Since Linux 6.7 the kernel has defined intptr_t. Clang has
-Wtypedef-redefinition by default, which causes the build to fail
because we also have a typedef for intptr_t.
Since its better to use the kernel's if it exists, detect it and skip
our own.
Sponsored-by: https://despairlabs.com/sponsor/
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Closes#16201
And, make the output fd an arg to zfs_dbgmsg_print(). This is a change
in behaviour, but keeps it consistent with where crash traces go, and
it's easy to argue this is what we want anyway; this is information
about the task, not the actual output of the task.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#16181
This renames it to spa_taskq_dispatch(), and reduces and simplifies its
arguments based on these observations from its two call sites:
- arg is always the zio, so it can be typed that way, and we don't need
to provide it twice;
- ent is always &zio->io_tqent, and zio is always provided, so we can
use it directly;
- the only flag used is TQ_FRONT, which can just be a bool;
- zio != NULL was part of the "use allocator" test, but it never would
have got that far, because that arg was only set to NULL in the
reexecute path, which is forced to type CLAIM, so the condition would
fail at t == WRITE anyway.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#16151
It has no callers anymore.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#16151
Ever since a10d50f999, ZFS has mounted file systems in parallel when
importing a pool. It uses a fixed size of 512 for the thread pool. But
since c183d164aa, it has also imported pools in parallel. So the total
number of threads at one time is 513 * npools + 1. That can easily
exceed the system's limit on the number of threads per process, which
will cause one or more pools to be unable to allocate any worker
threads, forcing them to fallback to slow serial mounting . To
forestall that, manage the threadpool size in /sbin/zpool, not libzfs.
Use the same size (512), but divided by the number of pools.
This is a backwards-incompatible change to the libzfs abi.
Sponsored by: Axcient
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Alan Somers <asomers@FreeBSD.org>
Closes#16178
Changed spa_export_common() such that it no longer holds the
spa_namespace_lock for the entire duration and instead sets
spa_export_thread to indicate an import is in progress on the
spa. This allows for an export to a diffent pool to proceed
in parallel while an export is still processing potentially
long operations like spa_unload_log_sm_flush_all().
Calls like spa_lookup() and spa_vdev_enter() that rely on
the spa_namespace_lock to serialize them against a concurrent
export, now wait for any in-progress export thread to complete
before proceeding.
The 'zpool import -a' sub-command also provides multi-threaded
support, using a thread pool to submit the exports in parallel.
Sponsored-By: Klara Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <gwilson@delphix.com>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Closes#16153
In P2ALIGN, the result would be incorrect when align is unsigned
integer and x is larger than max value of the type of align.
In that case, -(align) would be a positive integer, which means
high bits would be zero and finally stay zero after '&' when
align is converted to a larger integer type.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Youzhong Yang <yyang@mathworks.com>
Signed-off-by: Qiuhao Chen <chenqiuhao1997@gmail.com>
Closes#15940
Code for pools before version 11 uses dmu_objset_find_dp() to scan
for children datasets/clones. It calls enqueue_clones_cb() and
enqueue_cb() callbacks in parallel from multiple taskq threads.
It ends up bad for scan_ds_queue_insert(), corrupting scn_queue
AVL-tree. Fix it by introducing a mutex to protect those two
scan_ds_queue_insert() calls. All other calls are done from the
sync thread and so serialized.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#16162
If the underlying device doesn't have a write-back cache, the kernel
will just return a successful response. This doesn't hurt anything, but
it's extra work on the IO taskqs that are unnecessary. So, detect this
when we open the device for the first time.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#16148
- Reduce number of allocators on small system down to one per 4
CPU cores, keeping maximum at 4 on 16+ core systems. Small systems
should not have the lock contention multiple allocators supposed
to solve, while having several metaslabs open and modified each
TXG is not free.
- Reduce number of write issue taskqs down to one per 16 CPU
cores and an integer fraction of number of allocators. On mid-
sized systems, where multiple allocators already make sense, too
many write issue taskqs may reduce write speed on single-file
workloads, since single file is handled by only one taskq to
reduce fragmentation. On large systems, that can actually benefit
from many taskq's better IOPS, the bottleneck is less important,
since in worst case there will be at least 16 cores to handle it.
- Distribute dnodes between allocators (and taskqs) in a round-
robin fashion instead of relying on sync taskqs to be balanced.
The last is not guarantied and may depend on scheduling.
- Remove io_wr_iss_tq from struct zio. io_allocator is enough.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#16130
Arrange for the thread/task name to be set when new threads are created.
This makes them visible in the process table etc.
pthread_setname_np() is generally available in glibc, musl and FreeBSD,
so no test is required.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Sponsored-by: https://despairlabs.com/sponsor/Closes#16140
Simplify vdev probes in the zio_vdev_io_done context to
avoid holding the spa config lock for a long duration.
Also allow zpool clear if no evidence of another host
is using the pool.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Olaf Faaland <faaland1@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Closes#15839
This commit allow spa_load() to drop the spa_namespace_lock so
that imports can happen concurrently. Prior to dropping the
spa_namespace_lock, the import logic will set the spa_load_thread
value to track the thread which is doing the import.
Consumers of spa_lookup() retain the same behavior by blocking
when either a thread is holding the spa_namespace_lock or the
spa_load_thread value is set. This will ensure that critical
concurrent operations cannot take place while a pool is being
imported.
The zpool command is also enhanced to provide multi-threaded support
when invoking zpool import -a.
Lastly, zinject provides a mechanism to insert artificial delays
when importing a pool and new zfs tests are added to verify parallel
import functionality.
Contributions-by: Don Brady <don.brady@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: George Wilson <gwilson@delphix.com>
Closes#16093
Kernel documentation for the discard_granularity property says:
A discard_granularity of 0 means that the device does not support
discard functionality.
Some older kernels had drivers (notably loop, but also some USB-SATA
adapters) that would set the QUEUE_FLAG_DISCARD capability flag, but
have discard_granularity=0. Since 5.10 (torvalds/linux@b35fd7422c) the
discard entry point blkdev_issue_discard() has had a check for this,
which would immediately reject the call with EOPNOTSUPP, and throw a
scary diagnostic message into the log. See #16068.
