mirror_zfs/module/zfs/abd.c

1009 lines
27 KiB
C
Raw Normal View History

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
* Copyright (c) 2016 by Delphix. All rights reserved.
*/
/*
* ARC buffer data (ABD).
*
* ABDs are an abstract data structure for the ARC which can use two
* different ways of storing the underlying data:
*
* (a) Linear buffer. In this case, all the data in the ABD is stored in one
* contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
*
* +-------------------+
* | ABD (linear) |
* | abd_flags = ... |
* | abd_size = ... | +--------------------------------+
* | abd_buf ------------->| raw buffer of size abd_size |
* +-------------------+ +--------------------------------+
* no abd_chunks
*
* (b) Scattered buffer. In this case, the data in the ABD is split into
* equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
* to the chunks recorded in an array at the end of the ABD structure.
*
* +-------------------+
* | ABD (scattered) |
* | abd_flags = ... |
* | abd_size = ... |
* | abd_offset = 0 | +-----------+
* | abd_chunks[0] ----------------------------->| chunk 0 |
* | abd_chunks[1] ---------------------+ +-----------+
* | ... | | +-----------+
* | abd_chunks[N-1] ---------+ +------->| chunk 1 |
* +-------------------+ | +-----------+
* | ...
* | +-----------+
* +----------------->| chunk N-1 |
* +-----------+
*
* Linear buffers act exactly like normal buffers and are always mapped into the
* kernel's virtual memory space, while scattered ABD data chunks are allocated
* as physical pages and then mapped in only while they are actually being
* accessed through one of the abd_* library functions. Using scattered ABDs
* provides several benefits:
*
* (1) They avoid use of kmem_*, preventing performance problems where running
* kmem_reap on very large memory systems never finishes and causes
* constant TLB shootdowns.
*
* (2) Fragmentation is less of an issue since when we are at the limit of
* allocatable space, we won't have to search around for a long free
* hole in the VA space for large ARC allocations. Each chunk is mapped in
* individually, so even if we weren't using segkpm (see next point) we
* wouldn't need to worry about finding a contiguous address range.
*
* (3) Use of segkpm will avoid the need for map / unmap / TLB shootdown costs
* on each ABD access. (If segkpm isn't available then we use all linear
* ABDs to avoid this penalty.) See seg_kpm.c for more details.
*
* It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
* B_FALSE. However, it is not possible to use scattered ABDs if segkpm is not
* available, which is the case on all 32-bit systems and any 64-bit systems
* where kpm_enable is turned off.
*
* In addition to directly allocating a linear or scattered ABD, it is also
* possible to create an ABD by requesting the "sub-ABD" starting at an offset
* within an existing ABD. In linear buffers this is simple (set abd_buf of
* the new ABD to the starting point within the original raw buffer), but
* scattered ABDs are a little more complex. The new ABD makes a copy of the
* relevant abd_chunks pointers (but not the underlying data). However, to
* provide arbitrary rather than only chunk-aligned starting offsets, it also
* tracks an abd_offset field which represents the starting point of the data
* within the first chunk in abd_chunks. For both linear and scattered ABDs,
* creating an offset ABD marks the original ABD as the offset's parent, and the
* original ABD's abd_children refcount is incremented. This data allows us to
* ensure the root ABD isn't deleted before its children.
*
* Most consumers should never need to know what type of ABD they're using --
* the ABD public API ensures that it's possible to transparently switch from
* using a linear ABD to a scattered one when doing so would be beneficial.
*
* If you need to use the data within an ABD directly, if you know it's linear
* (because you allocated it) you can use abd_to_buf() to access the underlying
* raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
* which will allocate a raw buffer if necessary. Use the abd_return_buf*
* functions to return any raw buffers that are no longer necessary when you're
* done using them.
*
* There are a variety of ABD APIs that implement basic buffer operations:
* compare, copy, read, write, and fill with zeroes. If you need a custom
* function which progressively accesses the whole ABD, use the abd_iterate_*
* functions.
