1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-20 15:06:36 +03:00
mirror_zfs/module/zfs/abd.c

1544 lines
40 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
* Copyright (c) 2016 by Delphix. All rights reserved.
*/
/*
* ARC buffer data (ABD).
*
* ABDs are an abstract data structure for the ARC which can use two
* different ways of storing the underlying data:
*
* (a) Linear buffer. In this case, all the data in the ABD is stored in one
* contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
*
* +-------------------+
* | ABD (linear) |
* | abd_flags = ... |
* | abd_size = ... | +--------------------------------+
* | abd_buf ------------->| raw buffer of size abd_size |
* +-------------------+ +--------------------------------+
* no abd_chunks
*
* (b) Scattered buffer. In this case, the data in the ABD is split into
* equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
* to the chunks recorded in an array at the end of the ABD structure.
*
* +-------------------+
* | ABD (scattered) |
* | abd_flags = ... |
* | abd_size = ... |
* | abd_offset = 0 | +-----------+
* | abd_chunks[0] ----------------------------->| chunk 0 |
* | abd_chunks[1] ---------------------+ +-----------+
* | ... | | +-----------+
* | abd_chunks[N-1] ---------+ +------->| chunk 1 |
* +-------------------+ | +-----------+
* | ...
* | +-----------+
* +----------------->| chunk N-1 |
* +-----------+
*
* Linear buffers act exactly like normal buffers and are always mapped into the
* kernel's virtual memory space, while scattered ABD data chunks are allocated
* as physical pages and then mapped in only while they are actually being
* accessed through one of the abd_* library functions. Using scattered ABDs
* provides several benefits:
*
* (1) They avoid use of kmem_*, preventing performance problems where running
* kmem_reap on very large memory systems never finishes and causes
* constant TLB shootdowns.
*
* (2) Fragmentation is less of an issue since when we are at the limit of
* allocatable space, we won't have to search around for a long free
* hole in the VA space for large ARC allocations. Each chunk is mapped in
* individually, so even if we weren't using segkpm (see next point) we
* wouldn't need to worry about finding a contiguous address range.
*
* (3) Use of segkpm will avoid the need for map / unmap / TLB shootdown costs
* on each ABD access. (If segkpm isn't available then we use all linear
* ABDs to avoid this penalty.) See seg_kpm.c for more details.
*
* It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
* B_FALSE. However, it is not possible to use scattered ABDs if segkpm is not
* available, which is the case on all 32-bit systems and any 64-bit systems
* where kpm_enable is turned off.
*
* In addition to directly allocating a linear or scattered ABD, it is also
* possible to create an ABD by requesting the "sub-ABD" starting at an offset
* within an existing ABD. In linear buffers this is simple (set abd_buf of
* the new ABD to the starting point within the original raw buffer), but
* scattered ABDs are a little more complex. The new ABD makes a copy of the
* relevant abd_chunks pointers (but not the underlying data). However, to
* provide arbitrary rather than only chunk-aligned starting offsets, it also
* tracks an abd_offset field which represents the starting point of the data
* within the first chunk in abd_chunks. For both linear and scattered ABDs,
* creating an offset ABD marks the original ABD as the offset's parent, and the
* original ABD's abd_children refcount is incremented. This data allows us to
* ensure the root ABD isn't deleted before its children.
*
* Most consumers should never need to know what type of ABD they're using --
* the ABD public API ensures that it's possible to transparently switch from
* using a linear ABD to a scattered one when doing so would be beneficial.
*
* If you need to use the data within an ABD directly, if you know it's linear
* (because you allocated it) you can use abd_to_buf() to access the underlying
* raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
* which will allocate a raw buffer if necessary. Use the abd_return_buf*
* functions to return any raw buffers that are no longer necessary when you're
* done using them.
*
* There are a variety of ABD APIs that implement basic buffer operations:
* compare, copy, read, write, and fill with zeroes. If you need a custom
* function which progressively accesses the whole ABD, use the abd_iterate_*
* functions.
*/
#include <sys/abd.h>
#include <sys/param.h>
#include <sys/zio.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
#ifdef _KERNEL
#include <linux/scatterlist.h>
#include <linux/kmap_compat.h>
#else
#define MAX_ORDER 1
#endif
typedef struct abd_stats {
kstat_named_t abdstat_struct_size;
kstat_named_t abdstat_linear_cnt;
kstat_named_t abdstat_linear_data_size;
kstat_named_t abdstat_scatter_cnt;
kstat_named_t abdstat_scatter_data_size;
kstat_named_t abdstat_scatter_chunk_waste;
kstat_named_t abdstat_scatter_orders[MAX_ORDER];
kstat_named_t abdstat_scatter_page_multi_chunk;
kstat_named_t abdstat_scatter_page_multi_zone;
kstat_named_t abdstat_scatter_page_alloc_retry;
kstat_named_t abdstat_scatter_sg_table_retry;
} abd_stats_t;
static abd_stats_t abd_stats = {
/* Amount of memory occupied by all of the abd_t struct allocations */
{ "struct_size", KSTAT_DATA_UINT64 },
/*
* The number of linear ABDs which are currently allocated, excluding
* ABDs which don't own their data (for instance the ones which were
* allocated through abd_get_offset() and abd_get_from_buf()). If an
* ABD takes ownership of its buf then it will become tracked.
