implement support for backup fleecing
Excerpt from Fiona's v3 cover-letter [0]:
When a backup for a VM is started, QEMU will install a
"copy-before-write" filter in its block layer. This filter ensures
that upon new guest writes, old data still needed for the backup is
sent to the backup target first. The guest write blocks until this
operation is finished so guest IO to not-yet-backed-up sectors will be
limited by the speed of the backup target.
With backup fleecing, such old data is cached in a fleecing image
rather than sent directly to the backup target. This can help guest IO
performance and even prevent hangs in certain scenarios, at the cost
of requiring more storage space.
With this series it will be possible to enable backup-fleecing via
e.g. `vzdump 123 --fleecing enabled=1,storage=local-lvm` with fleecing
images created on the storage `local-lvm`. The fleecing storage should
be a fast local storage which supports thin-provisioning and discard.
If the storage supports qcow2, that is used as the fleecing image
format. If the underlying file system does not support discard, with
qcow2 and preallocation=off, at least already allocated parts of the
image can be re-used later.
Fleecing images are created by qemu-server via pve-storage and
attached to QEMU before the backup starts, and cleaned up after the
backup finished or failed. The naming schema for fleecing images is
'vm-ID-fleece-N(.FORMAT)'. The allocated images are recorded in the
guest configuration, so that even after a hard failure, clean-up can
be re-attempted. While not too bad, it's a non-trivial amount of code
and I'm not 100% sure about the cost-benefit, so sending those as RFC.
The fleecing image needs to be the exact same size as the source, but
luckily, an explicit size can be specified when attaching a raw image
to QEMU so there are no size issues when using storages that have
coarser allocation/round up. For qcow2, it seems that virtual size can
be nearly arbitrary (i.e. modulo 512 byte granularity) during
allocation.
[0]: https://lists.proxmox.com/pipermail/pve-devel/2024-April/062815.html
Originally-by: Fiona Ebner <f.ebner@proxmox.com>
Signed-off-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
2024-04-11 18:38:26 +03:00
|
|
|
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
|
|
|
From: Vladimir Sementsov-Ogievskiy <vsementsov@yandex-team.ru>
|
|
|
|
Date: Thu, 11 Apr 2024 11:29:24 +0200
|
|
|
|
Subject: [PATCH] block/copy-before-write: create block_copy bitmap in filter
|
|
|
|
node
|
|
|
|
|
|
|
|
Currently block_copy creates copy_bitmap in source node. But that is in
|
|
|
|
bad relation with .independent_close=true of copy-before-write filter:
|
|
|
|
source node may be detached and removed before .bdrv_close() handler
|
|
|
|
called, which should call block_copy_state_free(), which in turn should
|
|
|
|
remove copy_bitmap.
|
|
|
|
|
|
|
|
That's all not ideal: it would be better if internal bitmap of
|
|
|
|
block-copy object is not attached to any node. But that is not possible
|
|
|
|
now.
|
|
|
|
|
|
|
|
The simplest solution is just create copy_bitmap in filter node, where
|
|
|
|
anyway two other bitmaps are created.
|
|
|
|
|
|
|
|
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@yandex-team.ru>
|
|
|
|
Signed-off-by: Fiona Ebner <f.ebner@proxmox.com>
|
|
|
|
Signed-off-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
|
|
|
|
---
|
|
|
|
block/block-copy.c | 3 +-
|
|
|
|
block/copy-before-write.c | 2 +-
|
|
|
|
include/block/block-copy.h | 1 +
|
|
|
|
tests/qemu-iotests/257.out | 112 ++++++++++++++++++-------------------
|
|
|
|
4 files changed, 60 insertions(+), 58 deletions(-)
|
|
|
|
|
|
|
|
diff --git a/block/block-copy.c b/block/block-copy.c
|
update submodule and patches to QEMU 8.2.2
This version includes both the AioContext lock and the block graph
lock, so there might be some deadlocks lurking. It's not possible to
disable the block graph lock like was done in QEMU 8.1, because there
are no changes like the function bdrv_schedule_unref() that require
it. QEMU 9.0 will finally get rid of the AioContext locking.
