfs_txg_synctime_ms, int, 0644);
MODULE_PARM_DESC(zfs_txg_synctime_ms, "Target milliseconds between txg sync");
module_param(zfs_delay_min_dirty_percent, int, 0644);
MODULE_PARM_DESC(zfs_delay_min_dirty_percent, "transaction delay threshold");
module_param(zfs_write_limit_min, ulong, 0444);
MODULE_PARM_DESC(zfs_write_limit_min, "Min txg write limit");
module_param(zfs_dirty_data_max, ulong, 0644);
MODULE_PARM_DESC(zfs_dirty_data_max, "determines the dirty space limit");
module_param(zfs_write_limit_max, ulong, 0444);
MODULE_PARM_DESC(zfs_write_limit_max, "Max txg write limit");
/* zfs_dirty_data_max_max only applied at module load time in arc_init(). */
module_param(zfs_dirty_data_max_max, ulong, 0444);
MODULE_PARM_DESC(zfs_dirty_data_max_max,
"zfs_dirty_data_max upper bound in bytes");
module_param(zfs_write_limit_inflated, ulong, 0444);
MODULE_PARM_DESC(zfs_write_limit_inflated, "Inflated txg write limit");
module_param(zfs_dirty_data_sync, ulong, 0644);
MODULE_PARM_DESC(zfs_dirty_data_sync, "sync txg when this much dirty data");
module_param(zfs_write_limit_override, ulong, 0444);
MODULE_PARM_DESC(zfs_write_limit_override, "Override txg write limit");
module_param(zfs_delay_scale, ulong, 0644);
MODULE_PARM_DESC(zfs_delay_scale, "how quickly delay approaches infinity");
#endif

View File

@ -1650,7 +1650,6 @@ dsl_scan_scrub_cb(dsl_pool_t *dp,
uint64_t phys_birth = BP_PHYSICAL_BIRTH(bp);
boolean_t needs_io = B_FALSE;
int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
int zio_priority = 0;
int scan_delay = 0;
int d;
@ -1663,13 +1662,11 @@ dsl_scan_scrub_cb(dsl_pool_t *dp,
ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
zio_flags |= ZIO_FLAG_SCRUB;
zio_priority = ZIO_PRIORITY_SCRUB;
needs_io = B_TRUE;
scan_delay = zfs_scrub_delay;
} else {
ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
zio_flags |= ZIO_FLAG_RESILVER;
zio_priority = ZIO_PRIORITY_RESILVER;
needs_io = B_FALSE;
scan_delay = zfs_resilver_delay;
}
@ -1727,7 +1724,7 @@ dsl_scan_scrub_cb(dsl_pool_t *dp,
delay(scan_delay);
zio_nowait(zio_read(NULL, spa, bp, data, size,
dsl_scan_scrub_done, NULL, zio_priority,
dsl_scan_scrub_done, NULL, ZIO_PRIORITY_SCRUB,
zio_flags, zb));
}

View File

@ -83,7 +83,6 @@
typedef enum zti_modes {
ZTI_MODE_FIXED, /* value is # of threads (min 1) */
ZTI_MODE_ONLINE_PERCENT, /* value is % of online CPUs */
ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
ZTI_MODE_NULL, /* don't create a taskq */
ZTI_NMODES
@ -142,7 +141,7 @@ static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
char **ereport);
static void spa_vdev_resilver_done(spa_t *spa);
uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */
uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
id_t zio_taskq_psrset_bind = PS_NONE;
boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
uint_t zio_taskq_basedc = 80; /* base duty cycle */
@ -837,32 +836,28 @@ spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
tqs->stqs_count = count;
tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
switch (mode) {
case ZTI_MODE_FIXED:
ASSERT3U(value, >=, 1);
value = MAX(value, 1);
break;
case ZTI_MODE_BATCH:
batch = B_TRUE;
flags |= TASKQ_THREADS_CPU_PCT;
value = zio_taskq_batch_pct;
break;
default:
panic("unrecognized mode for %s_%s taskq (%u:%u) in "
"spa_activate()",
zio_type_name[t], zio_taskq_types[q], mode, value);
break;
}
for (i = 0; i < count; i++) {
taskq_t *tq;
switch (mode) {
case ZTI_MODE_FIXED:
ASSERT3U(value, >=, 1);
value = MAX(value, 1);
break;
case ZTI_MODE_BATCH:
batch = B_TRUE;
flags |= TASKQ_THREADS_CPU_PCT;
value = zio_taskq_batch_pct;
break;
case ZTI_MODE_ONLINE_PERCENT:
flags |= TASKQ_THREADS_CPU_PCT;
break;
default:
panic("unrecognized mode for %s_%s taskq (%u:%u) in "
"spa_activate()",
zio_type_name[t], zio_taskq_types[q], mode, value);
break;
}
if (count > 1) {
(void) snprintf(name, sizeof (name), "%s_%s_%u",
zio_type_name[t], zio_taskq_types[q], i);
@ -878,7 +873,16 @@ spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
tq = taskq_create_sysdc(name, value, 50, INT_MAX,
spa->spa_proc, zio_taskq_basedc, flags);
} else {
tq = taskq_create_proc(name, value, maxclsyspri, 50,
pri_t pri = maxclsyspri;
/*
* The write issue taskq can be extremely CPU
* intensive. Run it at slightly lower priority
* than the other taskqs.
*/
if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
pri--;
tq = taskq_create_proc(name, value, pri, 50,
INT_MAX, spa->spa_proc, flags);
}
@ -5775,6 +5779,31 @@ spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
return (0);
}
/*
* Note: this simple function is not inlined to make it easier to dtrace the
* amount of time spent syncing frees.
*/
static void
spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
{
zio_t *zio = zio_root(spa, NULL, NULL, 0);
bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
VERIFY(zio_wait(zio) == 0);
}
/*
* Note: this simple function is not inlined to make it easier to dtrace the
* amount of time spent syncing deferred frees.
*/
static void
spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
{
zio_t *zio = zio_root(spa, NULL, NULL, 0);
VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
spa_free_sync_cb, zio, tx), ==, 0);
VERIFY0(zio_wait(zio));
}
static void
spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
{
@ -6102,7 +6131,6 @@ spa_sync(spa_t *spa, uint64_t txg)
{
dsl_pool_t *dp = spa->spa_dsl_pool;
objset_t *mos = spa->spa_meta_objset;
bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
vdev_t *rvd = spa->spa_root_vdev;
vdev_t *vd;
@ -6185,10 +6213,7 @@ spa_sync(spa_t *spa, uint64_t txg)
!txg_list_empty(&dp->dp_sync_tasks, txg) ||
((dsl_scan_active(dp->dp_scan) ||
txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
zio_t *zio = zio_root(spa, NULL, NULL, 0);
VERIFY3U(bpobj_iterate(defer_bpo,
spa_free_sync_cb, zio, tx), ==, 0);
VERIFY0(zio_wait(zio));
spa_sync_deferred_frees(spa, tx);
}
/*
@ -6206,13 +6231,10 @@ spa_sync(spa_t *spa, uint64_t txg)
dsl_pool_sync(dp, txg);
if (pass < zfs_sync_pass_deferred_free) {
zio_t *zio = zio_root(spa, NULL, NULL, 0);
bplist_iterate(free_bpl, spa_free_sync_cb,
zio, tx);
VERIFY(zio_wait(zio) == 0);
spa_sync_frees(spa, free_bpl, tx);
} else {
bplist_iterate(free_bpl, bpobj_enqueue_cb,
defer_bpo, tx);
&spa->spa_deferred_bpobj, tx);
}
ddt_sync(spa, txg);

