Scrub mirror children without BPs

When scrubbing a raidz/draid pool, which contains a replacing or
sparing mirror with multiple online children, only one child will
be read.  This is not normally a serious concern because the DTL
records are used to determine where a good copy of the data is.
As long as the data can be read from one child the mirror vdev
will use it to repair gaps in any of its children.  Furthermore,
even if the data which was read is corrupt the raidz code will
detect this and issue its own repair I/O to correct the damage
in the mirror vdev.

However, in the scenario where the DTL is wrong due to silent
data corruption (say due to overwriting one child) and the scrub
happens to read from a child with good data, then the other damaged
mirror child will not be detected nor repaired.

While this is possible for both raidz and draid vdevs, it's most
pronounced when using draid.  This is because by default the zed
will sequentially rebuild a draid pool to a distributed spare,
and the distributed spare half of the mirror is always preferred
since it delivers better performance.  This means the damaged
half of the mirror will go undetected even after scrubbing.

For system administrations this behavior is non-intuitive and in
a worst case scenario could result in the only good copy of the
data being unknowingly detached from the mirror.

This change resolves the issue by reading all replacing/sparing
mirror children when scrubbing.  When the BP isn't available for
verification, then compare the data buffers from each child.  They
must all be identical, if not there's silent damage and an error
is returned to prompt the top-level vdev to issue a repair I/O to
rewrite the data on all of the mirror children.  Since we can't
tell which child was wrong a checksum error is logged against the
replacing or sparing mirror vdev.

Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #13555
This commit is contained in:
Brian Behlendorf 2022-06-23 10:36:28 -07:00 committed by GitHub
parent deb1213098
commit ad8b9f940c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 252 additions and 37 deletions

