mirror_zfs/include/sys/metaslab.h
Matthew Ahrens a1d477c24c OpenZFS 7614, 9064 - zfs device evacuation/removal
OpenZFS 7614 - zfs device evacuation/removal
OpenZFS 9064 - remove_mirror should wait for device removal to complete

This project allows top-level vdevs to be removed from the storage pool
with "zpool remove", reducing the total amount of storage in the pool.
This operation copies all allocated regions of the device to be removed
onto other devices, recording the mapping from old to new location.
After the removal is complete, read and free operations to the removed
(now "indirect") vdev must be remapped and performed at the new location
on disk.  The indirect mapping table is kept in memory whenever the pool
is loaded, so there is minimal performance overhead when doing operations
on the indirect vdev.

The size of the in-memory mapping table will be reduced when its entries
become "obsolete" because they are no longer used by any block pointers
in the pool.  An entry becomes obsolete when all the blocks that use
it are freed.  An entry can also become obsolete when all the snapshots
that reference it are deleted, and the block pointers that reference it
have been "remapped" in all filesystems/zvols (and clones).  Whenever an
indirect block is written, all the block pointers in it will be "remapped"
to their new (concrete) locations if possible.  This process can be
accelerated by using the "zfs remap" command to proactively rewrite all
indirect blocks that reference indirect (removed) vdevs.

Note that when a device is removed, we do not verify the checksum of
the data that is copied.  This makes the process much faster, but if it
were used on redundant vdevs (i.e. mirror or raidz vdevs), it would be
possible to copy the wrong data, when we have the correct data on e.g.
the other side of the mirror.

At the moment, only mirrors and simple top-level vdevs can be removed
and no removal is allowed if any of the top-level vdevs are raidz.

Porting Notes:

* Avoid zero-sized kmem_alloc() in vdev_compact_children().

    The device evacuation code adds a dependency that
    vdev_compact_children() be able to properly empty the vdev_child
    array by setting it to NULL and zeroing vdev_children.  Under Linux,
    kmem_alloc() and related functions return a sentinel pointer rather
    than NULL for zero-sized allocations.

* Remove comment regarding "mpt" driver where zfs_remove_max_segment
  is initialized to SPA_MAXBLOCKSIZE.

  Change zfs_condense_indirect_commit_entry_delay_ticks to
  zfs_condense_indirect_commit_entry_delay_ms for consistency with
  most other tunables in which delays are specified in ms.

* ZTS changes:

    Use set_tunable rather than mdb
    Use zpool sync as appropriate
    Use sync_pool instead of sync
    Kill jobs during test_removal_with_operation to allow unmount/export
    Don't add non-disk names such as "mirror" or "raidz" to $DISKS
    Use $TEST_BASE_DIR instead of /tmp
    Increase HZ from 100 to 1000 which is more common on Linux

    removal_multiple_indirection.ksh
        Reduce iterations in order to not time out on the code
        coverage builders.

    removal_resume_export:
        Functionally, the test case is correct but there exists a race
        where the kernel thread hasn't been fully started yet and is
        not visible.  Wait for up to 1 second for the removal thread
        to be started before giving up on it.  Also, increase the
        amount of data copied in order that the removal not finish
        before the export has a chance to fail.

* MMP compatibility, the concept of concrete versus non-concrete devices
  has slightly changed the semantics of vdev_writeable().  Update
  mmp_random_leaf_impl() accordingly.

* Updated dbuf_remap() to handle the org.zfsonlinux:large_dnode pool
  feature which is not supported by OpenZFS.

* Added support for new vdev removal tracepoints.

* Test cases removal_with_zdb and removal_condense_export have been
  intentionally disabled.  When run manually they pass as intended,
  but when running in the automated test environment they produce
  unreliable results on the latest Fedora release.

  They may work better once the upstream pool import refectoring is
  merged into ZoL at which point they will be re-enabled.

Authored by: Matthew Ahrens <mahrens@delphix.com>
Reviewed-by: Alex Reece <alex@delphix.com>
Reviewed-by: George Wilson <george.wilson@delphix.com>
Reviewed-by: John Kennedy <john.kennedy@delphix.com>
Reviewed-by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Richard Laager <rlaager@wiktel.com>
Reviewed by: Tim Chase <tim@chase2k.com>
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Garrett D'Amore <garrett@damore.org>
Ported-by: Tim Chase <tim@chase2k.com>
Signed-off-by: Tim Chase <tim@chase2k.com>

OpenZFS-issue: https://www.illumos.org/issues/7614
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/f539f1eb
Closes #6900
2018-04-14 12:16:17 -07:00

