mirror_zfs/cmd/zed/agents/zfs_mod.c
Tony Hutter f2f6c18f17
zed: Misc multipath autoreplace fixes
We recently had a case where our operators replaced a bad
multipathed disk, only to see it fail to autoreplace.  The
zed logs showed that the multipath replacement disk did not pass
the 'is_dm' test in zfs_process_add() even though it should have.
is_dm is set if there exists a sysfs entry for to the
underlying /dev/sd* paths for the multipath disk.  It's
possible this path didn't exist due to a race condition where
the sysfs paths weren't created at the time the udev event came
in to zed, but this was never verified.

This patch updates the check to look for udev properties that
indicate if the new autoreplace disk is an empty multipath disk,
rather than looking for the underlying sysfs entries. It also
adds in additional logging, and fixes a bug where zed allowed
you to use an already zfs-formatted disk from another pool
as a multipath auto-replacement disk.

Furthermore, while testing this patch, I also ran across a case
where a force-faulted disk did not have a ZPOOL_CONFIG_PHYS_PATH
entry in its config.  This prevented it from being autoreplaced.
I added additional logic to derive the PHYS_PATH from the PATH if
the PATH was a /dev/disk/by-vdev/ path.  For example, if PATH
was /dev/disk/by-vdev/L28, then PHYS_PATH would be L28.  This is
safe since by-vdev paths represent physical locations and do not
change between boots.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Tony Hutter <hutter2@llnl.gov>
Closes #13023
2022-02-24 11:43:39 -08:00

1137 lines
33 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012 by Delphix. All rights reserved.
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2016, 2017, Intel Corporation.
* Copyright (c) 2017 Open-E, Inc. All Rights Reserved.
*/
/*
* ZFS syseventd module.
*
* file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c
*
* The purpose of this module is to identify when devices are added to the
* system, and appropriately online or replace the affected vdevs.
*
* When a device is added to the system:
*
* 1. Search for any vdevs whose devid matches that of the newly added
* device.
*
* 2. If no vdevs are found, then search for any vdevs whose udev path
* matches that of the new device.
*
* 3. If no vdevs match by either method, then ignore the event.
*
* 4. Attempt to online the device with a flag to indicate that it should
* be unspared when resilvering completes. If this succeeds, then the
* same device was inserted and we should continue normally.
*
* 5. If the pool does not have the 'autoreplace' property set, attempt to
* online the device again without the unspare flag, which will
* generate a FMA fault.
*
* 6. If the pool has the 'autoreplace' property set, and the matching vdev
* is a whole disk, then label the new disk and attempt a 'zpool
* replace'.
*
* The module responds to EC_DEV_ADD events. The special ESC_ZFS_VDEV_CHECK
* event indicates that a device failed to open during pool load, but the
* autoreplace property was set. In this case, we deferred the associated
* FMA fault until our module had a chance to process the autoreplace logic.
* If the device could not be replaced, then the second online attempt will
* trigger the FMA fault that we skipped earlier.
*
* On Linux udev provides a disk insert for both the disk and the partition.