During live-restore with a VirtIO SCSI drive with iothread there is a
known racy deadlock related to the AioContext lock. Not new [1], but
not sure if more likely now. Should be fixed in QEMU 9.0.
The block graph lock comes with annotations that can be checked by
clang's TSA. This required changes to the block drivers, i.e.
alloc-track, pbs, zeroinit as well as taking the appropriate locks
in pve-backup, savevm-async, vma-reader.
Local variable shadowing is prohibited via a compiler flag now,
required slight adaptation in vma.c.
Major changes only affect alloc-track:
* It is not possible to call a generated co-wrapper like
bdrv_get_info() while holding the block graph lock exclusively [0],
which does happen during initialization of alloc-track when the
backing hd is set and the refresh_limits driver callback is invoked.
The bdrv_get_info() call to get the cluster size is moved to
directly after opening the file child in track_open().
The important thing is that at least the request alignment for the
write target is used, because then the RMW cycle in bdrv_pwritev
will gather enough data from the backing file. Partial cluster
allocations in the target are not a fundamental issue, because the
driver returns its allocation status based on the bitmap, so any
other data that maps to the same cluster will still be copied later
by a stream job (or during writes to that cluster).
* Replacing the node cannot be done in the
track_co_change_backing_file() callback, because it is a coroutine
and cannot hold the block graph lock exclusively. So it is moved to
the stream job itself with the auto-remove option not having an
effect anymore (qemu-server would always set it anyways).
In the future, there could either be a special option for the stream
job, or maybe the upcoming blockdev-replace QMP command can be used.
Replacing the backing child is actually already done in the stream
job, so no need to do it in the track_co_change_backing_file()
callback. It also cannot be called from a coroutine. Looking at the
implementation in the qcow2 driver, it doesn't seem to be intended
to change the backing child itself, just update driver-internal
state.
Other changes:
* alloc-track: Error out early when used without auto-remove. Since
replacing the node now happens in the stream job, where the option
cannot be read from (it's internal to the driver), it will always be
treated as 'on'. Makes sure to have users beside qemu-server notice
the change (should they even exist). The option can be fully dropped
in the future while adding a version guard in qemu-server.
* alloc-track: Avoid seemingly superfluous child permission update.
Doesn't seem necessary nowadays (maybe after commit "alloc-track:
fix deadlock during drop" where the dropping is not rescheduled and
delayed anymore or some upstream change). Replacing the block node
will already update the permissions of the new node (which was the
file child before). Should there really be some issue, instead of
having a drop state, this could also be just based off the fact
whether there is still a backing child.
Dumping the cumulative (shared) permissions for the BDS with a debug
print yields the same values after this patch and with QEMU 8.1,
namely 3 and 5.
* PBS block driver: compile unconditionally. Proxmox VE always needs
it and something in the build process changed to make it not enabled
by default. Probably would need to move the build option to meson
otherwise.
* backup: job unreferencing during cleanup needs to happen outside of
coroutine, so it was moved to before invoking the clean
* mirror: Cherry-pick stable fix to avoid potential deadlock.
* savevm-async: migrate_init now can fail, so propagate potential
error.
* savevm-async: compression counters are not accessible outside
migration/ram-compress now, so drop code that prophylactically set
it to zero.
[0]: https://lore.kernel.org/qemu-devel/220be383-3b0d-4938-b584-69ad214e5d5d@proxmox.com/
[1]: https://lore.kernel.org/qemu-devel/e13b488e-bf13-44f2-acca-e724d14f43fd@proxmox.com/
Signed-off-by: Fiona Ebner <f.ebner@proxmox.com>
2024-04-25 18:21:28 +03:00
|
|
|
index 9ee3dd7ef5..8fca2c3698 100644
|
implement support for backup fleecing
Excerpt from Fiona's v3 cover-letter [0]:
When a backup for a VM is started, QEMU will install a
"copy-before-write" filter in its block layer. This filter ensures
that upon new guest writes, old data still needed for the backup is
sent to the backup target first. The guest write blocks until this
operation is finished so guest IO to not-yet-backed-up sectors will be
limited by the speed of the backup target.
