2008-11-20 23:01:55 +03:00
|
|
|
/*
|
|
|
|
* CDDL HEADER START
|
|
|
|
*
|
|
|
|
* The contents of this file are subject to the terms of the
|
|
|
|
* Common Development and Distribution License (the "License").
|
|
|
|
* You may not use this file except in compliance with the License.
|
|
|
|
*
|
|
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
|
|
* See the License for the specific language governing permissions
|
|
|
|
* and limitations under the License.
|
|
|
|
*
|
|
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
|
|
*
|
|
|
|
* CDDL HEADER END
|
|
|
|
*/
|
2012-12-14 03:24:15 +04:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
/*
|
2010-05-29 00:45:14 +04:00
|
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
2020-05-07 19:36:33 +03:00
|
|
|
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
|
2018-09-06 04:33:36 +03:00
|
|
|
* Copyright (c) 2017, Intel Corporation.
|
2019-11-27 21:15:01 +03:00
|
|
|
* Copyright (c) 2019, Datto Inc. All rights reserved.
|
2008-11-20 23:01:55 +03:00
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _SYS_VDEV_H
|
|
|
|
#define _SYS_VDEV_H
|
|
|
|
|
|
|
|
#include <sys/spa.h>
|
|
|
|
#include <sys/zio.h>
|
|
|
|
#include <sys/dmu.h>
|
|
|
|
#include <sys/space_map.h>
|
|
|
|
#include <sys/fs/zfs.h>
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
2009-01-16 00:59:39 +03:00
|
|
|
typedef enum vdev_dtl_type {
|
|
|
|
DTL_MISSING, /* 0% replication: no copies of the data */
|
|
|
|
DTL_PARTIAL, /* less than 100% replication: some copies missing */
|
|
|
|
DTL_SCRUB, /* unable to fully repair during scrub/resilver */
|
|
|
|
DTL_OUTAGE, /* temporarily missing (used to attempt detach) */
|
|
|
|
DTL_TYPES
|
|
|
|
} vdev_dtl_type_t;
|
|
|
|
|
2011-05-04 02:09:28 +04:00
|
|
|
extern int zfs_nocacheflush;
|
2008-11-20 23:01:55 +03:00
|
|
|
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-14 00:51:51 +03:00
|
|
|
typedef boolean_t vdev_open_children_func_t(vdev_t *vd);
|
|
|
|
|
2016-03-10 18:16:02 +03:00
|
|
|
extern void vdev_dbgmsg(vdev_t *vd, const char *fmt, ...);
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 17:39:36 +03:00
|
|
|
extern void vdev_dbgmsg_print_tree(vdev_t *, int);
|
2008-11-20 23:01:55 +03:00
|
|
|
extern int vdev_open(vdev_t *);
|
2010-05-29 00:45:14 +04:00
|
|
|
extern void vdev_open_children(vdev_t *);
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-14 00:51:51 +03:00
|
|
|
extern void vdev_open_children_subset(vdev_t *, vdev_open_children_func_t *);
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 17:39:36 +03:00
|
|
|
extern int vdev_validate(vdev_t *);
|
|
|
|
extern int vdev_copy_path_strict(vdev_t *, vdev_t *);
|
|
|
|
extern void vdev_copy_path_relaxed(vdev_t *, vdev_t *);
|
2008-11-20 23:01:55 +03:00
|
|
|
extern void vdev_close(vdev_t *);
|
|
|
|
extern int vdev_create(vdev_t *, uint64_t txg, boolean_t isreplace);
|
|
|
|
extern void vdev_reopen(vdev_t *);
|
|
|
|
extern int vdev_validate_aux(vdev_t *vd);
|
2008-12-03 23:09:06 +03:00
|
|
|
extern zio_t *vdev_probe(vdev_t *vd, zio_t *pio);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
extern boolean_t vdev_is_concrete(vdev_t *vd);
|
2008-12-03 23:09:06 +03:00
|
|
|
extern boolean_t vdev_is_bootable(vdev_t *vd);
|
2008-11-20 23:01:55 +03:00
|
|
|
extern vdev_t *vdev_lookup_top(spa_t *spa, uint64_t vdev);
|
|
|
|
extern vdev_t *vdev_lookup_by_guid(vdev_t *vd, uint64_t guid);
|
2015-05-06 19:07:55 +03:00
|
|
|
extern int vdev_count_leaves(spa_t *spa);
|
2009-01-16 00:59:39 +03:00
|
|
|
extern void vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t d,
|
|
|
|
uint64_t txg, uint64_t size);
|
|
|
|
extern boolean_t vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t d,
|
|
|
|
uint64_t txg, uint64_t size);
|
|
|
|
extern boolean_t vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t d);
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-14 00:51:51 +03:00
|
|
|
extern boolean_t vdev_default_need_resilver(vdev_t *vd, const dva_t *dva,
|
|
|
|
size_t psize, uint64_t phys_birth);
|
|
|
|
extern boolean_t vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva,
|
|
|
|
size_t psize, uint64_t phys_birth);
|
2008-11-20 23:01:55 +03:00
|
|
|
extern void vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
|
2020-07-03 21:05:50 +03:00
|
|
|
boolean_t scrub_done, boolean_t rebuild_done);
|
2009-01-16 00:59:39 +03:00
|
|
|
extern boolean_t vdev_dtl_required(vdev_t *vd);
|
2008-12-03 23:09:06 +03:00
|
|
|
extern boolean_t vdev_resilver_needed(vdev_t *vd,
|
|
|
|
uint64_t *minp, uint64_t *maxp);
|
2016-04-11 23:16:57 +03:00
|
|
|
extern void vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj,
|
|
|
|
dmu_tx_t *tx);
|
|
|
|
extern uint64_t vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx);
|
|
|
|
extern void vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
extern void vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx);
|
|
|
|
extern void vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset,
|
2016-12-17 01:11:29 +03:00
|
|
|
uint64_t size);
|
OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete
This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk. The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.