122 lines
4.5 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2016 by Delphix. All rights reserved.
*/
#ifndef _SYS_METASLAB_H
#define _SYS_METASLAB_H
#include <sys/spa.h>
#include <sys/space_map.h>
#include <sys/txg.h>
#include <sys/zio.h>
#include <sys/avl.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef struct metaslab_ops {
uint64_t (*msop_alloc)(metaslab_t *, uint64_t);
} metaslab_ops_t;
extern metaslab_ops_t *zfs_metaslab_ops;
int metaslab_init(metaslab_group_t *, uint64_t, uint64_t, uint64_t,
metaslab_t **);
void metaslab_fini(metaslab_t *);
void metaslab_load_wait(metaslab_t *);
int metaslab_load(metaslab_t *);
void metaslab_unload(metaslab_t *);
void metaslab_sync(metaslab_t *, uint64_t);
void metaslab_sync_done(metaslab_t *, uint64_t);
void metaslab_sync_reassess(metaslab_group_t *);
uint64_t metaslab_block_maxsize(metaslab_t *);
#define METASLAB_HINTBP_FAVOR 0x0
#define METASLAB_HINTBP_AVOID 0x1
#define METASLAB_GANG_HEADER 0x2
#define METASLAB_GANG_CHILD 0x4
#define METASLAB_ASYNC_ALLOC 0x8
#define METASLAB_DONT_THROTTLE 0x10
#define METASLAB_FASTWRITE 0x20
int metaslab_alloc(spa_t *, metaslab_class_t *, uint64_t,
blkptr_t *, int, uint64_t, blkptr_t *, int, zio_alloc_list_t *, zio_t *);
int metaslab_alloc_dva(spa_t *, metaslab_class_t *, uint64_t,
dva_t *, int, dva_t *, uint64_t, int, zio_alloc_list_t *);
void metaslab_free(spa_t *, const blkptr_t *, uint64_t, boolean_t);
void metaslab_free_concrete(vdev_t *, uint64_t, uint64_t, uint64_t);
void metaslab_free_dva(spa_t *, const dva_t *, uint64_t);
void metaslab_free_impl_cb(uint64_t, vdev_t *, uint64_t, uint64_t, void *);
void metaslab_unalloc_dva(spa_t *, const dva_t *, uint64_t);
int metaslab_claim(spa_t *, const blkptr_t *, uint64_t);
int metaslab_claim_impl(vdev_t *, uint64_t, uint64_t, uint64_t);
void metaslab_check_free(spa_t *, const blkptr_t *);
void metaslab_fastwrite_mark(spa_t *, const blkptr_t *);
void metaslab_fastwrite_unmark(spa_t *, const blkptr_t *);
void metaslab_alloc_trace_init(void);
void metaslab_alloc_trace_fini(void);
void metaslab_trace_init(zio_alloc_list_t *);
void metaslab_trace_fini(zio_alloc_list_t *);
metaslab_class_t *metaslab_class_create(spa_t *, metaslab_ops_t *);
void metaslab_class_destroy(metaslab_class_t *);
int metaslab_class_validate(metaslab_class_t *);
void metaslab_class_histogram_verify(metaslab_class_t *);
uint64_t metaslab_class_fragmentation(metaslab_class_t *);
uint64_t metaslab_class_expandable_space(metaslab_class_t *);
boolean_t metaslab_class_throttle_reserve(metaslab_class_t *, int,
zio_t *, int);
void metaslab_class_throttle_unreserve(metaslab_class_t *, int, zio_t *);
void metaslab_class_space_update(metaslab_class_t *, int64_t, int64_t,
int64_t, int64_t);
uint64_t metaslab_class_get_alloc(metaslab_class_t *);
uint64_t metaslab_class_get_space(metaslab_class_t *);
uint64_t metaslab_class_get_dspace(metaslab_class_t *);
uint64_t metaslab_class_get_deferred(metaslab_class_t *);
metaslab_group_t *metaslab_group_create(metaslab_class_t *, vdev_t *);
void metaslab_group_destroy(metaslab_group_t *);
void metaslab_group_activate(metaslab_group_t *);
void metaslab_group_passivate(metaslab_group_t *);
boolean_t metaslab_group_initialized(metaslab_group_t *);
uint64_t metaslab_group_get_space(metaslab_group_t *);
void metaslab_group_histogram_verify(metaslab_group_t *);
uint64_t metaslab_group_fragmentation(metaslab_group_t *);
void metaslab_group_histogram_remove(metaslab_group_t *, metaslab_t *);
void metaslab_group_alloc_decrement(spa_t *, uint64_t, void *, int);
void metaslab_group_alloc_verify(spa_t *, const blkptr_t *, void *);
#ifdef __cplusplus
}
#endif
#endif /* _SYS_METASLAB_H */