*/
{ "linear_cnt", KSTAT_DATA_UINT64 },
/* Amount of data stored in all linear ABDs tracked by linear_cnt */
{ "linear_data_size", KSTAT_DATA_UINT64 },
/*
* The number of scatter ABDs which are currently allocated, excluding
* ABDs which don't own their data (for instance the ones which were
* allocated through abd_get_offset()).
*/
{ "scatter_cnt", KSTAT_DATA_UINT64 },
/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
{ "scatter_data_size", KSTAT_DATA_UINT64 },
/*
* The amount of space wasted at the end of the last chunk across all
* scatter ABDs tracked by scatter_cnt.
*/
{ "scatter_chunk_waste", KSTAT_DATA_UINT64 },
/*
* The number of compound allocations of a given order. These
* allocations are spread over all currently allocated ABDs, and
* act as a measure of memory fragmentation.
*/
{ { "scatter_order_N", KSTAT_DATA_UINT64 } },
/*
* The number of scatter ABDs which contain multiple chunks.
* ABDs are preferentially allocated from the minimum number of
* contiguous multi-page chunks, a single chunk is optimal.
*/
{ "scatter_page_multi_chunk", KSTAT_DATA_UINT64 },
/*
* The number of scatter ABDs which are split across memory zones.
* ABDs are preferentially allocated using pages from a single zone.
*/
{ "scatter_page_multi_zone", KSTAT_DATA_UINT64 },
/*
* The total number of retries encountered when attempting to
* allocate the pages to populate the scatter ABD.
*/
{ "scatter_page_alloc_retry", KSTAT_DATA_UINT64 },
/*
* The total number of retries encountered when attempting to
* allocate the sg table for an ABD.
*/
{ "scatter_sg_table_retry", KSTAT_DATA_UINT64 },
};
#define ABDSTAT(stat) (abd_stats.stat.value.ui64)
#define ABDSTAT_INCR(stat, val) \
atomic_add_64(&abd_stats.stat.value.ui64, (val))
#define ABDSTAT_BUMP(stat) ABDSTAT_INCR(stat, 1)
#define ABDSTAT_BUMPDOWN(stat) ABDSTAT_INCR(stat, -1)
#define ABD_SCATTER(abd) (abd->abd_u.abd_scatter)
#define ABD_BUF(abd) (abd->abd_u.abd_linear.abd_buf)
#define abd_for_each_sg(abd, sg, n, i) \
for_each_sg(ABD_SCATTER(abd).abd_sgl, sg, n, i)
/* see block comment above for description */
int zfs_abd_scatter_enabled = B_TRUE;
unsigned zfs_abd_scatter_max_order = MAX_ORDER - 1;
static kmem_cache_t *abd_cache = NULL;
static kstat_t *abd_ksp;
static inline size_t
abd_chunkcnt_for_bytes(size_t size)
{
return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
}
#ifdef _KERNEL
#ifndef CONFIG_HIGHMEM
#ifndef __GFP_RECLAIM
#define __GFP_RECLAIM __GFP_WAIT
#endif
static unsigned long
abd_alloc_chunk(int nid, gfp_t gfp, unsigned int order)
{
struct page *page;
page = alloc_pages_node(nid, gfp, order);
if (!page)
return (0);
return ((unsigned long) page_address(page));
}
/*
* The goal is to minimize fragmentation by preferentially populating ABDs
* with higher order compound pages from a single zone. Allocation size is
* progressively decreased until it can be satisfied without performing
* reclaim or compaction. When necessary this function will degenerate to
* allocating individual pages and allowing reclaim to satisfy allocations.
*/
static void
abd_alloc_pages(abd_t *abd, size_t size)
{
struct list_head pages;
struct sg_table table;
struct scatterlist *sg;
struct page *page, *tmp_page;
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
gfp_t gfp_comp = (gfp | __GFP_NORETRY | __GFP_COMP) & ~__GFP_RECLAIM;
int max_order = MIN(zfs_abd_scatter_max_order, MAX_ORDER - 1);
int nr_pages = abd_chunkcnt_for_bytes(size);
int chunks = 0, zones = 0;
size_t remaining_size;
int nid = NUMA_NO_NODE;
int alloc_pages = 0;
int order;
INIT_LIST_HEAD(&pages);
while (alloc_pages < nr_pages) {
unsigned long paddr;
unsigned chunk_pages;
order = MIN(highbit64(nr_pages - alloc_pages) - 1, max_order);
chunk_pages = (1U << order);
paddr = abd_alloc_chunk(nid, order ? gfp_comp : gfp, order);
if (paddr == 0) {
if (order == 0) {
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
schedule_timeout_interruptible(1);
} else {
max_order = MAX(0, order - 1);
}
continue;
}
page = virt_to_page(paddr);
list_add_tail(&page->lru, &pages);
if ((nid != NUMA_NO_NODE) && (page_to_nid(page) != nid))
zones++;
nid = page_to_nid(page);
ABDSTAT_BUMP(abdstat_scatter_orders[order]);
chunks++;
alloc_pages += chunk_pages;
}
ASSERT3S(alloc_pages, ==, nr_pages);
while (sg_alloc_table(&table, chunks, gfp)) {
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
schedule_timeout_interruptible(1);
}
sg = table.sgl;
remaining_size = size;
list_for_each_entry_safe(page, tmp_page, &pages, lru) {
size_t sg_size = MIN(PAGESIZE << compound_order(page),
remaining_size);
sg_set_page(sg, page, sg_size, 0);
remaining_size -= sg_size;
sg = sg_next(sg);
list_del(&page->lru);
}
if (chunks > 1) {
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
if (zones) {
ABDSTAT_BUMP(abdstat_scatter_page_multi_zone);
abd->abd_flags |= ABD_FLAG_MULTI_ZONE;
}
}
ABD_SCATTER(abd).abd_sgl = table.sgl;
ABD_SCATTER(abd).abd_nents = table.nents;
}
#else
/*
* Allocate N individual pages to construct a scatter ABD. This function
* makes no attempt to request contiguous pages and requires the minimal
* number of kernel interfaces. It's designed for maximum compatibility.
