mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-27 03:19:35 +03:00
0f676dc228
Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Igor Kozhukhov <ikozhukhov@gmail.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Approved by: Dan McDonald <danmcd@omniti.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Ported-by: George Melikov <mail@gmelikov.ru> OpenZFS-issue: https://www.illumos.org/issues/7072 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/c39a2aa Closes #5694 Porting notes: - vdev.c: 'vdev_get_stats' changes are moved to 'vdev_get_stats_ex'. - vdev_disk.c: ignored, Linux specific code is different.
3696 lines
96 KiB
C
3696 lines
96 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2015 by Delphix. All rights reserved.
|
|
* Copyright 2015 Nexenta Systems, Inc. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/fm/fs/zfs.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/uberblock_impl.h>
|
|
#include <sys/metaslab.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/space_map.h>
|
|
#include <sys/space_reftree.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/arc.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/abd.h>
|
|
#include <sys/zvol.h>
|
|
#include <sys/zfs_ratelimit.h>
|
|
|
|
/*
|
|
* When a vdev is added, it will be divided into approximately (but no
|
|
* more than) this number of metaslabs.
|
|
*/
|
|
int metaslabs_per_vdev = 200;
|
|
|
|
/*
|
|
* Virtual device management.
|
|
*/
|
|
|
|
static vdev_ops_t *vdev_ops_table[] = {
|
|
&vdev_root_ops,
|
|
&vdev_raidz_ops,
|
|
&vdev_mirror_ops,
|
|
&vdev_replacing_ops,
|
|
&vdev_spare_ops,
|
|
&vdev_disk_ops,
|
|
&vdev_file_ops,
|
|
&vdev_missing_ops,
|
|
&vdev_hole_ops,
|
|
NULL
|
|
};
|
|
|
|
/*
|
|
* Given a vdev type, return the appropriate ops vector.
|
|
*/
|
|
static vdev_ops_t *
|
|
vdev_getops(const char *type)
|
|
{
|
|
vdev_ops_t *ops, **opspp;
|
|
|
|
for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
|
|
if (strcmp(ops->vdev_op_type, type) == 0)
|
|
break;
|
|
|
|
return (ops);
|
|
}
|
|
|
|
/*
|
|
* Default asize function: return the MAX of psize with the asize of
|
|
* all children. This is what's used by anything other than RAID-Z.
|
|
*/
|
|
uint64_t
|
|
vdev_default_asize(vdev_t *vd, uint64_t psize)
|
|
{
|
|
uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
|
|
uint64_t csize;
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
|
|
asize = MAX(asize, csize);
|
|
}
|
|
|
|
return (asize);
|
|
}
|
|
|
|
/*
|
|
* Get the minimum allocatable size. We define the allocatable size as
|
|
* the vdev's asize rounded to the nearest metaslab. This allows us to
|
|
* replace or attach devices which don't have the same physical size but
|
|
* can still satisfy the same number of allocations.
|
|
*/
|
|
uint64_t
|
|
vdev_get_min_asize(vdev_t *vd)
|
|
{
|
|
vdev_t *pvd = vd->vdev_parent;
|
|
|
|
/*
|
|
* If our parent is NULL (inactive spare or cache) or is the root,
|
|
* just return our own asize.
|
|
*/
|
|
if (pvd == NULL)
|
|
return (vd->vdev_asize);
|
|
|
|
/*
|
|
* The top-level vdev just returns the allocatable size rounded
|
|
* to the nearest metaslab.
|
|
*/
|
|
if (vd == vd->vdev_top)
|
|
return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
|
|
|
|
/*
|
|
* The allocatable space for a raidz vdev is N * sizeof(smallest child),
|
|
* so each child must provide at least 1/Nth of its asize.
|
|
*/
|
|
if (pvd->vdev_ops == &vdev_raidz_ops)
|
|
return (pvd->vdev_min_asize / pvd->vdev_children);
|
|
|
|
return (pvd->vdev_min_asize);
|
|
}
|
|
|
|
void
|
|
vdev_set_min_asize(vdev_t *vd)
|
|
{
|
|
int c;
|
|
vd->vdev_min_asize = vdev_get_min_asize(vd);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_set_min_asize(vd->vdev_child[c]);
|
|
}
|
|
|
|
vdev_t *
|
|
vdev_lookup_top(spa_t *spa, uint64_t vdev)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
|
|
|
|
if (vdev < rvd->vdev_children) {
|
|
ASSERT(rvd->vdev_child[vdev] != NULL);
|
|
return (rvd->vdev_child[vdev]);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
vdev_t *
|
|
vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
|
|
{
|
|
vdev_t *mvd;
|
|
int c;
|
|
|
|
if (vd->vdev_guid == guid)
|
|
return (vd);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
|
|
NULL)
|
|
return (mvd);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
vdev_count_leaves_impl(vdev_t *vd)
|
|
{
|
|
int n = 0;
|
|
int c;
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
return (1);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
n += vdev_count_leaves_impl(vd->vdev_child[c]);
|
|
|
|
return (n);
|
|
}
|
|
|
|
int
|
|
vdev_count_leaves(spa_t *spa)
|
|
{
|
|
return (vdev_count_leaves_impl(spa->spa_root_vdev));
|
|
}
|
|
|
|
void
|
|
vdev_add_child(vdev_t *pvd, vdev_t *cvd)
|
|
{
|
|
size_t oldsize, newsize;
|
|
uint64_t id = cvd->vdev_id;
|
|
vdev_t **newchild;
|
|
|
|
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
ASSERT(cvd->vdev_parent == NULL);
|
|
|
|
cvd->vdev_parent = pvd;
|
|
|
|
if (pvd == NULL)
|
|
return;
|
|
|
|
ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
|
|
|
|
oldsize = pvd->vdev_children * sizeof (vdev_t *);
|
|
pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
|
|
newsize = pvd->vdev_children * sizeof (vdev_t *);
|
|
|
|
newchild = kmem_alloc(newsize, KM_SLEEP);
|
|
if (pvd->vdev_child != NULL) {
|
|
bcopy(pvd->vdev_child, newchild, oldsize);
|
|
kmem_free(pvd->vdev_child, oldsize);
|
|
}
|
|
|
|
pvd->vdev_child = newchild;
|
|
pvd->vdev_child[id] = cvd;
|
|
|
|
cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
|
|
ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
|
|
|
|
/*
|
|
* Walk up all ancestors to update guid sum.
|
|
*/
|
|
for (; pvd != NULL; pvd = pvd->vdev_parent)
|
|
pvd->vdev_guid_sum += cvd->vdev_guid_sum;
|
|
}
|
|
|
|
void
|
|
vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
|
|
{
|
|
int c;
|
|
uint_t id = cvd->vdev_id;
|
|
|
|
ASSERT(cvd->vdev_parent == pvd);
|
|
|
|
if (pvd == NULL)
|
|
return;
|
|
|
|
ASSERT(id < pvd->vdev_children);
|
|
ASSERT(pvd->vdev_child[id] == cvd);
|
|
|
|
pvd->vdev_child[id] = NULL;
|
|
cvd->vdev_parent = NULL;
|
|
|
|
for (c = 0; c < pvd->vdev_children; c++)
|
|
if (pvd->vdev_child[c])
|
|
break;
|
|
|
|
if (c == pvd->vdev_children) {
|
|
kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
|
|
pvd->vdev_child = NULL;
|
|
pvd->vdev_children = 0;
|
|
}
|
|
|
|
/*
|
|
* Walk up all ancestors to update guid sum.
|
|
*/
|
|
for (; pvd != NULL; pvd = pvd->vdev_parent)
|
|
pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
|
|
}
|
|
|
|
/*
|
|
* Remove any holes in the child array.
|
|
*/
|
|
void
|
|
vdev_compact_children(vdev_t *pvd)
|
|
{
|
|
vdev_t **newchild, *cvd;
|
|
int oldc = pvd->vdev_children;
|
|
int newc;
|
|
int c;
|
|
|
|
ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
for (c = newc = 0; c < oldc; c++)
|
|
if (pvd->vdev_child[c])
|
|
newc++;
|
|
|
|
newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
|
|
|
|
for (c = newc = 0; c < oldc; c++) {
|
|
if ((cvd = pvd->vdev_child[c]) != NULL) {
|
|
newchild[newc] = cvd;
|
|
cvd->vdev_id = newc++;
|
|
}
|
|
}
|
|
|
|
kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
|
|
pvd->vdev_child = newchild;
|
|
pvd->vdev_children = newc;
|
|
}
|
|
|
|
/*
|
|
* Allocate and minimally initialize a vdev_t.
|
|
*/
|
|
vdev_t *
|
|
vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
|
|
{
|
|
vdev_t *vd;
|
|
int t;
|
|
|
|
vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
|
|
|
|
if (spa->spa_root_vdev == NULL) {
|
|
ASSERT(ops == &vdev_root_ops);
|
|
spa->spa_root_vdev = vd;
|
|
spa->spa_load_guid = spa_generate_guid(NULL);
|
|
}
|
|
|
|
if (guid == 0 && ops != &vdev_hole_ops) {
|
|
if (spa->spa_root_vdev == vd) {
|
|
/*
|
|
* The root vdev's guid will also be the pool guid,
|
|
* which must be unique among all pools.
|
|
*/
|
|
guid = spa_generate_guid(NULL);
|
|
} else {
|
|
/*
|
|
* Any other vdev's guid must be unique within the pool.
|
|
*/
|
|
guid = spa_generate_guid(spa);
|
|
}
|
|
ASSERT(!spa_guid_exists(spa_guid(spa), guid));
|
|
}
|
|
|
|
vd->vdev_spa = spa;
|
|
vd->vdev_id = id;
|
|
vd->vdev_guid = guid;
|
|
vd->vdev_guid_sum = guid;
|
|
vd->vdev_ops = ops;
|
|
vd->vdev_state = VDEV_STATE_CLOSED;
|
|
vd->vdev_ishole = (ops == &vdev_hole_ops);
|
|
|
|
/*
|
|
* Initialize rate limit structs for events. We rate limit ZIO delay
|
|
* and checksum events so that we don't overwhelm ZED with thousands
|
|
* of events when a disk is acting up.
|
|
*/
|
|
zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
|
|
zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
|
|
|
|
list_link_init(&vd->vdev_config_dirty_node);
|
|
list_link_init(&vd->vdev_state_dirty_node);
|
|
mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
|
|
mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
for (t = 0; t < DTL_TYPES; t++) {
|
|
vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
|
|
&vd->vdev_dtl_lock);
|
|
}
|
|
txg_list_create(&vd->vdev_ms_list,
|
|
offsetof(struct metaslab, ms_txg_node));
|
|
txg_list_create(&vd->vdev_dtl_list,
|
|
offsetof(struct vdev, vdev_dtl_node));
|
|
vd->vdev_stat.vs_timestamp = gethrtime();
|
|
vdev_queue_init(vd);
|
|
vdev_cache_init(vd);
|
|
|
|
return (vd);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new vdev. The 'alloctype' is used to control whether we are
|
|
* creating a new vdev or loading an existing one - the behavior is slightly
|
|
* different for each case.
|
|
*/
|
|
int
|
|
vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
|
|
int alloctype)
|
|
{
|
|
vdev_ops_t *ops;
|
|
char *type;
|
|
uint64_t guid = 0, islog, nparity;
|
|
vdev_t *vd;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if ((ops = vdev_getops(type)) == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* If this is a load, get the vdev guid from the nvlist.
|
|
* Otherwise, vdev_alloc_common() will generate one for us.
|
|
*/
|
|
if (alloctype == VDEV_ALLOC_LOAD) {
|
|
uint64_t label_id;
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
|
|
label_id != id)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
} else if (alloctype == VDEV_ALLOC_SPARE) {
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
} else if (alloctype == VDEV_ALLOC_L2CACHE) {
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* The first allocated vdev must be of type 'root'.
|
|
*/
|
|
if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* Determine whether we're a log vdev.
|
|
*/
|
|
islog = 0;
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
|
|
if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* Set the nparity property for RAID-Z vdevs.
|
|
*/
|
|
nparity = -1ULL;
|
|
if (ops == &vdev_raidz_ops) {
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
|
|
&nparity) == 0) {
|
|
if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
|
|
return (SET_ERROR(EINVAL));
|
|
/*
|
|
* Previous versions could only support 1 or 2 parity
|
|
* device.
|
|
*/
|
|
if (nparity > 1 &&
|
|
spa_version(spa) < SPA_VERSION_RAIDZ2)
|
|
return (SET_ERROR(ENOTSUP));
|
|
if (nparity > 2 &&
|
|
spa_version(spa) < SPA_VERSION_RAIDZ3)
|
|
return (SET_ERROR(ENOTSUP));
|
|
} else {
|
|
/*
|
|
* We require the parity to be specified for SPAs that
|
|
* support multiple parity levels.
|
|
*/
|
|
if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
|
|
return (SET_ERROR(EINVAL));
|
|
/*
|
|
* Otherwise, we default to 1 parity device for RAID-Z.
|
|
*/
|
|
nparity = 1;
|
|
}
|
|
} else {
|
|
nparity = 0;
|
|
}
|
|
ASSERT(nparity != -1ULL);
|
|
|
|
vd = vdev_alloc_common(spa, id, guid, ops);
|
|
|
|
vd->vdev_islog = islog;
|
|
vd->vdev_nparity = nparity;
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
|
|
vd->vdev_path = spa_strdup(vd->vdev_path);
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
|
|
vd->vdev_devid = spa_strdup(vd->vdev_devid);
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
|
|
&vd->vdev_physpath) == 0)
|
|
vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
|
|
&vd->vdev_enc_sysfs_path) == 0)
|
|
vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
|
|
|
|
if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
|
|
vd->vdev_fru = spa_strdup(vd->vdev_fru);
|
|
|
|
/*
|
|
* Set the whole_disk property. If it's not specified, leave the value
|
|
* as -1.
