mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-17 10:01:01 +03:00
fc897b24b2
- Benchmark memory block is increased to 128kiB to reflect real block sizes more accurately. Measurements include all three stages needed for checksum generation, i.e. `init()/compute()/fini()`. The inner loop is repeated multiple times to offset overhead of time function. - Fastest implementation selects native and byteswap methods independently in benchmark. To support this new function pointers `init_byteswap()/fini_byteswap()` are introduced. - Implementation mutex lock is replaced by atomic variable. - To save time, benchmark is not executed in userspace. Instead, highest supported implementation is used for fastest. Default userspace selector is still 'cycle'. - `fletcher_4_native/byteswap()` methods use incremental methods to finish calculation if data size is not multiple of vector stride (currently 64B). - Added `fletcher_4_native_varsize()` special purpose method for use when buffer size is not known in advance. The method does not enforce 4B alignment on buffer size, and will ignore last (size % 4) bytes of the data buffer. - Benchmark `kstat` is changed to match the one of vdev_raidz. It now shows throughput for all supported implementations (in B/s), native and byteswap, as well as the code [fastest] is running. Example of `fletcher_4_bench` running on `Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz`: implementation native byteswap scalar 4768120823 3426105750 sse2 7947841777 4318964249 ssse3 7951922722 6112191941 avx2 13269714358 11043200912 fastest avx2 avx2 Example of `fletcher_4_bench` running on `Intel(R) Xeon Phi(TM) CPU 7210 @ 1.30GHz`: implementation native byteswap scalar 1291115967 1031555336 sse2 2539571138 1280970926 ssse3 2537778746 1080016762 avx2 4950749767 1078493449 avx512f 9581379998 4010029046 fastest avx512f avx512f Signed-off-by: Gvozden Neskovic <neskovic@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #4952
151 lines
4.7 KiB
C
151 lines
4.7 KiB
C
/*
|
|
* Implement fast Fletcher4 with AVX2 instructions. (x86_64)
|
|
*
|
|
* Use the 256-bit AVX2 SIMD instructions and registers to compute
|
|
* Fletcher4 in four incremental 64-bit parallel accumulator streams,
|
|
* and then combine the streams to form the final four checksum words.
|
|
*
|
|
* Copyright (C) 2015 Intel Corporation.
|
|
*
|
|
* Authors:
|
|
* James Guilford <james.guilford@intel.com>
|
|
* Jinshan Xiong <jinshan.xiong@intel.com>
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#if defined(HAVE_AVX) && defined(HAVE_AVX2)
|
|
|
|
#include <linux/simd_x86.h>
|
|
#include <sys/spa_checksum.h>
|
|
#include <zfs_fletcher.h>
|
|
|
|
static void
|
|
fletcher_4_avx2_init(zio_cksum_t *zcp)
|
|
{
|
|
kfpu_begin();
|
|
|
|
/* clear avx2 registers */
|
|
asm volatile("vpxor %ymm0, %ymm0, %ymm0");
|
|
asm volatile("vpxor %ymm1, %ymm1, %ymm1");
|
|