*/
#include <ctype.h>
#include <fcntl.h>
#include <libnvpair.h>
#include <libzfs.h>
#include <libzutil.h>
#include <limits.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <syslog.h>
#include <sys/list.h>
#include <sys/sunddi.h>
#include <sys/sysevent/eventdefs.h>
#include <sys/sysevent/dev.h>
#include <thread_pool.h>
#include <pthread.h>
#include <unistd.h>
#include <errno.h>
#include "zfs_agents.h"
#include "../zed_log.h"
#define DEV_BYID_PATH "/dev/disk/by-id/"
#define DEV_BYPATH_PATH "/dev/disk/by-path/"
#define DEV_BYVDEV_PATH "/dev/disk/by-vdev/"
typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t);
libzfs_handle_t *g_zfshdl;
list_t g_pool_list; /* list of unavailable pools at initialization */
list_t g_device_list; /* list of disks with asynchronous label request */
tpool_t *g_tpool;
boolean_t g_enumeration_done;
pthread_t g_zfs_tid; /* zfs_enum_pools() thread */
typedef struct unavailpool {
zpool_handle_t *uap_zhp;
list_node_t uap_node;
} unavailpool_t;
typedef struct pendingdev {
char pd_physpath[128];
list_node_t pd_node;
} pendingdev_t;
static int
zfs_toplevel_state(zpool_handle_t *zhp)
{
nvlist_t *nvroot;
vdev_stat_t *vs;
unsigned int c;
verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL),
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS,
(uint64_t **)&vs, &c) == 0);
return (vs->vs_state);
}
static int
zfs_unavail_pool(zpool_handle_t *zhp, void *data)
{
zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)",
zpool_get_name(zhp), (int)zfs_toplevel_state(zhp));
if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) {
unavailpool_t *uap;
uap = malloc(sizeof (unavailpool_t));
uap->uap_zhp = zhp;
list_insert_tail((list_t *)data, uap);
} else {
zpool_close(zhp);
}
return (0);
}
/*
* Two stage replace on Linux
* since we get disk notifications
* we can wait for partitioned disk slice to show up!
*
* First stage tags the disk, initiates async partitioning, and returns
* Second stage finds the tag and proceeds to ZFS labeling/replace
*
* disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach
*
* 1. physical match with no fs, no partition
* tag it top, partition disk
*
* 2. physical match again, see partition and tag
*
*/
/*
* The device associated with the given vdev (either by devid or physical path)
* has been added to the system. If 'isdisk' is set, then we only attempt a
* replacement if it's a whole disk. This also implies that we should label the
* disk first.
*
* First, we attempt to online the device (making sure to undo any spare
* operation when finished). If this succeeds, then we're done. If it fails,
* and the new state is VDEV_CANT_OPEN, it indicates that the device was opened,
* but that the label was not what we expected. If the 'autoreplace' property
* is enabled, then we relabel the disk (if specified), and attempt a 'zpool
* replace'. If the online is successful, but the new state is something else
* (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of
* race, and we should avoid attempting to relabel the disk.
*
* Also can arrive here from a ESC_ZFS_VDEV_CHECK event
*/
static void
zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled)
{
char *path;
vdev_state_t newstate;
nvlist_t *nvroot, *newvd;
pendingdev_t *device;
uint64_t wholedisk = 0ULL;
uint64_t offline = 0ULL, faulted = 0ULL;
uint64_t guid = 0ULL;
char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL;
char rawpath[PATH_MAX], fullpath[PATH_MAX];
char devpath[PATH_MAX];
int ret;
boolean_t is_sd = B_FALSE;
boolean_t is_mpath_wholedisk = B_FALSE;
uint_t c;
vdev_stat_t *vs;
if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0)
return;
/* Skip healthy disks */
verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS,
(uint64_t **)&vs, &c) == 0);
if (vs->vs_state == VDEV_STATE_HEALTHY) {
zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.",
__func__, path);
return;
}
(void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath);
(void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
&enc_sysfs_path);
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline);
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_FAULTED, &faulted);
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid);
/*
* Special case:
*
* We've seen times where a disk won't have a ZPOOL_CONFIG_PHYS_PATH
* entry in their config. For example, on this force-faulted disk:
*
* children[0]:
* type: 'disk'
* id: 0
* guid: 14309659774640089719
* path: '/dev/disk/by-vdev/L28'
* whole_disk: 0
* DTL: 654
* create_txg: 4
* com.delphix:vdev_zap_leaf: 1161
* faulted: 1
* aux_state: 'external'
* children[1]:
* type: 'disk'
* id: 1
* guid: 16002508084177980912
* path: '/dev/disk/by-vdev/L29'
* devid: 'dm-uuid-mpath-35000c500a61d68a3'
* phys_path: 'L29'
* vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
* whole_disk: 0
* DTL: 1028
* create_txg: 4
* com.delphix:vdev_zap_leaf: 131
*
* If the disk's path is a /dev/disk/by-vdev/ path, then we can infer
* the ZPOOL_CONFIG_PHYS_PATH from the by-vdev disk name.