*/
#include <sys/abd.h>
#include <sys/param.h>
#include <sys/zio.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
#ifndef KMC_NOTOUCH
#define KMC_NOTOUCH 0
#endif
typedef struct abd_stats {
kstat_named_t abdstat_struct_size;
kstat_named_t abdstat_scatter_cnt;
kstat_named_t abdstat_scatter_data_size;
kstat_named_t abdstat_scatter_chunk_waste;
kstat_named_t abdstat_linear_cnt;
kstat_named_t abdstat_linear_data_size;
} abd_stats_t;
static abd_stats_t abd_stats = {
/* Amount of memory occupied by all of the abd_t struct allocations */
{ "struct_size", KSTAT_DATA_UINT64 },
/*
* The number of scatter ABDs which are currently allocated, excluding
* ABDs which don't own their data (for instance the ones which were
* allocated through abd_get_offset()).
*/
{ "scatter_cnt", KSTAT_DATA_UINT64 },
/* Amount of data stored in all scatter ABDs tracked by scatter_cnt */
{ "scatter_data_size", KSTAT_DATA_UINT64 },
/*
* The amount of space wasted at the end of the last chunk across all
* scatter ABDs tracked by scatter_cnt.
*/
{ "scatter_chunk_waste", KSTAT_DATA_UINT64 },
/*
* The number of linear ABDs which are currently allocated, excluding
* ABDs which don't own their data (for instance the ones which were
* allocated through abd_get_offset() and abd_get_from_buf()). If an
* ABD takes ownership of its buf then it will become tracked.
*/
{ "linear_cnt", KSTAT_DATA_UINT64 },
/* Amount of data stored in all linear ABDs tracked by linear_cnt */
{ "linear_data_size", KSTAT_DATA_UINT64 },
};
#define ABDSTAT(stat) (abd_stats.stat.value.ui64)
#define ABDSTAT_INCR(stat, val) \
atomic_add_64(&abd_stats.stat.value.ui64, (val))
#define ABDSTAT_BUMP(stat) ABDSTAT_INCR(stat, 1)
#define ABDSTAT_BUMPDOWN(stat) ABDSTAT_INCR(stat, -1)
/* see block comment above for description */
int zfs_abd_scatter_enabled = B_TRUE;
#ifdef _KERNEL
static kstat_t *abd_ksp;
static struct page *
abd_alloc_chunk(void)
{
struct page *c = alloc_page(kmem_flags_convert(KM_SLEEP));
ASSERT3P(c, !=, NULL);
return (c);
}
static void
abd_free_chunk(struct page *c)
{
__free_pages(c, 0);
}
static void *
abd_map_chunk(struct page *c)
{
/*
* Use of segkpm means we don't care if this is mapped S_READ or S_WRITE
* but S_WRITE is conceptually more accurate.
*/
return (kmap(c));
}
static void
abd_unmap_chunk(struct page *c)
{
kunmap(c);
}
void
abd_init(void)
{
abd_ksp = kstat_create("zfs", 0, "abdstats", "misc", KSTAT_TYPE_NAMED,
sizeof (abd_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
if (abd_ksp != NULL) {
abd_ksp->ks_data = &abd_stats;
kstat_install(abd_ksp);
}
}
void
abd_fini(void)
{
if (abd_ksp != NULL) {
kstat_delete(abd_ksp);
abd_ksp = NULL;
}
}
#else
struct page;
#define kpm_enable 1
#define abd_alloc_chunk() \
((struct page *)kmem_alloc(PAGESIZE, KM_SLEEP))
#define abd_free_chunk(chunk) kmem_free(chunk, PAGESIZE)
#define abd_map_chunk(chunk) ((void *)chunk)
static void
abd_unmap_chunk(struct page *c)
