mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-18 10:21:01 +03:00
df8c9f351d
The previous patch #14841 appeared to have significant flaw, causing deadlocks if zl_get_data callback got blocked waiting for TXG sync. I already handled some of such cases in the original patch, but issue #14982 shown cases that were impossible to solve in that design. This patch fixes the problem by postponing log blocks allocation till the very end, just before the zios issue, leaving nothing blocking after that point to cause deadlocks. Before that point though any sleeps are now allowed, not causing sync thread blockage. This require slightly more complicated lwb state machine to allocate blocks and issue zios in proper order. But with removal of special early issue workarounds the new code is much cleaner now, and should even be more efficient. Since this patch uses null zios between write, I've found that null zios do not wait for logical children ready status in zio_ready(), that makes parent write to proceed prematurely, producing incorrect log blocks. Added ZIO_CHILD_LOGICAL_BIT to zio_wait_for_children() fixes it. Reviewed-by: Rob Norris <rob.norris@klarasystems.com> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Reviewed-by: George Wilson <george.wilson@delphix.com> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored by: iXsystems, Inc. Closes #15122
1792 lines
44 KiB
C
1792 lines
44 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* LLNL-CODE-403049.
|
|
*
|
|
* ZFS volume emulation driver.
|
|
*
|
|
* Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
|
|
* Volumes are accessed through the symbolic links named:
|
|
*
|
|
* /dev/<pool_name>/<dataset_name>
|
|
*
|
|
* Volumes are persistent through reboot and module load. No user command
|
|
* needs to be run before opening and using a device.
|
|
*
|
|
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
|
|
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* Note on locking of zvol state structures.
|
|
*
|
|
* These structures are used to maintain internal state used to emulate block
|
|
* devices on top of zvols. In particular, management of device minor number
|
|
* operations - create, remove, rename, and set_snapdev - involves access to
|
|
* these structures. The zvol_state_lock is primarily used to protect the
|
|
* zvol_state_list. The zv->zv_state_lock is used to protect the contents
|
|
* of the zvol_state_t structures, as well as to make sure that when the
|
|
* time comes to remove the structure from the list, it is not in use, and
|
|
* therefore, it can be taken off zvol_state_list and freed.
|
|
*
|
|
* The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
|
|
* e.g. for the duration of receive and rollback operations. This lock can be
|
|
* held for significant periods of time. Given that it is undesirable to hold
|
|
* mutexes for long periods of time, the following lock ordering applies:
|
|
* - take zvol_state_lock if necessary, to protect zvol_state_list
|
|
* - take zv_suspend_lock if necessary, by the code path in question
|
|
* - take zv_state_lock to protect zvol_state_t
|
|
*
|
|
* The minor operations are issued to spa->spa_zvol_taskq queues, that are
|
|
* single-threaded (to preserve order of minor operations), and are executed
|
|
* through the zvol_task_cb that dispatches the specific operations. Therefore,
|
|
* these operations are serialized per pool. Consequently, we can be certain
|
|
* that for a given zvol, there is only one operation at a time in progress.
|
|
* That is why one can be sure that first, zvol_state_t for a given zvol is
|
|
* allocated and placed on zvol_state_list, and then other minor operations
|
|
* for this zvol are going to proceed in the order of issue.
|
|
*
|
|
*/
|
|
|
|
#include <sys/dataset_kstats.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/zil_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_rlock.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zvol.h>
|
|
#include <sys/zvol_impl.h>
|
|
|
|
unsigned int zvol_inhibit_dev = 0;
|
|
unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
|
|
|
|
struct hlist_head *zvol_htable;
|
|
static list_t zvol_state_list;
|
|
krwlock_t zvol_state_lock;
|
|
|
|
typedef enum {
|
|
ZVOL_ASYNC_REMOVE_MINORS,
|
|
ZVOL_ASYNC_RENAME_MINORS,
|
|
ZVOL_ASYNC_SET_SNAPDEV,
|
|
ZVOL_ASYNC_SET_VOLMODE,
|
|
ZVOL_ASYNC_MAX
|
|
} zvol_async_op_t;
|
|
|
|
typedef struct {
|
|
zvol_async_op_t op;
|
|
char name1[MAXNAMELEN];
|
|
char name2[MAXNAMELEN];
|
|
uint64_t value;
|
|
} zvol_task_t;
|
|
|
|
uint64_t
|
|
zvol_name_hash(const char *name)
|
|
{
|
|
int i;
|
|
uint64_t crc = -1ULL;
|
|
const uint8_t *p = (const uint8_t *)name;
|
|
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
|
|
for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
|
|
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
|
|
}
|
|
return (crc);
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the name and hash generated by zvol_name_hash.
|
|
* If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
|
|
* return (NULL) without the taking locks. The zv_suspend_lock is always taken
|
|
* before zv_state_lock. The mode argument indicates the mode (including none)
|
|
* for zv_suspend_lock to be taken.
|
|
*/
|
|
zvol_state_t *
|
|
zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
|
|
{
|
|
zvol_state_t *zv;
|
|
struct hlist_node *p = NULL;
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
|
|
zv = hlist_entry(p, zvol_state_t, zv_hlink);
|
|
mutex_enter(&zv->zv_state_lock);
|
|
if (zv->zv_hash == hash &&
|
|
strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
|
|
/*
|
|
* this is the right zvol, take the locks in the
|
|
* right order
|
|
*/
|
|
if (mode != RW_NONE &&
|
|
!rw_tryenter(&zv->zv_suspend_lock, mode)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
rw_enter(&zv->zv_suspend_lock, mode);
|
|
mutex_enter(&zv->zv_state_lock);
|
|
/*
|
|
* zvol cannot be renamed as we continue
|
|
* to hold zvol_state_lock
|
|
*/
|
|
ASSERT(zv->zv_hash == hash &&
|
|
strncmp(zv->zv_name, name, MAXNAMELEN)
|
|
== 0);
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
return (zv);
|
|
}
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find a zvol_state_t given the name.
|
|
* If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
|
|
* return (NULL) without the taking locks. The zv_suspend_lock is always taken
|
|
* before zv_state_lock. The mode argument indicates the mode (including none)
|
|
* for zv_suspend_lock to be taken.
|
|
*/
|
|
static zvol_state_t *
|
|
zvol_find_by_name(const char *name, int mode)
|
|
{
|
|
return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
|
|
*/
|
|
void
|
|
zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
|
|
{
|
|
zfs_creat_t *zct = arg;
|
|
nvlist_t *nvprops = zct->zct_props;
|
|
int error;
|
|
uint64_t volblocksize, volsize;
|
|
|
|
VERIFY(nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
|
|
if (nvlist_lookup_uint64(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
|
|
volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
|
|
|
|
/*
|
|
* These properties must be removed from the list so the generic
|
|
* property setting step won't apply to them.