Since 6.8, the block layer sets a non-zero default for
discard_granularity (torvalds/linux@3c407dc723), and a future kernel
will remove the check entirely[1].
As such, there's no good reason for us to enable discard when
discard_granularity=0. The kernel will never let the request go in
anyway; better that we just disable it so we can report it properly to
the user.
1. https://patchwork.kernel.org/project/linux-block/patch/20240312144826.1045212-2-hch@lst.de/
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#16068Closes#16082
The only possible ioctl is a flush, and any other kind of meta-operation
introduced in the future is likely to have different semantics (much
like trim did). So, lets just call it what it is.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#16064
Without DKIOCFLUSHWRITECACHE, we no longer need the compat header. Note
that we're keeping the userspace SPL compat header, which is used by
libefi.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#16064
There's no other options, so we can just always assume its a flush.
Includes some light refactoring where a switch statement was doing
control flow that no longer works.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#16064
It only had one user, zio_flush(), and there are no other vdev ioctls
anyway.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#16064
Being able to print custom debug information on assert trip
seems useful.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#15792
Previous code held ARC state sublist lock throughout all L2ARC
write process, which included number of allocations and even ZIO
issues. Being blocked in any of those places the code could also
block ARC eviction, that could cause OOM activation or even dead-
lock if system is low on memory or one is too fragmented.
Fix it by dropping the lock as soon as we see a block eligible
for L2ARC writing and pick it up later using earlier inserted
marker. While there, also reduce scope of hash lock, moving
ZIO allocation and other operations not requiring header access
out of it. All operations requiring header access move under
hash lock, since L2_WRITING flag does not prevent header eviction
only transition to arc_l2c_only state with L1 header.
To be able to manipulate sublist lock and marker as needed add few
more multilist functions and modify one.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#16040
Before this change speculative prefetcher was able to detect a stream
only if all of its accesses are perfectly sequential. It was easy to
implement and is perfectly fine for single-threaded applications.
Unfortunately multi-threaded network servers, such as iSCSI, SMB or
NFS usually have plenty of threads and may often reorder requests,
preventing successful speculation and prefetch.
This change allows speculative prefetcher to detect streams even if
requests are reordered by introducing a list of 9 non-contiguous
ranges up to 16MB ahead of current stream position and filling the
gaps as more requests arrive. It also allows stream to proceed
even with holes up to a certain configurable threshold (25%).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#16022
Adds 'ioctl' as a valid IO type for device error injection, so we can
simulate a flush error (which OpenZFS currently ignores, but that's by
the by).
To support this, adding ZIO_STAGE_VDEV_IO_DONE to ZIO_IOCTL_PIPELINE,
since that's where device error injection happens. This needs a small
exclusion to avoid the vdev_queue, since flushes are not queued, and I'm
assuming that the various failure responses are still reasonable for
flush failures (probes, media change, etc). This seems reasonable to me,
as a flush failure is not unlike a write failure in this regard, however
this may be too aggressive or subtle to assume in just this change.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#16061
When UBSAN is active and OpenZFS is a debug build, the l_hash assert at
the bottom of zap_open_leaf() causes UBSAN to complain.
This follows the example in 786641dcf to shut it up.
Sponsored-by: https://despairlabs.com/sponsor/
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Closes#15964
#16047 notes that include/os/freebsd/spl/rpc/xdr.h carried an
(apparently) incompatible license. While looking into it, it seems that
this file is actually unnecessary these days - FreeBSD's kernel XDR has
XDR_CONTROL, xdrmem_control and XDR_GET_BYTES_AVAIL, while userspace has
XDR_CONTROL and xdrmem_control, and our implementation of
XDR_GET_BYTES_AVAIL for libspl works nicely with it. So this removes
that file outright.
To keep the includes in nvpair.c tidy, I've made a few small adjustments
to the Linux headers. By definition, rpc/types.h provides bool_t and is
included before rpc/xdr.h, so I've created rpc/types.h for Linux. This
isn't necessary for userspace; both FreeBSD native and tirpc on Linux
already have these headers set up correctly.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Sponsored-by: https://despairlabs.com/sponsor/Closes#16047Closes#16051
Currently, zpool add allows users to add top-level vdevs that have
different ashifts but doing so prevents users from being able to
perform a top-level vdev removal. Often times consumers may not realize
that they have mismatched ashifts until the top-level removal fails.
This feature adds ashift validation to the zpool add command and will
fail the operation if the sector size of the specified vdev does not
match the existing pool. This behavior can be disabled by using the -f
flag. In addition, new flags have been added to provide fine-grained
control to disable specific checks. These flags
are:
--allow-in-use
--allow-ashift-mismatch
--allow-replicaton-mismatch
The force flag will disable all of these checks.
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Mark Maybee <mmaybee@delphix.com>
Signed-off-by: George Wilson <gwilson@delphix.com>
Closes#15509
This commit tackles a number of issues in the way BIOs (`struct bio`)
are constructed for submission to the Linux block layer.
The kernel has a hard upper limit on the number of pages/segments that
can be added to a BIO, as well as a separate limit for each device
(related to its queue depth and other scheduling characteristics).
ZFS counts the number of memory pages in the request ABD
(`abd_nr_pages_off()`, and then uses that as the number of segments to
put into the BIO, up to the hard upper limit. If it requires more than
the limit, it will create multiple BIOs.
Leaving aside the fact that page count method is wrong (see below), not
limiting to the device segment max means that the device driver will
need to split the BIO in half. This is alone is not necessarily a
problem, but it interacts with another issue to cause a much larger
problem.
The kernel function to add a segment to a BIO (`bio_add_page()`) takes a
`struct page` pointer, and offset+len within it. `struct page` can
represent a run of contiguous memory pages (known as a "compound page").
In can be of arbitrary length.
The ZFS functions that count ABD pages and load them into the BIO
(`abd_nr_pages_off()`, `bio_map()` and `abd_bio_map_off()`) will never
consider a page to be more than `PAGE_SIZE` (4K), even if the `struct
page` is for multiple pages. In this case, it will load the same `struct
page` into the BIO multiple times, with the offset adjusted each time.