With backup fleecing, such old data is cached in a fleecing image
rather than sent directly to the backup target. This can help guest IO
performance and even prevent hangs in certain scenarios, at the cost
of requiring more storage space.
With this series it will be possible to enable backup-fleecing via
e.g. `vzdump 123 --fleecing enabled=1,storage=local-lvm` with fleecing
images created on the storage `local-lvm`. The fleecing storage should
be a fast local storage which supports thin-provisioning and discard.
If the storage supports qcow2, that is used as the fleecing image
format. If the underlying file system does not support discard, with
qcow2 and preallocation=off, at least already allocated parts of the
image can be re-used later.
Fleecing images are created by qemu-server via pve-storage and
attached to QEMU before the backup starts, and cleaned up after the
backup finished or failed. The naming schema for fleecing images is
'vm-ID-fleece-N(.FORMAT)'. The allocated images are recorded in the
guest configuration, so that even after a hard failure, clean-up can
be re-attempted. While not too bad, it's a non-trivial amount of code
and I'm not 100% sure about the cost-benefit, so sending those as RFC.
The fleecing image needs to be the exact same size as the source, but
luckily, an explicit size can be specified when attaching a raw image
to QEMU so there are no size issues when using storages that have
coarser allocation/round up. For qcow2, it seems that virtual size can
be nearly arbitrary (i.e. modulo 512 byte granularity) during
allocation.
[0]: https://lists.proxmox.com/pipermail/pve-devel/2024-April/062815.html
Originally-by: Fiona Ebner <f.ebner@proxmox.com>
Signed-off-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
2024-04-11 18:38:26 +03:00
|
|
|
--- a/block/block-copy.c
|
|
|
|
+++ b/block/block-copy.c
|
update submodule and patches to QEMU 8.2.2
This version includes both the AioContext lock and the block graph
lock, so there might be some deadlocks lurking. It's not possible to
disable the block graph lock like was done in QEMU 8.1, because there
are no changes like the function bdrv_schedule_unref() that require
it. QEMU 9.0 will finally get rid of the AioContext locking.
During live-restore with a VirtIO SCSI drive with iothread there is a
known racy deadlock related to the AioContext lock. Not new [1], but
not sure if more likely now. Should be fixed in QEMU 9.0.
The block graph lock comes with annotations that can be checked by
clang's TSA. This required changes to the block drivers, i.e.
alloc-track, pbs, zeroinit as well as taking the appropriate locks
in pve-backup, savevm-async, vma-reader.
Local variable shadowing is prohibited via a compiler flag now,
required slight adaptation in vma.c.
Major changes only affect alloc-track:
* It is not possible to call a generated co-wrapper like
bdrv_get_info() while holding the block graph lock exclusively [0],
which does happen during initialization of alloc-track when the
backing hd is set and the refresh_limits driver callback is invoked.
The bdrv_get_info() call to get the cluster size is moved to
directly after opening the file child in track_open().
The important thing is that at least the request alignment for the
write target is used, because then the RMW cycle in bdrv_pwritev
will gather enough data from the backing file. Partial cluster
allocations in the target are not a fundamental issue, because the
driver returns its allocation status based on the bitmap, so any
other data that maps to the same cluster will still be copied later
by a stream job (or during writes to that cluster).
* Replacing the node cannot be done in the
track_co_change_backing_file() callback, because it is a coroutine
and cannot hold the block graph lock exclusively. So it is moved to
the stream job itself with the auto-remove option not having an
effect anymore (qemu-server would always set it anyways).
In the future, there could either be a special option for the stream
job, or maybe the upcoming blockdev-replace QMP command can be used.