*/
if (physpath == NULL && path != NULL) {
/* If path begins with "/dev/disk/by-vdev/" ... */
if (strncmp(path, DEV_BYVDEV_PATH,
strlen(DEV_BYVDEV_PATH)) == 0) {
/* Set physpath to the char after "/dev/disk/by-vdev" */
physpath = &path[strlen(DEV_BYVDEV_PATH)];
}
}
/*
* We don't want to autoreplace offlined disks. However, we do want to
* replace force-faulted disks (`zpool offline -f`). Force-faulted
* disks have both offline=1 and faulted=1 in the nvlist.
*/
if (offline && !faulted) {
zed_log_msg(LOG_INFO, "%s: %s is offline, skip autoreplace",
__func__, path);
return;
}
is_mpath_wholedisk = is_mpath_whole_disk(path);
zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'"
" %s blank disk, %s mpath blank disk, %s labeled, enc sysfs '%s', "
"(guid %llu)",
zpool_get_name(zhp), path,
physpath ? physpath : "NULL",
wholedisk ? "is" : "not",
is_mpath_wholedisk? "is" : "not",
labeled ? "is" : "not",
enc_sysfs_path,
(long long unsigned int)guid);
/*
* The VDEV guid is preferred for identification (gets passed in path)
*/
if (guid != 0) {
(void) snprintf(fullpath, sizeof (fullpath), "%llu",
(long long unsigned int)guid);
} else {
/*
* otherwise use path sans partition suffix for whole disks
*/
(void) strlcpy(fullpath, path, sizeof (fullpath));
if (wholedisk) {
char *spath = zfs_strip_partition(fullpath);
if (!spath) {
zed_log_msg(LOG_INFO, "%s: Can't alloc",
__func__);
return;
}
(void) strlcpy(fullpath, spath, sizeof (fullpath));
free(spath);
}
}
/*
* Attempt to online the device.
*/
if (zpool_vdev_online(zhp, fullpath,
ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE, &newstate) == 0 &&
(newstate == VDEV_STATE_HEALTHY ||
newstate == VDEV_STATE_DEGRADED)) {
zed_log_msg(LOG_INFO,
" zpool_vdev_online: vdev '%s' ('%s') is "
"%s", fullpath, physpath, (newstate == VDEV_STATE_HEALTHY) ?
"HEALTHY" : "DEGRADED");
return;
}
/*
* vdev_id alias rule for using scsi_debug devices (FMA automated
* testing)
*/
if (physpath != NULL && strcmp("scsidebug", physpath) == 0)
is_sd = B_TRUE;
/*
* If the pool doesn't have the autoreplace property set, then use
* vdev online to trigger a FMA fault by posting an ereport.
*/
if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) ||
!(wholedisk || is_mpath_wholedisk) || (physpath == NULL)) {
(void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
&newstate);
zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or "
"not a blank disk for '%s' ('%s')", fullpath,
physpath);
return;
}
/*
* Convert physical path into its current device node. Rawpath
* needs to be /dev/disk/by-vdev for a scsi_debug device since
* /dev/disk/by-path will not be present.
*/
(void) snprintf(rawpath, sizeof (rawpath), "%s%s",
is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath);
if (realpath(rawpath, devpath) == NULL && !is_mpath_wholedisk) {
zed_log_msg(LOG_INFO, " realpath: %s failed (%s)",
rawpath, strerror(errno));
(void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
&newstate);
zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s)",
fullpath, libzfs_error_description(g_zfshdl));
return;
}
/* Only autoreplace bad disks */
if ((vs->vs_state != VDEV_STATE_DEGRADED) &&
(vs->vs_state != VDEV_STATE_FAULTED) &&
(vs->vs_state != VDEV_STATE_CANT_OPEN)) {
zed_log_msg(LOG_INFO, " not autoreplacing since disk isn't in "
"a bad state (currently %d)", vs->vs_state);
return;
}
nvlist_lookup_string(vdev, "new_devid", &new_devid);
if (is_mpath_wholedisk) {
/* Don't label device mapper or multipath disks. */
} else if (!labeled) {
/*
* we're auto-replacing a raw disk, so label it first
*/
char *leafname;
/*
* If this is a request to label a whole disk, then attempt to
* write out the label. Before we can label the disk, we need
* to map the physical string that was matched on to the under
* lying device node.