With a sufficiently large ABD, this can easily lead to the BIO being
entirely filled much earlier than it could have been. This is also
further contributes to the problem caused by the incorrect segment limit
calculation, as its much easier to go past the device limit, and so
require a split.
Again, this is not a problem on its own.
The logic for "never submit more than `PAGE_SIZE`" is actually a little
more subtle. It will actually never submit a buffer that crosses a 4K
page boundary.
In practice, this is fine, as most ABDs are scattered, that is a list of
complete 4K pages, and so are loaded in as such.
Linear ABDs are typically allocated from slabs, and for small sizes they
are frequently not aligned to page boundaries. For example, a 12K
allocation can span four pages, eg:
-- 4K -- -- 4K -- -- 4K -- -- 4K --
| | | | |
:## ######## ######## ######: [1K, 4K, 4K, 3K]
Such an allocation would be loaded into a BIO as you see:
[1K, 4K, 4K, 3K]
This tends not to be a problem in practice, because even if the BIO were
filled and needed to be split, each half would still have either a start
or end aligned to the logical block size of the device (assuming 4K at
least).
---
In ideal circumstances, these shortcomings don't cause any particular
problems. Its when they start to interact with other ZFS features that
things get interesting.
Aggregation will create a "gang" ABD, which is simply a list of other
ABDs. Iterating over a gang ABD is just iterating over each ABD within
it in turn.
Because the segments are simply loaded in order, we can end up with
uneven segments either side of the "gap" between the two ABDs. For
example, two 12K ABDs might be aggregated and then loaded as:
[1K, 4K, 4K, 3K, 2K, 4K, 4K, 2K]
Should a split occur, each individual BIO can end up either having an
start or end offset that is not aligned to the logical block size, which
some drivers (eg SCSI) will reject. However, this tends not to happen
because the default aggregation limit usually keeps the BIO small enough
to not require more than one split, and most pages are actually full 4K
pages, so hitting an uneven gap is very rare anyway.
If the pool is under particular memory pressure, then an IO can be
broken down into a "gang block", a 512-byte block composed of a header
and up to three block pointers. Each points to a fragment of the
original write, or in turn, another gang block, breaking the original
data up over and over until space can be found in the pool for each of
them.
Each gang header is a separate 512-byte memory allocation from a slab,
that needs to be written down to disk. When the gang header is added to
the BIO, its a single 512-byte segment.
Pulling all this together, consider a large aggregated write of gang
blocks. This results a BIO containing lots of 512-byte segments. Given
our tendency to overfill the BIO, a split is likely, and most possible
split points will yield a pair of BIOs that are misaligned. Drivers that
care, like the SCSI driver, will reject them.
---
This commit is a substantial refactor and rewrite of much of `vdev_disk`
to sort all this out.
`vdev_bio_max_segs()` now returns the ideal maximum size for the device,
if available. There's also a tuneable `zfs_vdev_disk_max_segs` to
override this, to assist with testing.
We scan the ABD up front to count the number of pages within it, and to
confirm that if we submitted all those pages to one or more BIOs, it
could be split at any point with creating a misaligned BIO. If the
pages in the BIO are not usable (as in any of the above situations), the
ABD is linearised, and then checked again. This is the same technique
used in `vdev_geom` on FreeBSD, adjusted for Linux's variable page size
and allocator quirks.
`vbio_t` is a cleanup and enhancement of the old `dio_request_t`. The
idea is simply that it can hold all the state needed to create, submit
and return multiple BIOs, including all the refcounts, the ABD copy if
it was needed, and so on. Apart from what I hope is a clearer interface,
the major difference is that because we know how many BIOs we'll need up
front, we don't need the old overflow logic that would grow the BIO
array, throw away all the old work and restart. We can get it right from
the start.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Closes#15533Closes#15588
This is just renaming the existing functions we're about to replace and
grouping them together to make the next commits easier to follow.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Closes#15533Closes#15588
The regular ABD iterators yield data buffers, so they have to map and
unmap pages into kernel memory. If the caller only wants to count
chunks, or can use page pointers directly, then the map/unmap is just
unnecessary overhead.
This adds adb_iterate_page_func, which yields unmapped struct page
instead.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Closes#15533Closes#15588
Before 5.4 we have to do a little math.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Closes#15533Closes#15588
There exist a couple of macros that are used to update the blkptr birth
times but they can often be confusing. For example, the
BP_PHYSICAL_BIRTH() macro will provide either the physical birth time
if it is set or else return back the logical birth time. The
complement to this macro is BP_SET_BIRTH() which will set the logical
birth time and set the physical birth time if they are not the same.
Consumers may get confused when they are trying to get the physical
birth time and use the BP_PHYSICAL_BIRTH() macro only to find out that
the logical birth time is what is actually returned.
This change cleans up these macros and makes them symmetrical. The same
functionally is preserved but the name is changed. Instead of calling
BP_PHYSICAL_BIRTH(), consumer can now call BP_GET_BIRTH(). In
additional to cleaning up this naming conventions, two new sets of
macros are introduced -- BP_[SET|GET]_LOGICAL_BIRTH() and
BP_[SET|GET]_PHYSICAL_BIRTH. These new macros allow the consumer to
get and set the specific birth time.
As part of the cleanup, the unused GRID macros have been removed and
that portion of the blkptr are currently unused.
Reviewed-by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: George Wilson <gwilson@delphix.com>
Closes#15962
Before this change ZAP called dnode_hold() for almost every block
access, that was clearly visible in profiler under heavy load, such
as BRT. This patch makes it always hold the dnode reference between
zap_lockdir() and zap_unlockdir(). It allows to avoid most of dnode
operations between those. It also adds several new _by_dnode() APIs
to ZAP and uses them in BRT code. Also adds dmu_prefetch_by_dnode()
variant and uses it in the ZAP code.
After this there remains only one call to dmu_buf_dnode_enter(),
which seems to be unneeded. So remove the call and the functions.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15951
- Remove custom zap_memset(), use regular memset().
- Use PANIC() instead of opaque cmn_err(CE_PANIC).
- Provide entry parameter to zap_leaf_rehash_entry().
- Reduce branching in zap_leaf_array_create() inner loop.