View File

@ -238,21 +238,31 @@ kmem_cache_t *spa_buffer_pool;
int spa_mode_global;
/*
* Expiration time in units of zfs_txg_synctime_ms. This value has two
* meanings. First it is used to determine when the spa_deadman logic
* should fire. By default the spa_deadman will fire if spa_sync has
* not completed in 1000 * zfs_txg_synctime_ms (i.e. 1000 seconds).
* Secondly, the value determines if an I/O is considered "hung".
* Any I/O that has not completed in zfs_deadman_synctime is considered
* "hung" resulting in a zevent being posted.
* Expiration time in milliseconds. This value has two meanings. First it is
* used to determine when the spa_deadman() logic should fire. By default the
* spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
* Secondly, the value determines if an I/O is considered "hung". Any I/O that
* has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
* in a system panic.
*/
unsigned long zfs_deadman_synctime = 1000ULL;
unsigned long zfs_deadman_synctime_ms = 1000000ULL;
/*
* By default the deadman is enabled.
*/
int zfs_deadman_enabled = 1;
/*
* The worst case is single-sector max-parity RAID-Z blocks, in which
* case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
* times the size; so just assume that. Add to this the fact that
* we can have up to 3 DVAs per bp, and one more factor of 2 because
* the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
* the worst case is:
* (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
*/
int spa_asize_inflation = 24;
/*
* ==========================================================================
* SPA config locking
@ -489,8 +499,7 @@ spa_add(const char *name, nvlist_t *config, const char *altroot)
spa->spa_proc = &p0;
spa->spa_proc_state = SPA_PROC_NONE;
spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime *
zfs_txg_synctime_ms);
spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
refcount_create(&spa->spa_refcount);
spa_config_lock_init(spa);
@ -1452,14 +1461,7 @@ spa_freeze_txg(spa_t *spa)
uint64_t
spa_get_asize(spa_t *spa, uint64_t lsize)
{
/*
* The worst case is single-sector max-parity RAID-Z blocks, in which
* case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
* times the size; so just assume that. Add to this the fact that
* we can have up to 3 DVAs per bp, and one more factor of 2 because
* the block may be dittoed with up to 3 DVAs by ddt_sync().
*/
return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
return (lsize * spa_asize_inflation);
}
uint64_t
@ -1880,9 +1882,13 @@ EXPORT_SYMBOL(spa_mode);
EXPORT_SYMBOL(spa_namespace_lock);
module_param(zfs_deadman_synctime, ulong, 0644);
MODULE_PARM_DESC(zfs_deadman_synctime,"Expire in units of zfs_txg_synctime_ms");
module_param(zfs_deadman_synctime_ms, ulong, 0644);
MODULE_PARM_DESC(zfs_deadman_synctime_ms,"Expiration time in milliseconds");
module_param(zfs_deadman_enabled, int, 0644);
MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
module_param(spa_asize_inflation, int, 0644);
MODULE_PARM_DESC(spa_asize_inflation,
"SPA size estimate multiplication factor");
#endif

View File

@ -46,7 +46,7 @@
* either be processing, or blocked waiting to enter the next state. There may
* be up to three active txgs, and there is always a txg in the open state
* (though it may be blocked waiting to enter the quiescing state). In broad
* strokes, transactions operations that change in-memory structures are
* strokes, transactions -- operations that change in-memory structures -- are
* accepted into the txg in the open state, and are completed while the txg is
* in the open or quiescing states. The accumulated changes are written to
* disk in the syncing state.
@ -54,7 +54,7 @@
* Open
*
* When a new txg becomes active, it first enters the open state. New
* transactions updates to in-memory structures are assigned to the
* transactions -- updates to in-memory structures -- are assigned to the
* currently open txg. There is always a txg in the open state so that ZFS can
* accept new changes (though the txg may refuse new changes if it has hit
* some limit). ZFS advances the open txg to the next state for a variety of
@ -375,6 +375,7 @@ txg_quiesce(dsl_pool_t *dp, uint64_t txg)
ASSERT(txg == tx->tx_open_txg);
tx->tx_open_txg++;
tx->tx_open_time = gethrtime();
spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, gethrtime());
spa_txg_history_add(dp->dp_spa, tx->tx_open_txg);
@ -511,7 +512,8 @@ txg_sync_thread(dsl_pool_t *dp)
while (!dsl_scan_active(dp->dp_scan) &&
!tx->tx_exiting && timer > 0 &&
tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
tx->tx_quiesced_txg == 0) {
tx->tx_quiesced_txg == 0 &&
dp->dp_dirty_total < zfs_dirty_data_sync) {
dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
@ -574,8 +576,7 @@ txg_sync_thread(dsl_pool_t *dp)
vs2->vs_bytes[ZIO_TYPE_WRITE]-vs1->vs_bytes[ZIO_TYPE_WRITE],
vs2->vs_ops[ZIO_TYPE_READ]-vs1->vs_ops[ZIO_TYPE_READ],
vs2->vs_ops[ZIO_TYPE_WRITE]-vs1->vs_ops[ZIO_TYPE_WRITE],
dp->dp_space_towrite[txg & TXG_MASK] +
dp->dp_tempreserved[txg & TXG_MASK] / 2);
dp->dp_dirty_pertxg[txg & TXG_MASK]);
spa_txg_history_set(spa, txg, TXG_STATE_SYNCED, gethrtime());
}
}
@ -705,6 +706,28 @@ txg_wait_open(dsl_pool_t *dp, uint64_t txg)
mutex_exit(&tx->tx_sync_lock);
}
/*
* If there isn't a txg syncing or in the pipeline, push another txg through
* the pipeline by queiscing the open txg.
*/
void
txg_kick(dsl_pool_t *dp)
{
tx_state_t *tx = &dp->dp_tx;
ASSERT(!dsl_pool_config_held(dp));
mutex_enter(&tx->tx_sync_lock);
if (tx->tx_syncing_txg == 0 &&
tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
tx->tx_quiesced_txg <= tx->tx_synced_txg) {
tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
cv_broadcast(&tx->tx_quiesce_more_cv);
}
mutex_exit(&tx->tx_sync_lock);
}
boolean_t
txg_stalled(dsl_pool_t *dp)
{

View File

@ -3296,7 +3296,7 @@ vdev_deadman(vdev_t *vd)
vdev_queue_t *vq = &vd->vdev_queue;
mutex_enter(&vq->vq_lock);
if (avl_numnodes(&vq->vq_pending_tree) > 0) {
if (avl_numnodes(&vq->vq_active_tree) > 0) {
spa_t *spa = vd->vdev_spa;
zio_t *fio;
uint64_t delta;
@ -3306,7 +3306,7 @@ vdev_deadman(vdev_t *vd)
* if any I/O has been outstanding for longer than
* the spa_deadman_synctime we log a zevent.
*/
fio = avl_first(&vq->vq_pending_tree);
fio = avl_first(&vq->vq_active_tree);
delta = gethrtime() - fio->io_timestamp;
if (delta > spa_deadman_synctime(spa)) {
zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "

View File

@ -312,7 +312,7 @@ vdev_cache_read(zio_t *zio)
}
fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_CACHE_FILL,
ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW,
ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
ve->ve_fill_io = fio;