|
|
*/
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
|
|
&vd->vdev_wholedisk) != 0)
|
|
vd->vdev_wholedisk = -1ULL;
|
|
|
|
/*
|
|
* Look for the 'not present' flag. This will only be set if the device
|
|
* was not present at the time of import.
|
|
*/
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
|
|
&vd->vdev_not_present);
|
|
|
|
/*
|
|
* Get the alignment requirement.
|
|
*/
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
|
|
|
|
/*
|
|
* Retrieve the vdev creation time.
|
|
*/
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
|
|
&vd->vdev_crtxg);
|
|
|
|
/*
|
|
* If we're a top-level vdev, try to load the allocation parameters.
|
|
*/
|
|
if (parent && !parent->vdev_parent &&
|
|
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
|
|
&vd->vdev_ms_array);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
|
|
&vd->vdev_ms_shift);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
|
|
&vd->vdev_asize);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
|
|
&vd->vdev_removing);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
|
|
&vd->vdev_top_zap);
|
|
} else {
|
|
ASSERT0(vd->vdev_top_zap);
|
|
}
|
|
|
|
if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
|
|
ASSERT(alloctype == VDEV_ALLOC_LOAD ||
|
|
alloctype == VDEV_ALLOC_ADD ||
|
|
alloctype == VDEV_ALLOC_SPLIT ||
|
|
alloctype == VDEV_ALLOC_ROOTPOOL);
|
|
vd->vdev_mg = metaslab_group_create(islog ?
|
|
spa_log_class(spa) : spa_normal_class(spa), vd);
|
|
}
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
|
|
(void) nvlist_lookup_uint64(nv,
|
|
ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
|
|
} else {
|
|
ASSERT0(vd->vdev_leaf_zap);
|
|
}
|
|
|
|
/*
|
|
* If we're a leaf vdev, try to load the DTL object and other state.
|
|
*/
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
(alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
|
|
alloctype == VDEV_ALLOC_ROOTPOOL)) {
|
|
if (alloctype == VDEV_ALLOC_LOAD) {
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
|
|
&vd->vdev_dtl_object);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
|
|
&vd->vdev_unspare);
|
|
}
|
|
|
|
if (alloctype == VDEV_ALLOC_ROOTPOOL) {
|
|
uint64_t spare = 0;
|
|
|
|
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
|
|
&spare) == 0 && spare)
|
|
spa_spare_add(vd);
|
|
}
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
|
|
&vd->vdev_offline);
|
|
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
|
|
&vd->vdev_resilver_txg);
|
|
|
|
/*
|
|
* When importing a pool, we want to ignore the persistent fault
|
|
* state, as the diagnosis made on another system may not be
|
|
* valid in the current context. Local vdevs will
|
|
* remain in the faulted state.
|
|
*/
|
|
if (spa_load_state(spa) == SPA_LOAD_OPEN) {
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
|
|
&vd->vdev_faulted);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
|
|
&vd->vdev_degraded);
|
|
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
|
|
&vd->vdev_removed);
|
|
|
|
if (vd->vdev_faulted || vd->vdev_degraded) {
|
|
char *aux;
|
|
|
|
vd->vdev_label_aux =
|
|
VDEV_AUX_ERR_EXCEEDED;
|
|
if (nvlist_lookup_string(nv,
|
|
ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
|
|
strcmp(aux, "external") == 0)
|
|
vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add ourselves to the parent's list of children.
|
|
*/
|
|
vdev_add_child(parent, vd);
|
|
|
|
*vdp = vd;
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vdev_free(vdev_t *vd)
|
|
{
|
|
int c, t;
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
/*
|
|
* vdev_free() implies closing the vdev first. This is simpler than
|
|
* trying to ensure complicated semantics for all callers.
|
|
*/
|
|
vdev_close(vd);
|
|
|
|
ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
|
|
ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
|
|
|
|
/*
|
|
* Free all children.
|
|
*/
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_free(vd->vdev_child[c]);
|
|
|
|
ASSERT(vd->vdev_child == NULL);
|
|
ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
|
|
|
|
/*
|
|
* Discard allocation state.
|
|
*/
|
|
if (vd->vdev_mg != NULL) {
|
|
vdev_metaslab_fini(vd);
|
|
metaslab_group_destroy(vd->vdev_mg);
|
|
}
|
|
|
|
ASSERT0(vd->vdev_stat.vs_space);
|
|
ASSERT0(vd->vdev_stat.vs_dspace);
|
|
ASSERT0(vd->vdev_stat.vs_alloc);
|
|
|
|
/*
|
|
* Remove this vdev from its parent's child list.
|
|
*/
|
|
vdev_remove_child(vd->vdev_parent, vd);
|
|
|
|
ASSERT(vd->vdev_parent == NULL);
|
|
|
|
/*
|
|
* Clean up vdev structure.
|
|
*/
|
|
vdev_queue_fini(vd);
|
|
vdev_cache_fini(vd);
|
|
|
|
if (vd->vdev_path)
|
|
spa_strfree(vd->vdev_path);
|
|
if (vd->vdev_devid)
|
|
spa_strfree(vd->vdev_devid);
|
|
if (vd->vdev_physpath)
|
|
spa_strfree(vd->vdev_physpath);
|
|
|
|
if (vd->vdev_enc_sysfs_path)
|
|
spa_strfree(vd->vdev_enc_sysfs_path);
|
|
|
|
if (vd->vdev_fru)
|
|
spa_strfree(vd->vdev_fru);
|
|
|
|
if (vd->vdev_isspare)
|
|
spa_spare_remove(vd);
|
|
if (vd->vdev_isl2cache)
|
|
spa_l2cache_remove(vd);
|
|
|
|
txg_list_destroy(&vd->vdev_ms_list);
|
|
txg_list_destroy(&vd->vdev_dtl_list);
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
space_map_close(vd->vdev_dtl_sm);
|
|
for (t = 0; t < DTL_TYPES; t++) {
|
|
range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
|
|
range_tree_destroy(vd->vdev_dtl[t]);
|
|
}
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
mutex_destroy(&vd->vdev_queue_lock);
|
|
mutex_destroy(&vd->vdev_dtl_lock);
|
|
mutex_destroy(&vd->vdev_stat_lock);
|
|
mutex_destroy(&vd->vdev_probe_lock);
|
|
|
|
if (vd == spa->spa_root_vdev)
|
|
spa->spa_root_vdev = NULL;
|
|
|
|
kmem_free(vd, sizeof (vdev_t));
|
|
}
|
|
|
|
/*
|
|
* Transfer top-level vdev state from svd to tvd.
|
|
*/
|
|
static void
|
|
vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
|
|
{
|
|
spa_t *spa = svd->vdev_spa;
|
|
metaslab_t *msp;
|
|
vdev_t *vd;
|
|
int t;
|
|
|
|
ASSERT(tvd == tvd->vdev_top);
|
|
|
|
tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
|
|
tvd->vdev_ms_array = svd->vdev_ms_array;
|
|
tvd->vdev_ms_shift = svd->vdev_ms_shift;
|
|
tvd->vdev_ms_count = svd->vdev_ms_count;
|
|
tvd->vdev_top_zap = svd->vdev_top_zap;
|
|
|
|
svd->vdev_ms_array = 0;
|
|
svd->vdev_ms_shift = 0;
|
|
svd->vdev_ms_count = 0;
|
|
svd->vdev_top_zap = 0;
|
|
|
|
if (tvd->vdev_mg)
|
|
ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
|
|
tvd->vdev_mg = svd->vdev_mg;
|
|
tvd->vdev_ms = svd->vdev_ms;
|
|
|
|
svd->vdev_mg = NULL;
|
|
svd->vdev_ms = NULL;
|
|
|
|
if (tvd->vdev_mg != NULL)
|
|
tvd->vdev_mg->mg_vd = tvd;
|
|
|
|
tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
|
|
tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
|
|
tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
|
|
|
|
svd->vdev_stat.vs_alloc = 0;
|
|
svd->vdev_stat.vs_space = 0;
|
|
svd->vdev_stat.vs_dspace = 0;
|
|
|
|
for (t = 0; t < TXG_SIZE; t++) {
|
|
while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
|
|
(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
|
|
while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
|
|
(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
|
|
if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
|
|
(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
|
|
}
|
|
|
|
if (list_link_active(&svd->vdev_config_dirty_node)) {
|
|
vdev_config_clean(svd);
|
|
vdev_config_dirty(tvd);
|
|
}
|
|
|
|
if (list_link_active(&svd->vdev_state_dirty_node)) {
|
|
vdev_state_clean(svd);
|
|
vdev_state_dirty(tvd);
|
|
}
|
|
|
|
tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
|
|
svd->vdev_deflate_ratio = 0;
|
|
|
|
tvd->vdev_islog = svd->vdev_islog;
|
|
svd->vdev_islog = 0;
|
|
}
|
|
|
|
static void
|
|
vdev_top_update(vdev_t *tvd, vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
if (vd == NULL)
|
|
return;
|
|
|
|
vd->vdev_top = tvd;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_top_update(tvd, vd->vdev_child[c]);
|
|
}
|
|
|
|
/*
|
|
* Add a mirror/replacing vdev above an existing vdev.
|
|
*/
|
|
vdev_t *
|
|
vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
|
|
{
|
|
spa_t *spa = cvd->vdev_spa;
|
|
vdev_t *pvd = cvd->vdev_parent;
|
|
vdev_t *mvd;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
|
|
|
|
mvd->vdev_asize = cvd->vdev_asize;
|
|
mvd->vdev_min_asize = cvd->vdev_min_asize;
|
|
mvd->vdev_max_asize = cvd->vdev_max_asize;
|
|
mvd->vdev_ashift = cvd->vdev_ashift;
|
|
mvd->vdev_state = cvd->vdev_state;
|
|
mvd->vdev_crtxg = cvd->vdev_crtxg;
|
|
|
|
vdev_remove_child(pvd, cvd);
|
|
vdev_add_child(pvd, mvd);
|
|
cvd->vdev_id = mvd->vdev_children;
|
|
vdev_add_child(mvd, cvd);
|
|
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
|
|
|
|
if (mvd == mvd->vdev_top)
|
|
vdev_top_transfer(cvd, mvd);
|
|
|
|
return (mvd);
|
|
}
|
|
|
|
/*
|
|
* Remove a 1-way mirror/replacing vdev from the tree.
|
|
*/
|
|
void
|
|
vdev_remove_parent(vdev_t *cvd)
|
|
{
|
|
vdev_t *mvd = cvd->vdev_parent;
|
|
vdev_t *pvd = mvd->vdev_parent;
|
|
|
|
ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
ASSERT(mvd->vdev_children == 1);
|
|
ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
|
|
mvd->vdev_ops == &vdev_replacing_ops ||
|
|
mvd->vdev_ops == &vdev_spare_ops);
|
|
cvd->vdev_ashift = mvd->vdev_ashift;
|
|
|
|
vdev_remove_child(mvd, cvd);
|
|
vdev_remove_child(pvd, mvd);
|
|
|
|
/*
|
|
* If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
|
|
* Otherwise, we could have detached an offline device, and when we
|
|
* go to import the pool we'll think we have two top-level vdevs,
|
|
* instead of a different version of the same top-level vdev.
|
|
*/
|
|
if (mvd->vdev_top == mvd) {
|
|
uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
|
|
cvd->vdev_orig_guid = cvd->vdev_guid;
|
|
cvd->vdev_guid += guid_delta;
|
|
cvd->vdev_guid_sum += guid_delta;
|
|
|
|
/*
|
|
* If pool not set for autoexpand, we need to also preserve
|
|
* mvd's asize to prevent automatic expansion of cvd.
|
|
* Otherwise if we are adjusting the mirror by attaching and
|
|
* detaching children of non-uniform sizes, the mirror could
|
|
* autoexpand, unexpectedly requiring larger devices to
|
|
* re-establish the mirror.
|
|
*/
|
|
if (!cvd->vdev_spa->spa_autoexpand)
|
|
cvd->vdev_asize = mvd->vdev_asize;
|
|
}
|
|
cvd->vdev_id = mvd->vdev_id;
|
|
vdev_add_child(pvd, cvd);
|
|
vdev_top_update(cvd->vdev_top, cvd->vdev_top);
|
|
|
|
if (cvd == cvd->vdev_top)
|
|
vdev_top_transfer(mvd, cvd);
|
|
|
|
ASSERT(mvd->vdev_children == 0);
|
|
vdev_free(mvd);
|
|
}
|
|
|
|
int
|
|
vdev_metaslab_init(vdev_t *vd, uint64_t txg)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
uint64_t m;
|
|
uint64_t oldc = vd->vdev_ms_count;
|
|
uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
|
|
metaslab_t **mspp;
|
|
int error;
|
|
|
|
ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
|
|
|
|
/*
|
|
* This vdev is not being allocated from yet or is a hole.
|
|
*/
|
|
if (vd->vdev_ms_shift == 0)
|
|
return (0);
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
/*
|
|
* Compute the raidz-deflation ratio. Note, we hard-code
|
|
* in 128k (1 << 17) because it is the "typical" blocksize.
|
|
* Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
|
|
* otherwise it would inconsistently account for existing bp's.