- Remove signedness where it should not be.
Should be no function changes.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15976
- add column for TRIM ZIOs
- remove R from ZIO_STAGE_ISSUE_ASYNC, never happened
- remove I from ZIO_STAGE_VDEV_IO_DONE, never happened
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#15959
arc_os.h and freebsd_event.h aren't included in release tarballs, so the
build fails on FreeBSD. This fixes it.
Sponsored-by: https://despairlabs.com/sponsor/
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Closes#15963
This is the buffer size passed to ddt_object_name(), to expand the
DMU_POOL_DDT format. That format inserts the table checksum, class and
type names, which as I write this are max 6, 9 and 3, respectively.
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Sponsored-by: https://despairlabs.com/sponsor/Closes#15908
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15887
Only a single bit is needed to track entry state, and definitely not two
whole bytes. Some light refactoring in ddt_lookup() is needed to support
this, but it reads a lot better now.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15887
Nothing uses it.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15887
Store objects store keys and values, so have them take those types and
nothing more. This way, they don't need to be concerned about the "kind"
of entry being operated on; the dispatch layer can take care of the
appropriate conversions.
This adds a "contains" op to see if a particular entry exists without
loading it, which makes a couple of things easier to do; in particular,
it allows us to avoid an allocation in ddt_class_contains().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15887
Things get confused when there's more than one name for a thing.
Note that we don't do this for ddt_object_t, ddt_histogram_t and
ddt_stat_t because they're part of the public ZFS interface.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15887
Mostly for consistency, so the reader is less likely to wonder why these
things look different.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15887
Just to make it easier to know which bits to pay attention to.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15887
It was a weird and confusing name, because it wasn't actually returning
the number of DVAs in the entry (as in, in the value/phys part) but the
maximum number of possible DVAs in a BP generated from the entry, based
on the encrypt bit in the key. This is unlike the similarly named
BP_GET_NDVAS, which really does return the number of DVAs.
Since its only used in this one place, and for a specific purpose, it
seemed more sensible to just write it in-place and remove the name.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15887
We want to add other kinds of dedup-related objects and keep stats for
them. This makes those functions easier to use from outside ddt.c.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15887
We're about to have different kinds of things that we'll compare on key,
so generalise this function to support that.
(It actually worked fine because of the way the casts work out, but it
requires the key to be at the start of the object so the cast through
ddt_entry_t works, and even then it reads strangely for anything that's
not a ddt_entry_t).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15887
I think I can say with some confidence that anyone making a new storage
type in 2023 is doing their own thing with compression, not this.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Sponsored-by: Klara, Inc.
Sponsored-by: iXsystems, Inc.
Closes#15887
This changes taskq_thread_should_stop() to limit maximum exit rate
for idle threads to one per 5 seconds. I believe the previous one
was broken, not allowing any thread exits for tasks arriving more
than one at a time and so completing while others are running.
Also while there:
- Remove taskq_thread_spawn() calls on task allocation errors.
- Remove extra taskq_thread_should_stop() call.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rich Ercolani <rincebrain@gmail.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15873
Slow disk response times can be indicative of a failing drive. ZFS
currently tracks slow I/Os (slower than zio_slow_io_ms) and generates
events (ereport.fs.zfs.delay). However, no action is taken by ZED,
like is done for checksum or I/O errors. This change adds slow disk
diagnosis to ZED which is opt-in using new VDEV properties:
VDEV_PROP_SLOW_IO_N
VDEV_PROP_SLOW_IO_T
If multiple VDEVs in a pool are undergoing slow I/Os, then it skips
the zpool_vdev_degrade().
Sponsored-By: OpenDrives Inc.
Sponsored-By: Klara Inc.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Rob Wing <rob.wing@klarasystems.com>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Closes#15469
On Linux the ioctl_ficlonerange() and ioctl_ficlone() system calls
are expected to either fully clone the specified range or return an
error. The range may be for an entire file. While internally ZFS
supports cloning partial ranges there's no way to return the length
cloned to the caller so we need to make this all or nothing.
As part of this change support for the REMAP_FILE_CAN_SHORTEN flag
has been added. When REMAP_FILE_CAN_SHORTEN is set zfs_clone_range()
will return a shortened range when encountering pending dirty records.
When it's clear zfs_clone_range() will block and wait for the records
to be written out allowing the blocks to be cloned.
Furthermore, the file range lock is held over the region being cloned
to prevent it from being modified while cloning. This doesn't quite
provide an atomic semantics since if an error is encountered only a
portion of the range may be cloned. This will be converted to an
error if REMAP_FILE_CAN_SHORTEN was not provided and returned to the
caller. However, the destination file range is left in an undefined
state.
A test case has been added which exercises this functionality by
verifying that `cp --reflink=never|auto|always` works correctly.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes#15728Closes#15842
Step 1 in trying to slowly rip the zdb functions out of zdb.c
to allow people to play with more flexible things to leverage
zdb's functionality.
No promises on any functions or structs being stable, now or probably
in general unless someone builds a more polished abstraction, the
goal at the moment is to slowly untangle the global state usage
in zdb...
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#15804
struct mnt_idmap no longer has a struct user_namespace within it. Work
around this by creating a temporary with the copy of the map we need
taken from the idmap.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Youzhong Yang <yyang@mathworks.com>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Sponsored-by: https://despairlabs.com/sponsor/Closes#15805
Linux has removed strlcpy in favour of strscpy. This implements a
fallback implementation of strlcpy for this case.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Sponsored-by: https://despairlabs.com/sponsor/Closes#15805
Removed the list_size struct member as it was only used in a single
assertion, as mentioned in PR #15478.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: MigeljanImeri <imerimigel@gmail.com>
Closes#15812
When spare or l2cache (aux) vdev is added during pool creation,
spa->spa_uberblock is not dumped until that point. Subsequently,
the aux label is never synchronized after its initial creation,
resulting in the uberblock label remaining undumped. The uberblock
is crucial for lib_blkid in identifying the ZFS partition type. To
address this issue, we now ensure sync of the uberblock label once
if it's not dumped initially.