The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool. An entry becomes obsolete when all the blocks that use
it are freed. An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones). Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible. This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.
Note that when a device is removed, we do not verify the checksum of
the data that is copied. This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.
At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.
Porting Notes:
* Avoid zero-sized kmem_alloc() in vdev_compact_children().
The device evacuation code adds a dependency that
vdev_compact_children() be able to properly empty the vdev_child
array by setting it to NULL and zeroing vdev_children. Under Linux,
kmem_alloc() and related functions return a sentinel pointer rather
than NULL for zero-sized allocations.
* Remove comment regarding "mpt" driver where zfs_remove_max_segment
is initialized to SPA_MAXBLOCKSIZE.
Change zfs_condense_indirect_commit_entry_delay_ticks to
zfs_condense_indirect_commit_entry_delay_ms for consistency with
most other tunables in which delays are specified in ms.
* ZTS changes:
Use set_tunable rather than mdb
Use zpool sync as appropriate
Use sync_pool instead of sync
Kill jobs during test_removal_with_operation to allow unmount/export
Don't add non-disk names such as "mirror" or "raidz" to $DISKS
Use $TEST_BASE_DIR instead of /tmp
Increase HZ from 100 to 1000 which is more common on Linux
removal_multiple_indirection.ksh
Reduce iterations in order to not time out on the code
coverage builders.
removal_resume_export:
Functionally, the test case is correct but there exists a race
where the kernel thread hasn't been fully started yet and is
not visible. Wait for up to 1 second for the removal thread
to be started before giving up on it. Also, increase the
amount of data copied in order that the removal not finish
before the export has a chance to fail.
* MMP compatibility, the concept of concrete versus non-concrete devices
has slightly changed the semantics of vdev_writeable(). Update
mmp_random_leaf_impl() accordingly.
* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
feature which is not supported by OpenZFS.
* Added support for new vdev removal tracepoints.
* Test cases removal_with_zdb and removal_condense_export have been
intentionally disabled. When run manually they pass as intended,
but when running in the automated test environment they produce
unreliable results on the latest Fedora release.
They may work better once the upstream pool import refectoring is
merged into ZoL at which point they will be re-enabled.
Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2016-09-22 19:30:13 +03:00
|
|
|
extern void spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev,
|
|
|
|
uint64_t offset, uint64_t size, dmu_tx_t *tx);
|
Add subcommand to wait for background zfs activity to complete
Currently the best way to wait for the completion of a long-running
operation in a pool, like a scrub or device removal, is to poll 'zpool
status' and parse its output, which is neither efficient nor convenient.
This change adds a 'wait' subcommand to the zpool command. When invoked,
'zpool wait' will block until a specified type of background activity
completes. Currently, this subcommand can wait for any of the following:
- Scrubs or resilvers to complete
- Devices to initialized
- Devices to be replaced
- Devices to be removed
- Checkpoints to be discarded
- Background freeing to complete
For example, a scrub that is in progress could be waited for by running
zpool wait -t scrub <pool>
This also adds a -w flag to the attach, checkpoint, initialize, replace,
remove, and scrub subcommands. When used, this flag makes the operations
kicked off by these subcommands synchronous instead of asynchronous.
This functionality is implemented using a new ioctl. The type of
activity to wait for is provided as input to the ioctl, and the ioctl
blocks until all activity of that type has completed. An ioctl was used
over other methods of kernel-userspace communiction primarily for the
sake of portability.
Porting Notes:
This is ported from Delphix OS change DLPX-44432. The following changes
were made while porting:
- Added ZoL-style ioctl input declaration.
- Reorganized error handling in zpool_initialize in libzfs to integrate
better with changes made for TRIM support.
- Fixed check for whether a checkpoint discard is in progress.
Previously it also waited if the pool had a checkpoint, instead of
just if a checkpoint was being discarded.
- Exposed zfs_initialize_chunk_size as a ZoL-style tunable.