|
|
*/
|
|
vd->vdev_deflate_ratio = (1 << 17) /
|
|
(vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
|
|
|
|
ASSERT(oldc <= newc);
|
|
|
|
mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
|
|
|
|
if (oldc != 0) {
|
|
bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
|
|
vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
|
|
}
|
|
|
|
vd->vdev_ms = mspp;
|
|
vd->vdev_ms_count = newc;
|
|
|
|
for (m = oldc; m < newc; m++) {
|
|
uint64_t object = 0;
|
|
|
|
if (txg == 0) {
|
|
error = dmu_read(mos, vd->vdev_ms_array,
|
|
m * sizeof (uint64_t), sizeof (uint64_t), &object,
|
|
DMU_READ_PREFETCH);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
error = metaslab_init(vd->vdev_mg, m, object, txg,
|
|
&(vd->vdev_ms[m]));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
if (txg == 0)
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
|
|
|
|
/*
|
|
* If the vdev is being removed we don't activate
|
|
* the metaslabs since we want to ensure that no new
|
|
* allocations are performed on this device.
|
|
*/
|
|
if (oldc == 0 && !vd->vdev_removing)
|
|
metaslab_group_activate(vd->vdev_mg);
|
|
|
|
if (txg == 0)
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vdev_metaslab_fini(vdev_t *vd)
|
|
{
|
|
uint64_t m;
|
|
uint64_t count = vd->vdev_ms_count;
|
|
|
|
if (vd->vdev_ms != NULL) {
|
|
metaslab_group_passivate(vd->vdev_mg);
|
|
for (m = 0; m < count; m++) {
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
|
|
if (msp != NULL)
|
|
metaslab_fini(msp);
|
|
}
|
|
vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
|
|
vd->vdev_ms = NULL;
|
|
}
|
|
|
|
ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
|
|
}
|
|
|
|
typedef struct vdev_probe_stats {
|
|
boolean_t vps_readable;
|
|
boolean_t vps_writeable;
|
|
int vps_flags;
|
|
} vdev_probe_stats_t;
|
|
|
|
static void
|
|
vdev_probe_done(zio_t *zio)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
vdev_t *vd = zio->io_vd;
|
|
vdev_probe_stats_t *vps = zio->io_private;
|
|
|
|
ASSERT(vd->vdev_probe_zio != NULL);
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ) {
|
|
if (zio->io_error == 0)
|
|
vps->vps_readable = 1;
|
|
if (zio->io_error == 0 && spa_writeable(spa)) {
|
|
zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
|
|
zio->io_offset, zio->io_size, zio->io_abd,
|
|
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
|
|
ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
|
|
} else {
|
|
abd_free(zio->io_abd);
|
|
}
|
|
} else if (zio->io_type == ZIO_TYPE_WRITE) {
|
|
if (zio->io_error == 0)
|
|
vps->vps_writeable = 1;
|
|
abd_free(zio->io_abd);
|
|
} else if (zio->io_type == ZIO_TYPE_NULL) {
|
|
zio_t *pio;
|
|
zio_link_t *zl;
|
|
|
|
vd->vdev_cant_read |= !vps->vps_readable;
|
|
vd->vdev_cant_write |= !vps->vps_writeable;
|
|
|
|
if (vdev_readable(vd) &&
|
|
(vdev_writeable(vd) || !spa_writeable(spa))) {
|
|
zio->io_error = 0;
|
|
} else {
|
|
ASSERT(zio->io_error != 0);
|
|
zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
|
|
spa, vd, NULL, 0, 0);
|
|
zio->io_error = SET_ERROR(ENXIO);
|
|
}
|
|
|
|
mutex_enter(&vd->vdev_probe_lock);
|
|
ASSERT(vd->vdev_probe_zio == zio);
|
|
vd->vdev_probe_zio = NULL;
|
|
mutex_exit(&vd->vdev_probe_lock);
|
|
|
|
zl = NULL;
|
|
while ((pio = zio_walk_parents(zio, &zl)) != NULL)
|
|
if (!vdev_accessible(vd, pio))
|
|
pio->io_error = SET_ERROR(ENXIO);
|
|
|
|
kmem_free(vps, sizeof (*vps));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine whether this device is accessible.
|
|
*
|
|
* Read and write to several known locations: the pad regions of each
|
|
* vdev label but the first, which we leave alone in case it contains
|
|
* a VTOC.
|
|
*/
|
|
zio_t *
|
|
vdev_probe(vdev_t *vd, zio_t *zio)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_probe_stats_t *vps = NULL;
|
|
zio_t *pio;
|
|
int l;
|
|
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
/*
|
|
* Don't probe the probe.
|
|
*/
|
|
if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
|
|
return (NULL);
|
|
|
|
/*
|
|
* To prevent 'probe storms' when a device fails, we create
|
|
* just one probe i/o at a time. All zios that want to probe
|
|
* this vdev will become parents of the probe io.
|
|
*/
|
|
mutex_enter(&vd->vdev_probe_lock);
|
|
|
|
if ((pio = vd->vdev_probe_zio) == NULL) {
|
|
vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
|
|
|
|
vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
|
|
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
|
|
ZIO_FLAG_TRYHARD;
|
|
|
|
if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
|
|
/*
|
|
* vdev_cant_read and vdev_cant_write can only
|
|
* transition from TRUE to FALSE when we have the
|
|
* SCL_ZIO lock as writer; otherwise they can only
|
|
* transition from FALSE to TRUE. This ensures that
|
|
* any zio looking at these values can assume that
|
|
* failures persist for the life of the I/O. That's
|
|
* important because when a device has intermittent
|
|
* connectivity problems, we want to ensure that
|
|
* they're ascribed to the device (ENXIO) and not
|
|
* the zio (EIO).
|
|
*
|
|
* Since we hold SCL_ZIO as writer here, clear both
|
|
* values so the probe can reevaluate from first
|
|
* principles.
|
|
*/
|
|
vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
|
|
vd->vdev_cant_read = B_FALSE;
|
|
vd->vdev_cant_write = B_FALSE;
|
|
}
|
|
|
|
vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
|
|
vdev_probe_done, vps,
|
|
vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
|
|
|
|
/*
|
|
* We can't change the vdev state in this context, so we
|
|
* kick off an async task to do it on our behalf.
|
|
*/
|
|
if (zio != NULL) {
|
|
vd->vdev_probe_wanted = B_TRUE;
|
|
spa_async_request(spa, SPA_ASYNC_PROBE);
|
|
}
|
|
}
|
|
|
|
if (zio != NULL)
|
|
zio_add_child(zio, pio);
|
|
|
|
mutex_exit(&vd->vdev_probe_lock);
|
|
|
|
if (vps == NULL) {
|
|
ASSERT(zio != NULL);
|
|
return (NULL);
|
|
}
|
|
|
|
for (l = 1; l < VDEV_LABELS; l++) {
|
|
zio_nowait(zio_read_phys(pio, vd,
|
|
vdev_label_offset(vd->vdev_psize, l,
|
|
offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
|
|
abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
|
|
ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
|
|
ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
|
|
}
|
|
|
|
if (zio == NULL)
|
|
return (pio);
|
|
|
|
zio_nowait(pio);
|
|
return (NULL);
|
|
}
|
|
|
|
static void
|
|
vdev_open_child(void *arg)
|
|
{
|
|
vdev_t *vd = arg;
|
|
|
|
vd->vdev_open_thread = curthread;
|
|
vd->vdev_open_error = vdev_open(vd);
|
|
vd->vdev_open_thread = NULL;
|
|
}
|
|
|
|
static boolean_t
|
|
vdev_uses_zvols(vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
#ifdef _KERNEL
|
|
if (zvol_is_zvol(vd->vdev_path))
|
|
return (B_TRUE);
|
|
#endif
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
if (vdev_uses_zvols(vd->vdev_child[c]))
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
void
|
|
vdev_open_children(vdev_t *vd)
|
|
{
|
|
taskq_t *tq;
|
|
int children = vd->vdev_children;
|
|
int c;
|
|
|
|
/*
|
|
* in order to handle pools on top of zvols, do the opens
|
|
* in a single thread so that the same thread holds the
|
|
* spa_namespace_lock
|
|
*/
|
|
if (vdev_uses_zvols(vd)) {
|
|
retry_sync:
|
|
for (c = 0; c < children; c++)
|
|
vd->vdev_child[c]->vdev_open_error =
|
|
vdev_open(vd->vdev_child[c]);
|
|
} else {
|
|
tq = taskq_create("vdev_open", children, minclsyspri,
|
|
children, children, TASKQ_PREPOPULATE);
|
|
if (tq == NULL)
|
|
goto retry_sync;
|
|
|
|
for (c = 0; c < children; c++)
|
|
VERIFY(taskq_dispatch(tq, vdev_open_child,
|
|
vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
|
|
|
|
taskq_destroy(tq);
|
|
}
|
|
|
|
vd->vdev_nonrot = B_TRUE;
|
|
|
|
for (c = 0; c < children; c++)
|
|
vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
|
|
}
|
|
|
|
/*
|
|
* Prepare a virtual device for access.
|
|
*/
|
|
int
|
|
vdev_open(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
int error;
|
|
uint64_t osize = 0;
|
|
uint64_t max_osize = 0;
|
|
uint64_t asize, max_asize, psize;
|
|
uint64_t ashift = 0;
|
|
int c;
|
|
|
|
ASSERT(vd->vdev_open_thread == curthread ||
|
|
spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
|
|
vd->vdev_state == VDEV_STATE_CANT_OPEN ||
|
|
vd->vdev_state == VDEV_STATE_OFFLINE);
|
|
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
|
|
vd->vdev_cant_read = B_FALSE;
|
|
vd->vdev_cant_write = B_FALSE;
|
|
vd->vdev_min_asize = vdev_get_min_asize(vd);
|
|
|
|
/*
|
|
* If this vdev is not removed, check its fault status. If it's
|
|
* faulted, bail out of the open.
|
|
*/
|
|
if (!vd->vdev_removed && vd->vdev_faulted) {
|
|
ASSERT(vd->vdev_children == 0);
|
|
ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
|
|
vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
|
|
vd->vdev_label_aux);
|
|
return (SET_ERROR(ENXIO));
|
|
} else if (vd->vdev_offline) {
|
|
ASSERT(vd->vdev_children == 0);
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
|
|
|
|
/*
|
|
* Reset the vdev_reopening flag so that we actually close
|
|
* the vdev on error.
|
|
*/
|
|
vd->vdev_reopening = B_FALSE;
|
|
if (zio_injection_enabled && error == 0)
|
|
error = zio_handle_device_injection(vd, NULL, ENXIO);
|
|
|
|
if (error) {
|
|
if (vd->vdev_removed &&
|
|
vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
|
|
vd->vdev_removed = B_FALSE;
|
|
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
vd->vdev_stat.vs_aux);
|
|
return (error);
|
|
}
|
|
|
|
vd->vdev_removed = B_FALSE;
|
|
|
|
/*
|
|
* Recheck the faulted flag now that we have confirmed that
|
|
* the vdev is accessible. If we're faulted, bail.
|
|
*/
|
|
if (vd->vdev_faulted) {
|
|
ASSERT(vd->vdev_children == 0);
|
|
ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
|
|
vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
|
|
vd->vdev_label_aux);
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
if (vd->vdev_degraded) {
|
|
ASSERT(vd->vdev_children == 0);
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
|
|
VDEV_AUX_ERR_EXCEEDED);
|
|
} else {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
|
|
}
|
|
|
|
/*
|
|
* For hole or missing vdevs we just return success.
|
|
*/
|
|
if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
|
|
return (0);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
|
|
VDEV_AUX_NONE);
|
|
break;
|
|
}
|
|
}
|
|
|
|
osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
|
|
max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
|
|
|
|
if (vd->vdev_children == 0) {
|
|
if (osize < SPA_MINDEVSIZE) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_TOO_SMALL);
|
|
return (SET_ERROR(EOVERFLOW));
|
|
}
|
|
psize = osize;
|
|
asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
|
|
max_asize = max_osize - (VDEV_LABEL_START_SIZE +
|
|
VDEV_LABEL_END_SIZE);
|
|
} else {
|
|
if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
|
|
(VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_TOO_SMALL);
|
|
return (SET_ERROR(EOVERFLOW));
|
|
}
|
|
psize = 0;
|
|
asize = osize;
|
|
max_asize = max_osize;
|
|
}
|
|
|
|
vd->vdev_psize = psize;
|
|
|
|
/*
|
|
* Make sure the allocatable size hasn't shrunk.
|
|
*/
|
|
if (asize < vd->vdev_min_asize) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_BAD_LABEL);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (vd->vdev_asize == 0) {
|
|
/*
|
|
* This is the first-ever open, so use the computed values.
|
|
* For compatibility, a different ashift can be requested.
|
|
*/
|
|
vd->vdev_asize = asize;
|
|
vd->vdev_max_asize = max_asize;
|
|
if (vd->vdev_ashift == 0)
|
|
vd->vdev_ashift = ashift;
|
|
} else {
|
|
/*
|
|
* Detect if the alignment requirement has increased.
|
|
* We don't want to make the pool unavailable, just
|
|
* post an event instead.
|
|
*/
|
|
if (ashift > vd->vdev_top->vdev_ashift &&
|
|
vd->vdev_ops->vdev_op_leaf) {
|
|
zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
|
|
spa, vd, NULL, 0, 0);
|
|
}
|
|
|
|
vd->vdev_max_asize = max_asize;
|
|
}
|
|
|
|
/*
|
|
* If all children are healthy and the asize has increased,
|
|
* then we've experienced dynamic LUN growth. If automatic
|
|
* expansion is enabled then use the additional space.
|
|
*/
|
|
if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
|
|
(vd->vdev_expanding || spa->spa_autoexpand))
|
|
vd->vdev_asize = asize;
|
|
|
|
vdev_set_min_asize(vd);
|
|
|
|
/*
|
|
* Ensure we can issue some IO before declaring the
|
|
* vdev open for business.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
(error = zio_wait(vdev_probe(vd, NULL))) != 0) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
|
|
VDEV_AUX_ERR_EXCEEDED);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Track the min and max ashift values for normal data devices.