Reviewed-by: Umer Saleem <usaleem@ixsystems.com>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#15737
While picking parts from #14909 I've missed Linux tracing specific
ones, that went unnoticed in default configurations, but breaks the
build in some.
Reviewed-by: Ameer Hamza <ahamza@ixsystems.com>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15730
This patch adds check for `kernel_neon_*` symbols on arm and arm64
platforms to address the following issues:
1. Linux 6.2+ on arm64 has exported them with `EXPORT_SYMBOL_GPL`, so
license compatibility must be checked before use.
2. On both arm and arm64, the definitions of these symbols are guarded
by `CONFIG_KERNEL_MODE_NEON`, but their declarations are still
present. Checking in configuration phase only leads to MODPOST
errors (undefined references).
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Shengqi Chen <harry-chen@outlook.com>
Closes#15711Closes#14555Closes: #15401
Track history in context of bursts, not individual log blocks. It
allows to not blow away all the history by single large burst of
many block, and same time allows optimizations covering multiple
blocks in a burst and even predicted following burst. For each
burst account its optimal block size and minimal first block size.
Use that statistics from the last 8 bursts to predict first block
size of the next burst.
Remove predefined set of block sizes. Allocate any size we see fit,
multiple of 4KB, as required by ZIL now. With compression enabled
by default, ZFS already writes pretty random block sizes, so this
should not surprise space allocator any more.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15635
Add `zpool` flags to control the slot power to drives. This assumes
your SAS or NVMe enclosure supports slot power control via sysfs.
The new `--power` flag is added to `zpool offline|online|clear`:
zpool offline --power <pool> <device> Turn off device slot power
zpool online --power <pool> <device> Turn on device slot power
zpool clear --power <pool> [device] Turn on device slot power
If the ZPOOL_AUTO_POWER_ON_SLOT env var is set, then the '--power'
option is automatically implied for `zpool online` and `zpool clear`
and does not need to be passed.
zpool status also gets a --power option to print the slot power status.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mart Frauenlob <AllKind@fastest.cc>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#15662
We are finding that as customers get larger and faster machines
(hundreds of cores, large NVMe-backed pools) they keep hitting
relatively low performance ceilings. Our profiling work almost always
finds that they're running into bottlenecks on the SPA IO taskqs.
Unfortunately there's often little we can advise at that point, because
there's very few ways to change behaviour without patching.
This commit adds two load-time parameters `zio_taskq_read` and
`zio_taskq_write` that can configure the READ and WRITE IO taskqs
directly.
This achieves two goals: it gives operators (and those that support
them) a way to tune things without requiring a custom build of OpenZFS,
which is often not possible, and it lets us easily try different config
variations in a variety of environments to inform the development of
better defaults for these kind of systems.
Because tuning the IO taskqs really requires a fairly deep understanding
of how IO in ZFS works, and generally isn't needed without a pretty
serious workload and an ability to identify bottlenecks, only minimal
documentation is provided. Its expected that anyone using this is going
to have the source code there as well.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#15675
6.7 changes the shrinker API such that shrinkers must be allocated
dynamically by the kernel. To accomodate this, this commit reworks
spl_register_shrinker() to do something similar against earlier kernels.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Sponsored-by: https://github.com/sponsors/robnCloses#15681
6.6 made i_ctime inaccessible; 6.7 has done the same for i_atime and
i_mtime. This extends the method used for ctime in b37f29341 to atime
and mtime as well.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Sponsored-by: https://github.com/sponsors/robnCloses#15681
When ZFS overwrites a whole block, it does not bother to read the
old content from disk. It is a good optimization, but if the buffer
fill fails due to page fault or something else, the buffer ends up
corrupted, neither keeping old content, nor getting the new one.
On FreeBSD this is additionally complicated by page faults being
blocked by VFS layer, always returning EFAULT on attempt to write
from mmap()'ed but not yet cached address range. Normally it is
not a big problem, since after original failure VFS will retry the
write after reading the required data. The problem becomes worse
in specific case when somebody tries to write into a file its own
mmap()'ed content from the same location. In that situation the
only copy of the data is getting corrupted on the page fault and
the following retries only fixate the status quo. Block cloning
makes this issue easier to reproduce, since it does not read the
old data, unlike traditional file copy, that may work by chance.
This patch provides the fill status to dmu_buf_fill_done(), that
in case of error can destroy the corrupted buffer as if no write
happened. One more complication in case of block cloning is that
if error is possible during fill, dmu_buf_will_fill() must read
the data via fall-back to dmu_buf_will_dirty(). It is required
to allow in case of error restoring the buffer to a state after
the cloning, not not before it, that would happen if we just call
dbuf_undirty().
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rob Norris <robn@despairlabs.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15665
While evicting dbufs of a dnode, a marker node is added to the AVL.
The marker node should be inserted in AVL tree ahead of the dbuf its
trying to delete. The blkid and level is used to ensure this. However,
this could go wrong there's another dbufs with the same blkid and level
in DB_EVICTING state but not yet removed from AVL tree. dbuf_compare()
could fail to give the right location or could cause confusion and
trigger ASSERTs.
To ensure that the marker is inserted before the deleting dbuf, use
the pointer value of the original dbuf for comparision.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Co-authored-by: Sanjeev Bagewadi <sanjeev.bagewadi@nutanix.com>
Signed-off-by: Chunwei Chen <david.chen@nutanix.com>
Closes#12482Closes#15643
Since Linux 6.2, the implementation of flush_dcache_page on riscv
references GPL-only symbol `PageHuge`, breaking the build of zfs.
This patch uses existing mechanism to override flush_dcache_page,
removing the call to `PageHuge`. According to comments in kernel,
it is only used to do some check against HugeTLB pages, which only
exist in userspace. ZFS uses flush_dcache_page only on kernel pages,
thus this patch will not introduce any behaviour change.
See also: torvalds/linux@d33deda, openzfs/zfs@589f59b
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Shengqi Chen <harry-chen@outlook.com>
Closes#14974Closes#15627
Detail the import progress of log spacemaps as they can take a very
long time. Also grab the spa_note() messages to, as they provide
insight into what is happening
Sponsored-By: OpenDrives Inc.