|
|
*/
|
|
VERIFY(nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
|
|
(void) nvlist_remove_all(nvprops,
|
|
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
|
|
|
|
error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
|
|
DMU_OT_NONE, 0, tx);
|
|
ASSERT(error == 0);
|
|
|
|
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
|
|
ASSERT(error == 0);
|
|
}
|
|
|
|
/*
|
|
* ZFS_IOC_OBJSET_STATS entry point.
|
|
*/
|
|
int
|
|
zvol_get_stats(objset_t *os, nvlist_t *nv)
|
|
{
|
|
int error;
|
|
dmu_object_info_t *doi;
|
|
uint64_t val;
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
|
|
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
|
|
error = dmu_object_info(os, ZVOL_OBJ, doi);
|
|
|
|
if (error == 0) {
|
|
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
|
|
doi->doi_data_block_size);
|
|
}
|
|
|
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume size.
|
|
*/
|
|
int
|
|
zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
|
|
{
|
|
if (volsize == 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (volsize % blocksize != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
#ifdef _ILP32
|
|
if (volsize - 1 > SPEC_MAXOFFSET_T)
|
|
return (SET_ERROR(EOVERFLOW));
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Ensure the zap is flushed then inform the VFS of the capacity change.
|
|
*/
|
|
static int
|
|
zvol_update_volsize(uint64_t volsize, objset_t *os)
|
|
{
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
uint64_t txg;
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
|
|
dmu_tx_mark_netfree(tx);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
return (SET_ERROR(error));
|
|
}
|
|
txg = dmu_tx_get_txg(tx);
|
|
|
|
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
|
|
&volsize, tx);
|
|
dmu_tx_commit(tx);
|
|
|
|
txg_wait_synced(dmu_objset_pool(os), txg);
|
|
|
|
if (error == 0)
|
|
error = dmu_free_long_range(os,
|
|
ZVOL_OBJ, volsize, DMU_OBJECT_END);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
|
|
* size will result in a udev "change" event being generated.
|
|
*/
|
|
int
|
|
zvol_set_volsize(const char *name, uint64_t volsize)
|
|
{
|
|
objset_t *os = NULL;
|
|
uint64_t readonly;
|
|
int error;
|
|
boolean_t owned = B_FALSE;
|
|
|
|
error = dsl_prop_get_integer(name,
|
|
zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
|
|
if (error != 0)
|
|
return (SET_ERROR(error));
|
|
if (readonly)
|
|
return (SET_ERROR(EROFS));
|
|
|
|
zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
|
|
|
|
ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
|
|
RW_READ_HELD(&zv->zv_suspend_lock)));
|
|
|
|
if (zv == NULL || zv->zv_objset == NULL) {
|
|
if (zv != NULL)
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
|
|
FTAG, &os)) != 0) {
|
|
if (zv != NULL)
|
|
mutex_exit(&zv->zv_state_lock);
|
|
return (SET_ERROR(error));
|
|
}
|
|
owned = B_TRUE;
|
|
if (zv != NULL)
|
|
zv->zv_objset = os;
|
|
} else {
|
|
os = zv->zv_objset;
|
|
}
|
|
|
|
dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
|
|
|
|
if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
|
|
(error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
|
|
goto out;
|
|
|
|
error = zvol_update_volsize(volsize, os);
|
|
if (error == 0 && zv != NULL) {
|
|
zv->zv_volsize = volsize;
|
|
zv->zv_changed = 1;
|
|
}
|
|
out:
|
|
kmem_free(doi, sizeof (dmu_object_info_t));
|
|
|
|
if (owned) {
|
|
dmu_objset_disown(os, B_TRUE, FTAG);
|
|
if (zv != NULL)
|
|
zv->zv_objset = NULL;
|
|
} else {
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
}
|
|
|
|
if (zv != NULL)
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
if (error == 0 && zv != NULL)
|
|
zvol_os_update_volsize(zv, volsize);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* Sanity check volume block size.
|
|
*/
|
|
int
|
|
zvol_check_volblocksize(const char *name, uint64_t volblocksize)
|
|
{
|
|
/* Record sizes above 128k need the feature to be enabled */
|
|
if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
|
|
spa_t *spa;
|
|
int error;
|
|
|
|
if ((error = spa_open(name, &spa, FTAG)) != 0)
|
|
return (error);
|
|
|
|
if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
|
|
spa_close(spa, FTAG);
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* We don't allow setting the property above 1MB,
|
|
* unless the tunable has been changed.
|
|
*/
|
|
if (volblocksize > zfs_max_recordsize)
|
|
return (SET_ERROR(EDOM));
|
|
|
|
spa_close(spa, FTAG);
|
|
}
|
|
|
|
if (volblocksize < SPA_MINBLOCKSIZE ||
|
|
volblocksize > SPA_MAXBLOCKSIZE ||
|
|
!ISP2(volblocksize))
|
|
return (SET_ERROR(EDOM));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
|
|
* implement DKIOCFREE/free-long-range.
|
|
*/
|
|
static int
|
|
zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
|
|
{
|
|
zvol_state_t *zv = arg1;
|
|
lr_truncate_t *lr = arg2;
|
|
uint64_t offset, length;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
offset = lr->lr_offset;
|
|
length = lr->lr_length;
|
|
|
|
dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
|
|
dmu_tx_mark_netfree(tx);
|
|
int error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error != 0) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
(void) zil_replaying(zv->zv_zilog, tx);
|
|
dmu_tx_commit(tx);
|
|
error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
|
|
length);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Replay a TX_WRITE ZIL transaction that didn't get committed
|
|
* after a system failure
|
|
*/
|
|
static int
|
|
zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
|
|
{
|
|
zvol_state_t *zv = arg1;
|
|
lr_write_t *lr = arg2;
|
|
objset_t *os = zv->zv_objset;
|
|
char *data = (char *)(lr + 1); /* data follows lr_write_t */
|
|
uint64_t offset, length;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
offset = lr->lr_offset;
|
|
length = lr->lr_length;
|
|
|
|
/* If it's a dmu_sync() block, write the whole block */
|
|
if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
|
|
uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
|
|
if (length < blocksize) {
|
|
offset -= offset % blocksize;
|
|
length = blocksize;
|
|
}
|
|
}
|
|
|
|
tx = dmu_tx_create(os);
|
|
dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
} else {
|
|
dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
|
|
(void) zil_replaying(zv->zv_zilog, tx);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
|
|
* after a system failure.
