1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-15 12:40:26 +03:00
Commit Graph

76 Commits

Author SHA1 Message Date
Brian Behlendorf
a58df6f536 Fix zfs_vdev_aggregation_limit bounds checking
Update the bounds checking for zfs_vdev_aggregation_limit so that
it has a floor of zero and a maximum value of the supported block
size for the pool.

Additionally add an early return when zfs_vdev_aggregation_limit
equals zero to disable aggregation.  For very fast solid state or
memory devices it may be more expensive to perform the aggregation
than to issue the IO immediately.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2015-12-18 13:32:06 -08:00
Brian Behlendorf
6fe53787f3 Fix vdev_queue_aggregate() deadlock
This deadlock may manifest itself in slightly different ways but
at the core it is caused by a memory allocation blocking on file-
system reclaim in the zio pipeline.  This is normally impossible
because zio_execute() disables filesystem reclaim by setting
PF_FSTRANS on the thread.  However, kmem cache allocations may
still indirectly block on file system reclaim while holding the
critical vq->vq_lock as shown below.

To resolve this issue zio_buf_alloc_flags() is introduced which
allocation flags to be passed.  This can then be used in
vdev_queue_aggregate() with KM_NOSLEEP when allocating the
aggregate IO buffer.  Since aggregating the IO is purely a
performance optimization we want this to either succeed or fail
quickly.  Trying too hard to allocate this memory under the
vq->vq_lock can negatively impact performance and result in
this deadlock.

* z_wr_iss
zio_vdev_io_start
  vdev_queue_io -> Takes vq->vq_lock
    vdev_queue_io_to_issue
      vdev_queue_aggregate
        zio_buf_alloc -> Waiting on spl_kmem_cache process

* z_wr_int
zio_vdev_io_done
  vdev_queue_io_done
    mutex_lock -> Waiting on vq->vq_lock held by z_wr_iss

* txg_sync
spa_sync
  dsl_pool_sync
    zio_wait -> Waiting on zio being handled by z_wr_int

* spl_kmem_cache
spl_cache_grow_work
  kv_alloc
    spl_vmalloc
      ...
      evict
        zpl_evict_inode
          zfs_inactive
            dmu_tx_wait
              txg_wait_open -> Waiting on txg_sync

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Chunwei Chen <david.chen@osnexus.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
Closes 
Closes 
2015-12-18 13:27:12 -08:00
loli10K
3757bff3b1 Fix small typo
Add a missing space to the zfs_vdev_sync_write_min_active module
parameter description.

Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Signed-off-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2015-08-30 10:10:16 -07:00
Tim Chase
36b454ab4c Initialize the taskq entry embedded within struct vdev
As part of the stack reduction effort in
50b25b2187, a zio_t containing a taskq_ent
was added to struct vdev_queue which itself is part of struct vdev.
The taskq entry should be initialized as is currently done in zio_create()
for newly-created bare zio_t object.  The rationale is the same as is
described in f467b05a26.

Signed-off-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2015-08-30 10:04:56 -07:00
Matthew Ahrens
f1512ee61e Illumos 5027 - zfs large block support
5027 zfs large block support
Reviewed by: Alek Pinchuk <pinchuk.alek@gmail.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Josef 'Jeff' Sipek <josef.sipek@nexenta.com>
Reviewed by: Richard Elling <richard.elling@richardelling.com>
Reviewed by: Saso Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@omniti.com>

References:
  https://www.illumos.org/issues/5027
  https://github.com/illumos/illumos-gate/commit/b515258

Porting Notes:

* Included in this patch is a tiny ISP2() cleanup in zio_init() from
Illumos 5255.

* Unlike the upstream Illumos commit this patch does not impose an
arbitrary 128K block size limit on volumes.  Volumes, like filesystems,
are limited by the zfs_max_recordsize=1M module option.

* By default the maximum record size is limited to 1M by the module
option zfs_max_recordsize.  This value may be safely increased up to
16M which is the largest block size supported by the on-disk format.
At the moment, 1M blocks clearly offer a significant performance
improvement but the benefits of going beyond this for the majority
of workloads are less clear.