View File

@ -89,7 +89,7 @@ static const zio_vsd_ops_t vdev_mirror_vsd_ops = {
static int
vdev_mirror_pending(vdev_t *vd)
{
return (avl_numnodes(&vd->vdev_queue.vq_pending_tree));
return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
}
/*
@ -499,7 +499,7 @@ vdev_mirror_io_done(zio_t *zio)
zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
mc->mc_vd, mc->mc_offset,
zio->io_data, zio->io_size,
ZIO_TYPE_WRITE, zio->io_priority,
ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
}

View File

@ -24,7 +24,7 @@
*/
/*
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#include <sys/zfs_context.h>
@ -32,29 +32,134 @@
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/avl.h>
#include <sys/dsl_pool.h>
#include <sys/spa.h>
#include <sys/spa_impl.h>
#include <sys/kstat.h>
/*
* These tunables are for performance analysis.
* ZFS I/O Scheduler
* ---------------
*
* ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
* I/O scheduler determines when and in what order those operations are
* issued. The I/O scheduler divides operations into five I/O classes
* prioritized in the following order: sync read, sync write, async read,
* async write, and scrub/resilver. Each queue defines the minimum and
* maximum number of concurrent operations that may be issued to the device.
* In addition, the device has an aggregate maximum. Note that the sum of the
* per-queue minimums must not exceed the aggregate maximum. If the
* sum of the per-queue maximums exceeds the aggregate maximum, then the
* number of active i/os may reach zfs_vdev_max_active, in which case no
* further i/os will be issued regardless of whether all per-queue
* minimums have been met.
*
* For many physical devices, throughput increases with the number of
* concurrent operations, but latency typically suffers. Further, physical
* devices typically have a limit at which more concurrent operations have no
* effect on throughput or can actually cause it to decrease.
*
* The scheduler selects the next operation to issue by first looking for an
* I/O class whose minimum has not been satisfied. Once all are satisfied and
* the aggregate maximum has not been hit, the scheduler looks for classes
* whose maximum has not been satisfied. Iteration through the I/O classes is
* done in the order specified above. No further operations are issued if the
* aggregate maximum number of concurrent operations has been hit or if there
* are no operations queued for an I/O class that has not hit its maximum.
* Every time an i/o is queued or an operation completes, the I/O scheduler
* looks for new operations to issue.
*
* All I/O classes have a fixed maximum number of outstanding operations
* except for the async write class. Asynchronous writes represent the data
* that is committed to stable storage during the syncing stage for
* transaction groups (see txg.c). Transaction groups enter the syncing state
* periodically so the number of queued async writes will quickly burst up and
* then bleed down to zero. Rather than servicing them as quickly as possible,
* the I/O scheduler changes the maximum number of active async write i/os
* according to the amount of dirty data in the pool (see dsl_pool.c). Since
* both throughput and latency typically increase with the number of
* concurrent operations issued to physical devices, reducing the burstiness
* in the number of concurrent operations also stabilizes the response time of
* operations from other -- and in particular synchronous -- queues. In broad
* strokes, the I/O scheduler will issue more concurrent operations from the
* async write queue as there's more dirty data in the pool.
*
* Async Writes
*
* The number of concurrent operations issued for the async write I/O class
* follows a piece-wise linear function defined by a few adjustable points.
*
* | o---------| <-- zfs_vdev_async_write_max_active
* ^ | /^ |
* | | / | |
* active | / | |
* I/O | / | |
* count | / | |
* | / | |
* |------------o | | <-- zfs_vdev_async_write_min_active
* 0|____________^______|_________|
* 0% | | 100% of zfs_dirty_data_max
* | |
* | `-- zfs_vdev_async_write_active_max_dirty_percent
* `--------- zfs_vdev_async_write_active_min_dirty_percent
*
* Until the amount of dirty data exceeds a minimum percentage of the dirty
* data allowed in the pool, the I/O scheduler will limit the number of
* concurrent operations to the minimum. As that threshold is crossed, the
* number of concurrent operations issued increases linearly to the maximum at
* the specified maximum percentage of the dirty data allowed in the pool.
*
* Ideally, the amount of dirty data on a busy pool will stay in the sloped
* part of the function between zfs_vdev_async_write_active_min_dirty_percent
* and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
* maximum percentage, this indicates that the rate of incoming data is
* greater than the rate that the backend storage can handle. In this case, we
* must further throttle incoming writes (see dmu_tx_delay() for details).
*/
/* The maximum number of I/Os concurrently pending to each device. */
int zfs_vdev_max_pending = 10;
/*
* The initial number of I/Os pending to each device, before it starts ramping
* up to zfs_vdev_max_pending.
* The maximum number of i/os active to each device. Ideally, this will be >=
* the sum of each queue's max_active. It must be at least the sum of each
* queue's min_active.
*/
int zfs_vdev_min_pending = 4;
uint32_t zfs_vdev_max_active = 1000;
/*
* The deadlines are grouped into buckets based on zfs_vdev_time_shift:
* deadline = pri + gethrtime() >> time_shift)
* Per-queue limits on the number of i/os active to each device. If the
* number of active i/os is < zfs_vdev_max_active, then the min_active comes
* into play. We will send min_active from each queue, and then select from
* queues in the order defined by zio_priority_t.
*
* In general, smaller max_active's will lead to lower latency of synchronous
* operations. Larger max_active's may lead to higher overall throughput,
* depending on underlying storage.
*
* The ratio of the queues' max_actives determines the balance of performance
* between reads, writes, and scrubs. E.g., increasing
* zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
* more quickly, but reads and writes to have higher latency and lower
* throughput.
*/
int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */
uint32_t zfs_vdev_sync_read_min_active = 10;
uint32_t zfs_vdev_sync_read_max_active = 10;
uint32_t zfs_vdev_sync_write_min_active = 10;
uint32_t zfs_vdev_sync_write_max_active = 10;
uint32_t zfs_vdev_async_read_min_active = 1;
uint32_t zfs_vdev_async_read_max_active = 3;
uint32_t zfs_vdev_async_write_min_active = 1;
uint32_t zfs_vdev_async_write_max_active = 10;
uint32_t zfs_vdev_scrub_min_active = 1;
uint32_t zfs_vdev_scrub_max_active = 2;
/* exponential I/O issue ramp-up rate */
int zfs_vdev_ramp_rate = 2;
/*
* When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
* dirty data, use zfs_vdev_async_write_min_active. When it has more than
* zfs_vdev_async_write_active_max_dirty_percent, use
* zfs_vdev_async_write_max_active. The value is linearly interpolated
* between min and max.
*/
int zfs_vdev_async_write_active_min_dirty_percent = 30;
int zfs_vdev_async_write_active_max_dirty_percent = 60;
/*
* To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