*
* If any part of this process fails, then do a force online
* to trigger a ZFS fault for the device (and any hot spare
* replacement).
*/
leafname = strrchr(devpath, '/') + 1;
/*
* If this is a request to label a whole disk, then attempt to
* write out the label.
*/
if (zpool_label_disk(g_zfshdl, zhp, leafname) != 0) {
zed_log_msg(LOG_INFO, " zpool_label_disk: could not "
"label '%s' (%s)", leafname,
libzfs_error_description(g_zfshdl));
(void) zpool_vdev_online(zhp, fullpath,
ZFS_ONLINE_FORCEFAULT, &newstate);
return;
}
/*
* The disk labeling is asynchronous on Linux. Just record
* this label request and return as there will be another
* disk add event for the partition after the labeling is
* completed.
*/
device = malloc(sizeof (pendingdev_t));
(void) strlcpy(device->pd_physpath, physpath,
sizeof (device->pd_physpath));
list_insert_tail(&g_device_list, device);
zed_log_msg(LOG_INFO, " zpool_label_disk: async '%s' (%llu)",
leafname, (u_longlong_t)guid);
return; /* resumes at EC_DEV_ADD.ESC_DISK for partition */
} else /* labeled */ {
boolean_t found = B_FALSE;
/*
* match up with request above to label the disk
*/
for (device = list_head(&g_device_list); device != NULL;
device = list_next(&g_device_list, device)) {
if (strcmp(physpath, device->pd_physpath) == 0) {
list_remove(&g_device_list, device);
free(device);
found = B_TRUE;
break;
}
zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s",
physpath, device->pd_physpath);
}
if (!found) {
/* unexpected partition slice encountered */
zed_log_msg(LOG_INFO, "labeled disk %s unexpected here",
fullpath);
(void) zpool_vdev_online(zhp, fullpath,
ZFS_ONLINE_FORCEFAULT, &newstate);
return;
}
zed_log_msg(LOG_INFO, " zpool_label_disk: resume '%s' (%llu)",
physpath, (u_longlong_t)guid);
(void) snprintf(devpath, sizeof (devpath), "%s%s",
DEV_BYID_PATH, new_devid);
}
/*
* Construct the root vdev to pass to zpool_vdev_attach(). While adding
* the entire vdev structure is harmless, we construct a reduced set of
* path/physpath/wholedisk to keep it simple.
*/
if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) {
zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
return;
}
if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) {
zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
nvlist_free(nvroot);
return;
}
if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 ||
nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 ||
nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 ||
(physpath != NULL && nvlist_add_string(newvd,
ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) ||
(enc_sysfs_path != NULL && nvlist_add_string(newvd,
ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) ||
nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 ||
nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 ||
nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
(const nvlist_t **)&newvd, 1) != 0) {
zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs");
nvlist_free(newvd);
nvlist_free(nvroot);
return;
}
nvlist_free(newvd);
/*
* Wait for udev to verify the links exist, then auto-replace
* the leaf disk at same physical location.
*/
if (zpool_label_disk_wait(path, 3000) != 0) {
zed_log_msg(LOG_WARNING, "zfs_mod: expected replacement "
"disk %s is missing", path);
nvlist_free(nvroot);
return;
}
/*
* Prefer sequential resilvering when supported (mirrors and dRAID),
* otherwise fallback to a traditional healing resilver.
*/
ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE);
if (ret != 0) {
ret = zpool_vdev_attach(zhp, fullpath, path, nvroot,
B_TRUE, B_FALSE);
}
zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)",
fullpath, path, (ret == 0) ? "no errors" :
libzfs_error_description(g_zfshdl));
nvlist_free(nvroot);
}
/*
* Utility functions to find a vdev matching given criteria.