View File

@ -35,6 +35,7 @@
#include <sys/vdev_impl.h>
#include <sys/vdev_draid.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/abd.h>
#include <sys/fs/zfs.h>
@ -102,6 +103,7 @@ vdev_mirror_stat_fini(void)
*/
typedef struct mirror_child {
vdev_t *mc_vd;
abd_t *mc_abd;
uint64_t mc_offset;
int mc_error;
int mc_load;
@ -434,6 +436,10 @@ vdev_mirror_child_done(zio_t *zio)
{
mirror_child_t *mc = zio->io_private;
/* See scrubbing read comment in vdev_mirror_io_start() */
if (zio->io_flags & ZIO_FLAG_SCRUB && zio->io_bp == NULL)
mc->mc_abd = zio->io_abd;
mc->mc_error = zio->io_error;
mc->mc_tried = 1;
mc->mc_skipped = 0;
@ -637,15 +643,16 @@ vdev_mirror_io_start(zio_t *zio)
}
if (zio->io_type == ZIO_TYPE_READ) {
if (zio->io_bp != NULL &&
(zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
if ((zio->io_flags & ZIO_FLAG_SCRUB) && !mm->mm_resilvering) {
/*
* For scrubbing reads (if we can verify the
* checksum here, as indicated by io_bp being
* non-NULL) we need to allocate a read buffer for
* each child and issue reads to all children. If
* any child succeeds, it will copy its data into
* zio->io_data in vdev_mirror_scrub_done.
* For scrubbing reads we need to allocate a buffer
* for each child and issue reads to all children.
* If we can verify the checksum here, as indicated
* by io_bp being non-NULL, the data will be copied
* into zio->io_data in vdev_mirror_scrub_done().
* If not, then vdev_mirror_io_done() will compare
* all of the read buffers and return a checksum
* error if they aren't all identical.
*/
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
@ -663,7 +670,8 @@ vdev_mirror_io_start(zio_t *zio)
abd_alloc_sametype(zio->io_abd,
zio->io_size), zio->io_size,
zio->io_type, zio->io_priority, 0,
vdev_mirror_scrub_done, mc));
zio->io_bp ? vdev_mirror_scrub_done :
vdev_mirror_child_done, mc));
}
zio_execute(zio);
return;
@ -731,6 +739,7 @@ vdev_mirror_io_done(zio_t *zio)
int c;
int good_copies = 0;
int unexpected_errors = 0;
int last_good_copy = -1;
if (mm == NULL)
return;
@ -742,6 +751,7 @@ vdev_mirror_io_done(zio_t *zio)
if (!mc->mc_skipped)
unexpected_errors++;
} else if (mc->mc_tried) {
last_good_copy = c;
good_copies++;
}
}
@ -755,7 +765,6 @@ vdev_mirror_io_done(zio_t *zio)
* no non-degraded top-level vdevs left, and not update DTLs
* if we intend to reallocate.
*/
/* XXPOLICY */
if (good_copies != mm->mm_children) {
/*
* Always require at least one good copy.
@ -782,7 +791,6 @@ vdev_mirror_io_done(zio_t *zio)
/*
* If we don't have a good copy yet, keep trying other children.
*/
/* XXPOLICY */
if (good_copies == 0 && (c = vdev_mirror_child_select(zio)) != -1) {
ASSERT(c >= 0 && c < mm->mm_children);
mc = &mm->mm_child[c];
@ -794,7 +802,59 @@ vdev_mirror_io_done(zio_t *zio)
return;
}
/* XXPOLICY */
/*
* If we're scrubbing but don't have a BP available (because this
* vdev is under a raidz or draid vdev) then the best we can do is
* compare all of the copies read. If they're not identical then
* return a checksum error and the most likely correct data. The
* raidz code will issue a repair I/O if possible.
*/
if (zio->io_flags & ZIO_FLAG_SCRUB && zio->io_bp == NULL) {
abd_t *last_good_abd;
ASSERT(zio->io_vd->vdev_ops == &vdev_replacing_ops ||
zio->io_vd->vdev_ops == &vdev_spare_ops);
if (good_copies > 1) {
last_good_abd = mm->mm_child[last_good_copy].mc_abd;
abd_t *best_abd = NULL;
for (c = 0; c < last_good_copy; c++) {
mc = &mm->mm_child[c];
if (mc->mc_error || !mc->mc_tried)
continue;
if (abd_cmp(mc->mc_abd, last_good_abd) != 0)
zio->io_error = SET_ERROR(ECKSUM);
/*
* The distributed spare is always prefered
* by vdev_mirror_child_select() so it's
* considered to be the best candidate.
*/
if (best_abd == NULL &&
mc->mc_vd->vdev_ops ==
&vdev_draid_spare_ops) {
best_abd = mc->mc_abd;
}
}
abd_copy(zio->io_abd, best_abd ? best_abd :
last_good_abd, zio->io_size);
} else if (good_copies == 1) {
last_good_abd = mm->mm_child[last_good_copy].mc_abd;
abd_copy(zio->io_abd, last_good_abd, zio->io_size);
}
for (c = 0; c < mm->mm_children; c++) {
mc = &mm->mm_child[c];
abd_free(mc->mc_abd);
mc->mc_abd = NULL;
}
}
if (good_copies == 0) {
zio->io_error = vdev_mirror_worst_error(mm);
ASSERT(zio->io_error != 0);

View File

@ -1885,6 +1885,9 @@ vdev_raidz_io_done_verified(zio_t *zio, raidz_row_t *rr)
} else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
parity_untried++;
}
if (rc->rc_force_repair)
unexpected_errors++;
}
/*
@ -2249,9 +2252,20 @@ vdev_raidz_io_done_reconstruct_known_missing(zio_t *zio, raidz_map_t *rm,
for (int c = 0; c < rr->rr_cols; c++) {
raidz_col_t *rc = &rr->rr_col[c];
if (rc->rc_error) {
ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
/*
* If scrubbing and a replacing/sparing child vdev determined
* that not all of its children have an identical copy of the
* data, then clear the error so the column is treated like
* any other read and force a repair to correct the damage.
*/
if (rc->rc_error == ECKSUM) {
ASSERT(zio->io_flags & ZIO_FLAG_SCRUB);
vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
rc->rc_force_repair = 1;
rc->rc_error = 0;
}
if (rc->rc_error) {
if (c < rr->rr_firstdatacol)
parity_errors++;
else

View File

@ -763,7 +763,8 @@ tags = ['functional', 'raidz']
[tests/functional/redundancy]
tests = ['redundancy_draid', 'redundancy_draid1', 'redundancy_draid2',
'redundancy_draid3', 'redundancy_draid_damaged', 'redundancy_draid_spare1',
'redundancy_draid3', 'redundancy_draid_damaged1',
'redundancy_draid_damaged2', 'redundancy_draid_spare1',
'redundancy_draid_spare2', 'redundancy_draid_spare3', 'redundancy_mirror',
'redundancy_raidz', 'redundancy_raidz1', 'redundancy_raidz2',
'redundancy_raidz3', 'redundancy_stripe']