*/
static void
abd_alloc_pages(abd_t *abd, size_t size)
{
struct scatterlist *sg;
struct sg_table table;
struct page *page;
gfp_t gfp = __GFP_NOWARN | GFP_NOIO;
int nr_pages = abd_chunkcnt_for_bytes(size);
int i;
while (sg_alloc_table(&table, nr_pages, gfp)) {
ABDSTAT_BUMP(abdstat_scatter_sg_table_retry);
schedule_timeout_interruptible(1);
}
ASSERT3U(table.nents, ==, nr_pages);
ABD_SCATTER(abd).abd_sgl = table.sgl;
ABD_SCATTER(abd).abd_nents = nr_pages;
abd_for_each_sg(abd, sg, nr_pages, i) {
while ((page = __page_cache_alloc(gfp)) == NULL) {
ABDSTAT_BUMP(abdstat_scatter_page_alloc_retry);
schedule_timeout_interruptible(1);
}
ABDSTAT_BUMP(abdstat_scatter_orders[0]);
sg_set_page(sg, page, PAGESIZE, 0);
}
if (nr_pages > 1) {
ABDSTAT_BUMP(abdstat_scatter_page_multi_chunk);
abd->abd_flags |= ABD_FLAG_MULTI_CHUNK;
}
}
#endif /* !CONFIG_HIGHMEM */
static void
abd_free_pages(abd_t *abd)
{
struct scatterlist *sg;
struct sg_table table;
struct page *page;
int nr_pages = ABD_SCATTER(abd).abd_nents;
int order, i;
if (abd->abd_flags & ABD_FLAG_MULTI_ZONE)
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_zone);
if (abd->abd_flags & ABD_FLAG_MULTI_CHUNK)
ABDSTAT_BUMPDOWN(abdstat_scatter_page_multi_chunk);
abd_for_each_sg(abd, sg, nr_pages, i) {
page = sg_page(sg);
order = compound_order(page);
__free_pages(page, order);
ASSERT3U(sg->length, <=, PAGE_SIZE << order);
ABDSTAT_BUMPDOWN(abdstat_scatter_orders[order]);
}
table.sgl = ABD_SCATTER(abd).abd_sgl;
table.nents = table.orig_nents = nr_pages;
sg_free_table(&table);
}
#else /* _KERNEL */
#ifndef PAGE_SHIFT
#define PAGE_SHIFT (highbit64(PAGESIZE)-1)
#endif
struct page;
#define kpm_enable 1
#define abd_alloc_chunk(o) \
((struct page *)umem_alloc_aligned(PAGESIZE << (o), 64, KM_SLEEP))
#define abd_free_chunk(chunk, o) umem_free(chunk, PAGESIZE << (o))
#define zfs_kmap_atomic(chunk, km) ((void *)chunk)
#define zfs_kunmap_atomic(addr, km) do { (void)(addr); } while (0)
#define local_irq_save(flags) do { (void)(flags); } while (0)
#define local_irq_restore(flags) do { (void)(flags); } while (0)
#define nth_page(pg, i) \
((struct page *)((void *)(pg) + (i) * PAGESIZE))
struct scatterlist {
struct page *page;
int length;
int end;
};
static void
sg_init_table(struct scatterlist *sg, int nr)
{
memset(sg, 0, nr * sizeof (struct scatterlist));
sg[nr - 1].end = 1;
}
#define for_each_sg(sgl, sg, nr, i) \
for ((i) = 0, (sg) = (sgl); (i) < (nr); (i)++, (sg) = sg_next(sg))
static inline void
sg_set_page(struct scatterlist *sg, struct page *page, unsigned int len,
unsigned int offset)
{
/* currently we don't use offset */
ASSERT(offset == 0);
sg->page = page;
sg->length = len;
}
static inline struct page *
sg_page(struct scatterlist *sg)
{
return (sg->page);
}
static inline struct scatterlist *
sg_next(struct scatterlist *sg)
{
if (sg->end)
return (NULL);
return (sg + 1);
}
static void
abd_alloc_pages(abd_t *abd, size_t size)
{
unsigned nr_pages = abd_chunkcnt_for_bytes(size);
struct scatterlist *sg;
int i;
ABD_SCATTER(abd).abd_sgl = vmem_alloc(nr_pages *
sizeof (struct scatterlist), KM_SLEEP);
sg_init_table(ABD_SCATTER(abd).abd_sgl, nr_pages);
abd_for_each_sg(abd, sg, nr_pages, i) {
struct page *p = abd_alloc_chunk(0);
sg_set_page(sg, p, PAGESIZE, 0);
}
ABD_SCATTER(abd).abd_nents = nr_pages;
}
static void
abd_free_pages(abd_t *abd)
{
int i, n = ABD_SCATTER(abd).abd_nents;
struct scatterlist *sg;
int j;
abd_for_each_sg(abd, sg, n, i) {
for (j = 0; j < sg->length; j += PAGESIZE) {
struct page *p = nth_page(sg_page(sg), j>>PAGE_SHIFT);
abd_free_chunk(p, 0);
}
}
vmem_free(ABD_SCATTER(abd).abd_sgl, n * sizeof (struct scatterlist));
}
#endif /* _KERNEL */
void
abd_init(void)
{
int i;
abd_cache = kmem_cache_create("abd_t", sizeof (abd_t),
0, NULL, NULL, NULL, NULL, NULL, 0);
abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (abd_ksp != NULL) {
abd_ksp->ks_data = &abd_stats;
kstat_install(abd_ksp);
for (i = 0; i < MAX_ORDER; i++) {
snprintf(abd_stats.abdstat_scatter_orders[i].name,
KSTAT_STRLEN, "scatter_order_%d", i);
abd_stats.abdstat_scatter_orders[i].data_type =
KSTAT_DATA_UINT64;
}