Replacing the backing child is actually already done in the stream
job, so no need to do it in the track_co_change_backing_file()
callback. It also cannot be called from a coroutine. Looking at the
implementation in the qcow2 driver, it doesn't seem to be intended
to change the backing child itself, just update driver-internal
state.
Other changes:
* alloc-track: Error out early when used without auto-remove. Since
replacing the node now happens in the stream job, where the option
cannot be read from (it's internal to the driver), it will always be
treated as 'on'. Makes sure to have users beside qemu-server notice
the change (should they even exist). The option can be fully dropped
in the future while adding a version guard in qemu-server.
* alloc-track: Avoid seemingly superfluous child permission update.
Doesn't seem necessary nowadays (maybe after commit "alloc-track:
fix deadlock during drop" where the dropping is not rescheduled and
delayed anymore or some upstream change). Replacing the block node
will already update the permissions of the new node (which was the
file child before). Should there really be some issue, instead of
having a drop state, this could also be just based off the fact
whether there is still a backing child.
Dumping the cumulative (shared) permissions for the BDS with a debug
print yields the same values after this patch and with QEMU 8.1,
namely 3 and 5.
* PBS block driver: compile unconditionally. Proxmox VE always needs
it and something in the build process changed to make it not enabled
by default. Probably would need to move the build option to meson
otherwise.
* backup: job unreferencing during cleanup needs to happen outside of
coroutine, so it was moved to before invoking the clean
* mirror: Cherry-pick stable fix to avoid potential deadlock.
* savevm-async: migrate_init now can fail, so propagate potential
error.
* savevm-async: compression counters are not accessible outside
migration/ram-compress now, so drop code that prophylactically set
it to zero.
[0]: https://lore.kernel.org/qemu-devel/220be383-3b0d-4938-b584-69ad214e5d5d@proxmox.com/
[1]: https://lore.kernel.org/qemu-devel/e13b488e-bf13-44f2-acca-e724d14f43fd@proxmox.com/
Signed-off-by: Fiona Ebner <f.ebner@proxmox.com>
2024-04-25 18:21:28 +03:00
|
|
|
@@ -351,6 +351,7 @@ static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
|
implement support for backup fleecing
Excerpt from Fiona's v3 cover-letter [0]:
When a backup for a VM is started, QEMU will install a
"copy-before-write" filter in its block layer. This filter ensures
that upon new guest writes, old data still needed for the backup is
sent to the backup target first. The guest write blocks until this
operation is finished so guest IO to not-yet-backed-up sectors will be
limited by the speed of the backup target.
With backup fleecing, such old data is cached in a fleecing image
rather than sent directly to the backup target. This can help guest IO
performance and even prevent hangs in certain scenarios, at the cost
of requiring more storage space.
With this series it will be possible to enable backup-fleecing via
e.g. `vzdump 123 --fleecing enabled=1,storage=local-lvm` with fleecing
images created on the storage `local-lvm`. The fleecing storage should
be a fast local storage which supports thin-provisioning and discard.
If the storage supports qcow2, that is used as the fleecing image
format. If the underlying file system does not support discard, with
qcow2 and preallocation=off, at least already allocated parts of the
image can be re-used later.
Fleecing images are created by qemu-server via pve-storage and
attached to QEMU before the backup starts, and cleaned up after the
backup finished or failed. The naming schema for fleecing images is
'vm-ID-fleece-N(.FORMAT)'. The allocated images are recorded in the
guest configuration, so that even after a hard failure, clean-up can
be re-attempted. While not too bad, it's a non-trivial amount of code
and I'm not 100% sure about the cost-benefit, so sending those as RFC.
The fleecing image needs to be the exact same size as the source, but
luckily, an explicit size can be specified when attaching a raw image
to QEMU so there are no size issues when using storages that have
coarser allocation/round up. For qcow2, it seems that virtual size can
be nearly arbitrary (i.e. modulo 512 byte granularity) during
allocation.