Sponsored-By: Klara Inc.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Co-authored-by: Allan Jude <allan@klarasystems.com>
Closes#15539
When two datasets share the same master encryption key, it is safe
to clone encrypted blocks. Currently only snapshots and clones
of a dataset share with it the same encryption key.
Added a test for:
- Clone from encrypted sibling to encrypted sibling with
non encrypted parent
- Clone from encrypted parent to inherited encrypted child
- Clone from child to sibling with encrypted parent
- Clone from snapshot to the original datasets
- Clone from foreign snapshot to a foreign dataset
- Cloning from non-encrypted to encrypted datasets
- Cloning from encrypted to non-encrypted datasets
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Original-patch-by: Pawel Jakub Dawidek <pawel@dawidek.net>
Signed-off-by: Kay Pedersen <mail@mkwg.de>
Closes#15544
zil_claim_clone_range() takes references on cloned blocks before ZIL
replay. Later zil_free_clone_range() drops them after replay or on
dataset destroy. The total balance is neutral. It means on actual
replay we must take additional references, which would stay in BRT.
Without this blocks could be freed prematurely when either original
file or its clone are destroyed. I've observed BRT being emptied
and the feature being deactivated after ZIL replay completion, which
should not have happened. With the patch I see expected stats.
Reviewed-by: Kay Pedersen <mail@mkwg.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Rob Norris <robn@despairlabs.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15603
Call vfs_exjail_clone() for mounts created under .zfs/snapshot
to fill in the mnt_exjail field for the mount. If this is not
done, the snapshots under .zfs/snapshot with not be accessible
over NFS.
This version has the argument name in vfs.h fixed to match that
of the name in spl_vfs.c, although it really does not matter.
External-issue: https://reviews.freebsd.org/D42672
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Rick Macklem <rmacklem@uoguelph.ca>
Closes#15563
So that zdb (and others!) can get at the BRT on-disk structures.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Kay Pedersen <mail@mkwg.de>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <robn@despairlabs.com>
Closes#15541
It was broken for several reasons:
* VOP_UNLOCK lost an argument in 13.0. So OpenZFS should be using
VOP_UNLOCK1, but a few direct calls to VOP_UNLOCK snuck in.
* The location of the zlib header moved in 13.0 and 12.1. We can drop
support for building on 12.0, which is EoL.
* knlist_init lost an argument in 13.0. OpenZFS change 9d0887402b
assumed 13.0 or later.
* FreeBSD 13.0 added copy_file_range, and OpenZFS change 67a1b03791
assumed 13.0 or later.
Sponsored-by: Axcient
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Alan Somers <asomers@gmail.com>
Closes#15551
Entries in the dbuf cache contribute only the size of the dbuf data to
the cache size. Attached "user" data is not counted. This can lead to
the data currently "owned" by the cache consuming more memory accounting
appears to show. In some cases (eg a metadnode data block with all child
dnode_t slots allocated), the actual size can be as much as 3x as what
the cache believes it to be.
This is arguably correct behaviour, as the cache is only tracking the
size of the dbuf data, not even the overhead of the dbuf_t. On the other
hand, in the above case of dnodes, evicting cached metadnode dbufs is
the only current way to reclaim the dnode objects, and can lead to the
situation where the dbuf cache appears to be comfortably within its
target memory window and yet is holding enormous amounts of slab memory
that cannot be reclaimed.
This commit adds a facility for a dbuf user to artificially inflate the
apparent size of the dbuf for caching purposes. This at least allows for
cache tuning to be adjusted to match something closer to the real memory
overhead.
metadnode dbufs carry a >1KiB allocation per dnode in their user data.
This informs the dbuf cache machinery of that fact, allowing it to make
better decisions when evicting dbufs.
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes#15511
Copy the disable parameter that FreeBSD implemented, and extend it to
work on Linux as well, until we're sure this is stable.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes#15529
This gets around UBSAN errors when using arrays at the end of
structs. It converts some zero-length arrays to variable length
arrays and disables UBSAN checking on certain modules.
It is based off of the patch from #15460.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Tested-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
Co-authored-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Issue #15145Closes#15510
It is unused for 3 years since #10576.
Reviewed-by: George Melikov <mail@gmelikov.ru>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15507
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Martin Matuska <mm@FreeBSD.org>
Closes#15504
This feature allows disks to be added one at a time to a RAID-Z group,
expanding its capacity incrementally. This feature is especially useful
for small pools (typically with only one RAID-Z group), where there
isn't sufficient hardware to add capacity by adding a whole new RAID-Z
group (typically doubling the number of disks).
== Initiating expansion ==
A new device (disk) can be attached to an existing RAIDZ vdev, by
running `zpool attach POOL raidzP-N NEW_DEVICE`, e.g. `zpool attach tank
raidz2-0 sda`. The new device will become part of the RAIDZ group. A
"raidz expansion" will be initiated, and the new device will contribute
additional space to the RAIDZ group once the expansion completes.
The `feature@raidz_expansion` on-disk feature flag must be `enabled` to
initiate an expansion, and it remains `active` for the life of the pool.
In other words, pools with expanded RAIDZ vdevs can not be imported by
older releases of the ZFS software.
== During expansion ==
The expansion entails reading all allocated space from existing disks in
the RAIDZ group, and rewriting it to the new disks in the RAIDZ group
(including the newly added device).
The expansion progress can be monitored with `zpool status`.
Data redundancy is maintained during (and after) the expansion. If a
disk fails while the expansion is in progress, the expansion pauses
until the health of the RAIDZ vdev is restored (e.g. by replacing the
failed disk and waiting for reconstruction to complete).
The pool remains accessible during expansion. Following a reboot or
export/import, the expansion resumes where it left off.
== After expansion ==
When the expansion completes, the additional space is available for use,
and is reflected in the `available` zfs property (as seen in `zfs list`,
`df`, etc).
Expansion does not change the number of failures that can be tolerated
without data loss (e.g. a RAIDZ2 is still a RAIDZ2 even after
expansion).
A RAIDZ vdev can be expanded multiple times.