*/
typedef struct dev_data {
const char *dd_compare;
const char *dd_prop;
zfs_process_func_t dd_func;
boolean_t dd_found;
boolean_t dd_islabeled;
uint64_t dd_pool_guid;
uint64_t dd_vdev_guid;
const char *dd_new_devid;
} dev_data_t;
static void
zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data)
{
dev_data_t *dp = data;
char *path = NULL;
uint_t c, children;
nvlist_t **child;
/*
* First iterate over any children.
*/
if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN,
&child, &children) == 0) {
for (c = 0; c < children; c++)
zfs_iter_vdev(zhp, child[c], data);
}
/*
* Iterate over any spares and cache devices
*/
if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_SPARES,
&child, &children) == 0) {
for (c = 0; c < children; c++)
zfs_iter_vdev(zhp, child[c], data);
}
if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_L2CACHE,
&child, &children) == 0) {
for (c = 0; c < children; c++)
zfs_iter_vdev(zhp, child[c], data);
}
/* once a vdev was matched and processed there is nothing left to do */
if (dp->dd_found)
return;
/*
* Match by GUID if available otherwise fallback to devid or physical
*/
if (dp->dd_vdev_guid != 0) {
uint64_t guid;
if (nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID,
&guid) != 0 || guid != dp->dd_vdev_guid) {
return;
}
zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched on %llu", guid);
dp->dd_found = B_TRUE;
} else if (dp->dd_compare != NULL) {
/*
* NOTE: On Linux there is an event for partition, so unlike
* illumos, substring matching is not required to accommodate
* the partition suffix. An exact match will be present in
* the dp->dd_compare value.
*/
if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 ||
strcmp(dp->dd_compare, path) != 0) {
zed_log_msg(LOG_INFO, " %s: no match (%s != vdev %s)",
__func__, dp->dd_compare, path);
return;
}
zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched %s on %s",
dp->dd_prop, path);
dp->dd_found = B_TRUE;
/* pass the new devid for use by replacing code */
if (dp->dd_new_devid != NULL) {
(void) nvlist_add_string(nvl, "new_devid",
dp->dd_new_devid);
}
}
(dp->dd_func)(zhp, nvl, dp->dd_islabeled);
}
static void
zfs_enable_ds(void *arg)
{
unavailpool_t *pool = (unavailpool_t *)arg;
(void) zpool_enable_datasets(pool->uap_zhp, NULL, 0);
zpool_close(pool->uap_zhp);
free(pool);
}
static int
zfs_iter_pool(zpool_handle_t *zhp, void *data)
{
nvlist_t *config, *nvl;
dev_data_t *dp = data;
uint64_t pool_guid;
unavailpool_t *pool;
zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)",
zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop);
/*
* For each vdev in this pool, look for a match to apply dd_func
*/
if ((config = zpool_get_config(zhp, NULL)) != NULL) {
if (dp->dd_pool_guid == 0 ||
(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
&pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) {
(void) nvlist_lookup_nvlist(config,
ZPOOL_CONFIG_VDEV_TREE, &nvl);
zfs_iter_vdev(zhp, nvl, data);
}
} else {
zed_log_msg(LOG_INFO, "%s: no config\n", __func__);
}
/*
* if this pool was originally unavailable,
* then enable its datasets asynchronously
*/
if (g_enumeration_done) {
for (pool = list_head(&g_pool_list); pool != NULL;
pool = list_next(&g_pool_list, pool)) {
if (strcmp(zpool_get_name(zhp),
zpool_get_name(pool->uap_zhp)))
continue;
if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) {
list_remove(&g_pool_list, pool);
(void) tpool_dispatch(g_tpool, zfs_enable_ds,
pool);
break;
}
}
}
zpool_close(zhp);
return (dp->dd_found); /* cease iteration after a match */
}
/*
* Given a physical device location, iterate over all
* (pool, vdev) pairs which correspond to that location.