View File

@ -226,9 +226,6 @@ maybe = {
'pyzfs/pyzfs_unittest': ['SKIP', python_deps_reason],
'pool_checkpoint/checkpoint_discard_busy': ['FAIL', 11946],
'projectquota/setup': ['SKIP', exec_reason],
'redundancy/redundancy_004_neg': ['FAIL', 7290],
'redundancy/redundancy_draid_spare1': ['FAIL', known_reason],
'redundancy/redundancy_draid_spare3': ['FAIL', known_reason],
'removal/removal_condense_export': ['FAIL', known_reason],
'reservation/reservation_008_pos': ['FAIL', 7741],
'reservation/reservation_018_pos': ['FAIL', 5642],

View File

@ -1632,7 +1632,8 @@ nobase_dist_datadir_zfs_tests_tests_SCRIPTS += \
functional/redundancy/redundancy_draid1.ksh \
functional/redundancy/redundancy_draid2.ksh \
functional/redundancy/redundancy_draid3.ksh \
functional/redundancy/redundancy_draid_damaged.ksh \
functional/redundancy/redundancy_draid_damaged1.ksh \
functional/redundancy/redundancy_draid_damaged2.ksh \
functional/redundancy/redundancy_draid.ksh \
functional/redundancy/redundancy_draid_spare1.ksh \
functional/redundancy/redundancy_draid_spare2.ksh \

View File

@ -85,28 +85,13 @@ function test_sequential_resilver # <pool> <parity> <dir>
for (( i=0; i<$nparity; i=i+1 )); do
spare=draid${nparity}-0-$i
zpool status $pool
zpool replace -fsw $pool $dir/dev-$i $spare
zpool status $pool
log_must zpool replace -fsw $pool $dir/dev-$i $spare
done
log_must zpool scrub -w $pool
log_must zpool status $pool
# When only a single child was overwritten the sequential resilver
# can fully repair the damange from parity and the scrub will have
# nothing to repair. When multiple children are silently damaged
# the sequential resilver will calculate the wrong data since only
# the parity information is used and it cannot be verified with
# the checksum. However, since only the resilvering devices are
# written to with the bad data a subsequent scrub will be able to
# fully repair the pool.
#
if [[ $nparity == 1 ]]; then
log_must check_pool_status $pool "scan" "repaired 0B"
else
log_mustnot check_pool_status $pool "scan" "repaired 0B"
fi
log_mustnot check_pool_status $pool "scan" "repaired 0B"
log_must check_pool_status $pool "errors" "No known data errors"
log_must check_pool_status $pool "scan" "with 0 errors"
}