{
}
void
abd_init(void)
{
}
void
abd_fini(void)
{
}
#endif /* _KERNEL */
static inline size_t
abd_chunkcnt_for_bytes(size_t size)
{
return (P2ROUNDUP(size, PAGESIZE) / PAGESIZE);
}
static inline size_t
abd_scatter_chunkcnt(abd_t *abd)
{
ASSERT(!abd_is_linear(abd));
return (abd_chunkcnt_for_bytes(
abd->abd_u.abd_scatter.abd_offset + abd->abd_size));
}
static inline void
abd_verify(abd_t *abd)
{
ASSERT3U(abd->abd_size, >, 0);
ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
ABD_FLAG_OWNER | ABD_FLAG_META));
IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
if (abd_is_linear(abd)) {
ASSERT3P(abd->abd_u.abd_linear.abd_buf, !=, NULL);
} else {
size_t n;
int i;
ASSERT3U(abd->abd_u.abd_scatter.abd_offset, <, PAGESIZE);
n = abd_scatter_chunkcnt(abd);
for (i = 0; i < n; i++) {
ASSERT3P(
abd->abd_u.abd_scatter.abd_chunks[i], !=, NULL);
}
}
}
static inline abd_t *
abd_alloc_struct(size_t chunkcnt)
{
size_t size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]);
abd_t *abd = kmem_alloc(size, KM_PUSHPAGE);
ASSERT3P(abd, !=, NULL);
ABDSTAT_INCR(abdstat_struct_size, size);
return (abd);
}
static inline void
abd_free_struct(abd_t *abd)
{
size_t chunkcnt = abd_is_linear(abd) ? 0 : abd_scatter_chunkcnt(abd);
int size = offsetof(abd_t, abd_u.abd_scatter.abd_chunks[chunkcnt]);
kmem_free(abd, size);
ABDSTAT_INCR(abdstat_struct_size, -size);
}
/*
* Allocate an ABD, along with its own underlying data buffers. Use this if you
* don't care whether the ABD is linear or not.
*/
abd_t *
abd_alloc(size_t size, boolean_t is_metadata)
{
int i;
size_t n;
abd_t *abd;
if (!zfs_abd_scatter_enabled)
return (abd_alloc_linear(size, is_metadata));
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
n = abd_chunkcnt_for_bytes(size);
abd = abd_alloc_struct(n);
abd->abd_flags = ABD_FLAG_OWNER;
if (is_metadata) {
abd->abd_flags |= ABD_FLAG_META;
}
abd->abd_size = size;
abd->abd_parent = NULL;
refcount_create(&abd->abd_children);
abd->abd_u.abd_scatter.abd_offset = 0;
abd->abd_u.abd_scatter.abd_chunk_size = PAGESIZE;
for (i = 0; i < n; i++) {
void *c = abd_alloc_chunk();
ASSERT3P(c, !=, NULL);
abd->abd_u.abd_scatter.abd_chunks[i] = c;
}
ABDSTAT_BUMP(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, size);
ABDSTAT_INCR(abdstat_scatter_chunk_waste,
n * PAGESIZE - size);
return (abd);
}
static void
abd_free_scatter(abd_t *abd)
{
size_t n = abd_scatter_chunkcnt(abd);
int i;
for (i = 0; i < n; i++) {
abd_free_chunk(abd->abd_u.abd_scatter.abd_chunks[i]);
}
refcount_destroy(&abd->abd_children);
ABDSTAT_BUMPDOWN(abdstat_scatter_cnt);
ABDSTAT_INCR(abdstat_scatter_data_size, -(int)abd->abd_size);
ABDSTAT_INCR(abdstat_scatter_chunk_waste,
abd->abd_size - n * PAGESIZE);
abd_free_struct(abd);
}
/*
* Allocate an ABD that must be linear, along with its own underlying data
* buffer. Only use this when it would be very annoying to write your ABD
* consumer with a scattered ABD.