*/
static boolean_t
devphys_iter(const char *physical, const char *devid, zfs_process_func_t func,
boolean_t is_slice)
{
dev_data_t data = { 0 };
data.dd_compare = physical;
data.dd_func = func;
data.dd_prop = ZPOOL_CONFIG_PHYS_PATH;
data.dd_found = B_FALSE;
data.dd_islabeled = is_slice;
data.dd_new_devid = devid; /* used by auto replace code */
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
return (data.dd_found);
}
/*
* Given a device identifier, find any vdevs with a matching by-vdev
* path. Normally we shouldn't need this as the comparison would be
* made earlier in the devphys_iter(). For example, if we were replacing
* /dev/disk/by-vdev/L28, normally devphys_iter() would match the
* ZPOOL_CONFIG_PHYS_PATH of "L28" from the old disk config to "L28"
* of the new disk config. However, we've seen cases where
* ZPOOL_CONFIG_PHYS_PATH was not in the config for the old disk. Here's
* an example of a real 2-disk mirror pool where one disk was force
* faulted:
*
* com.delphix:vdev_zap_top: 129
* children[0]:
* type: 'disk'
* id: 0
* guid: 14309659774640089719
* path: '/dev/disk/by-vdev/L28'
* whole_disk: 0
* DTL: 654
* create_txg: 4
* com.delphix:vdev_zap_leaf: 1161
* faulted: 1
* aux_state: 'external'
* children[1]:
* type: 'disk'
* id: 1
* guid: 16002508084177980912
* path: '/dev/disk/by-vdev/L29'
* devid: 'dm-uuid-mpath-35000c500a61d68a3'
* phys_path: 'L29'
* vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
* whole_disk: 0
* DTL: 1028
* create_txg: 4
* com.delphix:vdev_zap_leaf: 131
*
* So in the case above, the only thing we could compare is the path.
*
* We can do this because we assume by-vdev paths are authoritative as physical
* paths. We could not assume this for normal paths like /dev/sda since the
* physical location /dev/sda points to could change over time.
*/
static boolean_t
by_vdev_path_iter(const char *by_vdev_path, const char *devid,
zfs_process_func_t func, boolean_t is_slice)
{
dev_data_t data = { 0 };
data.dd_compare = by_vdev_path;
data.dd_func = func;
data.dd_prop = ZPOOL_CONFIG_PATH;
data.dd_found = B_FALSE;
data.dd_islabeled = is_slice;
data.dd_new_devid = devid;
if (strncmp(by_vdev_path, DEV_BYVDEV_PATH,
strlen(DEV_BYVDEV_PATH)) != 0) {
/* by_vdev_path doesn't start with "/dev/disk/by-vdev/" */
return (B_FALSE);
}
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
return (data.dd_found);
}
/*
* Given a device identifier, find any vdevs with a matching devid.
* On Linux we can match devid directly which is always a whole disk.
*/
static boolean_t
devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice)
{
dev_data_t data = { 0 };
data.dd_compare = devid;
data.dd_func = func;
data.dd_prop = ZPOOL_CONFIG_DEVID;
data.dd_found = B_FALSE;
data.dd_islabeled = is_slice;
data.dd_new_devid = devid;
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
return (data.dd_found);
}
/*
* Given a device guid, find any vdevs with a matching guid.
*/
static boolean_t
guid_iter(uint64_t pool_guid, uint64_t vdev_guid, const char *devid,
zfs_process_func_t func, boolean_t is_slice)
{
dev_data_t data = { 0 };
data.dd_func = func;
data.dd_found = B_FALSE;
data.dd_pool_guid = pool_guid;
data.dd_vdev_guid = vdev_guid;
data.dd_islabeled = is_slice;
data.dd_new_devid = devid;
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
return (data.dd_found);
}
/*
* Handle a EC_DEV_ADD.ESC_DISK event.