|
|
*
|
|
* TODO: For now we drop block cloning transations for ZVOLs as they are
|
|
* unsupported, but we still need to inform BRT about that as we
|
|
* claimed them during pool import.
|
|
* This situation can occur when we try to import a pool from a ZFS
|
|
* version supporting block cloning for ZVOLs into a system that
|
|
* has this ZFS version, that doesn't support block cloning for ZVOLs.
|
|
*/
|
|
static int
|
|
zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
|
|
{
|
|
char name[ZFS_MAX_DATASET_NAME_LEN];
|
|
zvol_state_t *zv = arg1;
|
|
objset_t *os = zv->zv_objset;
|
|
lr_clone_range_t *lr = arg2;
|
|
blkptr_t *bp;
|
|
dmu_tx_t *tx;
|
|
spa_t *spa;
|
|
uint_t ii;
|
|
int error;
|
|
|
|
dmu_objset_name(os, name);
|
|
cmn_err(CE_WARN, "ZFS dropping block cloning transaction for %s.",
|
|
name);
|
|
|
|
if (byteswap)
|
|
byteswap_uint64_array(lr, sizeof (*lr));
|
|
|
|
tx = dmu_tx_create(os);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
return (error);
|
|
}
|
|
|
|
spa = os->os_spa;
|
|
|
|
for (ii = 0; ii < lr->lr_nbps; ii++) {
|
|
bp = &lr->lr_bps[ii];
|
|
|
|
if (!BP_IS_HOLE(bp)) {
|
|
zio_free(spa, dmu_tx_get_txg(tx), bp);
|
|
}
|
|
}
|
|
|
|
(void) zil_replaying(zv->zv_zilog, tx);
|
|
dmu_tx_commit(tx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
|
|
{
|
|
(void) arg1, (void) arg2, (void) byteswap;
|
|
return (SET_ERROR(ENOTSUP));
|
|
}
|
|
|
|
/*
|
|
* Callback vectors for replaying records.
|
|
* Only TX_WRITE and TX_TRUNCATE are needed for zvol.
|
|
*/
|
|
zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
|
|
zvol_replay_err, /* no such transaction type */
|
|
zvol_replay_err, /* TX_CREATE */
|
|
zvol_replay_err, /* TX_MKDIR */
|
|
zvol_replay_err, /* TX_MKXATTR */
|
|
zvol_replay_err, /* TX_SYMLINK */
|
|
zvol_replay_err, /* TX_REMOVE */
|
|
zvol_replay_err, /* TX_RMDIR */
|
|
zvol_replay_err, /* TX_LINK */
|
|
zvol_replay_err, /* TX_RENAME */
|
|
zvol_replay_write, /* TX_WRITE */
|
|
zvol_replay_truncate, /* TX_TRUNCATE */
|
|
zvol_replay_err, /* TX_SETATTR */
|
|
zvol_replay_err, /* TX_ACL */
|
|
zvol_replay_err, /* TX_CREATE_ATTR */
|
|
zvol_replay_err, /* TX_CREATE_ACL_ATTR */
|
|
zvol_replay_err, /* TX_MKDIR_ACL */
|
|
zvol_replay_err, /* TX_MKDIR_ATTR */
|
|
zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
|
|
zvol_replay_err, /* TX_WRITE2 */
|
|
zvol_replay_err, /* TX_SETSAXATTR */
|
|
zvol_replay_err, /* TX_RENAME_EXCHANGE */
|
|
zvol_replay_err, /* TX_RENAME_WHITEOUT */
|
|
zvol_replay_clone_range /* TX_CLONE_RANGE */
|
|
};
|
|
|
|
/*
|
|
* zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
|
|
*
|
|
* We store data in the log buffers if it's small enough.
|
|
* Otherwise we will later flush the data out via dmu_sync().
|
|
*/
|
|
static const ssize_t zvol_immediate_write_sz = 32768;
|
|
|
|
void
|
|
zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
|
|
uint64_t size, int sync)
|
|
{
|
|
uint32_t blocksize = zv->zv_volblocksize;
|
|
zilog_t *zilog = zv->zv_zilog;
|
|
itx_wr_state_t write_state;
|
|
uint64_t sz = size;
|
|
|
|
if (zil_replaying(zilog, tx))
|
|
return;
|
|
|
|
if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
|
|
write_state = WR_INDIRECT;
|
|
else if (!spa_has_slogs(zilog->zl_spa) &&
|
|
size >= blocksize && blocksize > zvol_immediate_write_sz)
|
|
write_state = WR_INDIRECT;
|
|
else if (sync)
|
|
write_state = WR_COPIED;
|
|
else
|
|
write_state = WR_NEED_COPY;
|
|
|
|
while (size) {
|
|
itx_t *itx;
|
|
lr_write_t *lr;
|
|
itx_wr_state_t wr_state = write_state;
|
|
ssize_t len = size;
|
|
|
|
if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
|
|
wr_state = WR_NEED_COPY;
|
|
else if (wr_state == WR_INDIRECT)
|
|
len = MIN(blocksize - P2PHASE(offset, blocksize), size);
|
|
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
|
|
(wr_state == WR_COPIED ? len : 0));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
|
|
offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
|
|
zil_itx_destroy(itx);
|
|
itx = zil_itx_create(TX_WRITE, sizeof (*lr));
|
|
lr = (lr_write_t *)&itx->itx_lr;
|
|
wr_state = WR_NEED_COPY;
|
|
}
|
|
|
|
itx->itx_wr_state = wr_state;
|
|
lr->lr_foid = ZVOL_OBJ;
|
|
lr->lr_offset = offset;
|
|
lr->lr_length = len;
|
|
lr->lr_blkoff = 0;
|
|
BP_ZERO(&lr->lr_blkptr);
|
|
|
|
itx->itx_private = zv;
|
|
itx->itx_sync = sync;
|
|
|
|
(void) zil_itx_assign(zilog, itx, tx);
|
|
|
|
offset += len;
|
|
size -= len;
|
|
}
|
|
|
|
if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
|
|
dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
|
|
*/
|
|
void
|
|
zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
|
|
boolean_t sync)
|
|
{
|
|
itx_t *itx;
|
|
lr_truncate_t *lr;
|
|
zilog_t *zilog = zv->zv_zilog;
|
|
|
|
if (zil_replaying(zilog, tx))
|
|
return;
|
|
|
|
itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
|
|
lr = (lr_truncate_t *)&itx->itx_lr;
|
|
lr->lr_foid = ZVOL_OBJ;
|
|
lr->lr_offset = off;
|
|
lr->lr_length = len;
|
|
|
|
itx->itx_sync = sync;
|
|
zil_itx_assign(zilog, itx, tx);
|
|
}
|
|
|
|
|
|
static void
|
|
zvol_get_done(zgd_t *zgd, int error)
|
|
{
|
|
(void) error;
|
|
if (zgd->zgd_db)
|
|
dmu_buf_rele(zgd->zgd_db, zgd);
|
|
|
|
zfs_rangelock_exit(zgd->zgd_lr);
|
|
|
|
kmem_free(zgd, sizeof (zgd_t));
|
|
}
|
|
|
|
/*
|
|
* Get data to generate a TX_WRITE intent log record.