- Updated more existing tests to make use of new 'zpool wait'
functionality, tests that don't exist in Delphix OS.
- Used existing ZoL tunable zfs_scan_suspend_progress, together with
zinject, in place of a new tunable zfs_scan_max_blks_per_txg.
- Added support for a non-integral interval argument to zpool wait.
Future work:
ZoL has support for trimming devices, which Delphix OS does not. In the
future, 'zpool wait' could be extended to add the ability to wait for
trim operations to complete.
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: John Gallagher <john.gallagher@delphix.com>
Closes #9162
2019-09-14 04:09:06 +03:00
|
|
|
extern boolean_t vdev_replace_in_progress(vdev_t *vdev);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
extern void vdev_hold(vdev_t *);
|
|
|
|
extern void vdev_rele(vdev_t *);
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
extern int vdev_metaslab_init(vdev_t *vd, uint64_t txg);
|
|
|
|
extern void vdev_metaslab_fini(vdev_t *vd);
|
2009-07-03 02:44:48 +04:00
|
|
|
extern void vdev_metaslab_set_size(vdev_t *);
|
|
|
|
extern void vdev_expand(vdev_t *vd, uint64_t txg);
|
2010-05-29 00:45:14 +04:00
|
|
|
extern void vdev_split(vdev_t *vd);
|
2017-12-19 01:06:07 +03:00
|
|
|
extern void vdev_deadman(vdev_t *vd, char *tag);
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-14 00:51:51 +03:00
|
|
|
|
|
|
|
typedef void vdev_xlate_func_t(void *arg, range_seg64_t *physical_rs);
|
|
|
|
|
|
|
|
extern boolean_t vdev_xlate_is_empty(range_seg64_t *rs);
|
Reduce loaded range tree memory usage
This patch implements a new tree structure for ZFS, and uses it to
store range trees more efficiently.
The new structure is approximately a B-tree, though there are some
small differences from the usual characterizations. The tree has core
nodes and leaf nodes; each contain data elements, which the elements
in the core nodes acting as separators between its children. The
difference between core and leaf nodes is that the core nodes have an
array of children, while leaf nodes don't. Every node in the tree may
be only partially full; in most cases, they are all at least 50% full
(in terms of element count) except for the root node, which can be
less full. Underfull nodes will steal from their neighbors or merge to
remain full enough, while overfull nodes will split in two. The data
elements are contained in tree-controlled buffers; they are copied
into these on insertion, and overwritten on deletion. This means that
the elements are not independently allocated, which reduces overhead,
but also means they can't be shared between trees (and also that
pointers to them are only valid until a side-effectful tree operation
occurs). The overhead varies based on how dense the tree is, but is
usually on the order of about 50% of the element size; the per-node
overheads are very small, and so don't make a significant difference.
The trees can accept arbitrary records; they accept a size and a
comparator to allow them to be used for a variety of purposes.
The new trees replace the AVL trees used in the range trees today.
Currently, the range_seg_t structure contains three 8 byte integers
of payload and two 24 byte avl_tree_node_ts to handle its storage in
both an offset-sorted tree and a size-sorted tree (total size: 64
bytes). In the new model, the range seg structures are usually two 4
byte integers, but a separate one needs to exist for the size-sorted
and offset-sorted tree. Between the raw size, the 50% overhead, and
the double storage, the new btrees are expected to use 8*1.5*2 = 24
bytes per record, or 33.3% as much memory as the AVL trees (this is
for the purposes of storing metaslab range trees; for other purposes,
like scrubs, they use ~50% as much memory).
We reduced the size of the payload in the range segments by teaching
range trees about starting offsets and shifts; since metaslabs have a
fixed starting offset, and they all operate in terms of disk sectors,
we can store the ranges using 4-byte integers as long as the size of
the metaslab divided by the sector size is less than 2^32. For 512-byte
sectors, this is a 2^41 (or 2TB) metaslab, which with the default
settings corresponds to a 256PB disk. 4k sector disks can handle
metaslabs up to 2^46 bytes, or 2^63 byte disks. Since we do not
anticipate disks of this size in the near future, there should be
almost no cases where metaslabs need 64-byte integers to store their
ranges. We do still have the capability to store 64-byte integer ranges
to account for cases where we are storing per-vdev (or per-dnode) trees,
which could reasonably go above the limits discussed. We also do not
store fill information in the compact version of the node, since it
is only used for sorted scrub.
We also optimized the metaslab loading process in various other ways
to offset some inefficiencies in the btree model. While individual
operations (find, insert, remove_from) are faster for the btree than
they are for the avl tree, remove usually requires a find operation,
while in the AVL tree model the element itself suffices. Some clever
changes actually caused an overall speedup in metaslab loading; we use
approximately 40% less cpu to load metaslabs in our tests on Illumos.