* The illumos version of this patch increased DMU_MAX_ACCESS to 32M.
This was determined not to be large enough when using 16M blocks
because the zfs_make_xattrdir() function will fail (EFBIG) when
assigning a TX.  This was immediately observed under Linux because
all newly created files must have a security xattr created and
that was failing.  Therefore, we've set DMU_MAX_ACCESS to 64M.

* On 32-bit platforms a hard limit of 1M is set for blocks due
to the limited virtual address space.  We should be able to relax
this one the ABD patches are merged.

Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2015-05-11 12:23:16 -07:00
Justin T. Gibbs
ec8501ee12 5313 Allow I/Os to be aggregated across ZIO priority classes
Reviewed by: Andriy Gapon <avg@FreeBSD.org>
Reviewed by: Will Andrews <willa@SpectraLogic.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george@delphix.com>
Approved by: Robert Mustacchi <rm@joyent.com>

References:
  https://www.illumos.org/issues/5313
  https://github.com/illumos/illumos-gate/commit/fe319232

Ported-by: DHE <git@dehacked.net>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2015-04-24 15:16:56 -07:00
Brian Behlendorf
285b29d959 Revert "Pre-allocate vdev I/O buffers"
Commit 86dd0fd added preallocated I/O buffers.  This is no longer
required after the recent kmem changes designed to make our memory
allocation interfaces behave more like those found on Illumos.  A
deadlock in this situation is no longer possible.

However, these allocations still have the potential to be expensive.
So a potential future optimization might be to perform then KM_NOSLEEP
so that they either succeed of fail quicky.  Either case is acceptable
here because we can safely abort the aggregation.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2015-01-16 14:41:28 -08:00
Alex Reece
acbad6ff67 Illumos 4753 - increase number of outstanding async writes when sync task is waiting
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Dan McDonald <danmcd@omniti.com>
Approved by: Garrett D'Amore <garrett@damore.org>

References:
    https://www.illumos.org/issues/4753
    https://github.com/illumos/illumos-gate/commit/73527f4

Comments by Matt Ahrens from the issue tracker:
    When a sync task is waiting for a txg to complete, we should hurry
    it along by increasing the number of outstanding async writes
    (i.e. make vdev_queue_max_async_writes() return a larger number).
    Initially we might just have a tunable for "minimum async writes
    while a synctask is waiting" and set it to 3.

Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2014-09-23 13:50:55 -07:00
Brian Behlendorf
50b25b2187 Avoid dynamic allocation of 'search zio'
As part of commit e8b96c6 the search zio used by the
vdev_queue_io_to_issue() function was moved to the heap
to minimize stack usage.  Functionally this is fine, but
to maximize performance it's best to minimize the number
of dynamic allocations.

To avoid this allocation temporary space for the search
zio has been reserved in the vdev_queue structure.  All
access must be serialized through the vq_lock.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Ned Bass <bass6@llnl.gov>
Closes 
2014-08-11 08:44:54 -07:00
Michael Kjorling
d1d7e2689d cstyle: Resolve C style issues
The vast majority of these changes are in Linux specific code.
They are the result of not having an automated style checker to
validate the code when it was originally written.  Others were
caused when the common code was slightly adjusted for Linux.

This patch contains no functional changes.  It only refreshes
the code to conform to style guide.

Everyone submitting patches for inclusion upstream should now
run 'make checkstyle' and resolve any warning prior to opening
a pull request.  The automated builders have been updated to
fail a build if when 'make checkstyle' detects an issue.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2013-12-18 16:46:35 -08:00
Matthew Ahrens
e8b96c6007 Illumos write throttle & i/o scheduler performance work
4045 zfs write throttle & i/o scheduler performance work

1. The ZFS i/o scheduler (vdev_queue.c) now divides i/os into 5 classes: sync
read, sync write, async read, async write, and scrub/resilver.  The scheduler
issues a number of concurrent i/os from each class to the device.  Once a class
has been selected, an i/o is selected from this class using either an elevator
algorithem (async, scrub classes) or FIFO (sync classes).  The number of
concurrent async write i/os is tuned dynamically based on i/o load, to achieve
good sync i/o latency when there is not a high load of writes, and good write
throughput when there is.  See the block comment in vdev_queue.c (reproduced
below) for more details.