@ -66,33 +171,6 @@ int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
int zfs_vdev_read_gap_limit = 32 << 10;
int zfs_vdev_write_gap_limit = 4 << 10;
/*
* Virtual device vector for disk I/O scheduling.
*/
int
vdev_queue_deadline_compare(const void *x1, const void *x2)
{
const zio_t *z1 = x1;
const zio_t *z2 = x2;
if (z1->io_deadline < z2->io_deadline)
return (-1);
if (z1->io_deadline > z2->io_deadline)
return (1);
if (z1->io_offset < z2->io_offset)
return (-1);
if (z1->io_offset > z2->io_offset)
return (1);
if (z1 < z2)
return (-1);
if (z1 > z2)
return (1);
return (0);
}
int
vdev_queue_offset_compare(const void *x1, const void *x2)
{
@ -112,25 +190,160 @@ vdev_queue_offset_compare(const void *x1, const void *x2)
return (0);
}
int
vdev_queue_timestamp_compare(const void *x1, const void *x2)
{
const zio_t *z1 = x1;
const zio_t *z2 = x2;
if (z1->io_timestamp < z2->io_timestamp)
return (-1);
if (z1->io_timestamp > z2->io_timestamp)
return (1);
if (z1 < z2)
return (-1);
if (z1 > z2)
return (1);
return (0);
}
static int
vdev_queue_class_min_active(zio_priority_t p)
{
switch (p) {
case ZIO_PRIORITY_SYNC_READ:
return (zfs_vdev_sync_read_min_active);
case ZIO_PRIORITY_SYNC_WRITE:
return (zfs_vdev_sync_write_min_active);
case ZIO_PRIORITY_ASYNC_READ:
return (zfs_vdev_async_read_min_active);
case ZIO_PRIORITY_ASYNC_WRITE:
return (zfs_vdev_async_write_min_active);
case ZIO_PRIORITY_SCRUB:
return (zfs_vdev_scrub_min_active);
default:
panic("invalid priority %u", p);
return (0);
}
}
static int
vdev_queue_max_async_writes(uint64_t dirty)
{
int writes;
uint64_t min_bytes = zfs_dirty_data_max *
zfs_vdev_async_write_active_min_dirty_percent / 100;
uint64_t max_bytes = zfs_dirty_data_max *
zfs_vdev_async_write_active_max_dirty_percent / 100;
if (dirty < min_bytes)
return (zfs_vdev_async_write_min_active);
if (dirty > max_bytes)
return (zfs_vdev_async_write_max_active);
/*
* linear interpolation:
* slope = (max_writes - min_writes) / (max_bytes - min_bytes)
* move right by min_bytes
* move up by min_writes
*/
writes = (dirty - min_bytes) *
(zfs_vdev_async_write_max_active -
zfs_vdev_async_write_min_active) /
(max_bytes - min_bytes) +
zfs_vdev_async_write_min_active;
ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
return (writes);
}
static int
vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
{
switch (p) {
case ZIO_PRIORITY_SYNC_READ:
return (zfs_vdev_sync_read_max_active);
case ZIO_PRIORITY_SYNC_WRITE:
return (zfs_vdev_sync_write_max_active);
case ZIO_PRIORITY_ASYNC_READ:
return (zfs_vdev_async_read_max_active);
case ZIO_PRIORITY_ASYNC_WRITE:
return (vdev_queue_max_async_writes(
spa->spa_dsl_pool->dp_dirty_total));
case ZIO_PRIORITY_SCRUB:
return (zfs_vdev_scrub_max_active);
default:
panic("invalid priority %u", p);
return (0);
}
}
/*
* Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
* there is no eligible class.
*/
static zio_priority_t
vdev_queue_class_to_issue(vdev_queue_t *vq)
{
spa_t *spa = vq->vq_vdev->vdev_spa;
zio_priority_t p;
if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
return (ZIO_PRIORITY_NUM_QUEUEABLE);
/* find a queue that has not reached its minimum # outstanding i/os */
for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
vq->vq_class[p].vqc_active <
vdev_queue_class_min_active(p))
return (p);
}
/*
* If we haven't found a queue, look for one that hasn't reached its
* maximum # outstanding i/os.
*/
for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 &&
vq->vq_class[p].vqc_active <
vdev_queue_class_max_active(spa, p))
return (p);
}
/* No eligible queued i/os */
return (ZIO_PRIORITY_NUM_QUEUEABLE);
}
void
vdev_queue_init(vdev_t *vd)
{
vdev_queue_t *vq = &vd->vdev_queue;
int max_active_sum;
zio_priority_t p;
int i;
mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
vq->vq_vdev = vd;
avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
sizeof (zio_t), offsetof(struct zio, io_deadline_node));
avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
sizeof (zio_t), offsetof(struct zio, io_queue_node));
avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
sizeof (zio_t), offsetof(struct zio, io_offset_node));
avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
sizeof (zio_t), offsetof(struct zio, io_offset_node));
avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
sizeof (zio_t), offsetof(struct zio, io_offset_node));
for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
/*
* The synchronous i/o queues are FIFO rather than LBA ordered.
* This provides more consistent latency for these i/os, and
* they tend to not be tightly clustered anyway so there is
* little to no throughput loss.
*/
boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ ||
p == ZIO_PRIORITY_SYNC_WRITE);
avl_create(&vq->vq_class[p].vqc_queued_tree,
fifo ? vdev_queue_timestamp_compare :
vdev_queue_offset_compare,
sizeof (zio_t), offsetof(struct zio, io_queue_node));
}
/*
* A list of buffers which can be used for aggregate I/O, this
@ -139,7 +352,10 @@ vdev_queue_init(vdev_t *vd)
list_create(&vq->vq_io_list, sizeof (vdev_io_t),
offsetof(vdev_io_t, vi_node));
for (i = 0; i < zfs_vdev_max_pending; i++)
max_active_sum = zfs_vdev_sync_read_max_active +
zfs_vdev_sync_write_max_active + zfs_vdev_async_read_max_active +
zfs_vdev_async_write_max_active + zfs_vdev_scrub_max_active;
for (i = 0; i < max_active_sum; i++)
list_insert_tail(&vq->vq_io_list, zio_vdev_alloc());
}
@ -148,11 +364,11 @@ vdev_queue_fini(vdev_t *vd)
{
vdev_queue_t *vq = &vd->vdev_queue;
vdev_io_t *vi;
zio_priority_t p;
avl_destroy(&vq->vq_deadline_tree);
avl_destroy(&vq->vq_read_tree);
avl_destroy(&vq->vq_write_tree);
avl_destroy(&vq->vq_pending_tree);
for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
avl_destroy(&vq->vq_class[p].vqc_queued_tree);
avl_destroy(&vq->vq_active_tree);
while ((vi = list_head(&vq->vq_io_list)) != NULL) {
list_remove(&vq->vq_io_list, vi);
@ -170,8 +386,8 @@ vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
spa_t *spa = zio->io_spa;
spa_stats_history_t *ssh = &spa->spa_stats.io_history;
avl_add(&vq->vq_deadline_tree, zio);
avl_add(zio->io_vdev_tree, zio);
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
if (ssh->kstat != NULL) {
mutex_enter(&ssh->lock);
@ -186,8 +402,8 @@ vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
spa_t *spa = zio->io_spa;
spa_stats_history_t *ssh = &spa->spa_stats.io_history;
avl_remove(&vq->vq_deadline_tree, zio);
avl_remove(zio->io_vdev_tree, zio);
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio);
if (ssh->kstat != NULL) {
mutex_enter(&ssh->lock);
@ -202,7 +418,10 @@ vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
spa_t *spa = zio->io_spa;
spa_stats_history_t *ssh = &spa->spa_stats.io_history;
avl_add(&vq->vq_pending_tree, zio);
ASSERT(MUTEX_HELD(&vq->vq_lock));
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
vq->vq_class[zio->io_priority].vqc_active++;
avl_add(&vq->vq_active_tree, zio);
if (ssh->kstat != NULL) {
mutex_enter(&ssh->lock);
@ -217,7 +436,10 @@ vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
spa_t *spa = zio->io_spa;
spa_stats_history_t *ssh = &spa->spa_stats.io_history;
avl_remove(&vq->vq_pending_tree, zio);
ASSERT(MUTEX_HELD(&vq->vq_lock));
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
vq->vq_class[zio->io_priority].vqc_active--;
avl_remove(&vq->vq_active_tree, zio);
if (ssh->kstat != NULL) {
kstat_io_t *ksio = ssh->kstat->ks_data;
