mirror_zfs/module/icp/include/modes/modes.h
Attila Fülöp e8beeaa111
ICP: gcm: Allocate hash subkey table separately
While evaluating other assembler implementations it turns out that
the precomputed hash subkey tables vary in size, from 8*16 bytes
(avx2/avx512) up to 48*16 bytes (avx512-vaes), depending on the
implementation.

To be able to handle the size differences later, allocate
`gcm_Htable` dynamically rather then having a fixed size array, and
adapt consumers.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Attila Fülöp <attila@fueloep.org>
Closes #11102
2020-10-30 15:24:21 -07:00

412 lines
13 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#ifndef _COMMON_CRYPTO_MODES_H
#define _COMMON_CRYPTO_MODES_H
#ifdef __cplusplus
extern "C" {
#endif
#include <sys/zfs_context.h>
#include <sys/crypto/common.h>
#include <sys/crypto/impl.h>
/*
* Does the build chain support all instructions needed for the GCM assembler
* routines. AVX support should imply AES-NI and PCLMULQDQ, but make sure
* anyhow.
*/
#if defined(__x86_64__) && defined(HAVE_AVX) && \
defined(HAVE_AES) && defined(HAVE_PCLMULQDQ)
#define CAN_USE_GCM_ASM
extern boolean_t gcm_avx_can_use_movbe;
#endif
#define ECB_MODE 0x00000002
#define CBC_MODE 0x00000004
#define CTR_MODE 0x00000008
#define CCM_MODE 0x00000010
#define GCM_MODE 0x00000020
#define GMAC_MODE 0x00000040
/*
* cc_keysched: Pointer to key schedule.
*
* cc_keysched_len: Length of the key schedule.
*
* cc_remainder: This is for residual data, i.e. data that can't
* be processed because there are too few bytes.
* Must wait until more data arrives.
*
* cc_remainder_len: Number of bytes in cc_remainder.
*
* cc_iv: Scratch buffer that sometimes contains the IV.
*
* cc_lastp: Pointer to previous block of ciphertext.
*
* cc_copy_to: Pointer to where encrypted residual data needs
* to be copied.
*
* cc_flags: PROVIDER_OWNS_KEY_SCHEDULE
* When a context is freed, it is necessary
* to know whether the key schedule was allocated
* by the caller, or internally, e.g. an init routine.
* If allocated by the latter, then it needs to be freed.
*
* ECB_MODE, CBC_MODE, CTR_MODE, or CCM_MODE
*/
struct common_ctx {
void *cc_keysched;
size_t cc_keysched_len;
uint64_t cc_iv[2];
uint64_t cc_remainder[2];
size_t cc_remainder_len;
uint8_t *cc_lastp;
uint8_t *cc_copy_to;
uint32_t cc_flags;
};
typedef struct common_ctx common_ctx_t;
typedef struct ecb_ctx {
struct common_ctx ecb_common;
uint64_t ecb_lastblock[2];
} ecb_ctx_t;
#define ecb_keysched ecb_common.cc_keysched
#define ecb_keysched_len ecb_common.cc_keysched_len
#define ecb_iv ecb_common.cc_iv
#define ecb_remainder ecb_common.cc_remainder
#define ecb_remainder_len ecb_common.cc_remainder_len
#define ecb_lastp ecb_common.cc_lastp
#define ecb_copy_to ecb_common.cc_copy_to
#define ecb_flags ecb_common.cc_flags
typedef struct cbc_ctx {
struct common_ctx cbc_common;
uint64_t cbc_lastblock[2];
} cbc_ctx_t;
#define cbc_keysched cbc_common.cc_keysched
#define cbc_keysched_len cbc_common.cc_keysched_len
#define cbc_iv cbc_common.cc_iv
#define cbc_remainder cbc_common.cc_remainder
#define cbc_remainder_len cbc_common.cc_remainder_len
#define cbc_lastp cbc_common.cc_lastp
#define cbc_copy_to cbc_common.cc_copy_to
#define cbc_flags cbc_common.cc_flags
/*
* ctr_lower_mask Bit-mask for lower 8 bytes of counter block.
* ctr_upper_mask Bit-mask for upper 8 bytes of counter block.
*/
typedef struct ctr_ctx {
struct common_ctx ctr_common;
uint64_t ctr_lower_mask;
uint64_t ctr_upper_mask;
uint32_t ctr_tmp[4];
} ctr_ctx_t;
/*
* ctr_cb Counter block.
*/
#define ctr_keysched ctr_common.cc_keysched
#define ctr_keysched_len ctr_common.cc_keysched_len
#define ctr_cb ctr_common.cc_iv
#define ctr_remainder ctr_common.cc_remainder
#define ctr_remainder_len ctr_common.cc_remainder_len
#define ctr_lastp ctr_common.cc_lastp
#define ctr_copy_to ctr_common.cc_copy_to
#define ctr_flags ctr_common.cc_flags
/*
*
* ccm_mac_len: Stores length of the MAC in CCM mode.
