mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-07 08:40:25 +03:00
32682b0c03
- ROTATE_LEFT is not used by amd64, move it down within the scope it's used to silence a clang warning. - __unused is an alias for the compiler annotation __attribute__((__unused__)) on FreeBSD. Rename the field to ____unused. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Matt Macy <mmacy@FreeBSD.org> Closes #9538
838 lines
26 KiB
C
838 lines
26 KiB
C
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* The basic framework for this code came from the reference
|
|
* implementation for MD5. That implementation is Copyright (C)
|
|
* 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
|
|
*
|
|
* License to copy and use this software is granted provided that it
|
|
* is identified as the "RSA Data Security, Inc. MD5 Message-Digest
|
|
* Algorithm" in all material mentioning or referencing this software
|
|
* or this function.
|
|
*
|
|
* License is also granted to make and use derivative works provided
|
|
* that such works are identified as "derived from the RSA Data
|
|
* Security, Inc. MD5 Message-Digest Algorithm" in all material
|
|
* mentioning or referencing the derived work.
|
|
*
|
|
* RSA Data Security, Inc. makes no representations concerning either
|
|
* the merchantability of this software or the suitability of this
|
|
* software for any particular purpose. It is provided "as is"
|
|
* without express or implied warranty of any kind.
|
|
*
|
|
* These notices must be retained in any copies of any part of this
|
|
* documentation and/or software.
|
|
*
|
|
* NOTE: Cleaned-up and optimized, version of SHA1, based on the FIPS 180-1
|
|
* standard, available at http://www.itl.nist.gov/fipspubs/fip180-1.htm
|
|
* Not as fast as one would like -- further optimizations are encouraged
|
|
* and appreciated.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sha1/sha1.h>
|
|
#include <sha1/sha1_consts.h>
|
|
|
|
#ifdef _LITTLE_ENDIAN
|
|
#include <sys/byteorder.h>
|
|
#define HAVE_HTONL
|
|
#endif
|
|
|
|
#define _RESTRICT_KYWD
|
|
|
|
static void Encode(uint8_t *, const uint32_t *, size_t);
|
|
|
|
#if defined(__sparc)
|
|
|
|
#define SHA1_TRANSFORM(ctx, in) \
|
|
SHA1Transform((ctx)->state[0], (ctx)->state[1], (ctx)->state[2], \
|
|
(ctx)->state[3], (ctx)->state[4], (ctx), (in))
|
|
|
|
static void SHA1Transform(uint32_t, uint32_t, uint32_t, uint32_t, uint32_t,
|
|
SHA1_CTX *, const uint8_t *);
|
|
|
|
#elif defined(__amd64)
|
|
|
|
#define SHA1_TRANSFORM(ctx, in) sha1_block_data_order((ctx), (in), 1)
|
|
#define SHA1_TRANSFORM_BLOCKS(ctx, in, num) sha1_block_data_order((ctx), \
|
|
(in), (num))
|
|
|
|
void sha1_block_data_order(SHA1_CTX *ctx, const void *inpp, size_t num_blocks);
|
|
|
|
#else
|
|
|
|
#define SHA1_TRANSFORM(ctx, in) SHA1Transform((ctx), (in))
|
|
|
|
static void SHA1Transform(SHA1_CTX *, const uint8_t *);
|
|
|
|
#endif
|
|
|
|
|
|
static uint8_t PADDING[64] = { 0x80, /* all zeros */ };
|
|
|
|
/*
|
|
* F, G, and H are the basic SHA1 functions.
|
|
*/
|
|
#define F(b, c, d) (((b) & (c)) | ((~b) & (d)))
|
|
#define G(b, c, d) ((b) ^ (c) ^ (d))
|
|
#define H(b, c, d) (((b) & (c)) | (((b)|(c)) & (d)))
|
|
|
|
/*
|
|
* SHA1Init()
|
|
*
|
|
* purpose: initializes the sha1 context and begins and sha1 digest operation
|
|
* input: SHA1_CTX * : the context to initializes.
|
|
* output: void
|
|
*/
|
|
|
|
void
|
|
SHA1Init(SHA1_CTX *ctx)
|
|
{
|
|
ctx->count[0] = ctx->count[1] = 0;
|
|
|
|
/*
|
|
* load magic initialization constants. Tell lint
|
|
* that these constants are unsigned by using U.