Another memory and performance optimization was achieved by changing
what is stored in the size-sorted trees. When a disk is heavily
fragmented, the df algorithm used by default in ZFS will almost always
find a number of small regions in its initial cursor-based search; it
will usually only fall back to the size-sorted tree to find larger
regions. If we increase the size of the cursor-based search slightly,
and don't store segments that are smaller than a tunable size floor
in the size-sorted tree, we can further cut memory usage down to
below 20% of what the AVL trees store. This also results in further
reductions in CPU time spent loading metaslabs.
The 16KiB size floor was chosen because it results in substantial memory
usage reduction while not usually resulting in situations where we can't
find an appropriate chunk with the cursor and are forced to use an
oversized chunk from the size-sorted tree. In addition, even if we do
have to use an oversized chunk from the size-sorted tree, the chunk
would be too small to use for ZIL allocations, so it isn't as big of a
loss as it might otherwise be. And often, more small allocations will
follow the initial one, and the cursor search will now find the
remainder of the chunk we didn't use all of and use it for subsequent
allocations. Practical testing has shown little or no change in
fragmentation as a result of this change.
If the size-sorted tree becomes empty while the offset sorted one still
has entries, it will load all the entries from the offset sorted tree
and disregard the size floor until it is unloaded again. This operation
occurs rarely with the default setting, only on incredibly thoroughly
fragmented pools.
There are some other small changes to zdb to teach it to handle btrees,
but nothing major.
Reviewed-by: George Wilson <gwilson@delphix.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed by: Sebastien Roy seb@delphix.com
Reviewed-by: Igor Kozhukhov <igor@dilos.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Paul Dagnelie <pcd@delphix.com>
Closes #9181
2019-10-09 20:36:03 +03:00
|
|
|
extern void vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
|
Distributed Spare (dRAID) Feature
This patch adds a new top-level vdev type called dRAID, which stands
for Distributed parity RAID. This pool configuration allows all dRAID
vdevs to participate when rebuilding to a distributed hot spare device.
This can substantially reduce the total time required to restore full
parity to pool with a failed device.
A dRAID pool can be created using the new top-level `draid` type.
Like `raidz`, the desired redundancy is specified after the type:
`draid[1,2,3]`. No additional information is required to create the
pool and reasonable default values will be chosen based on the number
of child vdevs in the dRAID vdev.
zpool create <pool> draid[1,2,3] <vdevs...>
Unlike raidz, additional optional dRAID configuration values can be
provided as part of the draid type as colon separated values. This
allows administrators to fully specify a layout for either performance
or capacity reasons. The supported options include:
zpool create <pool> \
draid[<parity>][:<data>d][:<children>c][:<spares>s] \
<vdevs...>
- draid[parity] - Parity level (default 1)
- draid[:<data>d] - Data devices per group (default 8)
- draid[:<children>c] - Expected number of child vdevs
- draid[:<spares>s] - Distributed hot spares (default 0)
Abbreviated example `zpool status` output for a 68 disk dRAID pool
with two distributed spares using special allocation classes.
```
pool: tank
state: ONLINE
config:
NAME STATE READ WRITE CKSUM
slag7 ONLINE 0 0 0
draid2:8d:68c:2s-0 ONLINE 0 0 0
L0 ONLINE 0 0 0
L1 ONLINE 0 0 0
...
U25 ONLINE 0 0 0
U26 ONLINE 0 0 0
spare-53 ONLINE 0 0 0
U27 ONLINE 0 0 0
draid2-0-0 ONLINE 0 0 0
U28 ONLINE 0 0 0
U29 ONLINE 0 0 0
...
U42 ONLINE 0 0 0
U43 ONLINE 0 0 0
special
mirror-1 ONLINE 0 0 0
L5 ONLINE 0 0 0
U5 ONLINE 0 0 0
mirror-2 ONLINE 0 0 0
L6 ONLINE 0 0 0
U6 ONLINE 0 0 0
spares
draid2-0-0 INUSE currently in use
draid2-0-1 AVAIL
```
When adding test coverage for the new dRAID vdev type the following
options were added to the ztest command. These options are leverages
by zloop.sh to test a wide range of dRAID configurations.
-K draid|raidz|random - kind of RAID to test
-D <value> - dRAID data drives per group
-S <value> - dRAID distributed hot spares
-R <value> - RAID parity (raidz or dRAID)
The zpool_create, zpool_import, redundancy, replacement and fault
test groups have all been updated provide test coverage for the
dRAID feature.