asm volatile("vpxor %ymm2, %ymm2, %ymm2");
|
|
asm volatile("vpxor %ymm3, %ymm3, %ymm3");
|
|
}
|
|
|
|
static void
|
|
fletcher_4_avx2_fini(zio_cksum_t *zcp)
|
|
{
|
|
uint64_t __attribute__((aligned(32))) a[4];
|
|
uint64_t __attribute__((aligned(32))) b[4];
|
|
uint64_t __attribute__((aligned(32))) c[4];
|
|
uint64_t __attribute__((aligned(32))) d[4];
|
|
uint64_t A, B, C, D;
|
|
|
|
asm volatile("vmovdqu %%ymm0, %0":"=m" (a));
|
|
asm volatile("vmovdqu %%ymm1, %0":"=m" (b));
|
|
asm volatile("vmovdqu %%ymm2, %0":"=m" (c));
|
|
asm volatile("vmovdqu %%ymm3, %0":"=m" (d));
|
|
asm volatile("vzeroupper");
|
|
|
|
kfpu_end();
|
|
|
|
A = a[0] + a[1] + a[2] + a[3];
|
|
B = 0 - a[1] - 2*a[2] - 3*a[3]
|
|
+ 4*b[0] + 4*b[1] + 4*b[2] + 4*b[3];
|
|
|
|
C = a[2] + 3*a[3]
|
|
- 6*b[0] - 10*b[1] - 14*b[2] - 18*b[3]
|
|
+ 16*c[0] + 16*c[1] + 16*c[2] + 16*c[3];
|
|
|
|
D = 0 - a[3]
|
|
+ 4*b[0] + 10*b[1] + 20*b[2] + 34*b[3]
|
|
- 48*c[0] - 64*c[1] - 80*c[2] - 96*c[3]
|
|
+ 64*d[0] + 64*d[1] + 64*d[2] + 64*d[3];
|
|
|
|
ZIO_SET_CHECKSUM(zcp, A, B, C, D);
|
|
}
|
|
|
|
static void
|
|
fletcher_4_avx2_native(const void *buf, uint64_t size, zio_cksum_t *unused)
|
|
{
|
|
const uint64_t *ip = buf;
|
|
const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
|
|
|
|
for (; ip < ipend; ip += 2) {
|
|
asm volatile("vpmovzxdq %0, %%ymm4"::"m" (*ip));
|
|
asm volatile("vpaddq %ymm4, %ymm0, %ymm0");
|
|
asm volatile("vpaddq %ymm0, %ymm1, %ymm1");
|
|
asm volatile("vpaddq %ymm1, %ymm2, %ymm2");
|
|
asm volatile("vpaddq %ymm2, %ymm3, %ymm3");
|
|
}
|
|
}
|
|
|
|
static void
|
|
fletcher_4_avx2_byteswap(const void *buf, uint64_t size, zio_cksum_t *unused)
|
|
{
|
|
static const struct {
|
|
uint64_t v[4] __attribute__((aligned(32)));
|
|
} mask = {
|
|
.v = { 0xFFFFFFFF00010203, 0xFFFFFFFF08090A0B,
|
|
0xFFFFFFFF00010203, 0xFFFFFFFF08090A0B }
|
|
};
|
|
const uint64_t *ip = buf;
|
|
const uint64_t *ipend = (uint64_t *)((uint8_t *)ip + size);
|
|
|
|
asm volatile("vmovdqa %0, %%ymm5"::"m"(mask));
|
|
|
|
for (; ip < ipend; ip += 2) {
|
|
asm volatile("vpmovzxdq %0, %%ymm4"::"m" (*ip));
|
|
asm volatile("vpshufb %ymm5, %ymm4, %ymm4");
|
|
|
|
asm volatile("vpaddq %ymm4, %ymm0, %ymm0");
|
|
asm volatile("vpaddq %ymm0, %ymm1, %ymm1");
|
|
asm volatile("vpaddq %ymm1, %ymm2, %ymm2");
|
|
asm volatile("vpaddq %ymm2, %ymm3, %ymm3");
|
|
}
|
|
}
|
|
|
|
static boolean_t fletcher_4_avx2_valid(void)
|
|
{
|
|
return (zfs_avx_available() && zfs_avx2_available());
|
|
}
|
|
|
|
const fletcher_4_ops_t fletcher_4_avx2_ops = {
|
|
.init_native = fletcher_4_avx2_init,
|
|
.fini_native = fletcher_4_avx2_fini,
|
|
.compute_native = fletcher_4_avx2_native,
|
|
.init_byteswap = fletcher_4_avx2_init,
|
|
.fini_byteswap = fletcher_4_avx2_fini,
|
|
.compute_byteswap = fletcher_4_avx2_byteswap,
|
|
.valid = fletcher_4_avx2_valid,
|
|
.name = "avx2"
|
|
};
|
|
|
|
#endif /* defined(HAVE_AVX) && defined(HAVE_AVX2) */
|