*
* illumos
* Expects: DEV_PHYS_PATH string in schema
* Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
*
* path: '/dev/dsk/c0t1d0s0' (persistent)
* devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a'
* phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a'
*
* linux
* provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema
* Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
*
* path: '/dev/sdc1' (not persistent)
* devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1'
* phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0'
*/
static int
zfs_deliver_add(nvlist_t *nvl)
{
char *devpath = NULL, *devid = NULL;
uint64_t pool_guid = 0, vdev_guid = 0;
boolean_t is_slice;
/*
* Expecting a devid string and an optional physical location and guid
*/
if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) {
zed_log_msg(LOG_INFO, "%s: no dev identifier\n", __func__);
return (-1);
}
(void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath);
(void) nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &pool_guid);
(void) nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &vdev_guid);
is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0);
zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)",
devid, devpath ? devpath : "NULL", is_slice);
/*
* Iterate over all vdevs looking for a match in the following order:
* 1. ZPOOL_CONFIG_DEVID (identifies the unique disk)
* 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location).
* 3. ZPOOL_CONFIG_GUID (identifies unique vdev).
* 4. ZPOOL_CONFIG_PATH for /dev/disk/by-vdev devices only (since
* by-vdev paths represent physical paths).
*/
if (devid_iter(devid, zfs_process_add, is_slice))
return (0);
if (devpath != NULL && devphys_iter(devpath, devid, zfs_process_add,
is_slice))
return (0);
if (vdev_guid != 0)
(void) guid_iter(pool_guid, vdev_guid, devid, zfs_process_add,
is_slice);
if (devpath != NULL) {
/* Can we match a /dev/disk/by-vdev/ path? */
char by_vdev_path[MAXPATHLEN];
snprintf(by_vdev_path, sizeof (by_vdev_path),
"/dev/disk/by-vdev/%s", devpath);
if (by_vdev_path_iter(by_vdev_path, devid, zfs_process_add,
is_slice))
return (0);
}
return (0);
}
/*
* Called when we receive a VDEV_CHECK event, which indicates a device could not
* be opened during initial pool open, but the autoreplace property was set on
* the pool. In this case, we treat it as if it were an add event.
*/
static int
zfs_deliver_check(nvlist_t *nvl)
{
dev_data_t data = { 0 };
if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID,
&data.dd_pool_guid) != 0 ||
nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID,
&data.dd_vdev_guid) != 0 ||
data.dd_vdev_guid == 0)
return (0);
zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu",
data.dd_pool_guid, data.dd_vdev_guid);
data.dd_func = zfs_process_add;
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
return (0);
}
static int
zfsdle_vdev_online(zpool_handle_t *zhp, void *data)
{
char *devname = data;
boolean_t avail_spare, l2cache;
nvlist_t *tgt;
int error;
zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'",
devname, zpool_get_name(zhp));
if ((tgt = zpool_find_vdev_by_physpath(zhp, devname,
&avail_spare, &l2cache, NULL)) != NULL) {
char *path, fullpath[MAXPATHLEN];
uint64_t wholedisk;
error = nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path);
if (error) {
zpool_close(zhp);
return (0);
}
error = nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK,
&wholedisk);
if (error)
wholedisk = 0;
if (wholedisk) {
path = strrchr(path, '/');
if (path != NULL) {
path = zfs_strip_partition(path + 1);
if (path == NULL) {
zpool_close(zhp);
return (0);
}
} else {
zpool_close(zhp);
return (0);
}
(void) strlcpy(fullpath, path, sizeof (fullpath));
free(path);
/*
* We need to reopen the pool associated with this
* device so that the kernel can update the size of
* the expanded device. When expanding there is no
* need to restart the scrub from the beginning.
*/
boolean_t scrub_restart = B_FALSE;
(void) zpool_reopen_one(zhp, &scrub_restart);
} else {
(void) strlcpy(fullpath, path, sizeof (fullpath));
}
if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) {
vdev_state_t newstate;
if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) {
error = zpool_vdev_online(zhp, fullpath, 0,
&newstate);
zed_log_msg(LOG_INFO, "zfsdle_vdev_online: "
"setting device '%s' to ONLINE state "
"in pool '%s': %d", fullpath,
zpool_get_name(zhp), error);
}
}
zpool_close(zhp);
return (1);
}
zpool_close(zhp);
return (0);
}
/*
* This function handles the ESC_DEV_DLE device change event. Use the
* provided vdev guid when looking up a disk or partition, when the guid
* is not present assume the entire disk is owned by ZFS and append the
* expected -part1 partition information then lookup by physical path.