}
}
void
abd_fini(void)
{
if (abd_ksp != NULL) {
kstat_delete(abd_ksp);
abd_ksp = NULL;
}
if (abd_cache) {
kmem_cache_destroy(abd_cache);
abd_cache = NULL;
}
}
static inline void
abd_verify(abd_t *abd)
{
ASSERT3U(abd->abd_size, >, 0);
ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
ABD_FLAG_MULTI_CHUNK));
IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
if (abd_is_linear(abd)) {
ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL);
} else {
size_t n;
int i;
struct scatterlist *sg;
ASSERT3U(ABD_SCATTER(abd).abd_nents, >, 0);
ASSERT3U(ABD_SCATTER(abd).abd_offset, <,
ABD_SCATTER(abd).abd_sgl->length);
n = ABD_SCATTER(abd).abd_nents;
abd_for_each_sg(abd, sg, n, i) {
ASSERT3P(sg_page(sg), !=, NULL);
}
}
}
static inline abd_t *
abd_alloc_struct(void)
{
abd_t *abd = kmem_cache_alloc(abd_cache, KM_PUSHPAGE);
ASSERT3P(abd, !=, NULL);
ABDSTAT_INCR(abdstat_struct_size, sizeof (abd_t));
return (abd);
}
static inline void
abd_free_struct(abd_t *abd)
{
kmem_cache_free(abd_cache, abd);
ABDSTAT_INCR(abdstat_struct_size, -sizeof (abd_t));
}
/*
* Allocate an ABD, along with its own underlying data buffers. Use this if you
* don't care whether the ABD is linear or not.
*/
abd_t *
abd_alloc(size_t size, boolean_t is_metadata)
{
abd_t *abd;
if (!zfs_abd_scatter_enabled || size <= PAGESIZE)
return (abd_alloc_linear(size, is_metadata));
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
abd = abd_alloc_struct();
abd->abd_flags = ABD_FLAG_OWNER;
abd_alloc_pages(abd, size);
if (is_metadata) {
abd->abd_flags |= ABD_FLAG_META;
}
abd->abd_size = size;
abd->abd_parent = NULL;
refcount_create(&abd->abd_children);
abd->abd_u.abd_scatter.abd_offset = 0;
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, size);
ABDSTAT_INCR(abdstat_scatter_chunk_waste,
P2ROUNDUP(size, PAGESIZE) - size);
return (abd);
}
static void
abd_free_scatter(abd_t *abd)
{
abd_free_pages(abd);
refcount_destroy(&abd->abd_children);
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
ABDSTAT_INCR(abdstat_scatter_chunk_waste,
abd->abd_size - P2ROUNDUP(abd->abd_size, PAGESIZE));
abd_free_struct(abd);
}
/*
* Allocate an ABD that must be linear, along with its own underlying data
* buffer. Only use this when it would be very annoying to write your ABD
* consumer with a scattered ABD.
*/
abd_t *
abd_alloc_linear(size_t size, boolean_t is_metadata)
{
abd_t *abd = abd_alloc_struct();
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
if (is_metadata) {
abd->abd_flags |= ABD_FLAG_META;
}
abd->abd_size = size;
abd->abd_parent = NULL;
refcount_create(&abd->abd_children);
if (is_metadata) {
abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size);
} else {
abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size);
}
ABDSTAT_BUMP(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, size);
return (abd);
}
static void
abd_free_linear(abd_t *abd)
{
if (abd->abd_flags & ABD_FLAG_META) {
zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
} else {
zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
}
refcount_destroy(&abd->abd_children);
ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
abd_free_struct(abd);
}
/*
* Free an ABD. Only use this on ABDs allocated with abd_alloc() or
* abd_alloc_linear().
*/
void
abd_free(abd_t *abd)
{
abd_verify(abd);
ASSERT3P(abd->abd_parent, ==, NULL);
ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
if (abd_is_linear(abd))
abd_free_linear(abd);
else
abd_free_scatter(abd);
}
/*
* Allocate an ABD of the same format (same metadata flag, same scatterize
* setting) as another ABD.
*/
abd_t *
abd_alloc_sametype(abd_t *sabd, size_t size)
{
boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
if (abd_is_linear(sabd)) {
return (abd_alloc_linear(size, is_metadata));
} else {
return (abd_alloc(size, is_metadata));
}
}
/*
* If we're going to use this ABD for doing I/O using the block layer, the
* consumer of the ABD data doesn't care if it's scattered or not, and we don't
* plan to store this ABD in memory for a long period of time, we should
* allocate the ABD type that requires the least data copying to do the I/O.