Co-authored-by: Isaac Huang <he.huang@intel.com>
Co-authored-by: Mark Maybee <mmaybee@cray.com>
Co-authored-by: Don Brady <don.brady@delphix.com>
Co-authored-by: Matthew Ahrens <mahrens@delphix.com>
Co-authored-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Mark Maybee <mmaybee@cray.com>
Reviewed-by: Matt Ahrens <matt@delphix.com>
Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #10102
2020-11-14 00:51:51 +03:00
|
|
|
range_seg64_t *physical_rs, range_seg64_t *remain_rs);
|
|
|
|
extern void vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
|
|
|
|
vdev_xlate_func_t *func, void *arg);
|
2010-05-29 00:45:14 +04:00
|
|
|
|
2016-02-29 21:05:23 +03:00
|
|
|
extern void vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx);
|
2008-11-20 23:01:55 +03:00
|
|
|
extern void vdev_get_stats(vdev_t *vd, vdev_stat_t *vs);
|
|
|
|
extern void vdev_clear_stats(vdev_t *vd);
|
2008-12-03 23:09:06 +03:00
|
|
|
extern void vdev_stat_update(zio_t *zio, uint64_t psize);
|
2010-05-29 00:45:14 +04:00
|
|
|
extern void vdev_scan_stat_init(vdev_t *vd);
|
2008-11-20 23:01:55 +03:00
|
|
|
extern void vdev_propagate_state(vdev_t *vd);
|
|
|
|
extern void vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state,
|
|
|
|
vdev_aux_t aux);
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 17:39:36 +03:00
|
|
|
extern boolean_t vdev_children_are_offline(vdev_t *vd);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
extern void vdev_space_update(vdev_t *vd,
|
|
|
|
int64_t alloc_delta, int64_t defer_delta, int64_t space_delta);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2018-09-06 04:33:36 +03:00
|
|
|
extern int64_t vdev_deflated_space(vdev_t *vd, int64_t space);
|
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
extern uint64_t vdev_psize_to_asize(vdev_t *vd, uint64_t psize);
|
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
extern int vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux);
|
|
|
|
extern int vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux);
|
2008-11-20 23:01:55 +03:00
|
|
|
extern int vdev_online(spa_t *spa, uint64_t guid, uint64_t flags,
|
|
|
|
vdev_state_t *);
|
|
|
|
extern int vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags);
|
2008-12-03 23:09:06 +03:00
|
|
|
extern void vdev_clear(spa_t *spa, vdev_t *vd);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
extern boolean_t vdev_is_dead(vdev_t *vd);
|
|
|
|
extern boolean_t vdev_readable(vdev_t *vd);
|
|
|
|
extern boolean_t vdev_writeable(vdev_t *vd);
|
|
|
|
extern boolean_t vdev_allocatable(vdev_t *vd);
|
|
|
|
extern boolean_t vdev_accessible(vdev_t *vd, zio_t *zio);
|
2016-12-17 01:11:29 +03:00
|
|
|
extern boolean_t vdev_is_spacemap_addressable(vdev_t *vd);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
extern void vdev_cache_init(vdev_t *vd);
|
|
|
|
extern void vdev_cache_fini(vdev_t *vd);
|
2013-12-09 22:37:51 +04:00
|
|
|
extern boolean_t vdev_cache_read(zio_t *zio);
|
2008-11-20 23:01:55 +03:00
|
|
|
extern void vdev_cache_write(zio_t *zio);
|
|
|
|
extern void vdev_cache_purge(vdev_t *vd);
|
|
|
|
|
|
|
|
extern void vdev_queue_init(vdev_t *vd);
|
|
|
|
extern void vdev_queue_fini(vdev_t *vd);
|
|
|
|
extern zio_t *vdev_queue_io(zio_t *zio);
|
|
|
|
extern void vdev_queue_io_done(zio_t *zio);
|
2017-12-21 20:13:06 +03:00
|
|
|
extern void vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information.
The existing algorithm selects a preferred leaf vdev based on offset of the zio
request modulo the number of members in the mirror. It assumes the devices are
of equal performance and that spreading the requests randomly over both drives
will be sufficient to saturate them. In practice this results in the leaf vdevs
being under utilized.
The new algorithm takes into the following additional factors:
* Load of the vdevs (number outstanding I/O requests)
* The locality of last queued I/O vs the new I/O request.
Within the locality calculation additional knowledge about the underlying vdev
is considered such as; is the device backing the vdev a rotating media device.
This results in performance increases across the board as well as significant
increases for predominantly streaming loads and for configurations which don't
have evenly performing devices.
The following are results from a setup with 3 Way Mirror with 2 x HD's and
1 x SSD from a basic test running multiple parrallel dd's.
With pre-fetch disabled (vfs.zfs.prefetch_disable=1):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s
With pre-fetch enabled (vfs.zfs.prefetch_disable=0):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s
In addition to the performance changes the code was also restructured, with
the help of Justin Gibbs, to provide a more logical flow which also ensures
vdevs loads are only calculated from the set of valid candidates.
The following additional sysctls where added to allow the administrator
to tune the behaviour of the load algorithm:
* vfs.zfs.vdev.mirror.rotating_inc
* vfs.zfs.vdev.mirror.rotating_seek_inc
* vfs.zfs.vdev.mirror.rotating_seek_offset
* vfs.zfs.vdev.mirror.non_rotating_inc
* vfs.zfs.vdev.mirror.non_rotating_seek_inc
These changes where based on work started by the zfsonlinux developers:
https://github.com/zfsonlinux/zfs/pull/1487
Reviewed by: gibbs, mav, will
MFC after: 2 weeks
Sponsored by: Multiplay
References:
https://github.com/freebsd/freebsd@5c7a6f5d
https://github.com/freebsd/freebsd@31b7f68d
https://github.com/freebsd/freebsd@e186f564
Performance Testing:
https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141
Porting notes:
- The tunables were adjusted to have ZoL-style names.