|
|
*/
|
|
if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
|
|
!vd->vdev_islog && vd->vdev_aux == NULL) {
|
|
if (vd->vdev_ashift > spa->spa_max_ashift)
|
|
spa->spa_max_ashift = vd->vdev_ashift;
|
|
if (vd->vdev_ashift < spa->spa_min_ashift)
|
|
spa->spa_min_ashift = vd->vdev_ashift;
|
|
}
|
|
|
|
/*
|
|
* If a leaf vdev has a DTL, and seems healthy, then kick off a
|
|
* resilver. But don't do this if we are doing a reopen for a scrub,
|
|
* since this would just restart the scrub we are already doing.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
|
|
vdev_resilver_needed(vd, NULL, NULL))
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Called once the vdevs are all opened, this routine validates the label
|
|
* contents. This needs to be done before vdev_load() so that we don't
|
|
* inadvertently do repair I/Os to the wrong device.
|
|
*
|
|
* If 'strict' is false ignore the spa guid check. This is necessary because
|
|
* if the machine crashed during a re-guid the new guid might have been written
|
|
* to all of the vdev labels, but not the cached config. The strict check
|
|
* will be performed when the pool is opened again using the mos config.
|
|
*
|
|
* This function will only return failure if one of the vdevs indicates that it
|
|
* has since been destroyed or exported. This is only possible if
|
|
* /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
|
|
* will be updated but the function will return 0.
|
|
*/
|
|
int
|
|
vdev_validate(vdev_t *vd, boolean_t strict)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
nvlist_t *label;
|
|
uint64_t guid = 0, top_guid;
|
|
uint64_t state;
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
if (vdev_validate(vd->vdev_child[c], strict) != 0)
|
|
return (SET_ERROR(EBADF));
|
|
|
|
/*
|
|
* If the device has already failed, or was marked offline, don't do
|
|
* any further validation. Otherwise, label I/O will fail and we will
|
|
* overwrite the previous state.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
|
|
uint64_t aux_guid = 0;
|
|
nvlist_t *nvl;
|
|
uint64_t txg = spa_last_synced_txg(spa) != 0 ?
|
|
spa_last_synced_txg(spa) : -1ULL;
|
|
|
|
if ((label = vdev_label_read_config(vd, txg)) == NULL) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_BAD_LABEL);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine if this vdev has been split off into another
|
|
* pool. If so, then refuse to open it.
|
|
*/
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
|
|
&aux_guid) == 0 && aux_guid == spa_guid(spa)) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_SPLIT_POOL);
|
|
nvlist_free(label);
|
|
return (0);
|
|
}
|
|
|
|
if (strict && (nvlist_lookup_uint64(label,
|
|
ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
|
|
guid != spa_guid(spa))) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
nvlist_free(label);
|
|
return (0);
|
|
}
|
|
|
|
if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
|
|
!= 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
|
|
&aux_guid) != 0)
|
|
aux_guid = 0;
|
|
|
|
/*
|
|
* If this vdev just became a top-level vdev because its
|
|
* sibling was detached, it will have adopted the parent's
|
|
* vdev guid -- but the label may or may not be on disk yet.
|
|
* Fortunately, either version of the label will have the
|
|
* same top guid, so if we're a top-level vdev, we can
|
|
* safely compare to that instead.
|
|
*
|
|
* If we split this vdev off instead, then we also check the
|
|
* original pool's guid. We don't want to consider the vdev
|
|
* corrupt if it is partway through a split operation.
|
|
*/
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
|
|
&guid) != 0 ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
|
|
&top_guid) != 0 ||
|
|
((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
|
|
(vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
nvlist_free(label);
|
|
return (0);
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
|
|
&state) != 0) {
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
nvlist_free(label);
|
|
return (0);
|
|
}
|
|
|
|
nvlist_free(label);
|
|
|
|
/*
|
|
* If this is a verbatim import, no need to check the
|
|
* state of the pool.
|
|
*/
|
|
if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
|
|
spa_load_state(spa) == SPA_LOAD_OPEN &&
|
|
state != POOL_STATE_ACTIVE)
|
|
return (SET_ERROR(EBADF));
|
|
|
|
/*
|
|
* If we were able to open and validate a vdev that was
|
|
* previously marked permanently unavailable, clear that state
|
|
* now.
|
|
*/
|
|
if (vd->vdev_not_present)
|
|
vd->vdev_not_present = 0;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Close a virtual device.
|
|
*/
|
|
void
|
|
vdev_close(vdev_t *vd)
|
|
{
|
|
vdev_t *pvd = vd->vdev_parent;
|
|
ASSERTV(spa_t *spa = vd->vdev_spa);
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
/*
|
|
* If our parent is reopening, then we are as well, unless we are
|
|
* going offline.
|
|
*/
|
|
if (pvd != NULL && pvd->vdev_reopening)
|
|
vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
|
|
|
|
vd->vdev_ops->vdev_op_close(vd);
|
|
|
|
vdev_cache_purge(vd);
|
|
|
|
/*
|
|
* We record the previous state before we close it, so that if we are
|
|
* doing a reopen(), we don't generate FMA ereports if we notice that
|
|
* it's still faulted.
|
|
*/
|
|
vd->vdev_prevstate = vd->vdev_state;
|
|
|
|
if (vd->vdev_offline)
|
|
vd->vdev_state = VDEV_STATE_OFFLINE;
|
|
else
|
|
vd->vdev_state = VDEV_STATE_CLOSED;
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
|
|
}
|
|
|
|
void
|
|
vdev_hold(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
int c;
|
|
|
|
ASSERT(spa_is_root(spa));
|
|
if (spa->spa_state == POOL_STATE_UNINITIALIZED)
|
|
return;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_hold(vd->vdev_child[c]);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
vd->vdev_ops->vdev_op_hold(vd);
|
|
}
|
|
|
|
void
|
|
vdev_rele(vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
ASSERT(spa_is_root(vd->vdev_spa));
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_rele(vd->vdev_child[c]);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
vd->vdev_ops->vdev_op_rele(vd);
|
|
}
|
|
|
|
/*
|
|
* Reopen all interior vdevs and any unopened leaves. We don't actually
|
|
* reopen leaf vdevs which had previously been opened as they might deadlock
|
|
* on the spa_config_lock. Instead we only obtain the leaf's physical size.
|
|
* If the leaf has never been opened then open it, as usual.
|
|
*/
|
|
void
|
|
vdev_reopen(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
/* set the reopening flag unless we're taking the vdev offline */
|
|
vd->vdev_reopening = !vd->vdev_offline;
|
|
vdev_close(vd);
|
|
(void) vdev_open(vd);
|
|
|
|
/*
|
|
* Call vdev_validate() here to make sure we have the same device.
|
|
* Otherwise, a device with an invalid label could be successfully
|
|
* opened in response to vdev_reopen().
|
|
*/
|
|
if (vd->vdev_aux) {
|
|
(void) vdev_validate_aux(vd);
|
|
if (vdev_readable(vd) && vdev_writeable(vd) &&
|
|
vd->vdev_aux == &spa->spa_l2cache &&
|
|
!l2arc_vdev_present(vd))
|
|
l2arc_add_vdev(spa, vd);
|
|
} else {
|
|
(void) vdev_validate(vd, B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Reassess parent vdev's health.
|
|
*/
|
|
vdev_propagate_state(vd);
|
|
}
|
|
|
|
int
|
|
vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* Normally, partial opens (e.g. of a mirror) are allowed.
|
|
* For a create, however, we want to fail the request if
|
|
* there are any components we can't open.
|
|
*/
|
|
error = vdev_open(vd);
|
|
|
|
if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
|
|
vdev_close(vd);
|
|
return (error ? error : ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Recursively load DTLs and initialize all labels.
|
|
*/
|
|
if ((error = vdev_dtl_load(vd)) != 0 ||
|
|
(error = vdev_label_init(vd, txg, isreplacing ?
|
|
VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
|
|
vdev_close(vd);
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vdev_metaslab_set_size(vdev_t *vd)
|
|
{
|
|
/*
|
|
* Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
|
|
*/
|
|
vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
|
|
vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
|
|
}
|
|
|
|
void
|
|
vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
|
|
{
|
|
ASSERT(vd == vd->vdev_top);
|
|
ASSERT(!vd->vdev_ishole);
|
|
ASSERT(ISP2(flags));
|
|
ASSERT(spa_writeable(vd->vdev_spa));
|
|
|
|
if (flags & VDD_METASLAB)
|
|
(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
|
|
|
|
if (flags & VDD_DTL)
|
|
(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
|
|
|
|
(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
|
|
}
|
|
|
|
void
|
|
vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
|
|
{
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
vdev_dirty(vd->vdev_top, flags, vd, txg);
|
|
}
|
|
|
|
/*
|
|
* DTLs.
|
|
*
|
|
* A vdev's DTL (dirty time log) is the set of transaction groups for which
|
|
* the vdev has less than perfect replication. There are four kinds of DTL:
|
|
*
|
|
* DTL_MISSING: txgs for which the vdev has no valid copies of the data
|
|
*
|
|
* DTL_PARTIAL: txgs for which data is available, but not fully replicated
|
|
*
|
|
* DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
|
|
* scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
|
|
* txgs that was scrubbed.
|
|
*
|
|
* DTL_OUTAGE: txgs which cannot currently be read, whether due to
|
|
* persistent errors or just some device being offline.
|
|
* Unlike the other three, the DTL_OUTAGE map is not generally
|
|
* maintained; it's only computed when needed, typically to
|
|
* determine whether a device can be detached.
|
|
*
|
|
* For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
|
|
* either has the data or it doesn't.
|
|
*
|
|
* For interior vdevs such as mirror and RAID-Z the picture is more complex.
|
|
* A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
|
|
* if any child is less than fully replicated, then so is its parent.
|
|
* A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
|
|
* comprising only those txgs which appear in 'maxfaults' or more children;
|
|
* those are the txgs we don't have enough replication to read. For example,
|
|
* double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
|
|
* thus, its DTL_MISSING consists of the set of txgs that appear in more than
|
|
* two child DTL_MISSING maps.
|
|
*
|
|
* It should be clear from the above that to compute the DTLs and outage maps
|
|
* for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
|
|
* Therefore, that is all we keep on disk. When loading the pool, or after
|
|
* a configuration change, we generate all other DTLs from first principles.
|
|
*/
|
|
void
|
|
vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
|
|
{
|
|
range_tree_t *rt = vd->vdev_dtl[t];
|
|
|
|
ASSERT(t < DTL_TYPES);
|
|
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
|
|
ASSERT(spa_writeable(vd->vdev_spa));
|
|
|
|
mutex_enter(rt->rt_lock);
|
|
if (!range_tree_contains(rt, txg, size))
|
|
range_tree_add(rt, txg, size);
|
|
mutex_exit(rt->rt_lock);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
|
|
{
|
|
range_tree_t *rt = vd->vdev_dtl[t];
|
|
boolean_t dirty = B_FALSE;
|
|
|
|
ASSERT(t < DTL_TYPES);
|
|
ASSERT(vd != vd->vdev_spa->spa_root_vdev);
|
|
|
|
mutex_enter(rt->rt_lock);
|
|
if (range_tree_space(rt) != 0)
|
|
dirty = range_tree_contains(rt, txg, size);
|
|
mutex_exit(rt->rt_lock);
|
|
|
|
return (dirty);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
|
|
{
|
|
range_tree_t *rt = vd->vdev_dtl[t];
|
|
boolean_t empty;
|
|
|
|
mutex_enter(rt->rt_lock);
|
|
empty = (range_tree_space(rt) == 0);
|
|
mutex_exit(rt->rt_lock);
|
|
|
|
return (empty);
|
|
}
|
|
|
|
/*
|
|
* Returns the lowest txg in the DTL range.
|
|
*/
|
|
static uint64_t
|
|
vdev_dtl_min(vdev_t *vd)
|
|
{
|
|
range_seg_t *rs;
|
|
|
|
ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
|
|
ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
|
|
ASSERT0(vd->vdev_children);
|
|
|
|
rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
|
|
return (rs->rs_start - 1);
|
|
}
|
|
|
|
/*
|
|
* Returns the highest txg in the DTL.
|
|
*/
|
|
static uint64_t
|
|
vdev_dtl_max(vdev_t *vd)
|
|
{
|
|
range_seg_t *rs;
|
|
|
|
ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
|
|
ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
|
|
ASSERT0(vd->vdev_children);
|
|
|
|
rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
|
|
return (rs->rs_end);
|
|
}
|
|
|
|
/*
|
|
* Determine if a resilvering vdev should remove any DTL entries from
|
|
* its range. If the vdev was resilvering for the entire duration of the
|
|
* scan then it should excise that range from its DTLs. Otherwise, this
|
|
* vdev is considered partially resilvered and should leave its DTL
|
|
* entries intact. The comment in vdev_dtl_reassess() describes how we
|
|
* excise the DTLs.
|
|
*/
|
|
static boolean_t
|
|
vdev_dtl_should_excise(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
|
|
|
|
ASSERT0(scn->scn_phys.scn_errors);
|
|
ASSERT0(vd->vdev_children);
|
|
|
|
if (vd->vdev_resilver_txg == 0 ||
|
|
range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* When a resilver is initiated the scan will assign the scn_max_txg
|
|
* value to the highest txg value that exists in all DTLs. If this
|
|
* device's max DTL is not part of this scan (i.e. it is not in
|
|
* the range (scn_min_txg, scn_max_txg] then it is not eligible
|
|
* for excision.
