mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-14 20:20:26 +03:00
0e6c493fec
In order for cppcheck to perform a proper analysis it needs to be aware of how the sources are compiled (source files, include paths/files, extra defines, etc). All the needed information is available from the Makefiles and can be leveraged with a generic cppcheck Makefile target. So let's add one. Additional minor changes: * Removing the cppcheck-suppressions.txt file. With cppcheck 2.3 and these changes it appears to no longer be needed. Some inline suppressions were also removed since they appear not to be needed. We can add them back if it turns out they're needed for older versions of cppcheck. * Added the ax_count_cpus m4 macro to detect at configure time how many processors are available in order to run multiple cppcheck jobs. This value is also now used as a replacement for nproc when executing the kernel interface checks. * "PHONY =" line moved in to the Rules.am file which is included at the top of all Makefile.am's. This is just convenient becase it allows us to use the += syntax to add phony targets. * One upside of this integration worth mentioning is it now allows `make cppcheck` to be run in any directory to check that subtree. * For the moment, cppcheck is not run against the FreeBSD specific kernel sources. The cppcheck-FreeBSD target will need to be implemented and testing on FreeBSD to support this. Reviewed-by: Ryan Moeller <ryan@ixsystems.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #11508
842 lines
20 KiB
C
842 lines
20 KiB
C
/*
|
|
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
|
|
* Copyright (C) 2007 The Regents of the University of California.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This file is part of the SPL, Solaris Porting Layer.
|
|
*
|
|
* The SPL is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* The SPL is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Solaris Porting Layer (SPL) Generic Implementation.
|
|
*/
|
|
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/systeminfo.h>
|
|
#include <sys/vmsystm.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/kmem_cache.h>
|
|
#include <sys/vmem.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/rwlock.h>
|
|
#include <sys/taskq.h>
|
|
#include <sys/tsd.h>
|
|
#include <sys/zmod.h>
|
|
#include <sys/debug.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kstat.h>
|
|
#include <sys/file.h>
|
|
#include <sys/sunddi.h>
|
|
#include <linux/ctype.h>
|
|
#include <sys/disp.h>
|
|
#include <sys/random.h>
|
|
#include <sys/strings.h>
|
|
#include <linux/kmod.h>
|
|
#include "zfs_gitrev.h"
|
|
#include <linux/mod_compat.h>
|
|
#include <sys/cred.h>
|
|
#include <sys/vnode.h>
|
|
|
|
char spl_gitrev[64] = ZFS_META_GITREV;
|
|
|
|
/* BEGIN CSTYLED */
|
|
unsigned long spl_hostid = 0;
|
|
EXPORT_SYMBOL(spl_hostid);
|
|
/* BEGIN CSTYLED */
|
|
module_param(spl_hostid, ulong, 0644);
|
|
MODULE_PARM_DESC(spl_hostid, "The system hostid.");
|
|
/* END CSTYLED */
|
|
|
|
proc_t p0;
|
|
EXPORT_SYMBOL(p0);
|
|
|
|
/*
|
|
* Xorshift Pseudo Random Number Generator based on work by Sebastiano Vigna
|
|
*
|
|
* "Further scramblings of Marsaglia's xorshift generators"
|
|
* http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf
|
|
*
|
|
* random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
|
|
* is to provide bytes containing random numbers. It is mapped to /dev/urandom
|
|
* on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
|
|
* random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
|
|
* we can implement it using a fast PRNG that we seed using Linux' actual
|
|
* equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
|
|
* with an independent seed so that all calls to random_get_pseudo_bytes() are
|
|
* free of atomic instructions.
|
|
*
|
|
* A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
|
|
* to generate words larger than 128 bits will paradoxically be limited to
|
|
* `2^128 - 1` possibilities. This is because we have a sequence of `2^128 - 1`
|
|
* 128-bit words and selecting the first will implicitly select the second. If
|
|
* a caller finds this behavior undesirable, random_get_bytes() should be used
|
|
* instead.