|
|
*/
|
|
int
|
|
zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
|
|
struct lwb *lwb, zio_t *zio)
|
|
{
|
|
zvol_state_t *zv = arg;
|
|
uint64_t offset = lr->lr_offset;
|
|
uint64_t size = lr->lr_length;
|
|
dmu_buf_t *db;
|
|
zgd_t *zgd;
|
|
int error;
|
|
|
|
ASSERT3P(lwb, !=, NULL);
|
|
ASSERT3U(size, !=, 0);
|
|
|
|
zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
|
|
zgd->zgd_lwb = lwb;
|
|
|
|
/*
|
|
* Write records come in two flavors: immediate and indirect.
|
|
* For small writes it's cheaper to store the data with the
|
|
* log record (immediate); for large writes it's cheaper to
|
|
* sync the data and get a pointer to it (indirect) so that
|
|
* we don't have to write the data twice.
|
|
*/
|
|
if (buf != NULL) { /* immediate write */
|
|
zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
|
|
size, RL_READER);
|
|
error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
|
|
DMU_READ_NO_PREFETCH);
|
|
} else { /* indirect write */
|
|
ASSERT3P(zio, !=, NULL);
|
|
/*
|
|
* Have to lock the whole block to ensure when it's written out
|
|
* and its checksum is being calculated that no one can change
|
|
* the data. Contrarily to zfs_get_data we need not re-check
|
|
* blocksize after we get the lock because it cannot be changed.
|
|
*/
|
|
size = zv->zv_volblocksize;
|
|
offset = P2ALIGN_TYPED(offset, size, uint64_t);
|
|
zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
|
|
size, RL_READER);
|
|
error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
|
|
&db);
|
|
if (error == 0) {
|
|
blkptr_t *bp = &lr->lr_blkptr;
|
|
|
|
zgd->zgd_db = db;
|
|
zgd->zgd_bp = bp;
|
|
|
|
ASSERT(db != NULL);
|
|
ASSERT(db->db_offset == offset);
|
|
ASSERT(db->db_size == size);
|
|
|
|
error = dmu_sync(zio, lr->lr_common.lrc_txg,
|
|
zvol_get_done, zgd);
|
|
|
|
if (error == 0)
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
zvol_get_done(zgd, error);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
/*
|
|
* The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
|
|
*/
|
|
|
|
void
|
|
zvol_insert(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zvol_state_lock));
|
|
list_insert_head(&zvol_state_list, zv);
|
|
hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
|
|
}
|
|
|
|
/*
|
|
* Simply remove the zvol from to list of zvols.
|
|
*/
|
|
static void
|
|
zvol_remove(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zvol_state_lock));
|
|
list_remove(&zvol_state_list, zv);
|
|
hlist_del(&zv->zv_hlink);
|
|
}
|
|
|
|
/*
|
|
* Setup zv after we just own the zv->objset
|
|
*/
|
|
static int
|
|
zvol_setup_zv(zvol_state_t *zv)
|
|
{
|
|
uint64_t volsize;
|
|
int error;
|
|
uint64_t ro;
|
|
objset_t *os = zv->zv_objset;
|
|
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
|
|
|
|
zv->zv_zilog = NULL;
|
|
zv->zv_flags &= ~ZVOL_WRITTEN_TO;
|
|
|
|
error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
zvol_os_set_capacity(zv, volsize >> 9);
|
|
zv->zv_volsize = volsize;
|
|
|
|
if (ro || dmu_objset_is_snapshot(os) ||
|
|
!spa_writeable(dmu_objset_spa(os))) {
|
|
zvol_os_set_disk_ro(zv, 1);
|
|
zv->zv_flags |= ZVOL_RDONLY;
|
|
} else {
|
|
zvol_os_set_disk_ro(zv, 0);
|
|
zv->zv_flags &= ~ZVOL_RDONLY;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Shutdown every zv_objset related stuff except zv_objset itself.
|
|
* The is the reverse of zvol_setup_zv.
|
|
*/
|
|
static void
|
|
zvol_shutdown_zv(zvol_state_t *zv)
|
|
{
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
|
|
RW_LOCK_HELD(&zv->zv_suspend_lock));
|
|
|
|
if (zv->zv_flags & ZVOL_WRITTEN_TO) {
|
|
ASSERT(zv->zv_zilog != NULL);
|
|
zil_close(zv->zv_zilog);
|
|
}
|
|
|
|
zv->zv_zilog = NULL;
|
|
|
|
dnode_rele(zv->zv_dn, zv);
|
|
zv->zv_dn = NULL;
|
|
|
|
/*
|
|
* Evict cached data. We must write out any dirty data before
|
|
* disowning the dataset.
|
|
*/
|
|
if (zv->zv_flags & ZVOL_WRITTEN_TO)
|
|
txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
|
|
(void) dmu_objset_evict_dbufs(zv->zv_objset);
|
|
}
|
|
|
|
/*
|
|
* return the proper tag for rollback and recv
|
|
*/
|
|
void *
|
|
zvol_tag(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
|
|
return (zv->zv_open_count > 0 ? zv : NULL);
|
|
}
|
|
|
|
/*
|
|
* Suspend the zvol for recv and rollback.
|
|
*/
|
|
zvol_state_t *
|
|
zvol_suspend(const char *name)
|
|
{
|
|
zvol_state_t *zv;
|
|
|
|
zv = zvol_find_by_name(name, RW_WRITER);
|
|
|
|
if (zv == NULL)
|
|
return (NULL);
|
|
|
|
/* block all I/O, release in zvol_resume. */
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
|
|
|
|
atomic_inc(&zv->zv_suspend_ref);
|
|
|
|
if (zv->zv_open_count > 0)
|
|
zvol_shutdown_zv(zv);
|
|
|
|
/*
|
|
* do not hold zv_state_lock across suspend/resume to
|
|
* avoid locking up zvol lookups
|
|
*/
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
/* zv_suspend_lock is released in zvol_resume() */
|
|
return (zv);
|
|
}
|
|
|
|
int
|
|
zvol_resume(zvol_state_t *zv)
|
|
{
|
|
int error = 0;
|
|
|
|
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
|
|
if (zv->zv_open_count > 0) {
|
|
VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
|
|
VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
|
|
VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
|
|
dmu_objset_rele(zv->zv_objset, zv);
|
|
|
|
error = zvol_setup_zv(zv);
|
|
}
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
rw_exit(&zv->zv_suspend_lock);
|
|
/*
|
|
* We need this because we don't hold zvol_state_lock while releasing
|
|
* zv_suspend_lock. zvol_remove_minors_impl thus cannot check
|
|
* zv_suspend_lock to determine it is safe to free because rwlock is
|
|
* not inherent atomic.