*
* On Illumos this is linear ABDs, however if ldi_strategy() can ever issue I/Os
* using a scatter/gather list we should switch to that and replace this call
* with vanilla abd_alloc().
*
* On Linux the optimal thing to do would be to use abd_get_offset() and
* construct a new ABD which shares the original pages thereby eliminating
* the copy. But for the moment a new linear ABD is allocated until this
* performance optimization can be implemented.
*/
abd_t *
abd_alloc_for_io(size_t size, boolean_t is_metadata)
{
return (abd_alloc(size, is_metadata));
}
/*
* Allocate a new ABD to point to offset off of sabd. It shares the underlying
* buffer data with sabd. Use abd_put() to free. sabd must not be freed while
* any derived ABDs exist.
*/
static inline abd_t *
abd_get_offset_impl(abd_t *sabd, size_t off, size_t size)
{
abd_t *abd;
abd_verify(sabd);
ASSERT3U(off, <=, sabd->abd_size);
if (abd_is_linear(sabd)) {
abd = abd_alloc_struct();
/*
* Even if this buf is filesystem metadata, we only track that
* if we own the underlying data buffer, which is not true in
* this case. Therefore, we don't ever use ABD_FLAG_META here.
*/
abd->abd_flags = ABD_FLAG_LINEAR;
abd->abd_u.abd_linear.abd_buf =
(char *)sabd->abd_u.abd_linear.abd_buf + off;
} else {
int i;
struct scatterlist *sg;
size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off;
abd = abd_alloc_struct();
/*
* Even if this buf is filesystem metadata, we only track that
* if we own the underlying data buffer, which is not true in
* this case. Therefore, we don't ever use ABD_FLAG_META here.
*/
abd->abd_flags = 0;
abd_for_each_sg(sabd, sg, ABD_SCATTER(sabd).abd_nents, i) {
if (new_offset < sg->length)
break;
new_offset -= sg->length;
}
ABD_SCATTER(abd).abd_sgl = sg;
ABD_SCATTER(abd).abd_offset = new_offset;
ABD_SCATTER(abd).abd_nents = ABD_SCATTER(sabd).abd_nents - i;
}
abd->abd_size = size;
abd->abd_parent = sabd;
refcount_create(&abd->abd_children);
(void) refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
return (abd);
}
abd_t *
abd_get_offset(abd_t *sabd, size_t off)
{
size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
VERIFY3U(size, >, 0);
return (abd_get_offset_impl(sabd, off, size));
}
abd_t *
abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
{
ASSERT3U(off + size, <=, sabd->abd_size);
return (abd_get_offset_impl(sabd, off, size));
}
/*
* Allocate a linear ABD structure for buf. You must free this with abd_put()
* since the resulting ABD doesn't own its own buffer.
*/
abd_t *
abd_get_from_buf(void *buf, size_t size)
{
abd_t *abd = abd_alloc_struct();
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
/*
* Even if this buf is filesystem metadata, we only track that if we
* own the underlying data buffer, which is not true in this case.
* Therefore, we don't ever use ABD_FLAG_META here.
*/
abd->abd_flags = ABD_FLAG_LINEAR;
abd->abd_size = size;
abd->abd_parent = NULL;
refcount_create(&abd->abd_children);
abd->abd_u.abd_linear.abd_buf = buf;
return (abd);
}
/*
* Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not
* free the underlying scatterlist or buffer.
*/
void
abd_put(abd_t *abd)
{
abd_verify(abd);
ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
if (abd->abd_parent != NULL) {
(void) refcount_remove_many(&abd->abd_parent->abd_children,
abd->abd_size, abd);
}
refcount_destroy(&abd->abd_children);
abd_free_struct(abd);
}
/*
* Get the raw buffer associated with a linear ABD.
*/
void *
abd_to_buf(abd_t *abd)
{
ASSERT(abd_is_linear(abd));
abd_verify(abd);
return (abd->abd_u.abd_linear.abd_buf);
}
/*
* Borrow a raw buffer from an ABD without copying the contents of the ABD
* into the buffer. If the ABD is scattered, this will allocate a raw buffer
* whose contents are undefined. To copy over the existing data in the ABD, use
* abd_borrow_buf_copy() instead.
*/
void *
abd_borrow_buf(abd_t *abd, size_t n)
{
void *buf;
abd_verify(abd);
ASSERT3U(abd->abd_size, >=, n);
if (abd_is_linear(abd)) {
buf = abd_to_buf(abd);
} else {
buf = zio_buf_alloc(n);
}
(void) refcount_add_many(&abd->abd_children, n, buf);
return (buf);
}
void *
abd_borrow_buf_copy(abd_t *abd, size_t n)
{
void *buf = abd_borrow_buf(abd, n);
if (!abd_is_linear(abd)) {
abd_copy_to_buf(buf, abd, n);
}
return (buf);
}
/*
* Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
* not change the contents of the ABD and will ASSERT that you didn't modify
* the buffer since it was borrowed. If you want any changes you made to buf to
* be copied back to abd, use abd_return_buf_copy() instead.