[0]: https://lists.proxmox.com/pipermail/pve-devel/2024-April/062815.html
Originally-by: Fiona Ebner <f.ebner@proxmox.com>
Signed-off-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
2024-04-11 18:38:26 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
|
|
|
|
+ BlockDriverState *copy_bitmap_bs,
|
|
|
|
const BdrvDirtyBitmap *bitmap,
|
|
|
|
Error **errp)
|
|
|
|
{
|
update submodule and patches to QEMU 8.2.2
This version includes both the AioContext lock and the block graph
lock, so there might be some deadlocks lurking. It's not possible to
disable the block graph lock like was done in QEMU 8.1, because there
are no changes like the function bdrv_schedule_unref() that require
it. QEMU 9.0 will finally get rid of the AioContext locking.
During live-restore with a VirtIO SCSI drive with iothread there is a
known racy deadlock related to the AioContext lock. Not new [1], but
not sure if more likely now. Should be fixed in QEMU 9.0.
The block graph lock comes with annotations that can be checked by
clang's TSA. This required changes to the block drivers, i.e.
alloc-track, pbs, zeroinit as well as taking the appropriate locks
in pve-backup, savevm-async, vma-reader.
Local variable shadowing is prohibited via a compiler flag now,
required slight adaptation in vma.c.
Major changes only affect alloc-track:
* It is not possible to call a generated co-wrapper like
bdrv_get_info() while holding the block graph lock exclusively [0],
which does happen during initialization of alloc-track when the
backing hd is set and the refresh_limits driver callback is invoked.
The bdrv_get_info() call to get the cluster size is moved to
directly after opening the file child in track_open().
The important thing is that at least the request alignment for the
write target is used, because then the RMW cycle in bdrv_pwritev
will gather enough data from the backing file. Partial cluster
allocations in the target are not a fundamental issue, because the
driver returns its allocation status based on the bitmap, so any
other data that maps to the same cluster will still be copied later
by a stream job (or during writes to that cluster).
* Replacing the node cannot be done in the
track_co_change_backing_file() callback, because it is a coroutine
and cannot hold the block graph lock exclusively. So it is moved to
the stream job itself with the auto-remove option not having an
effect anymore (qemu-server would always set it anyways).
In the future, there could either be a special option for the stream
job, or maybe the upcoming blockdev-replace QMP command can be used.
Replacing the backing child is actually already done in the stream
job, so no need to do it in the track_co_change_backing_file()
callback. It also cannot be called from a coroutine. Looking at the
implementation in the qcow2 driver, it doesn't seem to be intended
to change the backing child itself, just update driver-internal
state.
Other changes:
* alloc-track: Error out early when used without auto-remove. Since
replacing the node now happens in the stream job, where the option
cannot be read from (it's internal to the driver), it will always be
treated as 'on'. Makes sure to have users beside qemu-server notice
the change (should they even exist). The option can be fully dropped
in the future while adding a version guard in qemu-server.
* alloc-track: Avoid seemingly superfluous child permission update.
Doesn't seem necessary nowadays (maybe after commit "alloc-track:
fix deadlock during drop" where the dropping is not rescheduled and
delayed anymore or some upstream change). Replacing the block node
will already update the permissions of the new node (which was the
file child before). Should there really be some issue, instead of
having a drop state, this could also be just based off the fact
whether there is still a backing child.
Dumping the cumulative (shared) permissions for the BDS with a debug
print yields the same values after this patch and with QEMU 8.1,
namely 3 and 5.
* PBS block driver: compile unconditionally. Proxmox VE always needs
it and something in the build process changed to make it not enabled
by default. Probably would need to move the build option to meson
otherwise.
* backup: job unreferencing during cleanup needs to happen outside of
coroutine, so it was moved to before invoking the clean
* mirror: Cherry-pick stable fix to avoid potential deadlock.
* savevm-async: migrate_init now can fail, so propagate potential
error.
* savevm-async: compression counters are not accessible outside
migration/ram-compress now, so drop code that prophylactically set
it to zero.