*/
abd_t *
abd_alloc_linear(size_t size, boolean_t is_metadata)
{
abd_t *abd = abd_alloc_struct(0);
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
abd->abd_flags = ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
if (is_metadata) {
abd->abd_flags |= ABD_FLAG_META;
}
abd->abd_size = size;
abd->abd_parent = NULL;
refcount_create(&abd->abd_children);
if (is_metadata) {
abd->abd_u.abd_linear.abd_buf = zio_buf_alloc(size);
} else {
abd->abd_u.abd_linear.abd_buf = zio_data_buf_alloc(size);
}
ABDSTAT_BUMP(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, size);
return (abd);
}
static void
abd_free_linear(abd_t *abd)
{
if (abd->abd_flags & ABD_FLAG_META) {
zio_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
} else {
zio_data_buf_free(abd->abd_u.abd_linear.abd_buf, abd->abd_size);
}
refcount_destroy(&abd->abd_children);
ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
abd_free_struct(abd);
}
/*
* Free an ABD. Only use this on ABDs allocated with abd_alloc() or
* abd_alloc_linear().
*/
void
abd_free(abd_t *abd)
{
abd_verify(abd);
ASSERT3P(abd->abd_parent, ==, NULL);
ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
if (abd_is_linear(abd))
abd_free_linear(abd);
else
abd_free_scatter(abd);
}
/*
* Allocate an ABD of the same format (same metadata flag, same scatterize
* setting) as another ABD.
*/
abd_t *
abd_alloc_sametype(abd_t *sabd, size_t size)
{
boolean_t is_metadata = (sabd->abd_flags | ABD_FLAG_META) != 0;
if (abd_is_linear(sabd)) {
return (abd_alloc_linear(size, is_metadata));
} else {
return (abd_alloc(size, is_metadata));
}
}
/*
* If we're going to use this ABD for doing I/O using the block layer, the
* consumer of the ABD data doesn't care if it's scattered or not, and we don't
* plan to store this ABD in memory for a long period of time, we should
* allocate the ABD type that requires the least data copying to do the I/O.
*
* On Illumos this is linear ABDs, however if ldi_strategy() can ever issue I/Os
* using a scatter/gather list we should switch to that and replace this call
* with vanilla abd_alloc().
*
* On Linux the optimal thing to do would be to use abd_get_offset() and
* construct a new ABD which shares the original pages thereby eliminating
* the copy. But for the moment a new linear ABD is allocated until this
* performance optimization can be implemented.
*/
abd_t *
abd_alloc_for_io(size_t size, boolean_t is_metadata)
{
return (abd_alloc_linear(size, is_metadata));
}
/*
* Allocate a new ABD to point to offset off of sabd. It shares the underlying
* buffer data with sabd. Use abd_put() to free. sabd must not be freed while
* any derived ABDs exist.
*/
abd_t *
abd_get_offset(abd_t *sabd, size_t off)
{
abd_t *abd;
abd_verify(sabd);
ASSERT3U(off, <=, sabd->abd_size);
if (abd_is_linear(sabd)) {
abd = abd_alloc_struct(0);
/*
* Even if this buf is filesystem metadata, we only track that
* if we own the underlying data buffer, which is not true in
* this case. Therefore, we don't ever use ABD_FLAG_META here.
*/
abd->abd_flags = ABD_FLAG_LINEAR;
abd->abd_u.abd_linear.abd_buf =
(char *)sabd->abd_u.abd_linear.abd_buf + off;
} else {
size_t new_offset = sabd->abd_u.abd_scatter.abd_offset + off;
size_t chunkcnt = abd_scatter_chunkcnt(sabd) -
(new_offset / PAGESIZE);
abd = abd_alloc_struct(chunkcnt);
/*
* Even if this buf is filesystem metadata, we only track that
* if we own the underlying data buffer, which is not true in
* this case. Therefore, we don't ever use ABD_FLAG_META here.
*/
abd->abd_flags = 0;
abd->abd_u.abd_scatter.abd_offset = new_offset % PAGESIZE;
abd->abd_u.abd_scatter.abd_chunk_size = PAGESIZE;
/* Copy the scatterlist starting at the correct offset */
(void) memcpy(&abd->abd_u.abd_scatter.abd_chunks,
&sabd->abd_u.abd_scatter.abd_chunks[new_offset / PAGESIZE],
chunkcnt * sizeof (void *));
}
abd->abd_size = sabd->abd_size - off;
abd->abd_parent = sabd;
refcount_create(&abd->abd_children);
(void) refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
return (abd);
}
/*
* Allocate a linear ABD structure for buf. You must free this with abd_put()
* since the resulting ABD doesn't own its own buffer.