|
|
*
|
|
* XXX: Linux interrupt handlers that trigger within the critical section
|
|
* formed by `s[1] = xp[1];` and `xp[0] = s[0];` and call this function will
|
|
* see the same numbers. Nothing in the code currently calls this in an
|
|
* interrupt handler, so this is considered to be okay. If that becomes a
|
|
* problem, we could create a set of per-cpu variables for interrupt handlers
|
|
* and use them when in_interrupt() from linux/preempt_mask.h evaluates to
|
|
* true.
|
|
*/
|
|
void __percpu *spl_pseudo_entropy;
|
|
|
|
/*
|
|
* spl_rand_next()/spl_rand_jump() are copied from the following CC-0 licensed
|
|
* file:
|
|
*
|
|
* http://xorshift.di.unimi.it/xorshift128plus.c
|
|
*/
|
|
|
|
static inline uint64_t
|
|
spl_rand_next(uint64_t *s)
|
|
{
|
|
uint64_t s1 = s[0];
|
|
const uint64_t s0 = s[1];
|
|
s[0] = s0;
|
|
s1 ^= s1 << 23; // a
|
|
s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5); // b, c
|
|
return (s[1] + s0);
|
|
}
|
|
|
|
static inline void
|
|
spl_rand_jump(uint64_t *s)
|
|
{
|
|
static const uint64_t JUMP[] =
|
|
{ 0x8a5cd789635d2dff, 0x121fd2155c472f96 };
|
|
|
|
uint64_t s0 = 0;
|
|
uint64_t s1 = 0;
|
|
int i, b;
|
|
for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
|
|
for (b = 0; b < 64; b++) {
|
|
if (JUMP[i] & 1ULL << b) {
|
|
s0 ^= s[0];
|
|
s1 ^= s[1];
|
|
}
|
|
(void) spl_rand_next(s);
|
|
}
|
|
|
|
s[0] = s0;
|
|
s[1] = s1;
|
|
}
|
|
|
|
int
|
|
random_get_pseudo_bytes(uint8_t *ptr, size_t len)
|
|
{
|
|
uint64_t *xp, s[2];
|
|
|
|
ASSERT(ptr);
|
|
|
|
xp = get_cpu_ptr(spl_pseudo_entropy);
|
|
|
|
s[0] = xp[0];
|
|
s[1] = xp[1];
|
|
|
|
while (len) {
|
|
union {
|
|
uint64_t ui64;
|
|
uint8_t byte[sizeof (uint64_t)];
|
|
}entropy;
|
|
int i = MIN(len, sizeof (uint64_t));
|
|
|
|
len -= i;
|
|
entropy.ui64 = spl_rand_next(s);
|
|
|
|
while (i--)
|
|
*ptr++ = entropy.byte[i];
|
|
}
|
|
|
|
xp[0] = s[0];
|
|
xp[1] = s[1];
|
|
|
|
put_cpu_ptr(spl_pseudo_entropy);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
EXPORT_SYMBOL(random_get_pseudo_bytes);
|
|
|
|
#if BITS_PER_LONG == 32
|
|
|
|
/*
|
|
* Support 64/64 => 64 division on a 32-bit platform. While the kernel
|
|
* provides a div64_u64() function for this we do not use it because the
|
|
* implementation is flawed. There are cases which return incorrect
|
|
* results as late as linux-2.6.35. Until this is fixed upstream the
|
|
* spl must provide its own implementation.
|
|
*
|
|
* This implementation is a slightly modified version of the algorithm
|
|
* proposed by the book 'Hacker's Delight'. The original source can be
|
|
* found here and is available for use without restriction.
|
|
*
|
|
* http://www.hackersdelight.org/HDcode/newCode/divDouble.c
|
|
*/
|
|
|
|
/*
|
|
* Calculate number of leading of zeros for a 64-bit value.
|
|
*/
|
|
static int
|
|
nlz64(uint64_t x)
|
|
{
|
|
register int n = 0;
|
|
|
|
if (x == 0)
|
|
return (64);
|
|
|
|
if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
|
|
if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
|
|
if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; }
|
|
if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; }
|
|
if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; }
|
|
if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; }
|
|
|
|
return (n);
|
|
}
|
|
|
|
/*
|
|
* Newer kernels have a div_u64() function but we define our own
|
|
* to simplify portability between kernel versions.