|
|
*/
|
|
atomic_dec(&zv->zv_suspend_ref);
|
|
|
|
return (SET_ERROR(error));
|
|
}
|
|
|
|
int
|
|
zvol_first_open(zvol_state_t *zv, boolean_t readonly)
|
|
{
|
|
objset_t *os;
|
|
int error;
|
|
|
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
ASSERT(mutex_owned(&spa_namespace_lock));
|
|
|
|
boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
|
|
error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
|
|
if (error)
|
|
return (SET_ERROR(error));
|
|
|
|
zv->zv_objset = os;
|
|
|
|
error = zvol_setup_zv(zv);
|
|
if (error) {
|
|
dmu_objset_disown(os, 1, zv);
|
|
zv->zv_objset = NULL;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
zvol_last_close(zvol_state_t *zv)
|
|
{
|
|
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
|
|
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
|
|
|
|
zvol_shutdown_zv(zv);
|
|
|
|
dmu_objset_disown(zv->zv_objset, 1, zv);
|
|
zv->zv_objset = NULL;
|
|
}
|
|
|
|
typedef struct minors_job {
|
|
list_t *list;
|
|
list_node_t link;
|
|
/* input */
|
|
char *name;
|
|
/* output */
|
|
int error;
|
|
} minors_job_t;
|
|
|
|
/*
|
|
* Prefetch zvol dnodes for the minors_job
|
|
*/
|
|
static void
|
|
zvol_prefetch_minors_impl(void *arg)
|
|
{
|
|
minors_job_t *job = arg;
|
|
char *dsname = job->name;
|
|
objset_t *os = NULL;
|
|
|
|
job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
|
|
FTAG, &os);
|
|
if (job->error == 0) {
|
|
dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
|
|
dmu_objset_disown(os, B_TRUE, FTAG);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mask errors to continue dmu_objset_find() traversal
|
|
*/
|
|
static int
|
|
zvol_create_snap_minor_cb(const char *dsname, void *arg)
|
|
{
|
|
minors_job_t *j = arg;
|
|
list_t *minors_list = j->list;
|
|
const char *name = j->name;
|
|
|
|
ASSERT0(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
/* skip the designated dataset */
|
|
if (name && strcmp(dsname, name) == 0)
|
|
return (0);
|
|
|
|
/* at this point, the dsname should name a snapshot */
|
|
if (strchr(dsname, '@') == 0) {
|
|
dprintf("zvol_create_snap_minor_cb(): "
|
|
"%s is not a snapshot name\n", dsname);
|
|
} else {
|
|
minors_job_t *job;
|
|
char *n = kmem_strdup(dsname);
|
|
if (n == NULL)
|
|
return (0);
|
|
|
|
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
|
|
job->name = n;
|
|
job->list = minors_list;
|
|
job->error = 0;
|
|
list_insert_tail(minors_list, job);
|
|
/* don't care if dispatch fails, because job->error is 0 */
|
|
taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
|
|
TQ_SLEEP);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If spa_keystore_load_wkey() is called for an encrypted zvol,
|
|
* we need to look for any clones also using the key. This function
|
|
* is "best effort" - so we just skip over it if there are failures.
|
|
*/
|
|
static void
|
|
zvol_add_clones(const char *dsname, list_t *minors_list)
|
|
{
|
|
/* Also check if it has clones */
|
|
dsl_dir_t *dd = NULL;
|
|
dsl_pool_t *dp = NULL;
|
|
|
|
if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
|
|
return;
|
|
|
|
if (!spa_feature_is_enabled(dp->dp_spa,
|
|
SPA_FEATURE_ENCRYPTION))
|
|
goto out;
|
|
|
|
if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
|
|
goto out;
|
|
|
|
if (dsl_dir_phys(dd)->dd_clones == 0)
|
|
goto out;
|
|
|
|
zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
|
|
zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
|
|
objset_t *mos = dd->dd_pool->dp_meta_objset;
|
|
|
|
for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
|
|
zap_cursor_retrieve(zc, za) == 0;
|
|
zap_cursor_advance(zc)) {
|
|
dsl_dataset_t *clone;
|
|
minors_job_t *job;
|
|
|
|
if (dsl_dataset_hold_obj(dd->dd_pool,
|
|
za->za_first_integer, FTAG, &clone) == 0) {
|
|
|
|
char name[ZFS_MAX_DATASET_NAME_LEN];
|
|
dsl_dataset_name(clone, name);
|
|
|
|
char *n = kmem_strdup(name);
|
|
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
|
|
job->name = n;
|
|
job->list = minors_list;
|
|
job->error = 0;
|
|
list_insert_tail(minors_list, job);
|
|
|
|
dsl_dataset_rele(clone, FTAG);
|
|
}
|
|
}
|
|
zap_cursor_fini(zc);
|
|
kmem_free(za, sizeof (zap_attribute_t));
|
|
kmem_free(zc, sizeof (zap_cursor_t));
|
|
|
|
out:
|
|
if (dd != NULL)
|
|
dsl_dir_rele(dd, FTAG);
|
|
dsl_pool_rele(dp, FTAG);
|
|
}
|
|
|
|
/*
|
|
* Mask errors to continue dmu_objset_find() traversal
|
|
*/
|
|
static int
|
|
zvol_create_minors_cb(const char *dsname, void *arg)
|
|
{
|
|
uint64_t snapdev;
|
|
int error;
|
|
list_t *minors_list = arg;
|
|
|
|
ASSERT0(MUTEX_HELD(&spa_namespace_lock));
|
|
|
|
error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
|
|
if (error)
|
|
return (0);
|
|
|
|
/*
|
|
* Given the name and the 'snapdev' property, create device minor nodes
|
|
* with the linkages to zvols/snapshots as needed.
|
|
* If the name represents a zvol, create a minor node for the zvol, then
|
|
* check if its snapshots are 'visible', and if so, iterate over the
|
|
* snapshots and create device minor nodes for those.