[0]: https://lore.kernel.org/qemu-devel/220be383-3b0d-4938-b584-69ad214e5d5d@proxmox.com/
[1]: https://lore.kernel.org/qemu-devel/e13b488e-bf13-44f2-acca-e724d14f43fd@proxmox.com/
Signed-off-by: Fiona Ebner <f.ebner@proxmox.com>
2024-04-25 18:21:28 +03:00
|
|
|
@@ -367,7 +368,7 @@ BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
|
implement support for backup fleecing
Excerpt from Fiona's v3 cover-letter [0]:
When a backup for a VM is started, QEMU will install a
"copy-before-write" filter in its block layer. This filter ensures
that upon new guest writes, old data still needed for the backup is
sent to the backup target first. The guest write blocks until this
operation is finished so guest IO to not-yet-backed-up sectors will be
limited by the speed of the backup target.
With backup fleecing, such old data is cached in a fleecing image
rather than sent directly to the backup target. This can help guest IO
performance and even prevent hangs in certain scenarios, at the cost
of requiring more storage space.
With this series it will be possible to enable backup-fleecing via
e.g. `vzdump 123 --fleecing enabled=1,storage=local-lvm` with fleecing
images created on the storage `local-lvm`. The fleecing storage should
be a fast local storage which supports thin-provisioning and discard.
If the storage supports qcow2, that is used as the fleecing image
format. If the underlying file system does not support discard, with
qcow2 and preallocation=off, at least already allocated parts of the
image can be re-used later.
Fleecing images are created by qemu-server via pve-storage and
attached to QEMU before the backup starts, and cleaned up after the
backup finished or failed. The naming schema for fleecing images is
'vm-ID-fleece-N(.FORMAT)'. The allocated images are recorded in the
guest configuration, so that even after a hard failure, clean-up can
be re-attempted. While not too bad, it's a non-trivial amount of code
and I'm not 100% sure about the cost-benefit, so sending those as RFC.
The fleecing image needs to be the exact same size as the source, but
luckily, an explicit size can be specified when attaching a raw image
to QEMU so there are no size issues when using storages that have
coarser allocation/round up. For qcow2, it seems that virtual size can
be nearly arbitrary (i.e. modulo 512 byte granularity) during
allocation.
[0]: https://lists.proxmox.com/pipermail/pve-devel/2024-April/062815.html
Originally-by: Fiona Ebner <f.ebner@proxmox.com>
Signed-off-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
2024-04-11 18:38:26 +03:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
- copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL,
|
|
|
|
+ copy_bitmap = bdrv_create_dirty_bitmap(copy_bitmap_bs, cluster_size, NULL,
|
|
|
|
errp);
|
|
|
|
if (!copy_bitmap) {
|
|
|
|
return NULL;
|
|
|
|
diff --git a/block/copy-before-write.c b/block/copy-before-write.c
|
2024-04-29 18:20:21 +03:00
|
|
|
index c0e70669a2..94db31512d 100644
|
implement support for backup fleecing
Excerpt from Fiona's v3 cover-letter [0]:
When a backup for a VM is started, QEMU will install a
"copy-before-write" filter in its block layer. This filter ensures
that upon new guest writes, old data still needed for the backup is
sent to the backup target first. The guest write blocks until this
operation is finished so guest IO to not-yet-backed-up sectors will be
limited by the speed of the backup target.
With backup fleecing, such old data is cached in a fleecing image
rather than sent directly to the backup target. This can help guest IO
performance and even prevent hangs in certain scenarios, at the cost
of requiring more storage space.
With this series it will be possible to enable backup-fleecing via
e.g. `vzdump 123 --fleecing enabled=1,storage=local-lvm` with fleecing
images created on the storage `local-lvm`. The fleecing storage should
be a fast local storage which supports thin-provisioning and discard.
If the storage supports qcow2, that is used as the fleecing image
format. If the underlying file system does not support discard, with
qcow2 and preallocation=off, at least already allocated parts of the
image can be re-used later.