|
|
*/
|
|
static inline uint64_t
|
|
__div_u64(uint64_t u, uint32_t v)
|
|
{
|
|
(void) do_div(u, v);
|
|
return (u);
|
|
}
|
|
|
|
/*
|
|
* Turn off missing prototypes warning for these functions. They are
|
|
* replacements for libgcc-provided functions and will never be called
|
|
* directly.
|
|
*/
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wmissing-prototypes"
|
|
|
|
/*
|
|
* Implementation of 64-bit unsigned division for 32-bit machines.
|
|
*
|
|
* First the procedure takes care of the case in which the divisor is a
|
|
* 32-bit quantity. There are two subcases: (1) If the left half of the
|
|
* dividend is less than the divisor, one execution of do_div() is all that
|
|
* is required (overflow is not possible). (2) Otherwise it does two
|
|
* divisions, using the grade school method.
|
|
*/
|
|
uint64_t
|
|
__udivdi3(uint64_t u, uint64_t v)
|
|
{
|
|
uint64_t u0, u1, v1, q0, q1, k;
|
|
int n;
|
|
|
|
if (v >> 32 == 0) { // If v < 2**32:
|
|
if (u >> 32 < v) { // If u/v cannot overflow,
|
|
return (__div_u64(u, v)); // just do one division.
|
|
} else { // If u/v would overflow:
|
|
u1 = u >> 32; // Break u into two halves.
|
|
u0 = u & 0xFFFFFFFF;
|
|
q1 = __div_u64(u1, v); // First quotient digit.
|
|
k = u1 - q1 * v; // First remainder, < v.
|
|
u0 += (k << 32);
|
|
q0 = __div_u64(u0, v); // Seconds quotient digit.
|
|
return ((q1 << 32) + q0);
|
|
}
|
|
} else { // If v >= 2**32:
|
|
n = nlz64(v); // 0 <= n <= 31.
|
|
v1 = (v << n) >> 32; // Normalize divisor, MSB is 1.
|
|
u1 = u >> 1; // To ensure no overflow.
|
|
q1 = __div_u64(u1, v1); // Get quotient from
|
|
q0 = (q1 << n) >> 31; // Undo normalization and
|
|
// division of u by 2.
|
|
if (q0 != 0) // Make q0 correct or
|
|
q0 = q0 - 1; // too small by 1.
|
|
if ((u - q0 * v) >= v)
|
|
q0 = q0 + 1; // Now q0 is correct.
|
|
|
|
return (q0);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__udivdi3);
|
|
|
|
/* BEGIN CSTYLED */
|
|
#ifndef abs64
|
|
#define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
|
|
#endif
|
|
/* END CSTYLED */
|
|
|
|
/*
|
|
* Implementation of 64-bit signed division for 32-bit machines.
|
|
*/
|
|
int64_t
|
|
__divdi3(int64_t u, int64_t v)
|
|
{
|
|
int64_t q, t;
|
|
q = __udivdi3(abs64(u), abs64(v));
|
|
t = (u ^ v) >> 63; // If u, v have different
|
|
return ((q ^ t) - t); // signs, negate q.
|
|
}
|
|
EXPORT_SYMBOL(__divdi3);
|
|
|
|
/*
|
|
* Implementation of 64-bit unsigned modulo for 32-bit machines.
|
|
*/
|
|
uint64_t
|
|
__umoddi3(uint64_t dividend, uint64_t divisor)
|
|
{
|
|
return (dividend - (divisor * __udivdi3(dividend, divisor)));
|
|
}
|
|
EXPORT_SYMBOL(__umoddi3);
|
|
|
|
/* 64-bit signed modulo for 32-bit machines. */
|
|
int64_t
|
|
__moddi3(int64_t n, int64_t d)
|
|
{
|
|
int64_t q;
|
|
boolean_t nn = B_FALSE;
|
|
|
|
if (n < 0) {
|
|
nn = B_TRUE;
|
|
n = -n;
|
|
}
|
|
if (d < 0)
|
|
d = -d;
|
|
|
|
q = __umoddi3(n, d);
|
|
|
|
return (nn ? -q : q);
|
|
}
|
|
EXPORT_SYMBOL(__moddi3);
|
|
|
|
/*
|
|
* Implementation of 64-bit unsigned division/modulo for 32-bit machines.