@ -240,12 +462,14 @@ vdev_queue_agg_io_done(zio_t *aio)
{
vdev_queue_t *vq = &aio->io_vd->vdev_queue;
vdev_io_t *vi = aio->io_data;
zio_t *pio;
while ((pio = zio_walk_parents(aio)) != NULL)
if (aio->io_type == ZIO_TYPE_READ)
if (aio->io_type == ZIO_TYPE_READ) {
zio_t *pio;
while ((pio = zio_walk_parents(aio)) != NULL) {
bcopy((char *)aio->io_data + (pio->io_offset -
aio->io_offset), pio->io_data, pio->io_size);
}
}
mutex_enter(&vq->vq_lock);
list_insert_tail(&vq->vq_io_list, vi);
@ -262,28 +486,38 @@ vdev_queue_agg_io_done(zio_t *aio)
#define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
static zio_t *
vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
{
zio_t *fio, *lio, *aio, *dio, *nio, *mio;
avl_tree_t *t;
vdev_io_t *vi;
int flags;
uint64_t maxspan = MIN(zfs_vdev_aggregation_limit, SPA_MAXBLOCKSIZE);
uint64_t maxgap;
int stretch;
zio_t *first, *last, *aio, *dio, *mandatory, *nio;
uint64_t maxgap = 0;
uint64_t size;
boolean_t stretch = B_FALSE;
vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority];
avl_tree_t *t = &vqc->vqc_queued_tree;
enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
again:
ASSERT(MUTEX_HELD(&vq->vq_lock));
if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
avl_numnodes(&vq->vq_deadline_tree) == 0)
if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
return (NULL);
fio = lio = avl_first(&vq->vq_deadline_tree);
/* Prevent users from setting the zfs_vdev_aggregation_limit
* tuning larger than SPA_MAXBLOCKSIZE. */
zfs_vdev_aggregation_limit =
MIN(zfs_vdev_aggregation_limit, SPA_MAXBLOCKSIZE);
t = fio->io_vdev_tree;
flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
/*
* The synchronous i/o queues are not sorted by LBA, so we can't
* find adjacent i/os. These i/os tend to not be tightly clustered,
* or too large to aggregate, so this has little impact on performance.
*/
if (zio->io_priority == ZIO_PRIORITY_SYNC_READ ||
zio->io_priority == ZIO_PRIORITY_SYNC_WRITE)
return (NULL);
first = last = zio;
if (zio->io_type == ZIO_TYPE_READ)
maxgap = zfs_vdev_read_gap_limit;
vi = list_head(&vq->vq_io_list);
if (vi == NULL) {
@ -291,134 +525,172 @@ again:
list_insert_head(&vq->vq_io_list, vi);
}
if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
/*
* We can aggregate I/Os that are sufficiently adjacent and of
* the same flavor, as expressed by the AGG_INHERIT flags.
* The latter requirement is necessary so that certain
* attributes of the I/O, such as whether it's a normal I/O
* or a scrub/resilver, can be preserved in the aggregate.
* We can include optional I/Os, but don't allow them
* to begin a range as they add no benefit in that situation.
*/
/*
* We can aggregate I/Os that are sufficiently adjacent and of
* the same flavor, as expressed by the AGG_INHERIT flags.
* The latter requirement is necessary so that certain
* attributes of the I/O, such as whether it's a normal I/O
* or a scrub/resilver, can be preserved in the aggregate.
* We can include optional I/Os, but don't allow them
* to begin a range as they add no benefit in that situation.
*/
/*
* We keep track of the last non-optional I/O.
*/
mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
/*
* We keep track of the last non-optional I/O.
*/
mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
/*
* Walk backwards through sufficiently contiguous I/Os
* recording the last non-option I/O.
*/
while ((dio = AVL_PREV(t, fio)) != NULL &&
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
IO_SPAN(dio, lio) <= maxspan &&
IO_GAP(dio, fio) <= maxgap) {
fio = dio;
if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
mio = fio;
}
/*
* Walk backwards through sufficiently contiguous I/Os
* recording the last non-option I/O.
*/
while ((dio = AVL_PREV(t, first)) != NULL &&
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
IO_GAP(dio, first) <= maxgap) {
first = dio;
if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
mandatory = first;
}
/*
* Skip any initial optional I/Os.
*/
while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
fio = AVL_NEXT(t, fio);
ASSERT(fio != NULL);
}
/*
* Skip any initial optional I/Os.
*/
while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
first = AVL_NEXT(t, first);
ASSERT(first != NULL);
}
/*
* Walk forward through sufficiently contiguous I/Os.
*/
while ((dio = AVL_NEXT(t, lio)) != NULL &&
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
IO_SPAN(fio, dio) <= maxspan &&
IO_GAP(lio, dio) <= maxgap) {
lio = dio;
if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
mio = lio;
}
/*
* Now that we've established the range of the I/O aggregation
* we must decide what to do with trailing optional I/Os.
* For reads, there's nothing to do. While we are unable to
* aggregate further, it's possible that a trailing optional
* I/O would allow the underlying device to aggregate with
* subsequent I/Os. We must therefore determine if the next
* non-optional I/O is close enough to make aggregation
* worthwhile.
*/
stretch = B_FALSE;
if (t != &vq->vq_read_tree && mio != NULL) {
nio = lio;
while ((dio = AVL_NEXT(t, nio)) != NULL &&
IO_GAP(nio, dio) == 0 &&
IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
nio = dio;
if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
stretch = B_TRUE;
break;
}
}
}
/*
* Walk forward through sufficiently contiguous I/Os.
*/
while ((dio = AVL_NEXT(t, last)) != NULL &&
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
IO_GAP(last, dio) <= maxgap) {
last = dio;
if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
mandatory = last;
}
if (stretch) {
/* This may be a no-op. */
VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
} else {
while (lio != mio && lio != fio) {
ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
lio = AVL_PREV(t, lio);
ASSERT(lio != NULL);
/*
* Now that we've established the range of the I/O aggregation
* we must decide what to do with trailing optional I/Os.
* For reads, there's nothing to do. While we are unable to
* aggregate further, it's possible that a trailing optional
* I/O would allow the underlying device to aggregate with
* subsequent I/Os. We must therefore determine if the next
* non-optional I/O is close enough to make aggregation
* worthwhile.
*/
if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
zio_t *nio = last;
while ((dio = AVL_NEXT(t, nio)) != NULL &&
IO_GAP(nio, dio) == 0 &&
IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
nio = dio;
if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
stretch = B_TRUE;
break;
}
}
}
if (fio != lio) {
uint64_t size = IO_SPAN(fio, lio);
ASSERT(size <= maxspan);
ASSERT(vi != NULL);
aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
vi, size, fio->io_type, ZIO_PRIORITY_AGG,
flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
vdev_queue_agg_io_done, NULL);
aio->io_timestamp = fio->io_timestamp;
nio = fio;
do {
dio = nio;
nio = AVL_NEXT(t, dio);
ASSERT(dio->io_type == aio->io_type);
ASSERT(dio->io_vdev_tree == t);
if (dio->io_flags & ZIO_FLAG_NODATA) {
ASSERT(dio->io_type == ZIO_TYPE_WRITE);
bzero((char *)aio->io_data + (dio->io_offset -
aio->io_offset), dio->io_size);
} else if (dio->io_type == ZIO_TYPE_WRITE) {
bcopy(dio->io_data, (char *)aio->io_data +
(dio->io_offset - aio->io_offset),
dio->io_size);
}
zio_add_child(dio, aio);
vdev_queue_io_remove(vq, dio);
zio_vdev_io_bypass(dio);
zio_execute(dio);
} while (dio != lio);
vdev_queue_pending_add(vq, aio);