After the expansion completes, old blocks remain with their old
data-to-parity ratio (e.g. 5-wide RAIDZ2, has 3 data to 2 parity), but
distributed among the larger set of disks. New blocks will be written
with the new data-to-parity ratio (e.g. a 5-wide RAIDZ2 which has been
expanded once to 6-wide, has 4 data to 2 parity). However, the RAIDZ
vdev's "assumed parity ratio" does not change, so slightly less space
than is expected may be reported for newly-written blocks, according to
`zfs list`, `df`, `ls -s`, and similar tools.
Sponsored-by: The FreeBSD Foundation
Sponsored-by: iXsystems, Inc.
Sponsored-by: vStack
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Authored-by: Matthew Ahrens <mahrens@delphix.com>
Contributions-by: Fedor Uporov <fuporov.vstack@gmail.com>
Contributions-by: Stuart Maybee <stuart.maybee@comcast.net>
Contributions-by: Thorsten Behrens <tbehrens@outlook.com>
Contributions-by: Fmstrat <nospam@nowsci.com>
Contributions-by: Don Brady <dev.fs.zfs@gmail.com>
Signed-off-by: Don Brady <dev.fs.zfs@gmail.com>
Closes#15022
Previously taskq_init_ent() was an empty macro, while actual init
was done by taskq_dispatch_ent(). It could be slightly faster in
case taskq never enqueued. But without it taskq_empty_ent() relied
on the structure being zeroed by somebody else, that is not good.
As a side effect this allows the same task to be queued several
times, that is normal on FreeBSD, that may or may not get useful
here also one day.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15455
Add a dataset_kstats_rename function, and call it when renaming
a zvol on FreeBSD and Linux.
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alan Somers <asomers@gmail.com>
Sponsored-by: Axcient
Closes#15482Closes#15486
There have been rare cases where the VDEV_ENC_SYSFS_PATH value that zed
gets passed is stale. To mitigate this, dynamically check the sysfs
path at the time of zed event processing, and use the dynamic value if
possible. Note that there will be other times when we can not
dynamically detect the sysfs path (like if a disk disappears) and have
to rely on the old value for things like turning on the fault LED. That
is to say, we can't just blindly use the dynamic path in every case.
Also:
- Add enclosure sysfs entry when running 'zpool add'
- Fix 'slot' and 'enc' zpool.d scripts for nvme
Reviewed-by: Don Brady <dev.fs.zfs@gmail.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#15462
Currently vdev_queue_class_length is responsible for checking how long
the queue length is, however, it doesn't check the length when a list
is used, rather it just returns whether it is empty or not. To fix this
I added a counter variable to vdev_queue_class to keep track of the sync
IO ops, and changed vdev_queue_class_length to reference this variable
instead.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: MigeljanImeri <ImeriMigel@gmail.com>
Closes#15478
As part of transaction group commit, dsl_pool_sync() sequentially calls
dsl_dataset_sync() for each dirty dataset, which subsequently calls
dmu_objset_sync(). dmu_objset_sync() in turn uses up to 75% of CPU
cores to run sync_dnodes_task() in taskq threads to sync the dirty
dnodes (files).
There are two problems:
1. Each ZVOL in a pool is a separate dataset/objset having a single
dnode. This means the objsets are synchronized serially, which
leads to a bottleneck of ~330K blocks written per second per pool.
2. In the case of multiple dirty dnodes/files on a dataset/objset on a
big system they will be sync'd in parallel taskq threads. However,
it is inefficient to to use 75% of CPU cores of a big system to do
that, because of (a) bottlenecks on a single write issue taskq, and
(b) allocation throttling. In addition, if not for the allocation
throttling sorting write requests by bookmarks (logical address),
writes for different files may reach space allocators interleaved,
leading to unwanted fragmentation.
The solution to both problems is to always sync no more and (if
possible) no fewer dnodes at the same time than there are allocators
the pool.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Edmund Nadolski <edmund.nadolski@ixsystems.com>
Closes#15197
The change in the zvol readonly property does not update the block
device readonly entry until the first IO to the ZVOL. This patch
addresses the issue by updating the block device readonly property
from the set property IOCTL call.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#15409
Currently, zvol threading can be switched through the zvol_request_sync
module parameter system-wide. By making it a zvol property, zvol
threading can be switched per zvol.
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#15409
zvol_set_volmode() and zvol_set_snapdev() share a common code path.
Merge this shared code path into zvol_set_common().
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Signed-off-by: Ameer Hamza <ahamza@ixsystems.com>
Closes#15409
There is no sense to have separate implementations for FreeBSD and
Linux. Make Linux code shared as more functional and just register
FreeBSD-specific prune callback with arc_add_prune_callback() API.
Aside of code cleanup this should fix excessive pruning on FreeBSD:
https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=274698
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Johnston <markj@FreeBSD.org>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15456
RAIDZ parity is calculated by adding data one column at a time. It
works OK for small blocks, but for large blocks results of previous
addition may already be evicted from CPU caches to main memory, and
in addition to extra memory write require extra read to get it back.
This patch splits large parity operations into 64KB chunks, that
should in most cases fit into CPU L2 caches from the last decade.
I haven't touched more complicated cases of data reconstruction to
not over complicate the code. Those should be relatively rare.
My tests on Xeon Gold 6242R CPU with 1MB of L2 cache per core show
up to 10/20% memory traffic reduction when writing to 4-wide RAIDZ/
RAIDZ2 blocks of ~4MB and up. Older CPUs with 256KB of L2 cache
should see the effect even on smaller blocks. Wider vdevs may need
bigger blocks to be affected.
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15448
ZVOL:
- Mark all ZVOL ZIL transactions as sync. Since ZVOLs have only
one object, it makes no sense to maintain async queue and on each
commit merge it into sync. Single sync queue is just cheaper, while
it changes nothing until actual commit request arrives.
- Remove zsd_sync_cnt and the zil_async_to_sync() calls since we
are no longer switching between sync and async queues.
ZFS:
- Mark write transactions as sync based only on number of sync
opens (z_sync_cnt). We can not randomly jump between sync and
async unless we want data corruptions due to writes reordering.
- When file first opened with O_SYNC (z_sync_cnt incremented to 1)
call zil_async_to_sync() for it to preserve correct ordering between
past and future writes.
- Drop zfs_fsyncer_key logic. Looks like it was an optimization
for workloads heavily intermixing async writes with tons of fsyncs.