*/
abd_t *
abd_get_from_buf(void *buf, size_t size)
{
abd_t *abd = abd_alloc_struct(0);
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
/*
* Even if this buf is filesystem metadata, we only track that if we
* own the underlying data buffer, which is not true in this case.
* Therefore, we don't ever use ABD_FLAG_META here.
*/
abd->abd_flags = ABD_FLAG_LINEAR;
abd->abd_size = size;
abd->abd_parent = NULL;
refcount_create(&abd->abd_children);
abd->abd_u.abd_linear.abd_buf = buf;
return (abd);
}
/*
* Free an ABD allocated from abd_get_offset() or abd_get_from_buf(). Will not
* free the underlying scatterlist or buffer.
*/
void
abd_put(abd_t *abd)
{
abd_verify(abd);
ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
if (abd->abd_parent != NULL) {
(void) refcount_remove_many(&abd->abd_parent->abd_children,
abd->abd_size, abd);
}
refcount_destroy(&abd->abd_children);
abd_free_struct(abd);
}
/*
* Get the raw buffer associated with a linear ABD.
*/
void *
abd_to_buf(abd_t *abd)
{
ASSERT(abd_is_linear(abd));
abd_verify(abd);
return (abd->abd_u.abd_linear.abd_buf);
}
/*
* Borrow a raw buffer from an ABD without copying the contents of the ABD
* into the buffer. If the ABD is scattered, this will allocate a raw buffer
* whose contents are undefined. To copy over the existing data in the ABD, use
* abd_borrow_buf_copy() instead.
*/
void *
abd_borrow_buf(abd_t *abd, size_t n)
{
void *buf;
abd_verify(abd);
ASSERT3U(abd->abd_size, >=, n);
if (abd_is_linear(abd)) {
buf = abd_to_buf(abd);
} else {
buf = zio_buf_alloc(n);
}
(void) refcount_add_many(&abd->abd_children, n, buf);
return (buf);
}
void *
abd_borrow_buf_copy(abd_t *abd, size_t n)
{
void *buf = abd_borrow_buf(abd, n);
if (!abd_is_linear(abd)) {
abd_copy_to_buf(buf, abd, n);
}
return (buf);
}
/*
* Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
* not change the contents of the ABD and will ASSERT that you didn't modify
* the buffer since it was borrowed. If you want any changes you made to buf to
* be copied back to abd, use abd_return_buf_copy() instead.
*/
void
abd_return_buf(abd_t *abd, void *buf, size_t n)
{
abd_verify(abd);
ASSERT3U(abd->abd_size, >=, n);
if (abd_is_linear(abd)) {
ASSERT3P(buf, ==, abd_to_buf(abd));
} else {
ASSERT0(abd_cmp_buf(abd, buf, n));
zio_buf_free(buf, n);
}
(void) refcount_remove_many(&abd->abd_children, n, buf);
}
void
abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
{
if (!abd_is_linear(abd)) {
abd_copy_from_buf(abd, buf, n);
}
abd_return_buf(abd, buf, n);
}
/*
* Give this ABD ownership of the buffer that it's storing. Can only be used on
* linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
* with abd_alloc_linear() which subsequently released ownership of their buf
* with abd_release_ownership_of_buf().