- The code was modified to use ZoL's vd_nonrot.
- Fixes were done to make cstyle.pl happy
- Merge conflicts were handled manually
- freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my
collegue Andriy Gapon has been included. It applied perfectly, but
added a cstyle regression.
- This replaces 556011dbec2d10579819078559a77630fc559112 entirely.
- A typo "IO'a" has been corrected to say "IO's"
- Descriptions of new tunables were added to man/man5/zfs-module-parameters.5.
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4334
2016-02-13 04:47:22 +03:00
|
|
|
extern int vdev_queue_length(vdev_t *vd);
|
2017-08-04 12:29:56 +03:00
|
|
|
extern uint64_t vdev_queue_last_offset(vdev_t *vd);
|
FreeBSD r256956: Improve ZFS N-way mirror read performance by using load and locality information.
The existing algorithm selects a preferred leaf vdev based on offset of the zio
request modulo the number of members in the mirror. It assumes the devices are
of equal performance and that spreading the requests randomly over both drives
will be sufficient to saturate them. In practice this results in the leaf vdevs
being under utilized.
The new algorithm takes into the following additional factors:
* Load of the vdevs (number outstanding I/O requests)
* The locality of last queued I/O vs the new I/O request.
Within the locality calculation additional knowledge about the underlying vdev
is considered such as; is the device backing the vdev a rotating media device.
This results in performance increases across the board as well as significant
increases for predominantly streaming loads and for configurations which don't
have evenly performing devices.
The following are results from a setup with 3 Way Mirror with 2 x HD's and
1 x SSD from a basic test running multiple parrallel dd's.
With pre-fetch disabled (vfs.zfs.prefetch_disable=1):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 161 seconds @ 95 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 297 seconds @ 51 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 54 seconds @ 284 MB/s
With pre-fetch enabled (vfs.zfs.prefetch_disable=0):
== Stripe Balanced (default) ==
Read 15360MB using bs: 1048576, readers: 3, took 91 seconds @ 168 MB/s
== Load Balanced (zfslinux) ==
Read 15360MB using bs: 1048576, readers: 3, took 108 seconds @ 142 MB/s
== Load Balanced (locality freebsd) ==
Read 15360MB using bs: 1048576, readers: 3, took 48 seconds @ 320 MB/s
In addition to the performance changes the code was also restructured, with
the help of Justin Gibbs, to provide a more logical flow which also ensures
vdevs loads are only calculated from the set of valid candidates.
The following additional sysctls where added to allow the administrator
to tune the behaviour of the load algorithm:
* vfs.zfs.vdev.mirror.rotating_inc
* vfs.zfs.vdev.mirror.rotating_seek_inc
* vfs.zfs.vdev.mirror.rotating_seek_offset
* vfs.zfs.vdev.mirror.non_rotating_inc
* vfs.zfs.vdev.mirror.non_rotating_seek_inc
These changes where based on work started by the zfsonlinux developers:
https://github.com/zfsonlinux/zfs/pull/1487
Reviewed by: gibbs, mav, will
MFC after: 2 weeks
Sponsored by: Multiplay
References:
https://github.com/freebsd/freebsd@5c7a6f5d
https://github.com/freebsd/freebsd@31b7f68d
https://github.com/freebsd/freebsd@e186f564
Performance Testing:
https://github.com/zfsonlinux/zfs/pull/4334#issuecomment-189057141
Porting notes:
- The tunables were adjusted to have ZoL-style names.
- The code was modified to use ZoL's vd_nonrot.
- Fixes were done to make cstyle.pl happy
- Merge conflicts were handled manually
- freebsd/freebsd@e186f564bc946f82c76e0b34c2f0370ed9aea022 by my
collegue Andriy Gapon has been included. It applied perfectly, but
added a cstyle regression.
- This replaces 556011dbec2d10579819078559a77630fc559112 entirely.
- A typo "IO'a" has been corrected to say "IO's"
- Descriptions of new tunables were added to man/man5/zfs-module-parameters.5.