|
|
*/
|
|
uint64_t
|
|
__udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
|
|
{
|
|
uint64_t q = __udivdi3(n, d);
|
|
if (r)
|
|
*r = n - d * q;
|
|
return (q);
|
|
}
|
|
EXPORT_SYMBOL(__udivmoddi4);
|
|
|
|
/*
|
|
* Implementation of 64-bit signed division/modulo for 32-bit machines.
|
|
*/
|
|
int64_t
|
|
__divmoddi4(int64_t n, int64_t d, int64_t *r)
|
|
{
|
|
int64_t q, rr;
|
|
boolean_t nn = B_FALSE;
|
|
boolean_t nd = B_FALSE;
|
|
if (n < 0) {
|
|
nn = B_TRUE;
|
|
n = -n;
|
|
}
|
|
if (d < 0) {
|
|
nd = B_TRUE;
|
|
d = -d;
|
|
}
|
|
|
|
q = __udivmoddi4(n, d, (uint64_t *)&rr);
|
|
|
|
if (nn != nd)
|
|
q = -q;
|
|
if (nn)
|
|
rr = -rr;
|
|
if (r)
|
|
*r = rr;
|
|
return (q);
|
|
}
|
|
EXPORT_SYMBOL(__divmoddi4);
|
|
|
|
#if defined(__arm) || defined(__arm__)
|
|
/*
|
|
* Implementation of 64-bit (un)signed division for 32-bit arm machines.
|
|
*
|
|
* Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned)
|
|
* long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
|
|
* and the remainder in {r2, r3}. The return type is specifically left
|
|
* set to 'void' to ensure the compiler does not overwrite these registers
|
|
* during the return. All results are in registers as per ABI
|
|
*/
|
|
void
|
|
__aeabi_uldivmod(uint64_t u, uint64_t v)
|
|
{
|
|
uint64_t res;
|
|
uint64_t mod;
|
|
|
|
res = __udivdi3(u, v);
|
|
mod = __umoddi3(u, v);
|
|
{
|
|
register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
|
|
register uint32_t r1 asm("r1") = (res >> 32);
|
|
register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
|
|
register uint32_t r3 asm("r3") = (mod >> 32);
|
|
|
|
/* BEGIN CSTYLED */
|
|
asm volatile(""
|
|
: "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */
|
|
: "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
|
|
/* END CSTYLED */
|
|
|
|
return; /* r0; */
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__aeabi_uldivmod);
|
|
|
|
void
|
|
__aeabi_ldivmod(int64_t u, int64_t v)
|
|
{
|
|
int64_t res;
|
|
uint64_t mod;
|
|
|
|
res = __divdi3(u, v);
|
|
mod = __umoddi3(u, v);
|
|
{
|
|
register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
|
|
register uint32_t r1 asm("r1") = (res >> 32);
|
|
register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
|
|
register uint32_t r3 asm("r3") = (mod >> 32);
|
|
|
|
/* BEGIN CSTYLED */
|
|
asm volatile(""
|
|
: "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */
|
|
: "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
|
|
/* END CSTYLED */
|
|
|
|
return; /* r0; */
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(__aeabi_ldivmod);
|
|
#endif /* __arm || __arm__ */
|
|
|
|
#pragma GCC diagnostic pop
|
|
|
|
#endif /* BITS_PER_LONG */
|
|
|
|
/*
|
|
* NOTE: The strtoxx behavior is solely based on my reading of the Solaris
|
|
* ddi_strtol(9F) man page. I have not verified the behavior of these
|
|
* functions against their Solaris counterparts. It is possible that I
|
|
* may have misinterpreted the man page or the man page is incorrect.