*/
void
abd_return_buf(abd_t *abd, void *buf, size_t n)
{
abd_verify(abd);
ASSERT3U(abd->abd_size, >=, n);
if (abd_is_linear(abd)) {
ASSERT3P(buf, ==, abd_to_buf(abd));
} else {
ASSERT0(abd_cmp_buf(abd, buf, n));
zio_buf_free(buf, n);
}
(void) refcount_remove_many(&abd->abd_children, n, buf);
}
void
abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
{
if (!abd_is_linear(abd)) {
abd_copy_from_buf(abd, buf, n);
}
abd_return_buf(abd, buf, n);
}
/*
* Give this ABD ownership of the buffer that it's storing. Can only be used on
* linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
* with abd_alloc_linear() which subsequently released ownership of their buf
* with abd_release_ownership_of_buf().
*/
void
abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
{
ASSERT(abd_is_linear(abd));
ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
abd_verify(abd);
abd->abd_flags |= ABD_FLAG_OWNER;
if (is_metadata) {
abd->abd_flags |= ABD_FLAG_META;
}
ABDSTAT_BUMP(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
}
void
abd_release_ownership_of_buf(abd_t *abd)
{
ASSERT(abd_is_linear(abd));
ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
abd_verify(abd);
abd->abd_flags &= ~ABD_FLAG_OWNER;
/* Disable this flag since we no longer own the data buffer */
abd->abd_flags &= ~ABD_FLAG_META;
ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
}
#ifndef HAVE_1ARG_KMAP_ATOMIC
#define NR_KM_TYPE (6)
#ifdef _KERNEL
int km_table[NR_KM_TYPE] = {
KM_USER0,
KM_USER1,
KM_BIO_SRC_IRQ,
KM_BIO_DST_IRQ,
KM_PTE0,
KM_PTE1,
};
#endif
#endif
struct abd_iter {
/* public interface */
void *iter_mapaddr; /* addr corresponding to iter_pos */
size_t iter_mapsize; /* length of data valid at mapaddr */
/* private */
abd_t *iter_abd; /* ABD being iterated through */
size_t iter_pos;
size_t iter_offset; /* offset in current sg/abd_buf, */
/* abd_offset included */
struct scatterlist *iter_sg; /* current sg */
#ifndef HAVE_1ARG_KMAP_ATOMIC
int iter_km; /* KM_* for kmap_atomic */
#endif
};
/*
* Initialize the abd_iter.
*/
static void
abd_iter_init(struct abd_iter *aiter, abd_t *abd, int km_type)
{
abd_verify(abd);
aiter->iter_abd = abd;
aiter->iter_mapaddr = NULL;
aiter->iter_mapsize = 0;
aiter->iter_pos = 0;
if (abd_is_linear(abd)) {
aiter->iter_offset = 0;
aiter->iter_sg = NULL;
} else {
aiter->iter_offset = ABD_SCATTER(abd).abd_offset;
aiter->iter_sg = ABD_SCATTER(abd).abd_sgl;
}
#ifndef HAVE_1ARG_KMAP_ATOMIC
ASSERT3U(km_type, <, NR_KM_TYPE);
aiter->iter_km = km_type;
#endif
}
/*
* Advance the iterator by a certain amount. Cannot be called when a chunk is
* in use. This can be safely called when the aiter has already exhausted, in
* which case this does nothing.
*/
static void
abd_iter_advance(struct abd_iter *aiter, size_t amount)
{
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
/* There's nothing left to advance to, so do nothing */
if (aiter->iter_pos == aiter->iter_abd->abd_size)
return;
aiter->iter_pos += amount;
aiter->iter_offset += amount;
if (!abd_is_linear(aiter->iter_abd)) {
while (aiter->iter_offset >= aiter->iter_sg->length) {
aiter->iter_offset -= aiter->iter_sg->length;
aiter->iter_sg = sg_next(aiter->iter_sg);
if (aiter->iter_sg == NULL) {
ASSERT0(aiter->iter_offset);
break;
}
}
}
}
/*
* Map the current chunk into aiter. This can be safely called when the aiter
* has already exhausted, in which case this does nothing.
*/
static void
abd_iter_map(struct abd_iter *aiter)
{
void *paddr;
size_t offset = 0;
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
/* There's nothing left to iterate over, so do nothing */
if (aiter->iter_pos == aiter->iter_abd->abd_size)
return;
if (abd_is_linear(aiter->iter_abd)) {
ASSERT3U(aiter->iter_pos, ==, aiter->iter_offset);
offset = aiter->iter_offset;
aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf;
} else {
offset = aiter->iter_offset;
aiter->iter_mapsize = MIN(aiter->iter_sg->length - offset,
aiter->iter_abd->abd_size - aiter->iter_pos);
paddr = zfs_kmap_atomic(sg_page(aiter->iter_sg),
km_table[aiter->iter_km]);
}
aiter->iter_mapaddr = (char *)paddr + offset;
}
/*
* Unmap the current chunk from aiter. This can be safely called when the aiter
* has already exhausted, in which case this does nothing.