*/
void
abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
{
ASSERT(abd_is_linear(abd));
ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
abd_verify(abd);
abd->abd_flags |= ABD_FLAG_OWNER;
if (is_metadata) {
abd->abd_flags |= ABD_FLAG_META;
}
ABDSTAT_BUMP(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, abd->abd_size);
}
void
abd_release_ownership_of_buf(abd_t *abd)
{
ASSERT(abd_is_linear(abd));
ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
abd_verify(abd);
abd->abd_flags &= ~ABD_FLAG_OWNER;
/* Disable this flag since we no longer own the data buffer */
abd->abd_flags &= ~ABD_FLAG_META;
ABDSTAT_BUMPDOWN(abdstat_linear_cnt);
ABDSTAT_INCR(abdstat_linear_data_size, -(int)abd->abd_size);
}
struct abd_iter {
abd_t *iter_abd; /* ABD being iterated through */
size_t iter_pos; /* position (relative to abd_offset) */
void *iter_mapaddr; /* addr corresponding to iter_pos */
size_t iter_mapsize; /* length of data valid at mapaddr */
};
static inline size_t
abd_iter_scatter_chunk_offset(struct abd_iter *aiter)
{
ASSERT(!abd_is_linear(aiter->iter_abd));
return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset +
aiter->iter_pos) % PAGESIZE);
}
static inline size_t
abd_iter_scatter_chunk_index(struct abd_iter *aiter)
{
ASSERT(!abd_is_linear(aiter->iter_abd));
return ((aiter->iter_abd->abd_u.abd_scatter.abd_offset +
aiter->iter_pos) / PAGESIZE);
}
/*
* Initialize the abd_iter.
*/
static void
abd_iter_init(struct abd_iter *aiter, abd_t *abd)
{
abd_verify(abd);
aiter->iter_abd = abd;
aiter->iter_pos = 0;
aiter->iter_mapaddr = NULL;
aiter->iter_mapsize = 0;
}
/*
* Advance the iterator by a certain amount. Cannot be called when a chunk is
* in use. This can be safely called when the aiter has already exhausted, in
* which case this does nothing.
*/
static void
abd_iter_advance(struct abd_iter *aiter, size_t amount)
{
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
/* There's nothing left to advance to, so do nothing */
if (aiter->iter_pos == aiter->iter_abd->abd_size)
return;
aiter->iter_pos += amount;
}
/*
* Map the current chunk into aiter. This can be safely called when the aiter
* has already exhausted, in which case this does nothing.
*/
static void
abd_iter_map(struct abd_iter *aiter)
{
void *paddr;
size_t offset = 0;
ASSERT3P(aiter->iter_mapaddr, ==, NULL);
ASSERT0(aiter->iter_mapsize);
/* There's nothing left to iterate over, so do nothing */
if (aiter->iter_pos == aiter->iter_abd->abd_size)
return;
if (abd_is_linear(aiter->iter_abd)) {
offset = aiter->iter_pos;
aiter->iter_mapsize = aiter->iter_abd->abd_size - offset;
paddr = aiter->iter_abd->abd_u.abd_linear.abd_buf;
} else {
size_t index = abd_iter_scatter_chunk_index(aiter);
offset = abd_iter_scatter_chunk_offset(aiter);
aiter->iter_mapsize = PAGESIZE - offset;
paddr = abd_map_chunk(
aiter->iter_abd->abd_u.abd_scatter.abd_chunks[index]);
}
aiter->iter_mapaddr = (char *)paddr + offset;
}
/*
* Unmap the current chunk from aiter. This can be safely called when the aiter
* has already exhausted, in which case this does nothing.
*/
static void
abd_iter_unmap(struct abd_iter *aiter)
{
/* There's nothing left to unmap, so do nothing */
if (aiter->iter_pos == aiter->iter_abd->abd_size)
return;
if (!abd_is_linear(aiter->iter_abd)) {
/* LINTED E_FUNC_SET_NOT_USED */
size_t index = abd_iter_scatter_chunk_index(aiter);
abd_unmap_chunk(
aiter->iter_abd->abd_u.abd_scatter.abd_chunks[index]);
}
ASSERT3P(aiter->iter_mapaddr, !=, NULL);
ASSERT3U(aiter->iter_mapsize, >, 0);
aiter->iter_mapaddr = NULL;
aiter->iter_mapsize = 0;
}
int
abd_iterate_func(abd_t *abd, size_t off, size_t size,
abd_iter_func_t *func, void *private)
{
int ret = 0;
struct abd_iter aiter;
abd_verify(abd);
ASSERT3U(off + size, <=, abd->abd_size);
abd_iter_init(&aiter, abd);
abd_iter_advance(&aiter, off);
while (size > 0) {
size_t len;
abd_iter_map(&aiter);
len = MIN(aiter.iter_mapsize, size);
ASSERT3U(len, >, 0);
ret = func(aiter.iter_mapaddr, len, private);
abd_iter_unmap(&aiter);
if (ret != 0)
break;
size -= len;
abd_iter_advance(&aiter, len);
}
return (ret);
}
struct buf_arg {
void *arg_buf;
};
static int
abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
{
struct buf_arg *ba_ptr = private;
(void) memcpy(ba_ptr->arg_buf, buf, size);
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
return (0);
}
/*
* Copy abd to buf. (off is the offset in abd.)