Fleecing images are created by qemu-server via pve-storage and
attached to QEMU before the backup starts, and cleaned up after the
backup finished or failed. The naming schema for fleecing images is
'vm-ID-fleece-N(.FORMAT)'. The allocated images are recorded in the
guest configuration, so that even after a hard failure, clean-up can
be re-attempted. While not too bad, it's a non-trivial amount of code
and I'm not 100% sure about the cost-benefit, so sending those as RFC.
The fleecing image needs to be the exact same size as the source, but
luckily, an explicit size can be specified when attaching a raw image
to QEMU so there are no size issues when using storages that have
coarser allocation/round up. For qcow2, it seems that virtual size can
be nearly arbitrary (i.e. modulo 512 byte granularity) during
allocation.
[0]: https://lists.proxmox.com/pipermail/pve-devel/2024-April/062815.html
Originally-by: Fiona Ebner <f.ebner@proxmox.com>
Signed-off-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
2024-04-11 18:38:26 +03:00
|
|
|
--- a/block/copy-before-write.c
|
|
|
|
+++ b/block/copy-before-write.c
|
2024-04-25 18:21:29 +03:00
|
|
|
@@ -468,7 +468,7 @@ static int cbw_open(BlockDriverState *bs, QDict *options, int flags,
|
implement support for backup fleecing
Excerpt from Fiona's v3 cover-letter [0]:
When a backup for a VM is started, QEMU will install a
"copy-before-write" filter in its block layer. This filter ensures
that upon new guest writes, old data still needed for the backup is
sent to the backup target first. The guest write blocks until this
operation is finished so guest IO to not-yet-backed-up sectors will be
limited by the speed of the backup target.
With backup fleecing, such old data is cached in a fleecing image
rather than sent directly to the backup target. This can help guest IO
performance and even prevent hangs in certain scenarios, at the cost
of requiring more storage space.
With this series it will be possible to enable backup-fleecing via
e.g. `vzdump 123 --fleecing enabled=1,storage=local-lvm` with fleecing
images created on the storage `local-lvm`. The fleecing storage should
be a fast local storage which supports thin-provisioning and discard.
If the storage supports qcow2, that is used as the fleecing image
format. If the underlying file system does not support discard, with
qcow2 and preallocation=off, at least already allocated parts of the
image can be re-used later.
Fleecing images are created by qemu-server via pve-storage and
attached to QEMU before the backup starts, and cleaned up after the
backup finished or failed. The naming schema for fleecing images is
'vm-ID-fleece-N(.FORMAT)'. The allocated images are recorded in the
guest configuration, so that even after a hard failure, clean-up can
be re-attempted. While not too bad, it's a non-trivial amount of code
and I'm not 100% sure about the cost-benefit, so sending those as RFC.
The fleecing image needs to be the exact same size as the source, but
luckily, an explicit size can be specified when attaching a raw image
to QEMU so there are no size issues when using storages that have
coarser allocation/round up. For qcow2, it seems that virtual size can
be nearly arbitrary (i.e. modulo 512 byte granularity) during
allocation.
[0]: https://lists.proxmox.com/pipermail/pve-devel/2024-April/062815.html
Originally-by: Fiona Ebner <f.ebner@proxmox.com>
Signed-off-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
2024-04-11 18:38:26 +03:00
|
|
|
((BDRV_REQ_FUA | BDRV_REQ_MAY_UNMAP | BDRV_REQ_NO_FALLBACK) &
|
|
|
|
bs->file->bs->supported_zero_flags);
|
|
|
|
|
|
|
|
- s->bcs = block_copy_state_new(bs->file, s->target, bitmap, errp);
|
|
|
|
+ s->bcs = block_copy_state_new(bs->file, s->target, bs, bitmap, errp);
|
|
|
|
if (!s->bcs) {
|
|
|
|
error_prepend(errp, "Cannot create block-copy-state: ");
|
2024-04-25 18:21:29 +03:00
|
|
|
return -EINVAL;
|
implement support for backup fleecing
Excerpt from Fiona's v3 cover-letter [0]:
When a backup for a VM is started, QEMU will install a
"copy-before-write" filter in its block layer. This filter ensures
that upon new guest writes, old data still needed for the backup is
sent to the backup target first. The guest write blocks until this
operation is finished so guest IO to not-yet-backed-up sectors will be
limited by the speed of the backup target.