2. The write throttle (dsl_pool_tempreserve_space() and
txg_constrain_throughput()) is rewritten to produce much more consistent delays
when under constant load.  The new write throttle is based on the amount of
dirty data, rather than guesses about future performance of the system.  When
there is a lot of dirty data, each transaction (e.g. write() syscall) will be
delayed by the same small amount.  This eliminates the "brick wall of wait"
that the old write throttle could hit, causing all transactions to wait several
seconds until the next txg opens.  One of the keys to the new write throttle is
decrementing the amount of dirty data as i/o completes, rather than at the end
of spa_sync().  Note that the write throttle is only applied once the i/o
scheduler is issuing the maximum number of outstanding async writes.  See the
block comments in dsl_pool.c and above dmu_tx_delay() (reproduced below) for
more details.

This diff has several other effects, including:

 * the commonly-tuned global variable zfs_vdev_max_pending has been removed;
use per-class zfs_vdev_*_max_active values or zfs_vdev_max_active instead.

 * the size of each txg (meaning the amount of dirty data written, and thus the
time it takes to write out) is now controlled differently.  There is no longer
an explicit time goal; the primary determinant is amount of dirty data.
Systems that are under light or medium load will now often see that a txg is
always syncing, but the impact to performance (e.g. read latency) is minimal.
Tune zfs_dirty_data_max and zfs_dirty_data_sync to control this.

 * zio_taskq_batch_pct = 75 -- Only use 75% of all CPUs for compression,
checksum, etc.  This improves latency by not allowing these CPU-intensive tasks
to consume all CPU (on machines with at least 4 CPU's; the percentage is
rounded up).

--matt

APPENDIX: problems with the current i/o scheduler

The current ZFS i/o scheduler (vdev_queue.c) is deadline based.  The problem
with this is that if there are always i/os pending, then certain classes of
i/os can see very long delays.

For example, if there are always synchronous reads outstanding, then no async
writes will be serviced until they become "past due".  One symptom of this
situation is that each pass of the txg sync takes at least several seconds
(typically 3 seconds).

If many i/os become "past due" (their deadline is in the past), then we must
service all of these overdue i/os before any new i/os.  This happens when we
enqueue a batch of async writes for the txg sync, with deadlines 2.5 seconds in
the future.  If we can't complete all the i/os in 2.5 seconds (e.g. because
there were always reads pending), then these i/os will become past due.  Now we
must service all the "async" writes (which could be hundreds of megabytes)
before we service any reads, introducing considerable latency to synchronous
i/os (reads or ZIL writes).

Notes on porting to ZFS on Linux:

- zio_t gained new members io_physdone and io_phys_children.  Because
  object caches in the Linux port call the constructor only once at
  allocation time, objects may contain residual data when retrieved
  from the cache. Therefore zio_create() was updated to zero out the two
  new fields.

- vdev_mirror_pending() relied on the depth of the per-vdev pending queue
  (vq->vq_pending_tree) to select the least-busy leaf vdev to read from.
  This tree has been replaced by vq->vq_active_tree which is now used
  for the same purpose.

- vdev_queue_init() used the value of zfs_vdev_max_pending to determine
  the number of vdev I/O buffers to pre-allocate.  That global no longer
  exists, so we instead use the sum of the *_max_active values for each of
  the five I/O classes described above.

- The Illumos implementation of dmu_tx_delay() delays a transaction by
  sleeping in condition variable embedded in the thread
  (curthread->t_delay_cv).  We do not have an equivalent CV to use in
  Linux, so this change replaced the delay logic with a wrapper called
  zfs_sleep_until(). This wrapper could be adopted upstream and in other
  downstream ports to abstract away operating system-specific delay logic.