|
|
*/
|
|
if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
|
|
ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
|
|
ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
|
|
ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
|
|
return (B_TRUE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Reassess DTLs after a config change or scrub completion.
|
|
*/
|
|
void
|
|
vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
avl_tree_t reftree;
|
|
int c, t, minref;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_dtl_reassess(vd->vdev_child[c], txg,
|
|
scrub_txg, scrub_done);
|
|
|
|
if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
|
|
return;
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
|
|
/*
|
|
* If we've completed a scan cleanly then determine
|
|
* if this vdev should remove any DTLs. We only want to
|
|
* excise regions on vdevs that were available during
|
|
* the entire duration of this scan.
|
|
*/
|
|
if (scrub_txg != 0 &&
|
|
(spa->spa_scrub_started ||
|
|
(scn != NULL && scn->scn_phys.scn_errors == 0)) &&
|
|
vdev_dtl_should_excise(vd)) {
|
|
/*
|
|
* We completed a scrub up to scrub_txg. If we
|
|
* did it without rebooting, then the scrub dtl
|
|
* will be valid, so excise the old region and
|
|
* fold in the scrub dtl. Otherwise, leave the
|
|
* dtl as-is if there was an error.
|
|
*
|
|
* There's little trick here: to excise the beginning
|
|
* of the DTL_MISSING map, we put it into a reference
|
|
* tree and then add a segment with refcnt -1 that
|
|
* covers the range [0, scrub_txg). This means
|
|
* that each txg in that range has refcnt -1 or 0.
|
|
* We then add DTL_SCRUB with a refcnt of 2, so that
|
|
* entries in the range [0, scrub_txg) will have a
|
|
* positive refcnt -- either 1 or 2. We then convert
|
|
* the reference tree into the new DTL_MISSING map.
|
|
*/
|
|
space_reftree_create(&reftree);
|
|
space_reftree_add_map(&reftree,
|
|
vd->vdev_dtl[DTL_MISSING], 1);
|
|
space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
|
|
space_reftree_add_map(&reftree,
|
|
vd->vdev_dtl[DTL_SCRUB], 2);
|
|
space_reftree_generate_map(&reftree,
|
|
vd->vdev_dtl[DTL_MISSING], 1);
|
|
space_reftree_destroy(&reftree);
|
|
}
|
|
range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
|
|
range_tree_walk(vd->vdev_dtl[DTL_MISSING],
|
|
range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
|
|
if (scrub_done)
|
|
range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
|
|
range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
|
|
if (!vdev_readable(vd))
|
|
range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
|
|
else
|
|
range_tree_walk(vd->vdev_dtl[DTL_MISSING],
|
|
range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
|
|
|
|
/*
|
|
* If the vdev was resilvering and no longer has any
|
|
* DTLs then reset its resilvering flag and dirty
|
|
* the top level so that we persist the change.
|
|
*/
|
|
if (vd->vdev_resilver_txg != 0 &&
|
|
range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
|
|
range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
|
|
vd->vdev_resilver_txg = 0;
|
|
vdev_config_dirty(vd->vdev_top);
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
if (txg != 0)
|
|
vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
for (t = 0; t < DTL_TYPES; t++) {
|
|
int c;
|
|
|
|
/* account for child's outage in parent's missing map */
|
|
int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
|
|
if (t == DTL_SCRUB)
|
|
continue; /* leaf vdevs only */
|
|
if (t == DTL_PARTIAL)
|
|
minref = 1; /* i.e. non-zero */
|
|
else if (vd->vdev_nparity != 0)
|
|
minref = vd->vdev_nparity + 1; /* RAID-Z */
|
|
else
|
|
minref = vd->vdev_children; /* any kind of mirror */
|
|
space_reftree_create(&reftree);
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
mutex_enter(&cvd->vdev_dtl_lock);
|
|
space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
|
|
mutex_exit(&cvd->vdev_dtl_lock);
|
|
}
|
|
space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
|
|
space_reftree_destroy(&reftree);
|
|
}
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
}
|
|
|
|
int
|
|
vdev_dtl_load(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
int error = 0;
|
|
int c;
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
error = space_map_open(&vd->vdev_dtl_sm, mos,
|
|
vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
|
|
if (error)
|
|
return (error);
|
|
ASSERT(vd->vdev_dtl_sm != NULL);
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
|
|
/*
|
|
* Now that we've opened the space_map we need to update
|
|
* the in-core DTL.
|
|
*/
|
|
space_map_update(vd->vdev_dtl_sm);
|
|
|
|
error = space_map_load(vd->vdev_dtl_sm,
|
|
vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
error = vdev_dtl_load(vd->vdev_child[c]);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
|
|
VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
|
|
zapobj, tx));
|
|
}
|
|
|
|
uint64_t
|
|
vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
|
|
DMU_OT_NONE, 0, tx);
|
|
|
|
ASSERT(zap != 0);
|
|
VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
|
|
zap, tx));
|
|
|
|
return (zap);
|
|
}
|
|
|
|
void
|
|
vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
|
|
{
|
|
uint64_t i;
|
|
|
|
if (vd->vdev_ops != &vdev_hole_ops &&
|
|
vd->vdev_ops != &vdev_missing_ops &&
|
|
vd->vdev_ops != &vdev_root_ops &&
|
|
!vd->vdev_top->vdev_removing) {
|
|
if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
|
|
vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
|
|
}
|
|
if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
|
|
vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
|
|
}
|
|
}
|
|
for (i = 0; i < vd->vdev_children; i++) {
|
|
vdev_construct_zaps(vd->vdev_child[i], tx);
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_dtl_sync(vdev_t *vd, uint64_t txg)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
range_tree_t *rtsync;
|
|
kmutex_t rtlock;
|
|
dmu_tx_t *tx;
|
|
uint64_t object = space_map_object(vd->vdev_dtl_sm);
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
ASSERT(vd->vdev_ops->vdev_op_leaf);
|
|
|
|
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
|
|
|
|
if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
space_map_free(vd->vdev_dtl_sm, tx);
|
|
space_map_close(vd->vdev_dtl_sm);
|
|
vd->vdev_dtl_sm = NULL;
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
/*
|
|
* We only destroy the leaf ZAP for detached leaves or for
|
|
* removed log devices. Removed data devices handle leaf ZAP
|
|
* cleanup later, once cancellation is no longer possible.
|
|
*/
|
|
if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
|
|
vd->vdev_top->vdev_islog)) {
|
|
vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
|
|
vd->vdev_leaf_zap = 0;
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
return;
|
|
}
|
|
|
|
if (vd->vdev_dtl_sm == NULL) {
|
|
uint64_t new_object;
|
|
|
|
new_object = space_map_alloc(mos, tx);
|
|
VERIFY3U(new_object, !=, 0);
|
|
|
|
VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
|
|
0, -1ULL, 0, &vd->vdev_dtl_lock));
|
|
ASSERT(vd->vdev_dtl_sm != NULL);
|
|
}
|
|
|
|
mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
rtsync = range_tree_create(NULL, NULL, &rtlock);
|
|
|
|
mutex_enter(&rtlock);
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
range_tree_walk(rt, range_tree_add, rtsync);
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
|
|
space_map_truncate(vd->vdev_dtl_sm, tx);
|
|
space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
|
|
range_tree_vacate(rtsync, NULL, NULL);
|
|
|
|
range_tree_destroy(rtsync);
|
|
|
|
mutex_exit(&rtlock);
|
|
mutex_destroy(&rtlock);
|
|
|
|
/*
|
|
* If the object for the space map has changed then dirty
|
|
* the top level so that we update the config.
|
|
*/
|
|
if (object != space_map_object(vd->vdev_dtl_sm)) {
|
|
zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
|
|
"new object %llu", txg, spa_name(spa), object,
|
|
space_map_object(vd->vdev_dtl_sm));
|
|
vdev_config_dirty(vd->vdev_top);
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
space_map_update(vd->vdev_dtl_sm);
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
}
|
|
|
|
/*
|
|
* Determine whether the specified vdev can be offlined/detached/removed
|
|
* without losing data.
|
|
*/
|
|
boolean_t
|
|
vdev_dtl_required(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *tvd = vd->vdev_top;
|
|
uint8_t cant_read = vd->vdev_cant_read;
|
|
boolean_t required;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
if (vd == spa->spa_root_vdev || vd == tvd)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* Temporarily mark the device as unreadable, and then determine
|
|
* whether this results in any DTL outages in the top-level vdev.
|
|
* If not, we can safely offline/detach/remove the device.
|
|
*/
|
|
vd->vdev_cant_read = B_TRUE;
|
|
vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
|
|
required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
|
|
vd->vdev_cant_read = cant_read;
|
|
vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
|
|
|
|
if (!required && zio_injection_enabled)
|
|
required = !!zio_handle_device_injection(vd, NULL, ECHILD);
|
|
|
|
return (required);
|
|
}
|
|
|
|
/*
|
|
* Determine if resilver is needed, and if so the txg range.
|
|
*/
|
|
boolean_t
|
|
vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
|
|
{
|
|
boolean_t needed = B_FALSE;
|
|
uint64_t thismin = UINT64_MAX;
|
|
uint64_t thismax = 0;
|
|
int c;
|
|
|
|
if (vd->vdev_children == 0) {
|
|
mutex_enter(&vd->vdev_dtl_lock);
|
|
if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
|
|
vdev_writeable(vd)) {
|
|
|
|
thismin = vdev_dtl_min(vd);
|
|
thismax = vdev_dtl_max(vd);
|
|
needed = B_TRUE;
|
|
}
|
|
mutex_exit(&vd->vdev_dtl_lock);
|
|
} else {
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
uint64_t cmin, cmax;
|
|
|
|
if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
|
|
thismin = MIN(thismin, cmin);
|
|
thismax = MAX(thismax, cmax);
|
|
needed = B_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (needed && minp) {
|
|
*minp = thismin;
|
|
*maxp = thismax;
|
|
}
|
|
return (needed);
|
|
}
|
|
|
|
void
|
|
vdev_load(vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
/*
|
|
* Recursively load all children.
|
|
*/
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_load(vd->vdev_child[c]);
|
|
|
|
/*
|
|
* If this is a top-level vdev, initialize its metaslabs.
|
|
*/
|
|
if (vd == vd->vdev_top && !vd->vdev_ishole &&
|
|
(vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
|
|
vdev_metaslab_init(vd, 0) != 0))
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
/*
|
|
* If this is a leaf vdev, load its DTL.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
}
|
|
|
|
/*
|
|
* The special vdev case is used for hot spares and l2cache devices. Its
|
|
* sole purpose it to set the vdev state for the associated vdev. To do this,
|
|
* we make sure that we can open the underlying device, then try to read the
|
|
* label, and make sure that the label is sane and that it hasn't been
|
|
* repurposed to another pool.
|
|
*/
|
|
int
|
|
vdev_validate_aux(vdev_t *vd)
|
|
{
|
|
nvlist_t *label;
|
|
uint64_t guid, version;
|
|
uint64_t state;
|
|
|
|
if (!vdev_readable(vd))
|
|
return (0);
|
|
|
|
if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
return (-1);
|
|
}
|
|
|
|
if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
|
|
!SPA_VERSION_IS_SUPPORTED(version) ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
|
|
guid != vd->vdev_guid ||
|
|
nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
|
|
vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
nvlist_free(label);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* We don't actually check the pool state here. If it's in fact in
|
|
* use by another pool, we update this fact on the fly when requested.
|
|
*/
|
|
nvlist_free(label);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vdev_remove(vdev_t *vd, uint64_t txg)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
dmu_tx_t *tx;
|
|
int m, i;
|
|
|
|
tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
|
|
ASSERT(vd == vd->vdev_top);
|
|
ASSERT3U(txg, ==, spa_syncing_txg(spa));
|
|
|
|
if (vd->vdev_ms != NULL) {
|
|
metaslab_group_t *mg = vd->vdev_mg;
|
|
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
|
|
for (m = 0; m < vd->vdev_ms_count; m++) {
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
|
|
if (msp == NULL || msp->ms_sm == NULL)
|
|
continue;
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
/*
|
|
* If the metaslab was not loaded when the vdev
|
|
* was removed then the histogram accounting may
|
|
* not be accurate. Update the histogram information
|
|
* here so that we ensure that the metaslab group
|
|
* and metaslab class are up-to-date.
|
|
*/
|
|
metaslab_group_histogram_remove(mg, msp);
|
|
|
|
VERIFY0(space_map_allocated(msp->ms_sm));
|
|
space_map_free(msp->ms_sm, tx);
|
|
space_map_close(msp->ms_sm);
|
|
msp->ms_sm = NULL;
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
|
|
ASSERT0(mg->mg_histogram[i]);
|
|
|
|
}
|
|
|
|
if (vd->vdev_ms_array) {
|
|
(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
|
|
vd->vdev_ms_array = 0;
|
|
}
|
|
|
|
if (vd->vdev_islog && vd->vdev_top_zap != 0) {
|
|
vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
|
|
vd->vdev_top_zap = 0;
|
|
}
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
void
|
|
vdev_sync_done(vdev_t *vd, uint64_t txg)
|
|
{
|
|
metaslab_t *msp;
|
|
boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
|
|
metaslab_sync_done(msp, txg);
|
|
|
|
if (reassess)
|
|
metaslab_sync_reassess(vd->vdev_mg);
|
|
}
|
|
|
|
void
|
|
vdev_sync(vdev_t *vd, uint64_t txg)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *lvd;
|
|
metaslab_t *msp;
|
|
dmu_tx_t *tx;
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
|
|
ASSERT(vd == vd->vdev_top);
|
|
tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
|
|
vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
|
|
DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
|
|
ASSERT(vd->vdev_ms_array != 0);
|
|
vdev_config_dirty(vd);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
/*
|
|
* Remove the metadata associated with this vdev once it's empty.