But first it was broken 8 years ago due to Linux tsd implementation
not allowing data storage between syscalls, and second, I doubt it
is safe to switch from async to sync so often and without calling
zil_async_to_sync().
- Rename sync argument of *_log_write() into commit, now only
signalling caller's intent to call zil_commit() soon after. It
allows WR_COPIED optimizations without extra other meanings.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15366
Many long-running ZFS ioctls lock the spa_namespace_lock, forcing
concurrent ioctls to sleep for the mutex. Previously, the only
option is to call mutex_enter() which sleeps uninterruptibly. This
is a usability issue for sysadmins, for example, if the admin runs
`zpool status` while a slow `zpool import` is ongoing, the admin's
shell will be locked in uninterruptible sleep for a long time.
This patch resolves this admin usability issue by introducing
mutex_enter_interruptible() which sleeps interruptibly while waiting
to acquire a lock. It is implemented for both Linux and FreeBSD.
The ZFS_IOC_POOL_CONFIGS ioctl, used by `zpool status`, is changed to
use this new macro so that the command can be interrupted if it is
issued during a concurrent `zpool import` (or other long-running
operation).
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Thomas Bertschinger <bertschinger@lanl.gov>
Closes#15360
zio_root() has no arguments for ready callback or parent ZIO. Except
one recent case in ZIL code if root ZIOs ever have a parent it is
also a root ZIO. It means we do not need READY pipeline stage for
them, which takes some time to process, but even more time to wait
for the children and be woken by them, and both for no good reason.
The most visible effect of this change is that it avoids one taskq
wakeup per ZIL block written, previously used to run zio_ready()
for lwb_root_zio and skipped now.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15398
This fix removes a dubious optimization in zfs_uiomove_bvec_rq()
that saved the iterator contents of a rq_for_each_segment(). This
optimization allowed restoring the "saved state" from a previous
rq_for_each_segment() call on the same uio so that you wouldn't
need to iterate though each bvec on every zfs_uiomove_bvec_rq() call.
However, if the kernel is manipulating the requests/bios/bvecs under
the covers between zfs_uiomove_bvec_rq() calls, then it could result
in corruption from using the "saved state". This optimization
results in an unbootable system after installing an OS on a zvol
with blk-mq enabled.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes#15351
... by checking that previous block is fully written and flushed.
It allows to skip commit delays since we can give up on aggregation
in that case. This removes zil_min_commit_timeout parameter, since
for single-threaded workloads it is not needed at all, while on very
fast devices even some multi-threaded workloads may get detected as
single-threaded and still bypass the wait. To give multi-threaded
workloads more aggregation chances increase zfs_commit_timeout_pct
from 5 to 10%, as they should suffer less from additional latency.
Also single-threaded workloads detection allows in perspective better
prediction of the next block size.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15381
ZFS prefetch is currently governed by the zfs_prefetch_disable
tunable. However, this is a module-wide settings - if a specific
dataset benefits from prefetch, while others have issue with it,
an optimal solution does not exists.
This commit introduce the "prefetch" tri-state property, which enable
granular control (at dataset/volume level) for prefetching.
This patch does not remove the zfs_prefetch_disable, which remains
a system-wide switch for enable/disable prefetch. However, to avoid
duplication, it would be preferable to deprecate and then remove
the module tunable.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Ameer Hamza <ahamza@ixsystems.com>
Signed-off-by: Gionatan Danti <g.danti@assyoma.it>
Co-authored-by: Gionatan Danti <g.danti@assyoma.it>
Closes#15237Closes#15436
We already use ____cacheline_aligned in many places, so add one more
instead of seems arbitrary char tc_pad[8].
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15402
The change is simple -- restore the original code so that the VDEV
path is updated when using by-id paths. The more challenging part
was to devise a second ZTS test, that would test auto-replace for
'by-id' and help prevent a future regression.
With that new test, we can now do an A|B test with , and without,
the fix to confirm that auto-replace for by-id paths works. The
existing auto-replace test, functional/fault/auto_replace_001_pos,
will confirm that we didn't break auto-replace for 'by-vdev' paths.
In the original functional/fault/auto_replace_001_pos test, the disk
wipe (using dd) was not effective in removing the partitioning since
the kernel was never informed of the wipe.
Added a call to wipefs(8) so that the kernel is informed and ZED will
re-partition the device.
Added a validation step that the re-partitioning occurred by
confirming that the GPT partition UUID changes.
Sponsored-By: OpenDrives Inc.
Sponsored-By: Klara Inc.
Reviewed-by: Rob Norris <rob.norris@klarasystems.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Don Brady <don.brady@klarasystems.com>
Closes#15363
- Group tqent_task and tqent_timeout_task into a union. They are
never used same time. This shrinks taskq_ent_t from 192 to 160 bytes.
- Remove tqent_registered. Use tqent_id != 0 instead.
- Remove tqent_cancelled. Use taskqueue pending counter instead.
- Change tqent_type into uint_t. We don't need to pack it any more.
- Change tqent_rc into uint_t, matching refcount(9).
- Take shared locks in taskq_lookup().
- Call proper taskqueue_drain_timeout() for TIMEOUT_TASK in
taskq_cancel_id() and taskq_wait_id().
- Switch from CK_LIST to regular LIST.
Reviewed-by: Allan Jude <allan@klarasystems.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mateusz Guzik <mjguzik@gmail.com>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15356
This includes random small tweaks, primarily a build fixes, required
when ZFS is built as part of FreeBSD base.
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15368
Before this change ZFS created threads for 50% of CPUs for each top-
level vdev. Plus it created the same number of threads for embedded
log groups (that have only one metaslab and don't need any preload).
As result, on system with 80 CPUs and pool of 60 vdevs this resulted
in 4800 metaslab preload threads, that is absolutely insane.
This patch changes the preload threads to 50% of CPUs in one taskq
per pool, so on the mentioned system it will be only 40 threads.
Among other things this fixes zdb on the mentioned system and pool
on FreeBSD, that failed to create so many threads in one process.
Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Alexander Motin <mav@FreeBSD.org>
Sponsored by: iXsystems, Inc.
Closes#15319