Ported-by: Richard Yao <ryao@gentoo.org>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #4334
2016-02-13 04:47:22 +03:00
|
|
|
|
2008-11-20 23:01:55 +03:00
|
|
|
extern void vdev_config_dirty(vdev_t *vd);
|
|
|
|
extern void vdev_config_clean(vdev_t *vd);
|
2016-01-27 04:27:46 +03:00
|
|
|
extern int vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
2008-12-03 23:09:06 +03:00
|
|
|
extern void vdev_state_dirty(vdev_t *vd);
|
|
|
|
extern void vdev_state_clean(vdev_t *vd);
|
|
|
|
|
2019-11-27 21:15:01 +03:00
|
|
|
extern void vdev_defer_resilver(vdev_t *vd);
|
|
|
|
extern boolean_t vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx);
|
2018-10-19 07:06:18 +03:00
|
|
|
|
2010-05-29 00:45:14 +04:00
|
|
|
typedef enum vdev_config_flag {
|
|
|
|
VDEV_CONFIG_SPARE = 1 << 0,
|
|
|
|
VDEV_CONFIG_L2CACHE = 1 << 1,
|
2016-04-11 23:16:57 +03:00
|
|
|
VDEV_CONFIG_REMOVING = 1 << 2,
|
OpenZFS 9075 - Improve ZFS pool import/load process and corrupted pool recovery
Some work has been done lately to improve the debugability of the ZFS pool
load (and import) process. This includes:
7638 Refactor spa_load_impl into several functions
8961 SPA load/import should tell us why it failed
7277 zdb should be able to print zfs_dbgmsg's
To iterate on top of that, there's a few changes that were made to make the
import process more resilient and crash free. One of the first tasks during the
pool load process is to parse a config provided from userland that describes
what devices the pool is composed of. A vdev tree is generated from that config,
and then all the vdevs are opened.
The Meta Object Set (MOS) of the pool is accessed, and several metadata objects
that are necessary to load the pool are read. The exact configuration of the
pool is also stored inside the MOS. Since the configuration provided from
userland is external and might not accurately describe the vdev tree
of the pool at the txg that is being loaded, it cannot be relied upon to safely
operate the pool. For that reason, the configuration in the MOS is read early
on. In the past, the two configurations were compared together and if there was
a mismatch then the load process was aborted and an error was returned.
The latter was a good way to ensure a pool does not get corrupted, however it
made the pool load process needlessly fragile in cases where the vdev
configuration changed or the userland configuration was outdated. Since the MOS
is stored in 3 copies, the configuration provided by userland doesn't have to be
perfect in order to read its contents. Hence, a new approach has been adopted:
The pool is first opened with the untrusted userland configuration just so that
the real configuration can be read from the MOS. The trusted MOS configuration
is then used to generate a new vdev tree and the pool is re-opened.
When the pool is opened with an untrusted configuration, writes are disabled
to avoid accidentally damaging it. During reads, some sanity checks are
performed on block pointers to see if each DVA points to a known vdev;
when the configuration is untrusted, instead of panicking the system if those
checks fail we simply avoid issuing reads to the invalid DVAs.
This new two-step pool load process now allows rewinding pools accross
vdev tree changes such as device replacement, addition, etc. Loading a pool
from an external config file in a clustering environment also becomes much
safer now since the pool will import even if the config is outdated and didn't,
for instance, register a recent device addition.
With this code in place, it became relatively easy to implement a
long-sought-after feature: the ability to import a pool with missing top level
(i.e. non-redundant) devices. Note that since this almost guarantees some loss
of data, this feature is for now restricted to a read-only import.
Porting notes (ZTS):
* Fix 'make dist' target in zpool_import
* The maximum path length allowed by tar is 99 characters. Several
of the new test cases exceeded this limit resulting in them not
being included in the tarball. Shorten the names slightly.
* Set/get tunables using accessor functions.
* Get last synced txg via the "zfs_txg_history" mechanism.
* Clear zinject handlers in cleanup for import_cache_device_replaced
and import_rewind_device_replaced in order that the zpool can be
exported if there is an error.
* Increase FILESIZE to 8G in zfs-test.sh to allow for a larger
ext4 file system to be created on ZFS_DISK2. Also, there's
no need to partition ZFS_DISK2 at all. The partitioning had
already been disabled for multipath devices. Among other things,
the partitioning steals some space from the ext4 file system,
makes it difficult to accurately calculate the paramters to
parted and can make some of the tests fail.
* Increase FS_SIZE and FILE_SIZE in the zpool_import test
configuration now that FILESIZE is larger.
* Write more data in order that device evacuation take lonnger in
a couple tests.
* Use mkdir -p to avoid errors when the directory already exists.
* Remove use of sudo in import_rewind_config_changed.