|
|
*/
|
|
if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
|
|
vdev_remove(vd, txg);
|
|
|
|
while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
|
|
metaslab_sync(msp, txg);
|
|
(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
|
|
}
|
|
|
|
while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
|
|
vdev_dtl_sync(lvd, txg);
|
|
|
|
(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
|
|
}
|
|
|
|
uint64_t
|
|
vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
|
|
{
|
|
return (vd->vdev_ops->vdev_op_asize(vd, psize));
|
|
}
|
|
|
|
/*
|
|
* Mark the given vdev faulted. A faulted vdev behaves as if the device could
|
|
* not be opened, and no I/O is attempted.
|
|
*/
|
|
int
|
|
vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
|
|
{
|
|
vdev_t *vd, *tvd;
|
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
return (spa_vdev_state_exit(spa, NULL, ENODEV));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
|
|
|
tvd = vd->vdev_top;
|
|
|
|
/*
|
|
* We don't directly use the aux state here, but if we do a
|
|
* vdev_reopen(), we need this value to be present to remember why we
|
|
* were faulted.
|
|
*/
|
|
vd->vdev_label_aux = aux;
|
|
|
|
/*
|
|
* Faulted state takes precedence over degraded.
|
|
*/
|
|
vd->vdev_delayed_close = B_FALSE;
|
|
vd->vdev_faulted = 1ULL;
|
|
vd->vdev_degraded = 0ULL;
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
|
|
|
|
/*
|
|
* If this device has the only valid copy of the data, then
|
|
* back off and simply mark the vdev as degraded instead.
|
|
*/
|
|
if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
|
|
vd->vdev_degraded = 1ULL;
|
|
vd->vdev_faulted = 0ULL;
|
|
|
|
/*
|
|
* If we reopen the device and it's not dead, only then do we
|
|
* mark it degraded.
|
|
*/
|
|
vdev_reopen(tvd);
|
|
|
|
if (vdev_readable(vd))
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
|
|
}
|
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
|
}
|
|
|
|
/*
|
|
* Mark the given vdev degraded. A degraded vdev is purely an indication to the
|
|
* user that something is wrong. The vdev continues to operate as normal as far
|
|
* as I/O is concerned.
|
|
*/
|
|
int
|
|
vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
|
|
{
|
|
vdev_t *vd;
|
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
return (spa_vdev_state_exit(spa, NULL, ENODEV));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
|
|
|
/*
|
|
* If the vdev is already faulted, then don't do anything.
|
|
*/
|
|
if (vd->vdev_faulted || vd->vdev_degraded)
|
|
return (spa_vdev_state_exit(spa, NULL, 0));
|
|
|
|
vd->vdev_degraded = 1ULL;
|
|
if (!vdev_is_dead(vd))
|
|
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
|
|
aux);
|
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
|
}
|
|
|
|
/*
|
|
* Online the given vdev.
|
|
*
|
|
* If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
|
|
* spare device should be detached when the device finishes resilvering.
|
|
* Second, the online should be treated like a 'test' online case, so no FMA
|
|
* events are generated if the device fails to open.
|
|
*/
|
|
int
|
|
vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
|
|
{
|
|
vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
|
|
boolean_t postevent = B_FALSE;
|
|
|
|
spa_vdev_state_enter(spa, SCL_NONE);
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
return (spa_vdev_state_exit(spa, NULL, ENODEV));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
|
|
|
postevent =
|
|
(vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
|
|
B_TRUE : B_FALSE;
|
|
|
|
tvd = vd->vdev_top;
|
|
vd->vdev_offline = B_FALSE;
|
|
vd->vdev_tmpoffline = B_FALSE;
|
|
vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
|
|
vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
|
|
|
|
/* XXX - L2ARC 1.0 does not support expansion */
|
|
if (!vd->vdev_aux) {
|
|
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
|
|
pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
|
|
}
|
|
|
|
vdev_reopen(tvd);
|
|
vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
|
|
|
|
if (!vd->vdev_aux) {
|
|
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
|
|
pvd->vdev_expanding = B_FALSE;
|
|
}
|
|
|
|
if (newstate)
|
|
*newstate = vd->vdev_state;
|
|
if ((flags & ZFS_ONLINE_UNSPARE) &&
|
|
!vdev_is_dead(vd) && vd->vdev_parent &&
|
|
vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
|
|
vd->vdev_parent->vdev_child[0] == vd)
|
|
vd->vdev_unspare = B_TRUE;
|
|
|
|
if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
|
|
|
|
/* XXX - L2ARC 1.0 does not support expansion */
|
|
if (vd->vdev_aux)
|
|
return (spa_vdev_state_exit(spa, vd, ENOTSUP));
|
|
spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
|
|
}
|
|
|
|
if (postevent)
|
|
spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
|
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
|
}
|
|
|
|
static int
|
|
vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
|
|
{
|
|
vdev_t *vd, *tvd;
|
|
int error = 0;
|
|
uint64_t generation;
|
|
metaslab_group_t *mg;
|
|
|
|
top:
|
|
spa_vdev_state_enter(spa, SCL_ALLOC);
|
|
|
|
if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
|
|
return (spa_vdev_state_exit(spa, NULL, ENODEV));
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf)
|
|
return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
|
|
|
|
tvd = vd->vdev_top;
|
|
mg = tvd->vdev_mg;
|
|
generation = spa->spa_config_generation + 1;
|
|
|
|
/*
|
|
* If the device isn't already offline, try to offline it.
|
|
*/
|
|
if (!vd->vdev_offline) {
|
|
/*
|
|
* If this device has the only valid copy of some data,
|
|
* don't allow it to be offlined. Log devices are always
|
|
* expendable.
|
|
*/
|
|
if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
|
|
vdev_dtl_required(vd))
|
|
return (spa_vdev_state_exit(spa, NULL, EBUSY));
|
|
|
|
/*
|
|
* If the top-level is a slog and it has had allocations
|
|
* then proceed. We check that the vdev's metaslab group
|
|
* is not NULL since it's possible that we may have just
|
|
* added this vdev but not yet initialized its metaslabs.
|
|
*/
|
|
if (tvd->vdev_islog && mg != NULL) {
|
|
/*
|
|
* Prevent any future allocations.
|
|
*/
|
|
metaslab_group_passivate(mg);
|
|
(void) spa_vdev_state_exit(spa, vd, 0);
|
|
|
|
error = spa_offline_log(spa);
|
|
|
|
spa_vdev_state_enter(spa, SCL_ALLOC);
|
|
|
|
/*
|
|
* Check to see if the config has changed.
|
|
*/
|
|
if (error || generation != spa->spa_config_generation) {
|
|
metaslab_group_activate(mg);
|
|
if (error)
|
|
return (spa_vdev_state_exit(spa,
|
|
vd, error));
|
|
(void) spa_vdev_state_exit(spa, vd, 0);
|
|
goto top;
|
|
}
|
|
ASSERT0(tvd->vdev_stat.vs_alloc);
|
|
}
|
|
|
|
/*
|
|
* Offline this device and reopen its top-level vdev.
|
|
* If the top-level vdev is a log device then just offline
|
|
* it. Otherwise, if this action results in the top-level
|
|
* vdev becoming unusable, undo it and fail the request.
|
|
*/
|
|
vd->vdev_offline = B_TRUE;
|
|
vdev_reopen(tvd);
|
|
|
|
if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
|
|
vdev_is_dead(tvd)) {
|
|
vd->vdev_offline = B_FALSE;
|
|
vdev_reopen(tvd);
|
|
return (spa_vdev_state_exit(spa, NULL, EBUSY));
|
|
}
|
|
|
|
/*
|
|
* Add the device back into the metaslab rotor so that
|
|
* once we online the device it's open for business.
|
|
*/
|
|
if (tvd->vdev_islog && mg != NULL)
|
|
metaslab_group_activate(mg);
|
|
}
|
|
|
|
vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
|
|
|
|
return (spa_vdev_state_exit(spa, vd, 0));
|
|
}
|
|
|
|
int
|
|
vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
|
|
{
|
|
int error;
|
|
|
|
mutex_enter(&spa->spa_vdev_top_lock);
|
|
error = vdev_offline_locked(spa, guid, flags);
|
|
mutex_exit(&spa->spa_vdev_top_lock);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Clear the error counts associated with this vdev. Unlike vdev_online() and
|
|
* vdev_offline(), we assume the spa config is locked. We also clear all
|
|
* children. If 'vd' is NULL, then the user wants to clear all vdevs.
|
|
*/
|
|
void
|
|
vdev_clear(spa_t *spa, vdev_t *vd)
|
|
{
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
int c;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
|
|
if (vd == NULL)
|
|
vd = rvd;
|
|
|
|
vd->vdev_stat.vs_read_errors = 0;
|
|
vd->vdev_stat.vs_write_errors = 0;
|
|
vd->vdev_stat.vs_checksum_errors = 0;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_clear(spa, vd->vdev_child[c]);
|
|
|
|
/*
|
|
* If we're in the FAULTED state or have experienced failed I/O, then
|
|
* clear the persistent state and attempt to reopen the device. We
|
|
* also mark the vdev config dirty, so that the new faulted state is
|
|
* written out to disk.
|
|
*/
|
|
if (vd->vdev_faulted || vd->vdev_degraded ||
|
|
!vdev_readable(vd) || !vdev_writeable(vd)) {
|
|
|
|
/*
|
|
* When reopening in response to a clear event, it may be due to
|
|
* a fmadm repair request. In this case, if the device is
|
|
* still broken, we want to still post the ereport again.
|
|
*/
|
|
vd->vdev_forcefault = B_TRUE;
|
|
|
|
vd->vdev_faulted = vd->vdev_degraded = 0ULL;
|
|
vd->vdev_cant_read = B_FALSE;
|
|
vd->vdev_cant_write = B_FALSE;
|
|
|
|
vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
|
|
|
|
vd->vdev_forcefault = B_FALSE;
|
|
|
|
if (vd != rvd && vdev_writeable(vd->vdev_top))
|
|
vdev_state_dirty(vd->vdev_top);
|
|
|
|
if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
|
|
spa_async_request(spa, SPA_ASYNC_RESILVER);
|
|
|
|
spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
|
|
}
|
|
|
|
/*
|
|
* When clearing a FMA-diagnosed fault, we always want to
|
|
* unspare the device, as we assume that the original spare was
|
|
* done in response to the FMA fault.
|
|
*/
|
|
if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
|
|
vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
|
|
vd->vdev_parent->vdev_child[0] == vd)
|
|
vd->vdev_unspare = B_TRUE;
|
|
}
|
|
|
|
boolean_t
|
|
vdev_is_dead(vdev_t *vd)
|
|
{
|
|
/*
|
|
* Holes and missing devices are always considered "dead".
|
|
* This simplifies the code since we don't have to check for
|
|
* these types of devices in the various code paths.
|
|
* Instead we rely on the fact that we skip over dead devices
|
|
* before issuing I/O to them.
|
|
*/
|
|
return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
|
|
vd->vdev_ops == &vdev_missing_ops);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_readable(vdev_t *vd)
|
|
{
|
|
return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_writeable(vdev_t *vd)
|
|
{
|
|
return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_allocatable(vdev_t *vd)
|
|
{
|
|
uint64_t state = vd->vdev_state;
|
|
|
|
/*
|
|
* We currently allow allocations from vdevs which may be in the
|
|
* process of reopening (i.e. VDEV_STATE_CLOSED). If the device
|
|
* fails to reopen then we'll catch it later when we're holding
|
|
* the proper locks. Note that we have to get the vdev state
|
|
* in a local variable because although it changes atomically,
|
|
* we're asking two separate questions about it.
|
|
*/
|
|
return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
|
|
!vd->vdev_cant_write && !vd->vdev_ishole &&
|
|
vd->vdev_mg->mg_initialized);
|
|
}
|
|
|
|
boolean_t
|
|
vdev_accessible(vdev_t *vd, zio_t *zio)
|
|
{
|
|
ASSERT(zio->io_vd == vd);
|
|
|
|
if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
|
|
return (B_FALSE);
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ)
|
|
return (!vd->vdev_cant_read);
|
|
|
|
if (zio->io_type == ZIO_TYPE_WRITE)
|
|
return (!vd->vdev_cant_write);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
static void
|
|
vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
|
|
{
|
|
int t;
|
|
for (t = 0; t < ZIO_TYPES; t++) {
|
|
vs->vs_ops[t] += cvs->vs_ops[t];
|
|
vs->vs_bytes[t] += cvs->vs_bytes[t];
|
|
}
|
|
|
|
cvs->vs_scan_removing = cvd->vdev_removing;
|
|
}
|
|
|
|
/*
|
|
* Get extended stats
|
|
*/
|
|
static void
|
|
vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
|
|
{
|
|
int t, b;
|
|
for (t = 0; t < ZIO_TYPES; t++) {
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
|
|
vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
|
|
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
|
|
vsx->vsx_total_histo[t][b] +=
|
|
cvsx->vsx_total_histo[t][b];
|
|
}
|
|
}
|
|
|
|
for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
|
|
vsx->vsx_queue_histo[t][b] +=
|
|
cvsx->vsx_queue_histo[t][b];
|
|
}
|
|
vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
|
|
vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
|
|
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
|
|
vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
|
|
|
|
for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
|
|
vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Get statistics for the given vdev.
|
|
*/
|
|
static void
|
|
vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
|
|
{
|
|
int c, t;
|
|
/*
|
|
* If we're getting stats on the root vdev, aggregate the I/O counts
|
|
* over all top-level vdevs (i.e. the direct children of the root).