- These tunables are added as module parameters, and descriptions added
  to the zfs-module-parameters.5 man page.

  spa_asize_inflation
  zfs_deadman_synctime_ms
  zfs_vdev_max_active
  zfs_vdev_async_write_active_min_dirty_percent
  zfs_vdev_async_write_active_max_dirty_percent
  zfs_vdev_async_read_max_active
  zfs_vdev_async_read_min_active
  zfs_vdev_async_write_max_active
  zfs_vdev_async_write_min_active
  zfs_vdev_scrub_max_active
  zfs_vdev_scrub_min_active
  zfs_vdev_sync_read_max_active
  zfs_vdev_sync_read_min_active
  zfs_vdev_sync_write_max_active
  zfs_vdev_sync_write_min_active
  zfs_dirty_data_max_percent
  zfs_delay_min_dirty_percent
  zfs_dirty_data_max_max_percent
  zfs_dirty_data_max
  zfs_dirty_data_max_max
  zfs_dirty_data_sync
  zfs_delay_scale

  The latter four have type unsigned long, whereas they are uint64_t in
  Illumos.  This accommodates Linux's module_param() supported types, but
  means they may overflow on 32-bit architectures.

  The values zfs_dirty_data_max and zfs_dirty_data_max_max are the most
  likely to overflow on 32-bit systems, since they express physical RAM
  sizes in bytes.  In fact, Illumos initializes zfs_dirty_data_max_max to
  2^32 which does overflow. To resolve that, this port instead initializes
  it in arc_init() to 25% of physical RAM, and adds the tunable
  zfs_dirty_data_max_max_percent to override that percentage.  While this
  solution doesn't completely avoid the overflow issue, it should be a
  reasonable default for most systems, and the minority of affected
  systems can work around the issue by overriding the defaults.

- Fixed reversed logic in comment above zfs_delay_scale declaration.

- Clarified comments in vdev_queue.c regarding when per-queue minimums take
  effect.

- Replaced dmu_tx_write_limit in the dmu_tx kstat file
  with dmu_tx_dirty_delay and dmu_tx_dirty_over_max.  The first counts
  how many times a transaction has been delayed because the pool dirty
  data has exceeded zfs_delay_min_dirty_percent.  The latter counts how
  many times the pool dirty data has exceeded zfs_dirty_data_max (which
  we expect to never happen).

- The original patch would have regressed the bug fixed in
  zfsonlinux/zfs@c418410, which prevented users from setting the
  zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE.
  A similar fix is added to vdev_queue_aggregate().

- In vdev_queue_io_to_issue(), dynamically allocate 'zio_t search' on the
  heap instead of the stack.  In Linux we can't afford such large
  structures on the stack.

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Ned Bass <bass6@llnl.gov>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Robert Mustacchi <rm@joyent.com>

References:
  http://www.illumos.org/issues/4045
  illumos/illumos-gate@69962b5647

Ported-by: Ned Bass <bass6@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2013-12-06 09:32:43 -08:00
Will Andrews
d3cc8b152e Illumos
3742 zfs comments need cleaner, more consistent style
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Approved by: Christopher Siden <christopher.siden@delphix.com>

References:
  https://www.illumos.org/issues/3742
  illumos/illumos-gate@f717074149

Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue 

Porting notes:

1. The change to zfs_vfsops.c was dropped because it involves
   zfs_mount_label_policy, which does not exist in the Linux port.
2013-11-04 10:55:25 -08:00
Matthew Ahrens
330847ff36 Illumos
3537 want pool io kstats

Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Sa?o Kiselkov <skiselkov.ml@gmail.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Reviewed by: Brendan Gregg <brendan.gregg@joyent.com>
Approved by: Gordon Ross <gwr@nexenta.com>

References:
  http://www.illumos.org/issues/3537
  illumos/illumos-gate@c3a6601

Ported by: Cyril Plisko <cyril.plisko@mountall.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>

Porting Notes:

1. The patch was restructured to take advantage of the existing
   spa statistics infrastructure.  To accomplish this the kstat
   was moved in to spa->io_stats and the init/destroy code moved
   to spa_stats.c.