|
|
*/
|
|
int ddi_strtoul(const char *, char **, int, unsigned long *);
|
|
int ddi_strtol(const char *, char **, int, long *);
|
|
int ddi_strtoull(const char *, char **, int, unsigned long long *);
|
|
int ddi_strtoll(const char *, char **, int, long long *);
|
|
|
|
#define define_ddi_strtoux(type, valtype) \
|
|
int ddi_strtou##type(const char *str, char **endptr, \
|
|
int base, valtype *result) \
|
|
{ \
|
|
valtype last_value, value = 0; \
|
|
char *ptr = (char *)str; \
|
|
int flag = 1, digit; \
|
|
\
|
|
if (strlen(ptr) == 0) \
|
|
return (EINVAL); \
|
|
\
|
|
/* Auto-detect base based on prefix */ \
|
|
if (!base) { \
|
|
if (str[0] == '0') { \
|
|
if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
|
|
base = 16; /* hex */ \
|
|
ptr += 2; \
|
|
} else if (str[1] >= '0' && str[1] < 8) { \
|
|
base = 8; /* octal */ \
|
|
ptr += 1; \
|
|
} else { \
|
|
return (EINVAL); \
|
|
} \
|
|
} else { \
|
|
base = 10; /* decimal */ \
|
|
} \
|
|
} \
|
|
\
|
|
while (1) { \
|
|
if (isdigit(*ptr)) \
|
|
digit = *ptr - '0'; \
|
|
else if (isalpha(*ptr)) \
|
|
digit = tolower(*ptr) - 'a' + 10; \
|
|
else \
|
|
break; \
|
|
\
|
|
if (digit >= base) \
|
|
break; \
|
|
\
|
|
last_value = value; \
|
|
value = value * base + digit; \
|
|
if (last_value > value) /* Overflow */ \
|
|
return (ERANGE); \
|
|
\
|
|
flag = 1; \
|
|
ptr++; \
|
|
} \
|
|
\
|
|
if (flag) \
|
|
*result = value; \
|
|
\
|
|
if (endptr) \
|
|
*endptr = (char *)(flag ? ptr : str); \
|
|
\
|
|
return (0); \
|
|
} \
|
|
|
|
#define define_ddi_strtox(type, valtype) \
|
|
int ddi_strto##type(const char *str, char **endptr, \
|
|
int base, valtype *result) \
|
|
{ \
|
|
int rc; \
|
|
\
|
|
if (*str == '-') { \
|
|
rc = ddi_strtou##type(str + 1, endptr, base, result); \
|
|
if (!rc) { \
|
|
if (*endptr == str + 1) \
|
|
*endptr = (char *)str; \
|
|
else \
|
|
*result = -*result; \
|
|
} \
|
|
} else { \
|
|
rc = ddi_strtou##type(str, endptr, base, result); \
|
|
} \
|
|
\
|
|
return (rc); \
|
|
}
|
|
|
|
define_ddi_strtoux(l, unsigned long)
|
|
define_ddi_strtox(l, long)
|
|
define_ddi_strtoux(ll, unsigned long long)
|
|
define_ddi_strtox(ll, long long)
|
|
|
|
EXPORT_SYMBOL(ddi_strtoul);
|
|
EXPORT_SYMBOL(ddi_strtol);
|
|
EXPORT_SYMBOL(ddi_strtoll);
|
|
EXPORT_SYMBOL(ddi_strtoull);
|
|
|
|
int
|
|
ddi_copyin(const void *from, void *to, size_t len, int flags)
|
|
{
|
|
/* Fake ioctl() issued by kernel, 'from' is a kernel address */
|
|
if (flags & FKIOCTL) {
|
|
memcpy(to, from, len);
|
|
return (0);
|
|
}
|
|
|
|
return (copyin(from, to, len));
|
|
}
|
|
EXPORT_SYMBOL(ddi_copyin);
|
|
|
|
int
|
|
ddi_copyout(const void *from, void *to, size_t len, int flags)
|
|
{
|
|
/* Fake ioctl() issued by kernel, 'from' is a kernel address */
|
|
if (flags & FKIOCTL) {
|
|
memcpy(to, from, len);
|
|
return (0);
|
|
}
|
|
|
|
return (copyout(from, to, len));
|
|
}
|
|
EXPORT_SYMBOL(ddi_copyout);
|
|
|
|
static ssize_t
|
|
spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos)
|
|
{
|
|
#if defined(HAVE_KERNEL_READ_PPOS)
|
|
return (kernel_read(file, buf, count, pos));
|
|
#else
|
|
mm_segment_t saved_fs;
|
|
ssize_t ret;
|
|
|
|
saved_fs = get_fs();
|
|
set_fs(KERNEL_DS);
|
|
|
|
ret = vfs_read(file, (void __user *)buf, count, pos);
|
|
|
|
set_fs(saved_fs);
|
|
|
|
return (ret);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
spl_getattr(struct file *filp, struct kstat *stat)
|
|
{
|
|
int rc;
|
|
|
|
ASSERT(filp);
|
|
ASSERT(stat);
|
|
|
|
#if defined(HAVE_4ARGS_VFS_GETATTR)
|
|
rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS,
|
|
AT_STATX_SYNC_AS_STAT);
|
|
#elif defined(HAVE_2ARGS_VFS_GETATTR)
|
|
rc = vfs_getattr(&filp->f_path, stat);
|
|
#else
|
|
rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat);
|
|
#endif
|
|
if (rc)
|
|
return (-rc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read the unique system identifier from the /etc/hostid file.