list_remove(&vq->vq_io_list, vi);
return (aio);
if (stretch) {
/* This may be a no-op. */
dio = AVL_NEXT(t, last);
dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
} else {
while (last != mandatory && last != first) {
ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
last = AVL_PREV(t, last);
ASSERT(last != NULL);
}
}
ASSERT(fio->io_vdev_tree == t);
vdev_queue_io_remove(vq, fio);
if (first == last)
return (NULL);
ASSERT(vi != NULL);
size = IO_SPAN(first, last);
ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
vi, size, first->io_type, zio->io_priority,
flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
vdev_queue_agg_io_done, NULL);
aio->io_timestamp = first->io_timestamp;
nio = first;
do {
dio = nio;
nio = AVL_NEXT(t, dio);
ASSERT3U(dio->io_type, ==, aio->io_type);
if (dio->io_flags & ZIO_FLAG_NODATA) {
ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
bzero((char *)aio->io_data + (dio->io_offset -
aio->io_offset), dio->io_size);
} else if (dio->io_type == ZIO_TYPE_WRITE) {
bcopy(dio->io_data, (char *)aio->io_data +
(dio->io_offset - aio->io_offset),
dio->io_size);
}
zio_add_child(dio, aio);
vdev_queue_io_remove(vq, dio);
zio_vdev_io_bypass(dio);
zio_execute(dio);
} while (dio != last);
list_remove(&vq->vq_io_list, vi);
return (aio);
}
static zio_t *
vdev_queue_io_to_issue(vdev_queue_t *vq)
{
zio_t *zio, *aio;
zio_priority_t p;
avl_index_t idx;
vdev_queue_class_t *vqc;
zio_t *search;
again:
ASSERT(MUTEX_HELD(&vq->vq_lock));
p = vdev_queue_class_to_issue(vq);
if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
/* No eligible queued i/os */
return (NULL);
}
/*
* For LBA-ordered queues (async / scrub), issue the i/o which follows
* the most recently issued i/o in LBA (offset) order.
*
* For FIFO queues (sync), issue the i/o with the lowest timestamp.
*/
vqc = &vq->vq_class[p];
search = zio_buf_alloc(sizeof(*search));
search->io_timestamp = 0;
search->io_offset = vq->vq_last_offset + 1;
VERIFY3P(avl_find(&vqc->vqc_queued_tree, search, &idx), ==, NULL);
zio_buf_free(search, sizeof(*search));
zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER);
if (zio == NULL)
zio = avl_first(&vqc->vqc_queued_tree);
ASSERT3U(zio->io_priority, ==, p);
aio = vdev_queue_aggregate(vq, zio);
if (aio != NULL)
zio = aio;
else
vdev_queue_io_remove(vq, zio);
/*
* If the I/O is or was optional and therefore has no data, we need to
@ -426,17 +698,18 @@ again:
* deadlock that we could encounter since this I/O will complete
* immediately.
*/
if (fio->io_flags & ZIO_FLAG_NODATA) {
if (zio->io_flags & ZIO_FLAG_NODATA) {
mutex_exit(&vq->vq_lock);
zio_vdev_io_bypass(fio);
zio_execute(fio);
zio_vdev_io_bypass(zio);
zio_execute(zio);
mutex_enter(&vq->vq_lock);
goto again;
}
vdev_queue_pending_add(vq, fio);
vdev_queue_pending_add(vq, zio);
vq->vq_last_offset = zio->io_offset;
return (fio);
return (zio);
}
zio_t *
@ -445,28 +718,31 @@ vdev_queue_io(zio_t *zio)
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
zio_t *nio;
ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
return (zio);
/*
* Children i/os inherent their parent's priority, which might
* not match the child's i/o type. Fix it up here.
*/
if (zio->io_type == ZIO_TYPE_READ) {
if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
zio->io_priority != ZIO_PRIORITY_SCRUB)
zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
} else {
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
}
zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
if (zio->io_type == ZIO_TYPE_READ)
zio->io_vdev_tree = &vq->vq_read_tree;
else
zio->io_vdev_tree = &vq->vq_write_tree;
mutex_enter(&vq->vq_lock);
zio->io_timestamp = gethrtime();
zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) +
zio->io_priority;
vdev_queue_io_add(vq, zio);
nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
nio = vdev_queue_io_to_issue(vq);
mutex_exit(&vq->vq_lock);
if (nio == NULL)
@ -484,7 +760,7 @@ void
vdev_queue_io_done(zio_t *zio)
{
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
int i;
zio_t *nio;
if (zio_injection_enabled)
delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
@ -497,10 +773,7 @@ vdev_queue_io_done(zio_t *zio)
vq->vq_io_complete_ts = gethrtime();
vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp;
for (i = 0; i < zfs_vdev_ramp_rate; i++) {
zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
if (nio == NULL)
break;
while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
mutex_exit(&vq->vq_lock);
if (nio->io_done == vdev_queue_agg_io_done) {
zio_nowait(nio);
@ -515,24 +788,61 @@ vdev_queue_io_done(zio_t *zio)
}
#if defined(_KERNEL) && defined(HAVE_SPL)
module_param(zfs_vdev_max_pending, int, 0644);
MODULE_PARM_DESC(zfs_vdev_max_pending, "Max pending per-vdev I/Os");
module_param(zfs_vdev_min_pending, int, 0644);
MODULE_PARM_DESC(zfs_vdev_min_pending, "Min pending per-vdev I/Os");
module_param(zfs_vdev_aggregation_limit, int, 0644);
MODULE_PARM_DESC(zfs_vdev_aggregation_limit, "Max vdev I/O aggregation size");
module_param(zfs_vdev_time_shift, int, 0644);
MODULE_PARM_DESC(zfs_vdev_time_shift, "Deadline time shift for vdev I/O");
module_param(zfs_vdev_ramp_rate, int, 0644);
MODULE_PARM_DESC(zfs_vdev_ramp_rate, "Exponential I/O issue ramp-up rate");
module_param(zfs_vdev_read_gap_limit, int, 0644);
MODULE_PARM_DESC(zfs_vdev_read_gap_limit, "Aggregate read I/O over gap");
module_param(zfs_vdev_write_gap_limit, int, 0644);
MODULE_PARM_DESC(zfs_vdev_write_gap_limit, "Aggregate write I/O over gap");
module_param(zfs_vdev_max_active, int, 0644);
MODULE_PARM_DESC(zfs_vdev_max_active, "Maximum number of active I/Os per vdev");
module_param(zfs_vdev_async_write_active_max_dirty_percent, int, 0644);
MODULE_PARM_DESC(zfs_vdev_async_write_active_max_dirty_percent,
"Async write concurrency max threshold");
module_param(zfs_vdev_async_write_active_min_dirty_percent, int, 0644);
MODULE_PARM_DESC(zfs_vdev_async_write_active_min_dirty_percent,
"Async write concurrency min threshold");
module_param(zfs_vdev_async_read_max_active, int, 0644);
MODULE_PARM_DESC(zfs_vdev_async_read_max_active,
"Max active async read I/Os per vdev");
module_param(zfs_vdev_async_read_min_active, int, 0644);
MODULE_PARM_DESC(zfs_vdev_async_read_min_active,
"Min active async read I/Os per vdev");
module_param(zfs_vdev_async_write_max_active, int, 0644);
MODULE_PARM_DESC(zfs_vdev_async_write_max_active,
"Max active async write I/Os per vdev");
module_param(zfs_vdev_async_write_min_active, int, 0644);
MODULE_PARM_DESC(zfs_vdev_async_write_min_active,
"Min active async write I/Os per vdev");
module_param(zfs_vdev_scrub_max_active, int, 0644);
MODULE_PARM_DESC(zfs_vdev_scrub_max_active, "Max active scrub I/Os per vdev");
module_param(zfs_vdev_scrub_min_active, int, 0644);
MODULE_PARM_DESC(zfs_vdev_scrub_min_active, "Min active scrub I/Os per vdev");
module_param(zfs_vdev_sync_read_max_active, int, 0644);
MODULE_PARM_DESC(zfs_vdev_sync_read_max_active,
"Max active sync read I/Os per vdev");
module_param(zfs_vdev_sync_read_min_active, int, 0644);
MODULE_PARM_DESC(zfs_vdev_sync_read_min_active,
"Min active sync read I/Os per vdev");
module_param(zfs_vdev_sync_write_max_active, int, 0644);
MODULE_PARM_DESC(zfs_vdev_sync_write_max_active,
"Max active sync write I/Os per vdev");
module_param(zfs_vdev_sync_write_min_active, int, 0644);
MODULE_PARM_DESC(zfs_vdev_sync_write_min_active,
"Min active sync write I/Osper vdev");
#endif