*/
static void
abd_iter_unmap(struct abd_iter *aiter)
{
/* There's nothing left to unmap, so do nothing */
if (aiter->iter_pos == aiter->iter_abd->abd_size)
return;
if (!abd_is_linear(aiter->iter_abd)) {
/* LINTED E_FUNC_SET_NOT_USED */
zfs_kunmap_atomic(aiter->iter_mapaddr - aiter->iter_offset,
km_table[aiter->iter_km]);
}
ASSERT3P(aiter->iter_mapaddr, !=, NULL);
ASSERT3U(aiter->iter_mapsize, >, 0);
aiter->iter_mapaddr = NULL;
aiter->iter_mapsize = 0;
}
int
abd_iterate_func(abd_t *abd, size_t off, size_t size,
abd_iter_func_t *func, void *private)
{
int ret = 0;
struct abd_iter aiter;
abd_verify(abd);
ASSERT3U(off + size, <=, abd->abd_size);
abd_iter_init(&aiter, abd, 0);
abd_iter_advance(&aiter, off);
while (size > 0) {
size_t len;
abd_iter_map(&aiter);
len = MIN(aiter.iter_mapsize, size);
ASSERT3U(len, >, 0);
ret = func(aiter.iter_mapaddr, len, private);
abd_iter_unmap(&aiter);
if (ret != 0)
break;
size -= len;
abd_iter_advance(&aiter, len);
}
return (ret);
}
struct buf_arg {
void *arg_buf;
};
static int
abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
{
struct buf_arg *ba_ptr = private;
(void) memcpy(ba_ptr->arg_buf, buf, size);
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
return (0);
}
/*
* Copy abd to buf. (off is the offset in abd.)
*/
void
abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
{
struct buf_arg ba_ptr = { buf };
(void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
&ba_ptr);
}
static int
abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
{
int ret;
struct buf_arg *ba_ptr = private;
ret = memcmp(buf, ba_ptr->arg_buf, size);
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
return (ret);
}
/*
* Compare the contents of abd to buf. (off is the offset in abd.)
*/
int
abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
{
struct buf_arg ba_ptr = { (void *) buf };
return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
}
static int
abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
{
struct buf_arg *ba_ptr = private;
(void) memcpy(buf, ba_ptr->arg_buf, size);
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
return (0);
}
/*
* Copy from buf to abd. (off is the offset in abd.)
*/
void
abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
{
struct buf_arg ba_ptr = { (void *) buf };
(void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
&ba_ptr);
}
/*ARGSUSED*/
static int
abd_zero_off_cb(void *buf, size_t size, void *private)
{
(void) memset(buf, 0, size);
return (0);
}
/*
* Zero out the abd from a particular offset to the end.
*/
void
abd_zero_off(abd_t *abd, size_t off, size_t size)
{
(void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
}
/*
* Iterate over two ABDs and call func incrementally on the two ABDs' data in
* equal-sized chunks (passed to func as raw buffers). func could be called many
* times during this iteration.
*/
int
abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
size_t size, abd_iter_func2_t *func, void *private)
{
int ret = 0;
struct abd_iter daiter, saiter;
abd_verify(dabd);
abd_verify(sabd);
ASSERT3U(doff + size, <=, dabd->abd_size);
ASSERT3U(soff + size, <=, sabd->abd_size);
abd_iter_init(&daiter, dabd, 0);
abd_iter_init(&saiter, sabd, 1);
abd_iter_advance(&daiter, doff);
abd_iter_advance(&saiter, soff);
while (size > 0) {
size_t dlen, slen, len;
abd_iter_map(&daiter);
abd_iter_map(&saiter);
dlen = MIN(daiter.iter_mapsize, size);
slen = MIN(saiter.iter_mapsize, size);
len = MIN(dlen, slen);
ASSERT(dlen > 0 || slen > 0);
ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
private);
abd_iter_unmap(&saiter);
abd_iter_unmap(&daiter);
if (ret != 0)
break;
size -= len;
abd_iter_advance(&daiter, len);
abd_iter_advance(&saiter, len);
}
return (ret);
}
/*ARGSUSED*/
static int
abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
{
(void) memcpy(dbuf, sbuf, size);
return (0);
}
/*
* Copy from sabd to dabd starting from soff and doff.
*/
void
abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
{
(void) abd_iterate_func2(dabd, sabd, doff, soff, size,
abd_copy_off_cb, NULL);
}
/*ARGSUSED*/
static int
abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
{
return (memcmp(bufa, bufb, size));
}
/*
* Compares the contents of two ABDs.
*/
int
abd_cmp(abd_t *dabd, abd_t *sabd)
{
ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
abd_cmp_cb, NULL));
}
/*
* Iterate over code ABDs and a data ABD and call @func_raidz_gen.
*
* @cabds parity ABDs, must have equal size
* @dabd data ABD. Can be NULL (in this case @dsize = 0)
* @func_raidz_gen should be implemented so that its behaviour
* is the same when taking linear and when taking scatter
*/
void
abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd,
ssize_t csize, ssize_t dsize, const unsigned parity,
void (*func_raidz_gen)(void **, const void *, size_t, size_t))
{
int i;
ssize_t len, dlen;
struct abd_iter caiters[3];
struct abd_iter daiter = {0};
void *caddrs[3];
unsigned long flags;
ASSERT3U(parity, <=, 3);
for (i = 0; i < parity; i++)
abd_iter_init(&caiters[i], cabds[i], i);
if (dabd)
abd_iter_init(&daiter, dabd, i);
ASSERT3S(dsize, >=, 0);
local_irq_save(flags);
while (csize > 0) {
len = csize;
if (dabd && dsize > 0)
abd_iter_map(&daiter);
for (i = 0; i < parity; i++) {
abd_iter_map(&caiters[i]);
caddrs[i] = caiters[i].iter_mapaddr;
}
switch (parity) {
case 3:
len = MIN(caiters[2].iter_mapsize, len);
case 2:
len = MIN(caiters[1].iter_mapsize, len);
case 1:
len = MIN(caiters[0].iter_mapsize, len);
}
/* must be progressive */
ASSERT3S(len, >, 0);
if (dabd && dsize > 0) {
/* this needs precise iter.length */
len = MIN(daiter.iter_mapsize, len);
dlen = len;
} else
dlen = 0;
/* must be progressive */
ASSERT3S(len, >, 0);
/*
* The iterated function likely will not do well if each
* segment except the last one is not multiple of 512 (raidz).