* ccm_mac_buf: Stores the intermediate value for MAC in CCM encrypt.
* In CCM decrypt, stores the input MAC value.
* ccm_data_len: Length of the plaintext for CCM mode encrypt, or
* length of the ciphertext for CCM mode decrypt.
* ccm_processed_data_len:
* Length of processed plaintext in CCM mode encrypt,
* or length of processed ciphertext for CCM mode decrypt.
* ccm_processed_mac_len:
* Length of MAC data accumulated in CCM mode decrypt.
*
* ccm_pt_buf: Only used in CCM mode decrypt. It stores the
* decrypted plaintext to be returned when
* MAC verification succeeds in decrypt_final.
* Memory for this should be allocated in the AES module.
*
*/
typedef struct ccm_ctx {
struct common_ctx ccm_common;
uint32_t ccm_tmp[4];
size_t ccm_mac_len;
uint64_t ccm_mac_buf[2];
size_t ccm_data_len;
size_t ccm_processed_data_len;
size_t ccm_processed_mac_len;
uint8_t *ccm_pt_buf;
uint64_t ccm_mac_input_buf[2];
uint64_t ccm_counter_mask;
} ccm_ctx_t;
#define ccm_keysched ccm_common.cc_keysched
#define ccm_keysched_len ccm_common.cc_keysched_len
#define ccm_cb ccm_common.cc_iv
#define ccm_remainder ccm_common.cc_remainder
#define ccm_remainder_len ccm_common.cc_remainder_len
#define ccm_lastp ccm_common.cc_lastp
#define ccm_copy_to ccm_common.cc_copy_to
#define ccm_flags ccm_common.cc_flags
/*
* gcm_tag_len: Length of authentication tag.
*
* gcm_ghash: Stores output from the GHASH function.
*
* gcm_processed_data_len:
* Length of processed plaintext (encrypt) or
* length of processed ciphertext (decrypt).
*
* gcm_pt_buf: Stores the decrypted plaintext returned by
* decrypt_final when the computed authentication
* tag matches the user supplied tag.
*
* gcm_pt_buf_len: Length of the plaintext buffer.
*
* gcm_H: Subkey.
*
* gcm_Htable: Pre-computed and pre-shifted H, H^2, ... H^6 for the
* Karatsuba Algorithm in host byte order.
*
* gcm_J0: Pre-counter block generated from the IV.
*
* gcm_len_a_len_c: 64-bit representations of the bit lengths of
* AAD and ciphertext.
*
* gcm_kmflag: Current value of kmflag. Used for allocating
* the plaintext buffer during decryption and a
* gcm_avx_chunk_size'd buffer for avx enabled encryption.
*/
typedef struct gcm_ctx {
struct common_ctx gcm_common;
size_t gcm_tag_len;
size_t gcm_processed_data_len;
size_t gcm_pt_buf_len;
uint32_t gcm_tmp[4];
/*
* The offset of gcm_Htable relative to gcm_ghash, (32), is hard coded
* in aesni-gcm-x86_64.S, so please don't change (or adjust there).
*/
uint64_t gcm_ghash[2];
uint64_t gcm_H[2];
#ifdef CAN_USE_GCM_ASM
uint64_t *gcm_Htable;
size_t gcm_htab_len;
#endif
uint64_t gcm_J0[2];
uint64_t gcm_len_a_len_c[2];
uint8_t *gcm_pt_buf;
int gcm_kmflag;
#ifdef CAN_USE_GCM_ASM
boolean_t gcm_use_avx;
#endif
} gcm_ctx_t;
#define gcm_keysched gcm_common.cc_keysched
#define gcm_keysched_len gcm_common.cc_keysched_len
#define gcm_cb gcm_common.cc_iv
#define gcm_remainder gcm_common.cc_remainder
#define gcm_remainder_len gcm_common.cc_remainder_len
#define gcm_lastp gcm_common.cc_lastp
#define gcm_copy_to gcm_common.cc_copy_to
#define gcm_flags gcm_common.cc_flags
#define AES_GMAC_IV_LEN 12
#define AES_GMAC_TAG_BITS 128
typedef struct aes_ctx {
union {
ecb_ctx_t acu_ecb;
cbc_ctx_t acu_cbc;
ctr_ctx_t acu_ctr;
ccm_ctx_t acu_ccm;
gcm_ctx_t acu_gcm;
} acu;
} aes_ctx_t;
#define ac_flags acu.acu_ecb.ecb_common.cc_flags
#define ac_remainder_len acu.acu_ecb.ecb_common.cc_remainder_len
#define ac_keysched acu.acu_ecb.ecb_common.cc_keysched
#define ac_keysched_len acu.acu_ecb.ecb_common.cc_keysched_len
#define ac_iv acu.acu_ecb.ecb_common.cc_iv
#define ac_lastp acu.acu_ecb.ecb_common.cc_lastp
#define ac_pt_buf acu.acu_ccm.ccm_pt_buf
#define ac_mac_len acu.acu_ccm.ccm_mac_len
#define ac_data_len acu.acu_ccm.ccm_data_len
#define ac_processed_mac_len acu.acu_ccm.ccm_processed_mac_len
#define ac_processed_data_len acu.acu_ccm.ccm_processed_data_len
#define ac_tag_len acu.acu_gcm.gcm_tag_len
typedef struct blowfish_ctx {
union {
ecb_ctx_t bcu_ecb;