|
|
*/
|
|
if (strchr(dsname, '@') == 0) {
|
|
minors_job_t *job;
|
|
char *n = kmem_strdup(dsname);
|
|
if (n == NULL)
|
|
return (0);
|
|
|
|
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
|
|
job->name = n;
|
|
job->list = minors_list;
|
|
job->error = 0;
|
|
list_insert_tail(minors_list, job);
|
|
/* don't care if dispatch fails, because job->error is 0 */
|
|
taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
|
|
TQ_SLEEP);
|
|
|
|
zvol_add_clones(dsname, minors_list);
|
|
|
|
if (snapdev == ZFS_SNAPDEV_VISIBLE) {
|
|
/*
|
|
* traverse snapshots only, do not traverse children,
|
|
* and skip the 'dsname'
|
|
*/
|
|
(void) dmu_objset_find(dsname,
|
|
zvol_create_snap_minor_cb, (void *)job,
|
|
DS_FIND_SNAPSHOTS);
|
|
}
|
|
} else {
|
|
dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
|
|
dsname);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Create minors for the specified dataset, including children and snapshots.
|
|
* Pay attention to the 'snapdev' property and iterate over the snapshots
|
|
* only if they are 'visible'. This approach allows one to assure that the
|
|
* snapshot metadata is read from disk only if it is needed.
|
|
*
|
|
* The name can represent a dataset to be recursively scanned for zvols and
|
|
* their snapshots, or a single zvol snapshot. If the name represents a
|
|
* dataset, the scan is performed in two nested stages:
|
|
* - scan the dataset for zvols, and
|
|
* - for each zvol, create a minor node, then check if the zvol's snapshots
|
|
* are 'visible', and only then iterate over the snapshots if needed
|
|
*
|
|
* If the name represents a snapshot, a check is performed if the snapshot is
|
|
* 'visible' (which also verifies that the parent is a zvol), and if so,
|
|
* a minor node for that snapshot is created.
|
|
*/
|
|
void
|
|
zvol_create_minors_recursive(const char *name)
|
|
{
|
|
list_t minors_list;
|
|
minors_job_t *job;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
/*
|
|
* This is the list for prefetch jobs. Whenever we found a match
|
|
* during dmu_objset_find, we insert a minors_job to the list and do
|
|
* taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
|
|
* any lock because all list operation is done on the current thread.
|
|
*
|
|
* We will use this list to do zvol_os_create_minor after prefetch
|
|
* so we don't have to traverse using dmu_objset_find again.
|
|
*/
|
|
list_create(&minors_list, sizeof (minors_job_t),
|
|
offsetof(minors_job_t, link));
|
|
|
|
|
|
if (strchr(name, '@') != NULL) {
|
|
uint64_t snapdev;
|
|
|
|
int error = dsl_prop_get_integer(name, "snapdev",
|
|
&snapdev, NULL);
|
|
|
|
if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
|
|
(void) zvol_os_create_minor(name);
|
|
} else {
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
(void) dmu_objset_find(name, zvol_create_minors_cb,
|
|
&minors_list, DS_FIND_CHILDREN);
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
taskq_wait_outstanding(system_taskq, 0);
|
|
|
|
/*
|
|
* Prefetch is completed, we can do zvol_os_create_minor
|
|
* sequentially.
|
|
*/
|
|
while ((job = list_remove_head(&minors_list)) != NULL) {
|
|
if (!job->error)
|
|
(void) zvol_os_create_minor(job->name);
|
|
kmem_strfree(job->name);
|
|
kmem_free(job, sizeof (minors_job_t));
|
|
}
|
|
|
|
list_destroy(&minors_list);
|
|
}
|
|
|
|
void
|
|
zvol_create_minor(const char *name)
|
|
{
|
|
/*
|
|
* Note: the dsl_pool_config_lock must not be held.
|
|
* Minor node creation needs to obtain the zvol_state_lock.
|
|
* zvol_open() obtains the zvol_state_lock and then the dsl pool
|
|
* config lock. Therefore, we can't have the config lock now if
|
|
* we are going to wait for the zvol_state_lock, because it
|
|
* would be a lock order inversion which could lead to deadlock.
|
|
*/
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
if (strchr(name, '@') != NULL) {
|
|
uint64_t snapdev;
|
|
|
|
int error = dsl_prop_get_integer(name,
|
|
"snapdev", &snapdev, NULL);
|
|
|
|
if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
|
|
(void) zvol_os_create_minor(name);
|
|
} else {
|
|
(void) zvol_os_create_minor(name);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove minors for specified dataset including children and snapshots.
|
|
*/
|
|
|
|
static void
|
|
zvol_free_task(void *arg)
|
|
{
|
|
zvol_os_free(arg);
|
|
}
|
|
|
|
void
|
|
zvol_remove_minors_impl(const char *name)
|
|
{
|
|
zvol_state_t *zv, *zv_next;
|
|
int namelen = ((name) ? strlen(name) : 0);
|
|
taskqid_t t;
|
|
list_t free_list;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
list_create(&free_list, sizeof (zvol_state_t),
|
|
offsetof(zvol_state_t, zv_next));
|
|
|
|
rw_enter(&zvol_state_lock, RW_WRITER);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
|
|
(strncmp(zv->zv_name, name, namelen) == 0 &&
|
|
(zv->zv_name[namelen] == '/' ||
|
|
zv->zv_name[namelen] == '@'))) {
|
|
/*
|
|
* By holding zv_state_lock here, we guarantee that no
|
|
* one is currently using this zv
|
|
*/
|
|
|
|
/* If in use, leave alone */
|
|
if (zv->zv_open_count > 0 ||
|
|
atomic_read(&zv->zv_suspend_ref)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
continue;
|
|
}
|
|
|
|
zvol_remove(zv);
|
|
|
|
/*
|
|
* Cleared while holding zvol_state_lock as a writer
|
|
* which will prevent zvol_open() from opening it.