With backup fleecing, such old data is cached in a fleecing image
rather than sent directly to the backup target. This can help guest IO
performance and even prevent hangs in certain scenarios, at the cost
of requiring more storage space.
With this series it will be possible to enable backup-fleecing via
e.g. `vzdump 123 --fleecing enabled=1,storage=local-lvm` with fleecing
images created on the storage `local-lvm`. The fleecing storage should
be a fast local storage which supports thin-provisioning and discard.
If the storage supports qcow2, that is used as the fleecing image
format. If the underlying file system does not support discard, with
qcow2 and preallocation=off, at least already allocated parts of the
image can be re-used later.
Fleecing images are created by qemu-server via pve-storage and
attached to QEMU before the backup starts, and cleaned up after the
backup finished or failed. The naming schema for fleecing images is
'vm-ID-fleece-N(.FORMAT)'. The allocated images are recorded in the
guest configuration, so that even after a hard failure, clean-up can
be re-attempted. While not too bad, it's a non-trivial amount of code
and I'm not 100% sure about the cost-benefit, so sending those as RFC.
The fleecing image needs to be the exact same size as the source, but
luckily, an explicit size can be specified when attaching a raw image
to QEMU so there are no size issues when using storages that have
coarser allocation/round up. For qcow2, it seems that virtual size can
be nearly arbitrary (i.e. modulo 512 byte granularity) during
allocation.
[0]: https://lists.proxmox.com/pipermail/pve-devel/2024-April/062815.html
Originally-by: Fiona Ebner <f.ebner@proxmox.com>
Signed-off-by: Thomas Lamprecht <t.lamprecht@proxmox.com>
2024-04-11 18:38:26 +03:00
|
|
|
diff --git a/include/block/block-copy.h b/include/block/block-copy.h
|
|
|
|
index 0700953ab8..8b41643bfa 100644
|
|
|
|
--- a/include/block/block-copy.h
|
|
|
|
+++ b/include/block/block-copy.h
|
|
|
|
@@ -25,6 +25,7 @@ typedef struct BlockCopyState BlockCopyState;
|
|
|
|
typedef struct BlockCopyCallState BlockCopyCallState;
|
|
|
|
|
|
|
|
BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
|
|
|
|
+ BlockDriverState *copy_bitmap_bs,
|
|
|
|
const BdrvDirtyBitmap *bitmap,
|
|
|
|
Error **errp);
|
|
|
|
|
|
|
|
diff --git a/tests/qemu-iotests/257.out b/tests/qemu-iotests/257.out
|
|
|
|
index aa76131ca9..c33dd7f3a9 100644
|
|
|
|
--- a/tests/qemu-iotests/257.out
|
|
|
|
+++ b/tests/qemu-iotests/257.out
|
|
|
|
@@ -120,16 +120,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -596,16 +596,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -865,16 +865,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -1341,16 +1341,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -1610,16 +1610,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -2086,16 +2086,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -2355,16 +2355,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -2831,16 +2831,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -3100,16 +3100,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -3576,16 +3576,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -3845,16 +3845,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -4321,16 +4321,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -4590,16 +4590,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|
|
|
|
@@ -5066,16 +5066,16 @@ write -P0x67 0x3fe0000 0x20000
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- }
|
|
|
|
- ],
|
|
|
|
- "drive0": [
|
|
|
|
+ },
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 0,
|
|
|
|
"granularity": 65536,
|
|
|
|
"persistent": false,
|
|
|
|
"recording": false
|
|
|
|
- },
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "drive0": [
|
|
|
|
{
|
|
|
|
"busy": false,
|
|
|
|
"count": 458752,
|