*/
void
abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
{
struct buf_arg ba_ptr = { buf };
(void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
&ba_ptr);
}
static int
abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
{
int ret;
struct buf_arg *ba_ptr = private;
ret = memcmp(buf, ba_ptr->arg_buf, size);
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
return (ret);
}
/*
* Compare the contents of abd to buf. (off is the offset in abd.)
*/
int
abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
{
struct buf_arg ba_ptr = { (void *) buf };
return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
}
static int
abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
{
struct buf_arg *ba_ptr = private;
(void) memcpy(buf, ba_ptr->arg_buf, size);
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
return (0);
}
/*
* Copy from buf to abd. (off is the offset in abd.)
*/
void
abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
{
struct buf_arg ba_ptr = { (void *) buf };
(void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
&ba_ptr);
}
/*ARGSUSED*/
static int
abd_zero_off_cb(void *buf, size_t size, void *private)
{
(void) memset(buf, 0, size);
return (0);
}
/*
* Zero out the abd from a particular offset to the end.
*/
void
abd_zero_off(abd_t *abd, size_t off, size_t size)
{
(void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
}
/*
* Iterate over two ABDs and call func incrementally on the two ABDs' data in
* equal-sized chunks (passed to func as raw buffers). func could be called many
* times during this iteration.
*/
int
abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
size_t size, abd_iter_func2_t *func, void *private)
{
int ret = 0;
struct abd_iter daiter, saiter;
abd_verify(dabd);
abd_verify(sabd);
ASSERT3U(doff + size, <=, dabd->abd_size);
ASSERT3U(soff + size, <=, sabd->abd_size);
abd_iter_init(&daiter, dabd);
abd_iter_init(&saiter, sabd);
abd_iter_advance(&daiter, doff);
abd_iter_advance(&saiter, soff);
while (size > 0) {
size_t dlen, slen, len;
abd_iter_map(&daiter);
abd_iter_map(&saiter);
dlen = MIN(daiter.iter_mapsize, size);
slen = MIN(saiter.iter_mapsize, size);
len = MIN(dlen, slen);
ASSERT(dlen > 0 || slen > 0);
ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
private);
abd_iter_unmap(&saiter);
abd_iter_unmap(&daiter);
if (ret != 0)
break;
size -= len;
abd_iter_advance(&daiter, len);
abd_iter_advance(&saiter, len);
}
return (ret);
}
/*ARGSUSED*/
static int
abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
{
(void) memcpy(dbuf, sbuf, size);
return (0);
}
/*
* Copy from sabd to dabd starting from soff and doff.
*/
void
abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
{
(void) abd_iterate_func2(dabd, sabd, doff, soff, size,
abd_copy_off_cb, NULL);
}
/*ARGSUSED*/
static int
abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
{
return (memcmp(bufa, bufb, size));
}
/*
* Compares the contents of two ABDs.
*/
int
abd_cmp(abd_t *dabd, abd_t *sabd)
{
ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
abd_cmp_cb, NULL));
}
#if defined(_KERNEL) && defined(HAVE_SPL)
/* Tunable Parameters */
module_param(zfs_abd_scatter_enabled, int, 0644);
MODULE_PARM_DESC(zfs_abd_scatter_enabled,
"Toggle whether ABD allocations must be linear.");
#endif