|
|
*/
|
|
zvol_os_clear_private(zv);
|
|
|
|
/* Drop zv_state_lock before zvol_free() */
|
|
mutex_exit(&zv->zv_state_lock);
|
|
|
|
/* Try parallel zv_free, if failed do it in place */
|
|
t = taskq_dispatch(system_taskq, zvol_free_task, zv,
|
|
TQ_SLEEP);
|
|
if (t == TASKQID_INVALID)
|
|
list_insert_head(&free_list, zv);
|
|
} else {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
}
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
/* Drop zvol_state_lock before calling zvol_free() */
|
|
while ((zv = list_remove_head(&free_list)) != NULL)
|
|
zvol_os_free(zv);
|
|
}
|
|
|
|
/* Remove minor for this specific volume only */
|
|
static void
|
|
zvol_remove_minor_impl(const char *name)
|
|
{
|
|
zvol_state_t *zv = NULL, *zv_next;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
rw_enter(&zvol_state_lock, RW_WRITER);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
if (strcmp(zv->zv_name, name) == 0) {
|
|
/*
|
|
* By holding zv_state_lock here, we guarantee that no
|
|
* one is currently using this zv
|
|
*/
|
|
|
|
/* If in use, leave alone */
|
|
if (zv->zv_open_count > 0 ||
|
|
atomic_read(&zv->zv_suspend_ref)) {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
continue;
|
|
}
|
|
zvol_remove(zv);
|
|
|
|
zvol_os_clear_private(zv);
|
|
mutex_exit(&zv->zv_state_lock);
|
|
break;
|
|
} else {
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
}
|
|
|
|
/* Drop zvol_state_lock before calling zvol_free() */
|
|
rw_exit(&zvol_state_lock);
|
|
|
|
if (zv != NULL)
|
|
zvol_os_free(zv);
|
|
}
|
|
|
|
/*
|
|
* Rename minors for specified dataset including children and snapshots.
|
|
*/
|
|
static void
|
|
zvol_rename_minors_impl(const char *oldname, const char *newname)
|
|
{
|
|
zvol_state_t *zv, *zv_next;
|
|
int oldnamelen;
|
|
|
|
if (zvol_inhibit_dev)
|
|
return;
|
|
|
|
oldnamelen = strlen(oldname);
|
|
|
|
rw_enter(&zvol_state_lock, RW_READER);
|
|
|
|
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
|
|
zv_next = list_next(&zvol_state_list, zv);
|
|
|
|
mutex_enter(&zv->zv_state_lock);
|
|
|
|
if (strcmp(zv->zv_name, oldname) == 0) {
|
|
zvol_os_rename_minor(zv, newname);
|
|
} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
|
|
(zv->zv_name[oldnamelen] == '/' ||
|
|
zv->zv_name[oldnamelen] == '@')) {
|
|
char *name = kmem_asprintf("%s%c%s", newname,
|
|
zv->zv_name[oldnamelen],
|
|
zv->zv_name + oldnamelen + 1);
|
|
zvol_os_rename_minor(zv, name);
|
|
kmem_strfree(name);
|
|
}
|
|
|
|
mutex_exit(&zv->zv_state_lock);
|
|
}
|
|
|
|
rw_exit(&zvol_state_lock);
|
|
}
|
|
|
|
typedef struct zvol_snapdev_cb_arg {
|
|
uint64_t snapdev;
|
|
} zvol_snapdev_cb_arg_t;
|
|
|
|
static int
|
|
zvol_set_snapdev_cb(const char *dsname, void *param)
|
|
{
|
|
zvol_snapdev_cb_arg_t *arg = param;
|
|
|
|
if (strchr(dsname, '@') == NULL)
|
|
return (0);
|
|
|
|
switch (arg->snapdev) {
|
|
case ZFS_SNAPDEV_VISIBLE:
|
|
(void) zvol_os_create_minor(dsname);
|
|
break;
|
|
case ZFS_SNAPDEV_HIDDEN:
|
|
(void) zvol_remove_minor_impl(dsname);
|
|
break;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zvol_set_snapdev_impl(char *name, uint64_t snapdev)
|
|
{
|
|
zvol_snapdev_cb_arg_t arg = {snapdev};
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
/*
|
|
* The zvol_set_snapdev_sync() sets snapdev appropriately
|
|
* in the dataset hierarchy. Here, we only scan snapshots.
|
|
*/
|
|
dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
static void
|
|
zvol_set_volmode_impl(char *name, uint64_t volmode)
|
|
{
|
|
fstrans_cookie_t cookie;
|
|
uint64_t old_volmode;
|
|
zvol_state_t *zv;
|
|
|
|
if (strchr(name, '@') != NULL)
|
|
return;
|
|
|
|
/*
|
|
* It's unfortunate we need to remove minors before we create new ones:
|
|
* this is necessary because our backing gendisk (zvol_state->zv_disk)
|
|
* could be different when we set, for instance, volmode from "geom"
|
|
* to "dev" (or vice versa).
|
|
*/
|
|
zv = zvol_find_by_name(name, RW_NONE);
|
|
if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
|
|
return;
|
|
if (zv != NULL) {
|
|
old_volmode = zv->zv_volmode;
|
|
mutex_exit(&zv->zv_state_lock);
|
|
if (old_volmode == volmode)
|
|
return;
|
|
zvol_wait_close(zv);
|
|
}
|
|
cookie = spl_fstrans_mark();
|
|
switch (volmode) {
|
|
case ZFS_VOLMODE_NONE:
|
|
(void) zvol_remove_minor_impl(name);
|
|
break;
|
|
case ZFS_VOLMODE_GEOM:
|
|
case ZFS_VOLMODE_DEV:
|
|
(void) zvol_remove_minor_impl(name);
|
|
(void) zvol_os_create_minor(name);
|
|
break;
|
|
case ZFS_VOLMODE_DEFAULT:
|
|
(void) zvol_remove_minor_impl(name);
|
|
if (zvol_volmode == ZFS_VOLMODE_NONE)
|
|
break;
|
|
else /* if zvol_volmode is invalid defaults to "geom" */
|
|
(void) zvol_os_create_minor(name);
|
|
break;
|
|
}
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
static zvol_task_t *
|
|
zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
|
|
uint64_t value)
|
|
{
|
|
zvol_task_t *task;
|
|
|
|
/* Never allow tasks on hidden names. */
|
|
if (name1[0] == '$')
|
|
return (NULL);
|
|
|
|
task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
|
|
task->op = op;
|
|
task->value = value;
|
|
|
|
strlcpy(task->name1, name1, MAXNAMELEN);
|
|
if (name2 != NULL)
|
|
strlcpy(task->name2, name2, MAXNAMELEN);
|
|
|
|
return (task);
|
|
}
|
|
|
|
static void
|
|
zvol_task_free(zvol_task_t *task)
|
|
{
|
|
kmem_free(task, sizeof (zvol_task_t));
|
|
}
|
|
|
|
/*
|
|
* The worker thread function performed asynchronously.