Authored by: Pavel Zakharov <pavel.zakharov@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed by: Andrew Stormont <andyjstormont@gmail.com>
Approved by: Hans Rosenfeld <rosenfeld@grumpf.hope-2000.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>
OpenZFS-issue: https://illumos.org/issues/9075
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/619c0123
Closes #7459
2016-07-22 17:39:36 +03:00
|
|
|
VDEV_CONFIG_MOS = 1 << 3,
|
|
|
|
VDEV_CONFIG_MISSING = 1 << 4
|
2010-05-29 00:45:14 +04:00
|
|
|
} vdev_config_flag_t;
|
|
|
|
|
|
|
|
extern void vdev_top_config_generate(spa_t *spa, nvlist_t *config);
|
2008-11-20 23:01:55 +03:00
|
|
|
extern nvlist_t *vdev_config_generate(spa_t *spa, vdev_t *vd,
|
2010-05-29 00:45:14 +04:00
|
|
|
boolean_t getstats, vdev_config_flag_t flags);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Label routines
|
|
|
|
*/
|
|
|
|
struct uberblock;
|
|
|
|
extern uint64_t vdev_label_offset(uint64_t psize, int l, uint64_t offset);
|
2008-12-03 23:09:06 +03:00
|
|
|
extern int vdev_label_number(uint64_t psise, uint64_t offset);
|
2012-12-15 00:38:04 +04:00
|
|
|
extern nvlist_t *vdev_label_read_config(vdev_t *vd, uint64_t txg);
|
2012-12-14 03:24:15 +04:00
|
|
|
extern void vdev_uberblock_load(vdev_t *, struct uberblock *, nvlist_t **);
|
2016-02-29 21:05:23 +03:00
|
|
|
extern void vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv);
|
Multi-modifier protection (MMP)
Add multihost=on|off pool property to control MMP. When enabled
a new thread writes uberblocks to the last slot in each label, at a
set frequency, to indicate to other hosts the pool is actively imported.
These uberblocks are the last synced uberblock with an updated
timestamp. Property defaults to off.
During tryimport, find the "best" uberblock (newest txg and timestamp)
repeatedly, checking for change in the found uberblock. Include the
results of the activity test in the config returned by tryimport.
These results are reported to user in "zpool import".
Allow the user to control the period between MMP writes, and the
duration of the activity test on import, via a new module parameter
zfs_multihost_interval. The period is specified in milliseconds. The
activity test duration is calculated from this value, and from the
mmp_delay in the "best" uberblock found initially.
Add a kstat interface to export statistics about Multiple Modifier
Protection (MMP) updates. Include the last synced txg number, the
timestamp, the delay since the last MMP update, the VDEV GUID, the VDEV
label that received the last MMP update, and the VDEV path. Abbreviated
output below.
$ cat /proc/spl/kstat/zfs/mypool/multihost
31 0 0x01 10 880 105092382393521 105144180101111
txg timestamp mmp_delay vdev_guid vdev_label vdev_path
20468 261337 250274925 68396651780 3 /dev/sda
20468 261339 252023374 6267402363293 1 /dev/sdc
20468 261340 252000858 6698080955233 1 /dev/sdx
20468 261341 251980635 783892869810 2 /dev/sdy
20468 261342 253385953 8923255792467 3 /dev/sdd
20468 261344 253336622 042125143176 0 /dev/sdab
20468 261345 253310522 1200778101278 2 /dev/sde
20468 261346 253286429 0950576198362 2 /dev/sdt
20468 261347 253261545 96209817917 3 /dev/sds
20468 261349 253238188 8555725937673 3 /dev/sdb
Add a new tunable zfs_multihost_history to specify the number of MMP
updates to store history for. By default it is set to zero meaning that
no MMP statistics are stored.
When using ztest to generate activity, for automated tests of the MMP
function, some test functions interfere with the test. For example, the
pool is exported to run zdb and then imported again. Add a new ztest
function, "-M", to alter ztest behavior to prevent this.
Add new tests to verify the new functionality. Tests provided by
Giuseppe Di Natale.
Reviewed by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Giuseppe Di Natale <dinatale2@llnl.gov>
Reviewed-by: Ned Bass <bass6@llnl.gov>
Reviewed-by: Andreas Dilger <andreas.dilger@intel.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Olaf Faaland <faaland1@llnl.gov>
Closes #745
Closes #6279
2017-07-08 06:20:35 +03:00
|
|
|
extern void vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t
|
2020-06-06 22:54:04 +03:00
|
|
|
offset, uint64_t size, zio_done_func_t *done, void *priv, int flags);
|
2020-05-07 19:36:33 +03:00
|
|
|
extern int vdev_label_read_bootenv(vdev_t *, nvlist_t *);
|
2020-09-16 01:42:27 +03:00
|
|
|
extern int vdev_label_write_bootenv(vdev_t *, nvlist_t *);
|
2008-11-20 23:01:55 +03:00
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
VDEV_LABEL_CREATE, /* create/add a new device */
|
|
|
|
VDEV_LABEL_REPLACE, /* replace an existing device */
|
|
|
|
VDEV_LABEL_SPARE, /* add a new hot spare */
|
|
|
|
VDEV_LABEL_REMOVE, /* remove an existing device */
|
2010-05-29 00:45:14 +04:00
|
|
|
VDEV_LABEL_L2CACHE, /* add an L2ARC cache device */
|
|
|
|
VDEV_LABEL_SPLIT /* generating new label for split-off dev */
|
2008-11-20 23:01:55 +03:00
|
|
|
} vdev_labeltype_t;
|
|
|
|
|
|
|
|
extern int vdev_label_init(vdev_t *vd, uint64_t txg, vdev_labeltype_t reason);
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _SYS_VDEV_H */
|