|
|
*
|
|
* The behavior of /usr/bin/hostid on Linux systems with the
|
|
* regular eglibc and coreutils is:
|
|
*
|
|
* 1. Generate the value if the /etc/hostid file does not exist
|
|
* or if the /etc/hostid file is less than four bytes in size.
|
|
*
|
|
* 2. If the /etc/hostid file is at least 4 bytes, then return
|
|
* the first four bytes [0..3] in native endian order.
|
|
*
|
|
* 3. Always ignore bytes [4..] if they exist in the file.
|
|
*
|
|
* Only the first four bytes are significant, even on systems that
|
|
* have a 64-bit word size.
|
|
*
|
|
* See:
|
|
*
|
|
* eglibc: sysdeps/unix/sysv/linux/gethostid.c
|
|
* coreutils: src/hostid.c
|
|
*
|
|
* Notes:
|
|
*
|
|
* The /etc/hostid file on Solaris is a text file that often reads:
|
|
*
|
|
* # DO NOT EDIT
|
|
* "0123456789"
|
|
*
|
|
* Directly copying this file to Linux results in a constant
|
|
* hostid of 4f442023 because the default comment constitutes
|
|
* the first four bytes of the file.
|
|
*
|
|
*/
|
|
|
|
char *spl_hostid_path = HW_HOSTID_PATH;
|
|
module_param(spl_hostid_path, charp, 0444);
|
|
MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
|
|
|
|
static int
|
|
hostid_read(uint32_t *hostid)
|
|
{
|
|
uint64_t size;
|
|
uint32_t value = 0;
|
|
int error;
|
|
loff_t off;
|
|
struct file *filp;
|
|
struct kstat stat;
|
|
|
|
filp = filp_open(spl_hostid_path, 0, 0);
|
|
|
|
if (IS_ERR(filp))
|
|
return (ENOENT);
|
|
|
|
error = spl_getattr(filp, &stat);
|
|
if (error) {
|
|
filp_close(filp, 0);
|
|
return (error);
|
|
}
|
|
size = stat.size;
|
|
if (size < sizeof (HW_HOSTID_MASK)) {
|
|
filp_close(filp, 0);
|
|
return (EINVAL);
|
|
}
|
|
|
|
off = 0;
|
|
/*
|
|
* Read directly into the variable like eglibc does.
|
|
* Short reads are okay; native behavior is preserved.
|
|
*/
|
|
error = spl_kernel_read(filp, &value, sizeof (value), &off);
|
|
if (error < 0) {
|
|
filp_close(filp, 0);
|
|
return (EIO);
|
|
}
|
|
|
|
/* Mask down to 32 bits like coreutils does. */
|
|
*hostid = (value & HW_HOSTID_MASK);
|
|
filp_close(filp, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return the system hostid. Preferentially use the spl_hostid module option
|
|
* when set, otherwise use the value in the /etc/hostid file.