|
|
*/
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
|
if (vs) {
|
|
memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
|
|
memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
|
|
}
|
|
if (vsx)
|
|
memset(vsx, 0, sizeof (*vsx));
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
vdev_stat_t *cvs = &cvd->vdev_stat;
|
|
vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
|
|
|
|
vdev_get_stats_ex_impl(cvd, cvs, cvsx);
|
|
if (vs)
|
|
vdev_get_child_stat(cvd, vs, cvs);
|
|
if (vsx)
|
|
vdev_get_child_stat_ex(cvd, vsx, cvsx);
|
|
|
|
}
|
|
} else {
|
|
/*
|
|
* We're a leaf. Just copy our ZIO active queue stats in. The
|
|
* other leaf stats are updated in vdev_stat_update().
|
|
*/
|
|
if (!vsx)
|
|
return;
|
|
|
|
memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
|
|
|
|
for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
|
|
vsx->vsx_active_queue[t] =
|
|
vd->vdev_queue.vq_class[t].vqc_active;
|
|
vsx->vsx_pend_queue[t] = avl_numnodes(
|
|
&vd->vdev_queue.vq_class[t].vqc_queued_tree);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
|
|
{
|
|
vdev_t *tvd = vd->vdev_top;
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
if (vs) {
|
|
bcopy(&vd->vdev_stat, vs, sizeof (*vs));
|
|
vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
|
|
vs->vs_state = vd->vdev_state;
|
|
vs->vs_rsize = vdev_get_min_asize(vd);
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
vs->vs_rsize += VDEV_LABEL_START_SIZE +
|
|
VDEV_LABEL_END_SIZE;
|
|
/*
|
|
* Report expandable space on top-level, non-auxillary devices
|
|
* only. The expandable space is reported in terms of metaslab
|
|
* sized units since that determines how much space the pool
|
|
* can expand.
|
|
*/
|
|
if (vd->vdev_aux == NULL && tvd != NULL) {
|
|
vs->vs_esize = P2ALIGN(
|
|
vd->vdev_max_asize - vd->vdev_asize,
|
|
1ULL << tvd->vdev_ms_shift);
|
|
}
|
|
vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
|
|
if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
|
|
!vd->vdev_ishole) {
|
|
vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
|
|
}
|
|
}
|
|
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
|
|
vdev_get_stats_ex_impl(vd, vs, vsx);
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
}
|
|
|
|
void
|
|
vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
|
|
{
|
|
return (vdev_get_stats_ex(vd, vs, NULL));
|
|
}
|
|
|
|
void
|
|
vdev_clear_stats(vdev_t *vd)
|
|
{
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
vd->vdev_stat.vs_space = 0;
|
|
vd->vdev_stat.vs_dspace = 0;
|
|
vd->vdev_stat.vs_alloc = 0;
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
}
|
|
|
|
void
|
|
vdev_scan_stat_init(vdev_t *vd)
|
|
{
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
vdev_scan_stat_init(vd->vdev_child[c]);
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
vs->vs_scan_processed = 0;
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
}
|
|
|
|
void
|
|
vdev_stat_update(zio_t *zio, uint64_t psize)
|
|
{
|
|
spa_t *spa = zio->io_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
|
|
vdev_t *pvd;
|
|
uint64_t txg = zio->io_txg;
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
|
|
zio_type_t type = zio->io_type;
|
|
int flags = zio->io_flags;
|
|
|
|
/*
|
|
* If this i/o is a gang leader, it didn't do any actual work.
|
|
*/
|
|
if (zio->io_gang_tree)
|
|
return;
|
|
|
|
if (zio->io_error == 0) {
|
|
/*
|
|
* If this is a root i/o, don't count it -- we've already
|
|
* counted the top-level vdevs, and vdev_get_stats() will
|
|
* aggregate them when asked. This reduces contention on
|
|
* the root vdev_stat_lock and implicitly handles blocks
|
|
* that compress away to holes, for which there is no i/o.
|
|
* (Holes never create vdev children, so all the counters
|
|
* remain zero, which is what we want.)
|
|
*
|
|
* Note: this only applies to successful i/o (io_error == 0)
|
|
* because unlike i/o counts, errors are not additive.
|
|
* When reading a ditto block, for example, failure of
|
|
* one top-level vdev does not imply a root-level error.
|
|
*/
|
|
if (vd == rvd)
|
|
return;
|
|
|
|
ASSERT(vd == zio->io_vd);
|
|
|
|
if (flags & ZIO_FLAG_IO_BYPASS)
|
|
return;
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
|
|
if (flags & ZIO_FLAG_IO_REPAIR) {
|
|
if (flags & ZIO_FLAG_SCAN_THREAD) {
|
|
dsl_scan_phys_t *scn_phys =
|
|
&spa->spa_dsl_pool->dp_scan->scn_phys;
|
|
uint64_t *processed = &scn_phys->scn_processed;
|
|
|
|
/* XXX cleanup? */
|
|
if (vd->vdev_ops->vdev_op_leaf)
|
|
atomic_add_64(processed, psize);
|
|
vs->vs_scan_processed += psize;
|
|
}
|
|
|
|
if (flags & ZIO_FLAG_SELF_HEAL)
|
|
vs->vs_self_healed += psize;
|
|
}
|
|
|
|
/*
|
|
* The bytes/ops/histograms are recorded at the leaf level and
|
|
* aggregated into the higher level vdevs in vdev_get_stats().
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
(zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
|
|
|
|
vs->vs_ops[type]++;
|
|
vs->vs_bytes[type] += psize;
|
|
|
|
if (flags & ZIO_FLAG_DELEGATED) {
|
|
vsx->vsx_agg_histo[zio->io_priority]
|
|
[RQ_HISTO(zio->io_size)]++;
|
|
} else {
|
|
vsx->vsx_ind_histo[zio->io_priority]
|
|
[RQ_HISTO(zio->io_size)]++;
|
|
}
|
|
|
|
if (zio->io_delta && zio->io_delay) {
|
|
vsx->vsx_queue_histo[zio->io_priority]
|
|
[L_HISTO(zio->io_delta - zio->io_delay)]++;
|
|
vsx->vsx_disk_histo[type]
|
|
[L_HISTO(zio->io_delay)]++;
|
|
vsx->vsx_total_histo[type]
|
|
[L_HISTO(zio->io_delta)]++;
|
|
}
|
|
}
|
|
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
return;
|
|
}
|
|
|
|
if (flags & ZIO_FLAG_SPECULATIVE)
|
|
return;
|
|
|
|
/*
|
|
* If this is an I/O error that is going to be retried, then ignore the
|
|
* error. Otherwise, the user may interpret B_FAILFAST I/O errors as
|
|
* hard errors, when in reality they can happen for any number of
|
|
* innocuous reasons (bus resets, MPxIO link failure, etc).
|
|
*/
|
|
if (zio->io_error == EIO &&
|
|
!(zio->io_flags & ZIO_FLAG_IO_RETRY))
|
|
return;
|
|
|
|
/*
|
|
* Intent logs writes won't propagate their error to the root
|
|
* I/O so don't mark these types of failures as pool-level
|
|
* errors.
|
|
*/
|
|
if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
|
|
return;
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
|
|
if (zio->io_error == ECKSUM)
|
|
vs->vs_checksum_errors++;
|
|
else
|
|
vs->vs_read_errors++;
|
|
}
|
|
if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
|
|
vs->vs_write_errors++;
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
|
|
if (type == ZIO_TYPE_WRITE && txg != 0 &&
|
|
(!(flags & ZIO_FLAG_IO_REPAIR) ||
|
|
(flags & ZIO_FLAG_SCAN_THREAD) ||
|
|
spa->spa_claiming)) {
|
|
/*
|
|
* This is either a normal write (not a repair), or it's
|
|
* a repair induced by the scrub thread, or it's a repair
|
|
* made by zil_claim() during spa_load() in the first txg.
|
|
* In the normal case, we commit the DTL change in the same
|
|
* txg as the block was born. In the scrub-induced repair
|
|
* case, we know that scrubs run in first-pass syncing context,
|
|
* so we commit the DTL change in spa_syncing_txg(spa).
|
|
* In the zil_claim() case, we commit in spa_first_txg(spa).
|
|
*
|
|
* We currently do not make DTL entries for failed spontaneous
|
|
* self-healing writes triggered by normal (non-scrubbing)
|
|
* reads, because we have no transactional context in which to
|
|
* do so -- and it's not clear that it'd be desirable anyway.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
uint64_t commit_txg = txg;
|
|
if (flags & ZIO_FLAG_SCAN_THREAD) {
|
|
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
|
|
ASSERT(spa_sync_pass(spa) == 1);
|
|
vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
|
|
commit_txg = spa_syncing_txg(spa);
|
|
} else if (spa->spa_claiming) {
|
|
ASSERT(flags & ZIO_FLAG_IO_REPAIR);
|
|
commit_txg = spa_first_txg(spa);
|
|
}
|
|
ASSERT(commit_txg >= spa_syncing_txg(spa));
|
|
if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
|
|
return;
|
|
for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
|
|
vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
|
|
vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
|
|
}
|
|
if (vd != rvd)
|
|
vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the in-core space usage stats for this vdev, its metaslab class,
|
|
* and the root vdev.
|
|
*/
|
|
void
|
|
vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
|
|
int64_t space_delta)
|
|
{
|
|
int64_t dspace_delta = space_delta;
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
metaslab_group_t *mg = vd->vdev_mg;
|
|
metaslab_class_t *mc = mg ? mg->mg_class : NULL;
|
|
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
/*
|
|
* Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
|
|
* factor. We must calculate this here and not at the root vdev
|
|
* because the root vdev's psize-to-asize is simply the max of its
|
|
* childrens', thus not accurate enough for us.
|
|
*/
|
|
ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
|
|
ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
|
|
dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
|
|
vd->vdev_deflate_ratio;
|
|
|
|
mutex_enter(&vd->vdev_stat_lock);
|
|
vd->vdev_stat.vs_alloc += alloc_delta;
|
|
vd->vdev_stat.vs_space += space_delta;
|
|
vd->vdev_stat.vs_dspace += dspace_delta;
|
|
mutex_exit(&vd->vdev_stat_lock);
|
|
|
|
if (mc == spa_normal_class(spa)) {
|
|
mutex_enter(&rvd->vdev_stat_lock);
|
|
rvd->vdev_stat.vs_alloc += alloc_delta;
|
|
rvd->vdev_stat.vs_space += space_delta;
|
|
rvd->vdev_stat.vs_dspace += dspace_delta;
|
|
mutex_exit(&rvd->vdev_stat_lock);
|
|
}
|
|
|
|
if (mc != NULL) {
|
|
ASSERT(rvd == vd->vdev_parent);
|
|
ASSERT(vd->vdev_ms_count != 0);
|
|
|
|
metaslab_class_space_update(mc,
|
|
alloc_delta, defer_delta, space_delta, dspace_delta);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark a top-level vdev's config as dirty, placing it on the dirty list
|
|
* so that it will be written out next time the vdev configuration is synced.
|
|
* If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
|
|
*/
|
|
void
|
|
vdev_config_dirty(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
int c;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
|
|
/*
|
|
* If this is an aux vdev (as with l2cache and spare devices), then we
|
|
* update the vdev config manually and set the sync flag.
|
|
*/
|
|
if (vd->vdev_aux != NULL) {
|
|
spa_aux_vdev_t *sav = vd->vdev_aux;
|
|
nvlist_t **aux;
|
|
uint_t naux;
|
|
|
|
for (c = 0; c < sav->sav_count; c++) {
|
|
if (sav->sav_vdevs[c] == vd)
|
|
break;
|
|
}
|
|
|
|
if (c == sav->sav_count) {
|
|
/*
|
|
* We're being removed. There's nothing more to do.
|
|
*/
|
|
ASSERT(sav->sav_sync == B_TRUE);
|
|
return;
|
|
}
|
|
|
|
sav->sav_sync = B_TRUE;
|
|
|
|
if (nvlist_lookup_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
|
|
VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
|
|
ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
|
|
}
|
|
|
|
ASSERT(c < naux);
|
|
|
|
/*
|
|
* Setting the nvlist in the middle if the array is a little
|
|
* sketchy, but it will work.
|
|
*/
|
|
nvlist_free(aux[c]);
|
|
aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The dirty list is protected by the SCL_CONFIG lock. The caller
|
|
* must either hold SCL_CONFIG as writer, or must be the sync thread
|
|
* (which holds SCL_CONFIG as reader). There's only one sync thread,
|
|
* so this is sufficient to ensure mutual exclusion.
|
|
*/
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
spa_config_held(spa, SCL_CONFIG, RW_READER)));
|
|
|
|
if (vd == rvd) {
|
|
for (c = 0; c < rvd->vdev_children; c++)
|
|
vdev_config_dirty(rvd->vdev_child[c]);
|
|
} else {
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
if (!list_link_active(&vd->vdev_config_dirty_node) &&
|
|
!vd->vdev_ishole)
|
|
list_insert_head(&spa->spa_config_dirty_list, vd);
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_config_clean(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
spa_config_held(spa, SCL_CONFIG, RW_READER)));
|
|
|
|
ASSERT(list_link_active(&vd->vdev_config_dirty_node));
|
|
list_remove(&spa->spa_config_dirty_list, vd);
|
|
}
|
|
|
|
/*
|
|
* Mark a top-level vdev's state as dirty, so that the next pass of
|
|
* spa_sync() can convert this into vdev_config_dirty(). We distinguish
|
|
* the state changes from larger config changes because they require
|
|
* much less locking, and are often needed for administrative actions.