View File

@ -2188,7 +2188,7 @@ done:
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
rc->rc_offset, rc->rc_data, rc->rc_size,
ZIO_TYPE_WRITE, zio->io_priority,
ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
}

View File

@ -316,8 +316,6 @@ zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
DATA_TYPE_UINT64, zio->io_delay, NULL);
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
DATA_TYPE_UINT64, zio->io_timestamp, NULL);
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DEADLINE,
DATA_TYPE_UINT64, zio->io_deadline, NULL);
fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
DATA_TYPE_UINT64, zio->io_delta, NULL);

View File

@ -125,7 +125,11 @@
* forever, because the previous txg can't quiesce until B's tx commits.
*
* If dmu_tx_assign() returns ERESTART and zsb->z_assign is TXG_NOWAIT,
* then drop all locks, call dmu_tx_wait(), and try again.
* then drop all locks, call dmu_tx_wait(), and try again. On subsequent
* calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
* to indicate that this operation has already called dmu_tx_wait().
* This will ensure that we don't retry forever, waiting a short bit
* each time.
*
* (5) If the operation succeeded, generate the intent log entry for it
* before dropping locks. This ensures that the ordering of events
@ -147,12 +151,13 @@
* rw_enter(...); // grab any other locks you need
* tx = dmu_tx_create(...); // get DMU tx
* dmu_tx_hold_*(); // hold each object you might modify
* error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign
* error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
* if (error) {
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
* iput(...); // release held vnodes
* if (error == ERESTART) {
* waited = B_TRUE;
* dmu_tx_wait(tx);
* dmu_tx_abort(tx);
* goto top;
@ -1279,6 +1284,7 @@ zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
boolean_t have_acl = B_FALSE;
boolean_t waited = B_FALSE;
/*
* If we have an ephemeral id, ACL, or XVATTR then
@ -1391,10 +1397,11 @@ top:
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, acl_ids.z_aclp->z_acl_bytes);
}
error = dmu_tx_assign(tx, TXG_NOWAIT);
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
@ -1524,6 +1531,7 @@ zfs_remove(struct inode *dip, char *name, cred_t *cr)
#endif /* HAVE_PN_UTILS */
int error;
int zflg = ZEXISTS;
boolean_t waited = B_FALSE;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(dzp);
@ -1599,13 +1607,14 @@ top:
/* charge as an update -- would be nice not to charge at all */
dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
error = dmu_tx_assign(tx, TXG_NOWAIT);
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
iput(ip);
if (xzp)
iput(ZTOI(xzp));
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
@ -1710,6 +1719,7 @@ zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
gid_t gid = crgetgid(cr);
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
boolean_t waited = B_FALSE;
ASSERT(S_ISDIR(vap->va_mode));
@ -1801,10 +1811,11 @@ top:
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
error = dmu_tx_assign(tx, TXG_NOWAIT);
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
@ -1882,6 +1893,7 @@ zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
dmu_tx_t *tx;
int error;
int zflg = ZEXISTS;
boolean_t waited = B_FALSE;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(dzp);
@ -1935,13 +1947,14 @@ top:
dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
zfs_sa_upgrade_txholds(tx, zp);
zfs_sa_upgrade_txholds(tx, dzp);
error = dmu_tx_assign(tx, TXG_NOWAIT);
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
if (error) {
rw_exit(&zp->z_parent_lock);
rw_exit(&zp->z_name_lock);
zfs_dirent_unlock(dl);
iput(ip);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
@ -3169,6 +3182,7 @@ zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
int cmp, serr, terr;
int error = 0;
int zflg = 0;
boolean_t waited = B_FALSE;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(sdzp);
@ -3383,7 +3397,7 @@ top:
zfs_sa_upgrade_txholds(tx, szp);
dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
error = dmu_tx_assign(tx, TXG_NOWAIT);
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
if (error) {
if (zl != NULL)
zfs_rename_unlock(&zl);
@ -3397,6 +3411,7 @@ top:
if (tzp)
iput(ZTOI(tzp));
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
@ -3504,6 +3519,7 @@ zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
uint64_t txtype = TX_SYMLINK;
boolean_t waited = B_FALSE;
ASSERT(S_ISLNK(vap->va_mode));
@ -3568,10 +3584,11 @@ top:
}
if (fuid_dirtied)
zfs_fuid_txhold(zsb, tx);
error = dmu_tx_assign(tx, TXG_NOWAIT);
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
@ -3699,6 +3716,7 @@ zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr)
int zf = ZNEW;
uint64_t parent;
uid_t owner;
boolean_t waited = B_FALSE;
ASSERT(S_ISDIR(tdip->i_mode));
@ -3782,10 +3800,11 @@ top:
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
zfs_sa_upgrade_txholds(tx, szp);
zfs_sa_upgrade_txholds(tx, dzp);
error = dmu_tx_assign(tx, TXG_NOWAIT);
error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
waited = B_TRUE;
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;

View File

@ -913,7 +913,7 @@ zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
}
lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE,
zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
ZIO_FLAG_FASTWRITE, &zb);
}