|
|
*/
|
|
static void
|
|
zvol_task_cb(void *arg)
|
|
{
|
|
zvol_task_t *task = arg;
|
|
|
|
switch (task->op) {
|
|
case ZVOL_ASYNC_REMOVE_MINORS:
|
|
zvol_remove_minors_impl(task->name1);
|
|
break;
|
|
case ZVOL_ASYNC_RENAME_MINORS:
|
|
zvol_rename_minors_impl(task->name1, task->name2);
|
|
break;
|
|
case ZVOL_ASYNC_SET_SNAPDEV:
|
|
zvol_set_snapdev_impl(task->name1, task->value);
|
|
break;
|
|
case ZVOL_ASYNC_SET_VOLMODE:
|
|
zvol_set_volmode_impl(task->name1, task->value);
|
|
break;
|
|
default:
|
|
VERIFY(0);
|
|
break;
|
|
}
|
|
|
|
zvol_task_free(task);
|
|
}
|
|
|
|
typedef struct zvol_set_prop_int_arg {
|
|
const char *zsda_name;
|
|
uint64_t zsda_value;
|
|
zprop_source_t zsda_source;
|
|
dmu_tx_t *zsda_tx;
|
|
} zvol_set_prop_int_arg_t;
|
|
|
|
/*
|
|
* Sanity check the dataset for safe use by the sync task. No additional
|
|
* conditions are imposed.
|
|
*/
|
|
static int
|
|
zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
int error;
|
|
|
|
error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
|
{
|
|
(void) arg;
|
|
char dsname[MAXNAMELEN];
|
|
zvol_task_t *task;
|
|
uint64_t snapdev;
|
|
|
|
dsl_dataset_name(ds, dsname);
|
|
if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
|
|
return (0);
|
|
task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
|
|
if (task == NULL)
|
|
return (0);
|
|
|
|
(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
|
|
task, TQ_SLEEP);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Traverse all child datasets and apply snapdev appropriately.
|
|
* We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
|
|
* dataset and read the effective "snapdev" on every child in the callback
|
|
* function: this is because the value is not guaranteed to be the same in the
|
|
* whole dataset hierarchy.
|
|
*/
|
|
static void
|
|
zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
dsl_dataset_t *ds;
|
|
int error;
|
|
|
|
VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
|
|
zsda->zsda_tx = tx;
|
|
|
|
error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
|
|
if (error == 0) {
|
|
dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
|
|
zsda->zsda_source, sizeof (zsda->zsda_value), 1,
|
|
&zsda->zsda_value, zsda->zsda_tx);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
|
|
zsda, DS_FIND_CHILDREN);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
}
|
|
|
|
int
|
|
zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
|
|
{
|
|
zvol_set_prop_int_arg_t zsda;
|
|
|
|
zsda.zsda_name = ddname;
|
|
zsda.zsda_source = source;
|
|
zsda.zsda_value = snapdev;
|
|
|
|
return (dsl_sync_task(ddname, zvol_set_snapdev_check,
|
|
zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
|
|
}
|
|
|
|
/*
|
|
* Sanity check the dataset for safe use by the sync task. No additional
|
|
* conditions are imposed.
|
|
*/
|
|
static int
|
|
zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
int error;
|
|
|
|
error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
|
{
|
|
(void) arg;
|
|
char dsname[MAXNAMELEN];
|
|
zvol_task_t *task;
|
|
uint64_t volmode;
|
|
|
|
dsl_dataset_name(ds, dsname);
|
|
if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
|
|
return (0);
|
|
task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
|
|
if (task == NULL)
|
|
return (0);
|
|
|
|
(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
|
|
task, TQ_SLEEP);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Traverse all child datasets and apply volmode appropriately.
|
|
* We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
|
|
* dataset and read the effective "volmode" on every child in the callback
|
|
* function: this is because the value is not guaranteed to be the same in the
|
|
* whole dataset hierarchy.
|
|
*/
|
|
static void
|
|
zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
zvol_set_prop_int_arg_t *zsda = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
dsl_dir_t *dd;
|
|
dsl_dataset_t *ds;
|
|
int error;
|
|
|
|
VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
|
|
zsda->zsda_tx = tx;
|
|
|
|
error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
|
|
if (error == 0) {
|
|
dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
|
|
zsda->zsda_source, sizeof (zsda->zsda_value), 1,
|
|
&zsda->zsda_value, zsda->zsda_tx);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
}
|
|
|
|
dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
|
|
zsda, DS_FIND_CHILDREN);
|
|
|
|
dsl_dir_rele(dd, FTAG);
|
|
}
|
|
|
|
int
|
|
zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
|
|
{
|
|
zvol_set_prop_int_arg_t zsda;
|
|
|
|
zsda.zsda_name = ddname;
|
|
zsda.zsda_source = source;
|
|
zsda.zsda_value = volmode;
|
|
|
|
return (dsl_sync_task(ddname, zvol_set_volmode_check,
|
|
zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
|
|
}
|
|
|
|
void
|
|
zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
|
|
{
|
|
zvol_task_t *task;
|
|
taskqid_t id;
|
|
|
|
task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
|
|
if (task == NULL)
|
|
return;
|
|
|
|
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
|
|
if ((async == B_FALSE) && (id != TASKQID_INVALID))
|
|
taskq_wait_id(spa->spa_zvol_taskq, id);
|
|
}
|
|
|
|
void
|
|
zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
|
|
boolean_t async)
|
|
{
|
|
zvol_task_t *task;
|
|
taskqid_t id;
|
|
|
|
task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
|
|
if (task == NULL)
|
|
return;
|
|
|
|
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
|
|
if ((async == B_FALSE) && (id != TASKQID_INVALID))
|
|
taskq_wait_id(spa->spa_zvol_taskq, id);
|
|
}
|
|
|
|
boolean_t
|
|
zvol_is_zvol(const char *name)
|
|
{
|
|
|
|
return (zvol_os_is_zvol(name));
|
|
}
|
|
|
|
int
|
|
zvol_init_impl(void)
|
|
{
|
|
int i;
|
|
|
|
list_create(&zvol_state_list, sizeof (zvol_state_t),
|
|
offsetof(zvol_state_t, zv_next));
|
|
rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
|
|
|
|
zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
|
|
KM_SLEEP);
|
|
for (i = 0; i < ZVOL_HT_SIZE; i++)
|
|
INIT_HLIST_HEAD(&zvol_htable[i]);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zvol_fini_impl(void)
|
|
{
|
|
zvol_remove_minors_impl(NULL);
|
|
|
|
/*
|
|
* The call to "zvol_remove_minors_impl" may dispatch entries to
|
|
* the system_taskq, but it doesn't wait for those entries to
|
|
* complete before it returns. Thus, we must wait for all of the
|
|
* removals to finish, before we can continue.
|
|
*/
|
|
taskq_wait_outstanding(system_taskq, 0);
|
|
|
|
kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
|
|
list_destroy(&zvol_state_list);
|
|
rw_destroy(&zvol_state_lock);
|
|
}
|