|
|
*/
|
|
void
|
|
vdev_state_dirty(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(spa_writeable(spa));
|
|
ASSERT(vd == vd->vdev_top);
|
|
|
|
/*
|
|
* The state list is protected by the SCL_STATE lock. The caller
|
|
* must either hold SCL_STATE as writer, or must be the sync thread
|
|
* (which holds SCL_STATE as reader). There's only one sync thread,
|
|
* so this is sufficient to ensure mutual exclusion.
|
|
*/
|
|
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
spa_config_held(spa, SCL_STATE, RW_READER)));
|
|
|
|
if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
|
|
list_insert_head(&spa->spa_state_dirty_list, vd);
|
|
}
|
|
|
|
void
|
|
vdev_state_clean(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
|
|
(dsl_pool_sync_context(spa_get_dsl(spa)) &&
|
|
spa_config_held(spa, SCL_STATE, RW_READER)));
|
|
|
|
ASSERT(list_link_active(&vd->vdev_state_dirty_node));
|
|
list_remove(&spa->spa_state_dirty_list, vd);
|
|
}
|
|
|
|
/*
|
|
* Propagate vdev state up from children to parent.
|
|
*/
|
|
void
|
|
vdev_propagate_state(vdev_t *vd)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
int degraded = 0, faulted = 0;
|
|
int corrupted = 0;
|
|
vdev_t *child;
|
|
int c;
|
|
|
|
if (vd->vdev_children > 0) {
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
child = vd->vdev_child[c];
|
|
|
|
/*
|
|
* Don't factor holes into the decision.
|
|
*/
|
|
if (child->vdev_ishole)
|
|
continue;
|
|
|
|
if (!vdev_readable(child) ||
|
|
(!vdev_writeable(child) && spa_writeable(spa))) {
|
|
/*
|
|
* Root special: if there is a top-level log
|
|
* device, treat the root vdev as if it were
|
|
* degraded.
|
|
*/
|
|
if (child->vdev_islog && vd == rvd)
|
|
degraded++;
|
|
else
|
|
faulted++;
|
|
} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
|
|
degraded++;
|
|
}
|
|
|
|
if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
|
|
corrupted++;
|
|
}
|
|
|
|
vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
|
|
|
|
/*
|
|
* Root special: if there is a top-level vdev that cannot be
|
|
* opened due to corrupted metadata, then propagate the root
|
|
* vdev's aux state as 'corrupt' rather than 'insufficient
|
|
* replicas'.
|
|
*/
|
|
if (corrupted && vd == rvd &&
|
|
rvd->vdev_state == VDEV_STATE_CANT_OPEN)
|
|
vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
|
VDEV_AUX_CORRUPT_DATA);
|
|
}
|
|
|
|
if (vd->vdev_parent)
|
|
vdev_propagate_state(vd->vdev_parent);
|
|
}
|
|
|
|
/*
|
|
* Set a vdev's state. If this is during an open, we don't update the parent
|
|
* state, because we're in the process of opening children depth-first.
|
|
* Otherwise, we propagate the change to the parent.
|
|
*
|
|
* If this routine places a device in a faulted state, an appropriate ereport is
|
|
* generated.
|
|
*/
|
|
void
|
|
vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
|
|
{
|
|
uint64_t save_state;
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
if (state == vd->vdev_state) {
|
|
/*
|
|
* Since vdev_offline() code path is already in an offline
|
|
* state we can miss a statechange event to OFFLINE. Check
|
|
* the previous state to catch this condition.
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf &&
|
|
(state == VDEV_STATE_OFFLINE) &&
|
|
(vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
|
|
/* post an offline state change */
|
|
zfs_post_state_change(spa, vd, vd->vdev_prevstate);
|
|
}
|
|
vd->vdev_stat.vs_aux = aux;
|
|
return;
|
|
}
|
|
|
|
save_state = vd->vdev_state;
|
|
|
|
vd->vdev_state = state;
|
|
vd->vdev_stat.vs_aux = aux;
|
|
|
|
/*
|
|
* If we are setting the vdev state to anything but an open state, then
|
|
* always close the underlying device unless the device has requested
|
|
* a delayed close (i.e. we're about to remove or fault the device).
|
|
* Otherwise, we keep accessible but invalid devices open forever.
|
|
* We don't call vdev_close() itself, because that implies some extra
|
|
* checks (offline, etc) that we don't want here. This is limited to
|
|
* leaf devices, because otherwise closing the device will affect other
|
|
* children.
|
|
*/
|
|
if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
|
|
vd->vdev_ops->vdev_op_leaf)
|
|
vd->vdev_ops->vdev_op_close(vd);
|
|
|
|
if (vd->vdev_removed &&
|
|
state == VDEV_STATE_CANT_OPEN &&
|
|
(aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
|
|
/*
|
|
* If the previous state is set to VDEV_STATE_REMOVED, then this
|
|
* device was previously marked removed and someone attempted to
|
|
* reopen it. If this failed due to a nonexistent device, then
|
|
* keep the device in the REMOVED state. We also let this be if
|
|
* it is one of our special test online cases, which is only
|
|
* attempting to online the device and shouldn't generate an FMA
|
|
* fault.
|
|
*/
|
|
vd->vdev_state = VDEV_STATE_REMOVED;
|
|
vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
|
|
} else if (state == VDEV_STATE_REMOVED) {
|
|
vd->vdev_removed = B_TRUE;
|
|
} else if (state == VDEV_STATE_CANT_OPEN) {
|
|
/*
|
|
* If we fail to open a vdev during an import or recovery, we
|
|
* mark it as "not available", which signifies that it was
|
|
* never there to begin with. Failure to open such a device
|
|
* is not considered an error.
|
|
*/
|
|
if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
|
|
spa_load_state(spa) == SPA_LOAD_RECOVER) &&
|
|
vd->vdev_ops->vdev_op_leaf)
|
|
vd->vdev_not_present = 1;
|
|
|
|
/*
|
|
* Post the appropriate ereport. If the 'prevstate' field is
|
|
* set to something other than VDEV_STATE_UNKNOWN, it indicates
|
|
* that this is part of a vdev_reopen(). In this case, we don't
|
|
* want to post the ereport if the device was already in the
|
|
* CANT_OPEN state beforehand.
|
|
*
|
|
* If the 'checkremove' flag is set, then this is an attempt to
|
|
* online the device in response to an insertion event. If we
|
|
* hit this case, then we have detected an insertion event for a
|
|
* faulted or offline device that wasn't in the removed state.
|
|
* In this scenario, we don't post an ereport because we are
|
|
* about to replace the device, or attempt an online with
|
|
* vdev_forcefault, which will generate the fault for us.
|
|
*/
|
|
if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
|
|
!vd->vdev_not_present && !vd->vdev_checkremove &&
|
|
vd != spa->spa_root_vdev) {
|
|
const char *class;
|
|
|
|
switch (aux) {
|
|
case VDEV_AUX_OPEN_FAILED:
|
|
class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
|
|
break;
|
|
case VDEV_AUX_CORRUPT_DATA:
|
|
class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
|
|
break;
|
|
case VDEV_AUX_NO_REPLICAS:
|
|
class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
|
|
break;
|
|
case VDEV_AUX_BAD_GUID_SUM:
|
|
class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
|
|
break;
|
|
case VDEV_AUX_TOO_SMALL:
|
|
class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
|
|
break;
|
|
case VDEV_AUX_BAD_LABEL:
|
|
class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
|
|
break;
|
|
default:
|
|
class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
|
|
}
|
|
|
|
zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
|
|
}
|
|
|
|
/* Erase any notion of persistent removed state */
|
|
vd->vdev_removed = B_FALSE;
|
|
} else {
|
|
vd->vdev_removed = B_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Notify ZED of any significant state-change on a leaf vdev.
|
|
*
|
|
*/
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
/* preserve original state from a vdev_reopen() */
|
|
if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
|
|
(vd->vdev_prevstate != vd->vdev_state) &&
|
|
(save_state <= VDEV_STATE_CLOSED))
|
|
save_state = vd->vdev_prevstate;
|
|
|
|
/* filter out state change due to initial vdev_open */
|
|
if (save_state > VDEV_STATE_CLOSED)
|
|
zfs_post_state_change(spa, vd, save_state);
|
|
}
|
|
|
|
if (!isopen && vd->vdev_parent)
|
|
vdev_propagate_state(vd->vdev_parent);
|
|
}
|
|
|
|
/*
|
|
* Check the vdev configuration to ensure that it's capable of supporting
|
|
* a root pool.
|
|
*/
|
|
boolean_t
|
|
vdev_is_bootable(vdev_t *vd)
|
|
{
|
|
#if defined(__sun__) || defined(__sun)
|
|
/*
|
|
* Currently, we do not support RAID-Z or partial configuration.
|
|
* In addition, only a single top-level vdev is allowed and none of the
|
|
* leaves can be wholedisks.
|
|
*/
|
|
int c;
|
|
|
|
if (!vd->vdev_ops->vdev_op_leaf) {
|
|
char *vdev_type = vd->vdev_ops->vdev_op_type;
|
|
|
|
if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
|
|
vd->vdev_children > 1) {
|
|
return (B_FALSE);
|
|
} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
|
|
strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
|
|
return (B_FALSE);
|
|
}
|
|
}
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
if (!vdev_is_bootable(vd->vdev_child[c]))
|
|
return (B_FALSE);
|
|
}
|
|
#endif /* __sun__ || __sun */
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Load the state from the original vdev tree (ovd) which
|
|
* we've retrieved from the MOS config object. If the original
|
|
* vdev was offline or faulted then we transfer that state to the
|
|
* device in the current vdev tree (nvd).
|
|
*/
|
|
void
|
|
vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
|
|
{
|
|
int c;
|
|
|
|
ASSERT(nvd->vdev_top->vdev_islog);
|
|
ASSERT(spa_config_held(nvd->vdev_spa,
|
|
SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
|
|
ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
|
|
|
|
for (c = 0; c < nvd->vdev_children; c++)
|
|
vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
|
|
|
|
if (nvd->vdev_ops->vdev_op_leaf) {
|
|
/*
|
|
* Restore the persistent vdev state
|
|
*/
|
|
nvd->vdev_offline = ovd->vdev_offline;
|
|
nvd->vdev_faulted = ovd->vdev_faulted;
|
|
nvd->vdev_degraded = ovd->vdev_degraded;
|
|
nvd->vdev_removed = ovd->vdev_removed;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine if a log device has valid content. If the vdev was
|
|
* removed or faulted in the MOS config then we know that
|
|
* the content on the log device has already been written to the pool.
|
|
*/
|
|
boolean_t
|
|
vdev_log_state_valid(vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
|
|
!vd->vdev_removed)
|
|
return (B_TRUE);
|
|
|
|
for (c = 0; c < vd->vdev_children; c++)
|
|
if (vdev_log_state_valid(vd->vdev_child[c]))
|
|
return (B_TRUE);
|
|
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Expand a vdev if possible.
|
|
*/
|
|
void
|
|
vdev_expand(vdev_t *vd, uint64_t txg)
|
|
{
|
|
ASSERT(vd->vdev_top == vd);
|
|
ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
|
|
|
|
if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
|
|
VERIFY(vdev_metaslab_init(vd, txg) == 0);
|
|
vdev_config_dirty(vd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Split a vdev.
|
|
*/
|
|
void
|
|
vdev_split(vdev_t *vd)
|
|
{
|
|
vdev_t *cvd, *pvd = vd->vdev_parent;
|
|
|
|
vdev_remove_child(pvd, vd);
|
|
vdev_compact_children(pvd);
|
|
|
|
cvd = pvd->vdev_child[0];
|
|
if (pvd->vdev_children == 1) {
|
|
vdev_remove_parent(cvd);
|
|
cvd->vdev_splitting = B_TRUE;
|
|
}
|
|
vdev_propagate_state(cvd);
|
|
}
|
|
|
|
void
|
|
vdev_deadman(vdev_t *vd)
|
|
{
|
|
int c;
|
|
|
|
for (c = 0; c < vd->vdev_children; c++) {
|
|
vdev_t *cvd = vd->vdev_child[c];
|
|
|
|
vdev_deadman(cvd);
|
|
}
|
|
|
|
if (vd->vdev_ops->vdev_op_leaf) {
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
if (avl_numnodes(&vq->vq_active_tree) > 0) {
|
|
spa_t *spa = vd->vdev_spa;
|
|
zio_t *fio;
|
|
uint64_t delta;
|
|
|
|
/*
|
|
* Look at the head of all the pending queues,
|
|
* if any I/O has been outstanding for longer than
|
|
* the spa_deadman_synctime we log a zevent.
|
|
*/
|
|
fio = avl_first(&vq->vq_active_tree);
|
|
delta = gethrtime() - fio->io_timestamp;
|
|
if (delta > spa_deadman_synctime(spa)) {
|
|
zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
|
|
"delta %lluns, last io %lluns",
|
|
fio->io_timestamp, delta,
|
|
vq->vq_io_complete_ts);
|
|
zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
|
|
spa, vd, fio, 0, 0);
|
|
}
|
|
}
|
|
mutex_exit(&vq->vq_lock);
|
|
}
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
EXPORT_SYMBOL(vdev_fault);
|
|
EXPORT_SYMBOL(vdev_degrade);
|
|
EXPORT_SYMBOL(vdev_online);
|
|
EXPORT_SYMBOL(vdev_offline);
|
|
EXPORT_SYMBOL(vdev_clear);
|
|
/* BEGIN CSTYLED */
|
|
module_param(metaslabs_per_vdev, int, 0644);
|
|
MODULE_PARM_DESC(metaslabs_per_vdev,
|
|
"Divide added vdev into approximately (but no more than) this number "
|
|
"of metaslabs");
|
|
/* END CSTYLED */
|
|
#endif
|