View File

@ -37,32 +37,12 @@
#include <sys/arc.h>
#include <sys/ddt.h>
/*
* ==========================================================================
* I/O priority table
* ==========================================================================
*/
uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
0, /* ZIO_PRIORITY_NOW */
0, /* ZIO_PRIORITY_SYNC_READ */
0, /* ZIO_PRIORITY_SYNC_WRITE */
0, /* ZIO_PRIORITY_LOG_WRITE */
1, /* ZIO_PRIORITY_CACHE_FILL */
1, /* ZIO_PRIORITY_AGG */
4, /* ZIO_PRIORITY_FREE */
4, /* ZIO_PRIORITY_ASYNC_WRITE */
6, /* ZIO_PRIORITY_ASYNC_READ */
10, /* ZIO_PRIORITY_RESILVER */
20, /* ZIO_PRIORITY_SCRUB */
2, /* ZIO_PRIORITY_DDT_PREFETCH */
};
/*
* ==========================================================================
* I/O type descriptions
* ==========================================================================
*/
char *zio_type_name[ZIO_TYPES] = {
const char *zio_type_name[ZIO_TYPES] = {
"z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
};
@ -549,7 +529,10 @@ zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
*errorp = zio_worst_error(*errorp, zio->io_error);
pio->io_reexecute |= zio->io_reexecute;
ASSERT3U(*countp, >, 0);
if (--*countp == 0 && pio->io_stall == countp) {
(*countp)--;
if (*countp == 0 && pio->io_stall == countp) {
pio->io_stall = NULL;
mutex_exit(&pio->io_lock);
__zio_execute(pio);
@ -573,7 +556,7 @@ zio_inherit_child_errors(zio_t *zio, enum zio_child c)
static zio_t *
zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
void *data, uint64_t size, zio_done_func_t *done, void *private,
zio_type_t type, int priority, enum zio_flag flags,
zio_type_t type, zio_priority_t priority, enum zio_flag flags,
vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
enum zio_stage stage, enum zio_stage pipeline)
{
@ -620,6 +603,7 @@ zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
zio->io_spa = spa;
zio->io_txg = txg;
zio->io_ready = NULL;
zio->io_physdone = NULL;
zio->io_done = done;
zio->io_private = private;
zio->io_prev_space_delta = 0;
@ -629,7 +613,6 @@ zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
zio->io_vsd = NULL;
zio->io_vsd_ops = NULL;
zio->io_offset = offset;
zio->io_deadline = 0;
zio->io_timestamp = 0;
zio->io_delta = 0;
zio->io_delay = 0;
@ -646,6 +629,7 @@ zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
zio->io_transform_stack = NULL;
zio->io_error = 0;
zio->io_child_count = 0;
zio->io_phys_children = 0;
zio->io_parent_count = 0;
zio->io_stall = NULL;
zio->io_gang_leader = NULL;
@ -706,7 +690,7 @@ zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
zio_t *
zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
void *data, uint64_t size, zio_done_func_t *done, void *private,
int priority, enum zio_flag flags, const zbookmark_t *zb)
zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb)
{
zio_t *zio;
@ -722,8 +706,9 @@ zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
zio_t *
zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
void *data, uint64_t size, const zio_prop_t *zp,
zio_done_func_t *ready, zio_done_func_t *done, void *private,
int priority, enum zio_flag flags, const zbookmark_t *zb)
zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
void *private,
zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb)
{
zio_t *zio;
@ -742,6 +727,7 @@ zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
zio->io_ready = ready;
zio->io_physdone = physdone;
zio->io_prop = *zp;
return (zio);
@ -749,8 +735,8 @@ zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
zio_t *
zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
uint64_t size, zio_done_func_t *done, void *private, int priority,
enum zio_flag flags, zbookmark_t *zb)
uint64_t size, zio_done_func_t *done, void *private,
zio_priority_t priority, enum zio_flag flags, zbookmark_t *zb)
{
zio_t *zio;
@ -829,7 +815,6 @@ zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
return (zio);
}
@ -864,14 +849,14 @@ zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
zio_t *
zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
zio_done_func_t *done, void *private, enum zio_flag flags)
{
zio_t *zio;
int c;
if (vd->vdev_children == 0) {
zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
zio->io_cmd = cmd;
@ -880,7 +865,7 @@ zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
for (c = 0; c < vd->vdev_children; c++)
zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
done, private, priority, flags));
done, private, flags));
}
return (zio);
@ -889,7 +874,7 @@ zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
zio_t *
zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
void *data, int checksum, zio_done_func_t *done, void *private,
int priority, enum zio_flag flags, boolean_t labels)
zio_priority_t priority, enum zio_flag flags, boolean_t labels)
{
zio_t *zio;
@ -910,7 +895,7 @@ zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
zio_t *
zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
void *data, int checksum, zio_done_func_t *done, void *private,
int priority, enum zio_flag flags, boolean_t labels)
zio_priority_t priority, enum zio_flag flags, boolean_t labels)
{
zio_t *zio;
@ -945,8 +930,8 @@ zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
*/
zio_t *
zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
void *data, uint64_t size, int type, int priority, enum zio_flag flags,
zio_done_func_t *done, void *private)
void *data, uint64_t size, int type, zio_priority_t priority,
enum zio_flag flags, zio_done_func_t *done, void *private)
{
enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
zio_t *zio;
@ -981,12 +966,16 @@ zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
zio->io_physdone = pio->io_physdone;
if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
zio->io_logical->io_phys_children++;
return (zio);
}
zio_t *
zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
int type, int priority, enum zio_flag flags,
int type, zio_priority_t priority, enum zio_flag flags,
zio_done_func_t *done, void *private)
{
zio_t *zio;
@ -995,7 +984,7 @@ zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
data, size, done, private, type, priority,
flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
vd, offset, NULL,
ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
@ -1006,7 +995,7 @@ void
zio_flush(zio_t *zio, vdev_t *vd)
{
zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
NULL, NULL, ZIO_PRIORITY_NOW,
NULL, NULL,
ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
}
@ -1951,7 +1940,7 @@ zio_write_gang_block(zio_t *pio)
zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
(char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
zio_write_gang_member_ready, NULL, &gn->gn_child[g],
zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
&pio->io_bookmark));
}
@ -2335,7 +2324,7 @@ zio_ddt_write(zio_t *zio)
}
dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
zio->io_orig_size, &czp, NULL,
zio->io_orig_size, &czp, NULL, NULL,
zio_ddt_ditto_write_done, dde, zio->io_priority,
ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
@ -2357,7 +2346,7 @@ zio_ddt_write(zio_t *zio)
ddt_phys_addref(ddp);
} else {
cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
zio->io_orig_size, zp, zio_ddt_child_write_ready,
zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
zio_ddt_child_write_done, dde, zio->io_priority,
ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
@ -2780,6 +2769,13 @@ zio_vdev_io_assess(zio_t *zio)
if (zio->io_error)
zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
zio->io_physdone != NULL) {
ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
zio->io_physdone(zio->io_logical);
}
return (ZIO_PIPELINE_CONTINUE);
}
@ -3346,7 +3342,6 @@ EXPORT_SYMBOL(zio_clear_fault);
EXPORT_SYMBOL(zio_handle_fault_injection);
EXPORT_SYMBOL(zio_handle_device_injection);
EXPORT_SYMBOL(zio_handle_label_injection);
EXPORT_SYMBOL(zio_priority_table);
EXPORT_SYMBOL(zio_type_name);
module_param(zio_bulk_flags, int, 0644);