View File

@ -0,0 +1,157 @@
#!/bin/ksh -p
#
# CDDL HEADER START
#
# The contents of this file are subject to the terms of the
# Common Development and Distribution License (the "License").
# You may not use this file except in compliance with the License.
#
# You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
# or http://www.opensolaris.org/os/licensing.
# See the License for the specific language governing permissions
# and limitations under the License.
#
# When distributing Covered Code, include this CDDL HEADER in each
# file and include the License file at usr/src/OPENSOLARIS.LICENSE.
# If applicable, add the following below this CDDL HEADER, with the
# fields enclosed by brackets "[]" replaced with your own identifying
# information: Portions Copyright [yyyy] [name of copyright owner]
#
# CDDL HEADER END
#
#
# Copyright (c) 2022 by Lawrence Livermore National Security, LLC.
#
. $STF_SUITE/include/libtest.shlib
. $STF_SUITE/tests/functional/redundancy/redundancy.kshlib
#
# DESCRIPTION:
# When sequentially resilvering a dRAID pool to a distributed spare
# silent damage to an online vdev in a replacing or spare mirror vdev
# is not expected to be repaired. Not only does the rebuild have no
# reason to suspect the silent damage but even if it did there's no
# checksum available to determine the correct copy and make the repair.
# However, the subsequent scrub should detect and repair any damage.
#
# STRATEGY:
# 1. Create block device files for the test draid pool
# 2. For each parity value [1..3]
# a. Create a draid pool
# b. Fill it with some directories/files
# c. Systematically damage and replace three devices by:
# - Overwrite the device
# - Replace the damaged vdev with a distributed spare
# - Scrub the pool and verify repair IO is issued
# d. Detach the distributed spares
# e. Scrub the pool and verify there was nothing to repair
# f. Destroy the draid pool
#
typeset -r devs=7
typeset -r dev_size_mb=512
typeset -a disks
prefetch_disable=$(get_tunable PREFETCH_DISABLE)
rebuild_scrub_enabled=$(get_tunable REBUILD_SCRUB_ENABLED)
function cleanup
{
poolexists "$TESTPOOL" && destroy_pool "$TESTPOOL"
for i in {0..$devs}; do
rm -f "$TEST_BASE_DIR/dev-$i"
done
set_tunable32 PREFETCH_DISABLE $prefetch_disable
set_tunable32 REBUILD_SCRUB_ENABLED $rebuild_scrub_enabled
}
log_onexit cleanup
log_must set_tunable32 PREFETCH_DISABLE 1
log_must set_tunable32 REBUILD_SCRUB_ENABLED 0
# Disk files which will be used by pool
for i in {0..$(($devs - 1))}; do
device=$TEST_BASE_DIR/dev-$i
log_must truncate -s ${dev_size_mb}M $device
disks[${#disks[*]}+1]=$device
done
# Disk file which will be attached
log_must truncate -s 512M $TEST_BASE_DIR/dev-$devs
dir=$TEST_BASE_DIR
for nparity in 1 2 3; do
raid=draid${nparity}:3s
log_must zpool create -f -O compression=off -o cachefile=none \
$TESTPOOL $raid ${disks[@]}
# log_must zfs set primarycache=metadata $TESTPOOL
log_must zfs create $TESTPOOL/fs
log_must fill_fs /$TESTPOOL/fs 1 256 10 1024 R
log_must zfs create -o compress=on $TESTPOOL/fs2
log_must fill_fs /$TESTPOOL/fs2 1 256 10 1024 R
log_must zfs create -o compress=on -o recordsize=8k $TESTPOOL/fs3
log_must fill_fs /$TESTPOOL/fs3 1 256 10 1024 R
log_must zpool export $TESTPOOL
log_must zpool import -o cachefile=none -d $dir $TESTPOOL
log_must check_pool_status $TESTPOOL "errors" "No known data errors"
for nspare in 0 1 2; do
damaged=$dir/dev-${nspare}
spare=draid${nparity}-0-${nspare}
log_must zpool export $TESTPOOL
log_must dd conv=notrunc if=/dev/zero of=$damaged \
bs=1M seek=4 count=$(($dev_size_mb-4))
log_must zpool import -o cachefile=none -d $dir $TESTPOOL
log_must zpool replace -fsw $TESTPOOL $damaged $spare
# Scrub the pool after the sequential resilver and verify
# that the silent damage was repaired by the scrub.
log_must zpool scrub -w $TESTPOOL
log_must zpool status $TESTPOOL
log_must check_pool_status $TESTPOOL "errors" \
"No known data errors"
log_must check_pool_status $TESTPOOL "scan" "with 0 errors"
log_mustnot check_pool_status $TESTPOOL "scan" "repaired 0B"
done
for nspare in 0 1 2; do
log_must check_vdev_state $TESTPOOL \
spare-${nspare} "ONLINE"
log_must check_vdev_state $TESTPOOL \
${dir}/dev-${nspare} "ONLINE"
log_must check_vdev_state $TESTPOOL \
draid${nparity}-0-${nspare} "ONLINE"
done
# Detach the distributed spares and scrub the pool again to
# verify no damage remained on the originally corrupted vdevs.
for nspare in 0 1 2; do
log_must zpool detach $TESTPOOL draid${nparity}-0-${nspare}
done
log_must zpool clear $TESTPOOL
log_must zpool scrub -w $TESTPOOL
log_must zpool status $TESTPOOL
log_must check_pool_status $TESTPOOL "errors" "No known data errors"
log_must check_pool_status $TESTPOOL "scan" "with 0 errors"
log_must check_pool_status $TESTPOOL "scan" "repaired 0B"
log_must zpool destroy "$TESTPOOL"
done
log_pass "draid damaged device scrub test succeeded."