2. The I/O kstat was simply named <pool> which conflicted with the
   pool directory we had already created.  Therefore it was renamed
   to <pool>/io

3. An update handler was added to allow the kstat to be zeroed.
2013-10-31 09:16:03 -07:00
Matthew Ahrens
cb682a173a Illumos ::zio dcmd does not show timestamp data
3618 ::zio dcmd does not show timestamp data
Reviewed by: Adam Leventhal <ahl@delphix.com>
Reviewed by: George Wilson <gwilson@zfsmail.com>
Reviewed by: Christopher Siden <christopher.siden@delphix.com>
Reviewed by: Garrett D'Amore <garrett@damore.org>
Approved by: Dan McDonald <danmcd@nexenta.com>

References:
  http://www.illumos.org/issues/3618
  illumos/illumos-gate@c55e05cb35

Notes on porting to ZFS on Linux:

The original changeset mostly deals with mdb ::zio dcmd.
However, in order to provide the requested functionality
it modifies vdev and zio structures to keep the timing data
in nanoseconds instead of ticks. It is these changes that
are ported over in the commit in hand.

One visible change of this commit is that the default value
of 'zfs_vdev_time_shift' tunable is changed:

    zfs_vdev_time_shift = 6
        to
    zfs_vdev_time_shift = 29

The original value of 6 was inherited from OpenSolaris and
was subotimal - since it shifted the raw tick value - it
didn't compensate for different tick frequencies on Linux and
OpenSolaris. The former has HZ=1000, while the latter HZ=100.

(Which itself led to other interesting performance anomalies
under non-trivial load. The deadline scheduler delays the IO
according to its priority - the lower priority the further
the deadline is set. The delay is measured in units of
"shifted ticks". Since the HZ value was 10 times higher,
the delay units were 10 times shorter. Thus really low
priority IO like resilver (delay is 10 units) and scrub
(delay is 20 units) were scheduled much sooner than intended.
The overall effect is that resilver and scrub IO consumed
more bandwidth at the expense of the other IO.)

Now that the bookkeeping is done is nanoseconds the shift
behaves correctly for any tick frequency (HZ).

Ported-by: Cyril Plisko <cyril.plisko@mountall.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2013-08-12 16:46:50 -07:00
George.Wilson
cc92e9d0c3 3246 ZFS I/O deadman thread
Reviewed by: Matt Ahrens <matthew.ahrens@delphix.com>
Reviewed by: Eric Schrock <eric.schrock@delphix.com>
Reviewed by: Christopher Siden <chris.siden@delphix.com>
Approved by: Garrett D'Amore <garrett@damore.org>

NOTES: This patch has been reworked from the original in the
following ways to accomidate Linux ZFS implementation

*) Usage of the cyclic interface was replaced by the delayed taskq
   interface.  This avoids the need to implement new compatibility
   code and allows us to rely on the existing taskq implementation.

*) An extern for zfs_txg_synctime_ms was added to sys/dsl_pool.h
   because declaring externs in source files as was done in the
   original patch is just plain wrong.

*) Instead of panicing the system when the deadman triggers a
   zevent describing the blocked vdev and the first pending I/O
   is posted.  If the panic behavior is desired Linux provides
   other generic methods to panic the system when threads are
   observed to hang.