cbc_ctx_t bcu_cbc;
} bcu;
} blowfish_ctx_t;
#define bc_flags bcu.bcu_ecb.ecb_common.cc_flags
#define bc_remainder_len bcu.bcu_ecb.ecb_common.cc_remainder_len
#define bc_keysched bcu.bcu_ecb.ecb_common.cc_keysched
#define bc_keysched_len bcu.bcu_ecb.ecb_common.cc_keysched_len
#define bc_iv bcu.bcu_ecb.ecb_common.cc_iv
#define bc_lastp bcu.bcu_ecb.ecb_common.cc_lastp
typedef struct des_ctx {
union {
ecb_ctx_t dcu_ecb;
cbc_ctx_t dcu_cbc;
} dcu;
} des_ctx_t;
#define dc_flags dcu.dcu_ecb.ecb_common.cc_flags
#define dc_remainder_len dcu.dcu_ecb.ecb_common.cc_remainder_len
#define dc_keysched dcu.dcu_ecb.ecb_common.cc_keysched
#define dc_keysched_len dcu.dcu_ecb.ecb_common.cc_keysched_len
#define dc_iv dcu.dcu_ecb.ecb_common.cc_iv
#define dc_lastp dcu.dcu_ecb.ecb_common.cc_lastp
extern int ecb_cipher_contiguous_blocks(ecb_ctx_t *, char *, size_t,
crypto_data_t *, size_t, int (*cipher)(const void *, const uint8_t *,
uint8_t *));
extern int cbc_encrypt_contiguous_blocks(cbc_ctx_t *, char *, size_t,
crypto_data_t *, size_t,
int (*encrypt)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern int cbc_decrypt_contiguous_blocks(cbc_ctx_t *, char *, size_t,
crypto_data_t *, size_t,
int (*decrypt)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern int ctr_mode_contiguous_blocks(ctr_ctx_t *, char *, size_t,
crypto_data_t *, size_t,
int (*cipher)(const void *, const uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern int ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *, char *, size_t,
crypto_data_t *, size_t,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern int ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *, char *, size_t,
crypto_data_t *, size_t,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern int gcm_mode_encrypt_contiguous_blocks(gcm_ctx_t *, char *, size_t,
crypto_data_t *, size_t,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern int gcm_mode_decrypt_contiguous_blocks(gcm_ctx_t *, char *, size_t,
crypto_data_t *, size_t,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
int ccm_encrypt_final(ccm_ctx_t *, crypto_data_t *, size_t,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
int gcm_encrypt_final(gcm_ctx_t *, crypto_data_t *, size_t,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern int ccm_decrypt_final(ccm_ctx_t *, crypto_data_t *, size_t,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern int gcm_decrypt_final(gcm_ctx_t *, crypto_data_t *, size_t,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern int ctr_mode_final(ctr_ctx_t *, crypto_data_t *,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *));
extern int cbc_init_ctx(cbc_ctx_t *, char *, size_t, size_t,
void (*copy_block)(uint8_t *, uint64_t *));
extern int ctr_init_ctx(ctr_ctx_t *, ulong_t, uint8_t *,
void (*copy_block)(uint8_t *, uint8_t *));
extern int ccm_init_ctx(ccm_ctx_t *, char *, int, boolean_t, size_t,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern int gcm_init_ctx(gcm_ctx_t *, char *, size_t,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern int gmac_init_ctx(gcm_ctx_t *, char *, size_t,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
void (*copy_block)(uint8_t *, uint8_t *),
void (*xor_block)(uint8_t *, uint8_t *));
extern void calculate_ccm_mac(ccm_ctx_t *, uint8_t *,
int (*encrypt_block)(const void *, const uint8_t *, uint8_t *));
extern void gcm_mul(uint64_t *, uint64_t *, uint64_t *);
extern void crypto_init_ptrs(crypto_data_t *, void **, offset_t *);
extern void crypto_get_ptrs(crypto_data_t *, void **, offset_t *,
uint8_t **, size_t *, uint8_t **, size_t);
extern void *ecb_alloc_ctx(int);
extern void *cbc_alloc_ctx(int);
extern void *ctr_alloc_ctx(int);
extern void *ccm_alloc_ctx(int);
extern void *gcm_alloc_ctx(int);
extern void *gmac_alloc_ctx(int);
extern void crypto_free_mode_ctx(void *);
extern void gcm_set_kmflag(gcm_ctx_t *, int);
#ifdef __cplusplus
}
#endif
#endif /* _COMMON_CRYPTO_MODES_H */