*/
ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen);
for (i = parity-1; i >= 0; i--) {
abd_iter_unmap(&caiters[i]);
abd_iter_advance(&caiters[i], len);
}
if (dabd && dsize > 0) {
abd_iter_unmap(&daiter);
abd_iter_advance(&daiter, dlen);
dsize -= dlen;
}
csize -= len;
ASSERT3S(dsize, >=, 0);
ASSERT3S(csize, >=, 0);
}
local_irq_restore(flags);
}
/*
* Iterate over code ABDs and data reconstruction target ABDs and call
* @func_raidz_rec. Function maps at most 6 pages atomically.
*
* @cabds parity ABDs, must have equal size
* @tabds rec target ABDs, at most 3
* @tsize size of data target columns
* @func_raidz_rec expects syndrome data in target columns. Function
* reconstructs data and overwrites target columns.
*/
void
abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
ssize_t tsize, const unsigned parity,
void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
const unsigned *mul),
const unsigned *mul)
{
int i;
ssize_t len;
struct abd_iter citers[3];
struct abd_iter xiters[3];
void *caddrs[3], *xaddrs[3];
unsigned long flags;
ASSERT3U(parity, <=, 3);
for (i = 0; i < parity; i++) {
abd_iter_init(&citers[i], cabds[i], 2*i);
abd_iter_init(&xiters[i], tabds[i], 2*i+1);
}
local_irq_save(flags);
while (tsize > 0) {
for (i = 0; i < parity; i++) {
abd_iter_map(&citers[i]);
abd_iter_map(&xiters[i]);
caddrs[i] = citers[i].iter_mapaddr;
xaddrs[i] = xiters[i].iter_mapaddr;
}
len = tsize;
switch (parity) {
case 3:
len = MIN(xiters[2].iter_mapsize, len);
len = MIN(citers[2].iter_mapsize, len);
case 2:
len = MIN(xiters[1].iter_mapsize, len);
len = MIN(citers[1].iter_mapsize, len);
case 1:
len = MIN(xiters[0].iter_mapsize, len);
len = MIN(citers[0].iter_mapsize, len);
}
/* must be progressive */
ASSERT3S(len, >, 0);
/*
* The iterated function likely will not do well if each
* segment except the last one is not multiple of 512 (raidz).
*/
ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
func_raidz_rec(xaddrs, len, caddrs, mul);
for (i = parity-1; i >= 0; i--) {
abd_iter_unmap(&xiters[i]);
abd_iter_unmap(&citers[i]);
abd_iter_advance(&xiters[i], len);
abd_iter_advance(&citers[i], len);
}
tsize -= len;
ASSERT3S(tsize, >=, 0);
}
local_irq_restore(flags);
}
#if defined(_KERNEL) && defined(HAVE_SPL)
/*
* bio_nr_pages for ABD.
* @off is the offset in @abd
*/
unsigned long
abd_nr_pages_off(abd_t *abd, unsigned int size, size_t off)
{
unsigned long pos;
if (abd_is_linear(abd))
pos = (unsigned long)abd_to_buf(abd) + off;
else
pos = abd->abd_u.abd_scatter.abd_offset + off;
return ((pos + size + PAGESIZE - 1) >> PAGE_SHIFT) -
(pos >> PAGE_SHIFT);
}
/*
* bio_map for scatter ABD.
* @off is the offset in @abd
* Remaining IO size is returned
*/
unsigned int
abd_scatter_bio_map_off(struct bio *bio, abd_t *abd,
unsigned int io_size, size_t off)
{
int i;
struct abd_iter aiter;
ASSERT(!abd_is_linear(abd));
ASSERT3U(io_size, <=, abd->abd_size - off);
abd_iter_init(&aiter, abd, 0);
abd_iter_advance(&aiter, off);
for (i = 0; i < bio->bi_max_vecs; i++) {
struct page *pg;
size_t len, sgoff, pgoff;
struct scatterlist *sg;
if (io_size <= 0)
break;
sg = aiter.iter_sg;
sgoff = aiter.iter_offset;
pgoff = sgoff & (PAGESIZE - 1);
len = MIN(io_size, PAGESIZE - pgoff);
ASSERT(len > 0);
pg = nth_page(sg_page(sg), sgoff >> PAGE_SHIFT);
if (bio_add_page(bio, pg, len, pgoff) != len)
break;
io_size -= len;
abd_iter_advance(&aiter, len);
}
return (io_size);
}
/* Tunable Parameters */
module_param(zfs_abd_scatter_enabled, int, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_enabled,
"Toggle whether ABD allocations must be linear.");
/* CSTYLED */
module_param(zfs_abd_scatter_max_order, uint, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_max_order,
"Maximum order allocation used for a scatter ABD.");
#endif