*) For reference, to delay zios by 30 seconds for testing you can
   use zinject as follows: 'zinject -d <vdev> -D30 <pool>'

References:
  illumos/illumos-gate@283b84606b
  https://www.illumos.org/issues/3246

Ported-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2013-05-01 17:05:52 -07:00
Brian Behlendorf
c418410393 Limit zfs_vdev_aggregation_limit to SPA_MAXBLOCKSIZE
Prevent users from setting the zfs_vdev_aggregation_limit tuning
larger than SPA_MAXBLOCKSIZE.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes 
2012-10-15 09:28:43 -07:00
Brian Behlendorf
86dd0fd922 Pre-allocate vdev I/O buffers
The vdev queue layer may require a small number of buffers
when attempting to create aggregate I/O requests.  Rather than
attempting to allocate them from the global zio buffers, which
is slow under memory pressure, it makes sense to pre-allocate
them because...

1) These buffers are short lived.  They are only required for
the life of a single I/O at which point they can be used by
the next I/O.

2) The maximum number of concurrent buffers needed by a vdev is
small.  It's roughly limited by the zfs_vdev_max_pending tunable
which defaults to 10.

By keeping a small list of these buffer per-vdev we can ensure
one is always available when we need it.  This significantly
reduces contention on the vq->vq_lock, because we no longer
need to perform a slow allocation under this lock.  This is
particularly important when memory is already low on the system.

It would probably be wise to extend the use of these buffers beyond
aggregate I/O and in to the raidz implementation.  The inability
to quickly allocate buffer for the parity stripes could result in
similiar problems.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2012-08-27 12:01:37 -07:00
Brian Behlendorf
c409e4647f Add missing ZFS tunables
This commit adds module options for all existing zfs tunables.
Ideally the average user should never need to modify any of these
values.  However, in practice sometimes you do need to tweak these
values for one reason or another.  In those cases it's nice not to
have to resort to rebuilding from source.  All tunables are visable
to modinfo and the list is as follows:

$ modinfo module/zfs/zfs.ko
filename:       module/zfs/zfs.ko
license:        CDDL
author:         Sun Microsystems/Oracle, Lawrence Livermore National Laboratory
description:    ZFS
srcversion:     8EAB1D71DACE05B5AA61567
depends:        spl,znvpair,zcommon,zunicode,zavl
vermagic:       2.6.32-131.0.5.el6.x86_64 SMP mod_unload modversions
parm:           zvol_major:Major number for zvol device (uint)
parm:           zvol_threads:Number of threads for zvol device (uint)
parm:           zio_injection_enabled:Enable fault injection (int)
parm:           zio_bulk_flags:Additional flags to pass to bulk buffers (int)
parm:           zio_delay_max:Max zio millisec delay before posting event (int)
parm:           zio_requeue_io_start_cut_in_line:Prioritize requeued I/O (bool)
parm:           zil_replay_disable:Disable intent logging replay (int)
parm:           zfs_nocacheflush:Disable cache flushes (bool)
parm:           zfs_read_chunk_size:Bytes to read per chunk (long)
parm:           zfs_vdev_max_pending:Max pending per-vdev I/Os (int)
parm:           zfs_vdev_min_pending:Min pending per-vdev I/Os (int)
parm:           zfs_vdev_aggregation_limit:Max vdev I/O aggregation size (int)
parm:           zfs_vdev_time_shift:Deadline time shift for vdev I/O (int)
parm:           zfs_vdev_ramp_rate:Exponential I/O issue ramp-up rate (int)
parm:           zfs_vdev_read_gap_limit:Aggregate read I/O over gap (int)
parm:           zfs_vdev_write_gap_limit:Aggregate write I/O over gap (int)
parm:           zfs_vdev_scheduler:I/O scheduler (charp)
parm:           zfs_vdev_cache_max:Inflate reads small than max (int)
parm:           zfs_vdev_cache_size:Total size of the per-disk cache (int)
parm:           zfs_vdev_cache_bshift:Shift size to inflate reads too (int)
parm:           zfs_scrub_limit:Max scrub/resilver I/O per leaf vdev (int)
parm:           zfs_recover:Set to attempt to recover from fatal errors (int)
parm:           spa_config_path:SPA config file (/etc/zfs/zpool.cache) (charp)
parm:           zfs_zevent_len_max:Max event queue length (int)
parm:           zfs_zevent_cols:Max event column width (int)
parm:           zfs_zevent_console:Log events to the console (int)
parm:           zfs_top_maxinflight:Max I/Os per top-level (int)
parm:           zfs_resilver_delay:Number of ticks to delay resilver (int)
parm:           zfs_scrub_delay:Number of ticks to delay scrub (int)
parm:           zfs_scan_idle:Idle window in clock ticks (int)
parm:           zfs_scan_min_time_ms:Min millisecs to scrub per txg (int)
parm:           zfs_free_min_time_ms:Min millisecs to free per txg (int)
parm:           zfs_resilver_min_time_ms:Min millisecs to resilver per txg (int)
parm:           zfs_no_scrub_io:Set to disable scrub I/O (bool)
parm:           zfs_no_scrub_prefetch:Set to disable scrub prefetching (bool)
parm:           zfs_txg_timeout:Max seconds worth of delta per txg (int)
parm:           zfs_no_write_throttle:Disable write throttling (int)
parm:           zfs_write_limit_shift:log2(fraction of memory) per txg (int)
parm:           zfs_txg_synctime_ms:Target milliseconds between tgx sync (int)
parm:           zfs_write_limit_min:Min tgx write limit (ulong)
parm:           zfs_write_limit_max:Max tgx write limit (ulong)
parm:           zfs_write_limit_inflated:Inflated tgx write limit (ulong)
parm:           zfs_write_limit_override:Override tgx write limit (ulong)
parm:           zfs_prefetch_disable:Disable all ZFS prefetching (int)
parm:           zfetch_max_streams:Max number of streams per zfetch (uint)
parm:           zfetch_min_sec_reap:Min time before stream reclaim (uint)
parm:           zfetch_block_cap:Max number of blocks to fetch at a time (uint)
parm:           zfetch_array_rd_sz:Number of bytes in a array_read (ulong)
parm:           zfs_pd_blks_max:Max number of blocks to prefetch (int)
parm:           zfs_dedup_prefetch:Enable prefetching dedup-ed blks (int)
parm:           zfs_arc_min:Min arc size (ulong)
parm:           zfs_arc_max:Max arc size (ulong)
parm:           zfs_arc_meta_limit:Meta limit for arc size (ulong)
parm:           zfs_arc_reduce_dnlc_percent:Meta reclaim percentage (int)
parm:           zfs_arc_grow_retry:Seconds before growing arc size (int)
parm:           zfs_arc_shrink_shift:log2(fraction of arc to reclaim) (int)
parm:           zfs_arc_p_min_shift:arc_c shift to calc min/max arc_p (int)
2011-05-04 10:02:37 -07:00
Brian Behlendorf
c28b227942 Add linux kernel module support
Setup linux kernel module support, this includes:
- zfs context for kernel/user
- kernel module build system integration
- kernel module macros
- kernel module symbol export
- kernel module options

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-08-31 13:41:58 -07:00
Brian Behlendorf
d6320ddb78 Fix gcc c90 compliance warnings
Fix non-c90 compliant code, for the most part these changes
simply deal with where a particular variable is declared.
Under c90 it must alway be done at the very start of a block.

Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
2010-08-27 15:28:32 -07:00
Brian Behlendorf
428870ff73 Update core ZFS code from build 121 to build 141. 2010-05-28 13:45:14 -07:00
Brian Behlendorf
45d1cae3b8 Rebase master to b121 2009-08-18 11:43:27 -07:00
Brian Behlendorf
9babb37438 Rebase master to b117 2009-07-02 15:44:48 -07:00
Brian Behlendorf
d164b20935 Rebase master to b108 2009-02-18 12:51:31 -08:00
Brian Behlendorf
fb5f0bc833 Rebase master to b105 2009-01-15 13:59:39 -08:00
Brian Behlendorf
172bb4bd5e Move the world out of /zfs/ and seperate out module build tree 2008-12-11 11:08:09 -08:00