|
|
*/
|
|
uint32_t
|
|
zone_get_hostid(void *zone)
|
|
{
|
|
uint32_t hostid;
|
|
|
|
ASSERT3P(zone, ==, NULL);
|
|
|
|
if (spl_hostid != 0)
|
|
return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
|
|
|
|
if (hostid_read(&hostid) == 0)
|
|
return (hostid);
|
|
|
|
return (0);
|
|
}
|
|
EXPORT_SYMBOL(zone_get_hostid);
|
|
|
|
static int
|
|
spl_kvmem_init(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
rc = spl_kmem_init();
|
|
if (rc)
|
|
return (rc);
|
|
|
|
rc = spl_vmem_init();
|
|
if (rc) {
|
|
spl_kmem_fini();
|
|
return (rc);
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* We initialize the random number generator with 128 bits of entropy from the
|
|
* system random number generator. In the improbable case that we have a zero
|
|
* seed, we fallback to the system jiffies, unless it is also zero, in which
|
|
* situation we use a preprogrammed seed. We step forward by 2^64 iterations to
|
|
* initialize each of the per-cpu seeds so that the sequences generated on each
|
|
* CPU are guaranteed to never overlap in practice.
|
|
*/
|
|
static void __init
|
|
spl_random_init(void)
|
|
{
|
|
uint64_t s[2];
|
|
int i = 0;
|
|
|
|
spl_pseudo_entropy = __alloc_percpu(2 * sizeof (uint64_t),
|
|
sizeof (uint64_t));
|
|
|
|
get_random_bytes(s, sizeof (s));
|
|
|
|
if (s[0] == 0 && s[1] == 0) {
|
|
if (jiffies != 0) {
|
|
s[0] = jiffies;
|
|
s[1] = ~0 - jiffies;
|
|
} else {
|
|
(void) memcpy(s, "improbable seed", sizeof (s));
|
|
}
|
|
printk("SPL: get_random_bytes() returned 0 "
|
|
"when generating random seed. Setting initial seed to "
|
|
"0x%016llx%016llx.\n", cpu_to_be64(s[0]),
|
|
cpu_to_be64(s[1]));
|
|
}
|
|
|
|
for_each_possible_cpu(i) {
|
|
uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i);
|
|
|
|
spl_rand_jump(s);
|
|
|
|
wordp[0] = s[0];
|
|
wordp[1] = s[1];
|
|
}
|
|
}
|
|
|
|
static void
|
|
spl_random_fini(void)
|
|
{
|
|
free_percpu(spl_pseudo_entropy);
|
|
}
|
|
|
|
static void
|
|
spl_kvmem_fini(void)
|
|
{
|
|
spl_vmem_fini();
|
|
spl_kmem_fini();
|
|
}
|
|
|
|
static int __init
|
|
spl_init(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
bzero(&p0, sizeof (proc_t));
|
|
spl_random_init();
|
|
|
|
if ((rc = spl_kvmem_init()))
|
|
goto out1;
|
|
|
|
if ((rc = spl_tsd_init()))
|
|
goto out2;
|
|
|
|
if ((rc = spl_taskq_init()))
|
|
goto out3;
|
|
|
|
if ((rc = spl_kmem_cache_init()))
|
|
goto out4;
|
|
|
|
if ((rc = spl_proc_init()))
|
|
goto out5;
|
|
|
|
if ((rc = spl_kstat_init()))
|
|
goto out6;
|
|
|
|
if ((rc = spl_zlib_init()))
|
|
goto out7;
|
|
|
|
return (rc);
|
|
|
|
out7:
|
|
spl_kstat_fini();
|
|
out6:
|
|
spl_proc_fini();
|
|
out5:
|
|
spl_kmem_cache_fini();
|
|
out4:
|
|
spl_taskq_fini();
|
|
out3:
|
|
spl_tsd_fini();
|
|
out2:
|
|
spl_kvmem_fini();
|
|
out1:
|
|
return (rc);
|
|
}
|
|
|
|
static void __exit
|
|
spl_fini(void)
|
|
{
|
|
spl_zlib_fini();
|
|
spl_kstat_fini();
|
|
spl_proc_fini();
|
|
spl_kmem_cache_fini();
|
|
spl_taskq_fini();
|
|
spl_tsd_fini();
|
|
spl_kvmem_fini();
|
|
spl_random_fini();
|
|
}
|
|
|
|
module_init(spl_init);
|
|
module_exit(spl_fini);
|
|
|
|
ZFS_MODULE_DESCRIPTION("Solaris Porting Layer");
|
|
ZFS_MODULE_AUTHOR(ZFS_META_AUTHOR);
|
|
ZFS_MODULE_LICENSE("GPL");
|
|
ZFS_MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
|