*/
static int
zfs_deliver_dle(nvlist_t *nvl)
{
char *devname, name[MAXPATHLEN];
uint64_t guid;
if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) {
sprintf(name, "%llu", (u_longlong_t)guid);
} else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) {
strlcpy(name, devname, MAXPATHLEN);
zfs_append_partition(name, MAXPATHLEN);
} else {
zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath");
}
if (zpool_iter(g_zfshdl, zfsdle_vdev_online, name) != 1) {
zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not "
"found", name);
return (1);
}
return (0);
}
/*
* syseventd daemon module event handler
*
* Handles syseventd daemon zfs device related events:
*
* EC_DEV_ADD.ESC_DISK
* EC_DEV_STATUS.ESC_DEV_DLE
* EC_ZFS.ESC_ZFS_VDEV_CHECK
*
* Note: assumes only one thread active at a time (not thread safe)
*/
static int
zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl)
{
int ret;
boolean_t is_check = B_FALSE, is_dle = B_FALSE;
if (strcmp(class, EC_DEV_ADD) == 0) {
/*
* We're mainly interested in disk additions, but we also listen
* for new loop devices, to allow for simplified testing.
*/
if (strcmp(subclass, ESC_DISK) != 0 &&
strcmp(subclass, ESC_LOFI) != 0)
return (0);
is_check = B_FALSE;
} else if (strcmp(class, EC_ZFS) == 0 &&
strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) {
/*
* This event signifies that a device failed to open
* during pool load, but the 'autoreplace' property was
* set, so we should pretend it's just been added.
*/
is_check = B_TRUE;
} else if (strcmp(class, EC_DEV_STATUS) == 0 &&
strcmp(subclass, ESC_DEV_DLE) == 0) {
is_dle = B_TRUE;
} else {
return (0);
}
if (is_dle)
ret = zfs_deliver_dle(nvl);
else if (is_check)
ret = zfs_deliver_check(nvl);
else
ret = zfs_deliver_add(nvl);
return (ret);
}
static void *
zfs_enum_pools(void *arg)
{
(void) arg;
(void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list);
/*
* Linux - instead of using a thread pool, each list entry
* will spawn a thread when an unavailable pool transitions
* to available. zfs_slm_fini will wait for these threads.
*/
g_enumeration_done = B_TRUE;
return (NULL);
}
/*
* called from zed daemon at startup
*
* sent messages from zevents or udev monitor
*
* For now, each agent has its own libzfs instance
*/
int
zfs_slm_init()
{
if ((g_zfshdl = libzfs_init()) == NULL)
return (-1);
/*
* collect a list of unavailable pools (asynchronously,
* since this can take a while)
*/
list_create(&g_pool_list, sizeof (struct unavailpool),
offsetof(struct unavailpool, uap_node));
if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) {
list_destroy(&g_pool_list);
libzfs_fini(g_zfshdl);
return (-1);
}
pthread_setname_np(g_zfs_tid, "enum-pools");
list_create(&g_device_list, sizeof (struct pendingdev),
offsetof(struct pendingdev, pd_node));
return (0);
}
void
zfs_slm_fini()
{
unavailpool_t *pool;
pendingdev_t *device;
/* wait for zfs_enum_pools thread to complete */
(void) pthread_join(g_zfs_tid, NULL);
/* destroy the thread pool */
if (g_tpool != NULL) {
tpool_wait(g_tpool);
tpool_destroy(g_tpool);
}
while ((pool = (list_head(&g_pool_list))) != NULL) {
list_remove(&g_pool_list, pool);
zpool_close(pool->uap_zhp);
free(pool);
}
list_destroy(&g_pool_list);
while ((device = (list_head(&g_device_list))) != NULL) {
list_remove(&g_device_list, device);
free(device);
}
list_destroy(&g_device_list);
libzfs_fini(g_zfshdl);
}
void
zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl)
{
zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass);
(void) zfs_slm_deliver_event(class, subclass, nvl);
}