|
|
*/
|
|
|
|
ctx->state[0] = 0x67452301U;
|
|
ctx->state[1] = 0xefcdab89U;
|
|
ctx->state[2] = 0x98badcfeU;
|
|
ctx->state[3] = 0x10325476U;
|
|
ctx->state[4] = 0xc3d2e1f0U;
|
|
}
|
|
|
|
void
|
|
SHA1Update(SHA1_CTX *ctx, const void *inptr, size_t input_len)
|
|
{
|
|
uint32_t i, buf_index, buf_len;
|
|
const uint8_t *input = inptr;
|
|
#if defined(__amd64)
|
|
uint32_t block_count;
|
|
#endif /* __amd64 */
|
|
|
|
/* check for noop */
|
|
if (input_len == 0)
|
|
return;
|
|
|
|
/* compute number of bytes mod 64 */
|
|
buf_index = (ctx->count[1] >> 3) & 0x3F;
|
|
|
|
/* update number of bits */
|
|
if ((ctx->count[1] += (input_len << 3)) < (input_len << 3))
|
|
ctx->count[0]++;
|
|
|
|
ctx->count[0] += (input_len >> 29);
|
|
|
|
buf_len = 64 - buf_index;
|
|
|
|
/* transform as many times as possible */
|
|
i = 0;
|
|
if (input_len >= buf_len) {
|
|
|
|
/*
|
|
* general optimization:
|
|
*
|
|
* only do initial bcopy() and SHA1Transform() if
|
|
* buf_index != 0. if buf_index == 0, we're just
|
|
* wasting our time doing the bcopy() since there
|
|
* wasn't any data left over from a previous call to
|
|
* SHA1Update().
|
|
*/
|
|
|
|
if (buf_index) {
|
|
bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
|
|
SHA1_TRANSFORM(ctx, ctx->buf_un.buf8);
|
|
i = buf_len;
|
|
}
|
|
|
|
#if !defined(__amd64)
|
|
for (; i + 63 < input_len; i += 64)
|
|
SHA1_TRANSFORM(ctx, &input[i]);
|
|
#else
|
|
block_count = (input_len - i) >> 6;
|
|
if (block_count > 0) {
|
|
SHA1_TRANSFORM_BLOCKS(ctx, &input[i], block_count);
|
|
i += block_count << 6;
|
|
}
|
|
#endif /* !__amd64 */
|
|
|
|
/*
|
|
* general optimization:
|
|
*
|
|
* if i and input_len are the same, return now instead
|
|
* of calling bcopy(), since the bcopy() in this case
|
|
* will be an expensive nop.
|
|
*/
|
|
|
|
if (input_len == i)
|
|
return;
|
|
|
|
buf_index = 0;
|
|
}
|
|
|
|
/* buffer remaining input */
|
|
bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
|
|
}
|
|
|
|
/*
|
|
* SHA1Final()
|
|
*
|
|
* purpose: ends an sha1 digest operation, finalizing the message digest and
|
|
* zeroing the context.
|
|
* input: uchar_t * : A buffer to store the digest.
|
|
* : The function actually uses void* because many
|
|
* : callers pass things other than uchar_t here.
|
|
* SHA1_CTX * : the context to finalize, save, and zero
|
|
* output: void
|
|
*/
|
|
|
|
void
|
|
SHA1Final(void *digest, SHA1_CTX *ctx)
|
|
{
|
|
uint8_t bitcount_be[sizeof (ctx->count)];
|
|
uint32_t index = (ctx->count[1] >> 3) & 0x3f;
|
|
|
|
/* store bit count, big endian */
|
|
Encode(bitcount_be, ctx->count, sizeof (bitcount_be));
|
|
|
|
/* pad out to 56 mod 64 */
|
|
SHA1Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
|
|
|
|
/* append length (before padding) */
|
|
SHA1Update(ctx, bitcount_be, sizeof (bitcount_be));
|
|
|
|
/* store state in digest */
|
|
Encode(digest, ctx->state, sizeof (ctx->state));
|
|
|
|
/* zeroize sensitive information */
|
|
bzero(ctx, sizeof (*ctx));
|
|
}
|
|
|
|
|
|
#if !defined(__amd64)
|
|
|
|
typedef uint32_t sha1word;
|
|
|
|
/*
|
|
* sparc optimization:
|
|
*
|
|
* on the sparc, we can load big endian 32-bit data easily. note that
|
|
* special care must be taken to ensure the address is 32-bit aligned.
|
|
* in the interest of speed, we don't check to make sure, since
|
|
* careful programming can guarantee this for us.
|
|
*/
|
|
|
|
#if defined(_BIG_ENDIAN)
|
|
#define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
|
|
|
|
#elif defined(HAVE_HTONL)
|
|
#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
|
|
|
|
#else
|
|
/* little endian -- will work on big endian, but slowly */
|
|
#define LOAD_BIG_32(addr) \
|
|
(((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
|
|
#endif /* _BIG_ENDIAN */
|
|
|
|
/*
|
|
* SHA1Transform()
|
|
*/
|
|
#if defined(W_ARRAY)
|
|
#define W(n) w[n]
|
|
#else /* !defined(W_ARRAY) */
|
|
#define W(n) w_ ## n
|
|
#endif /* !defined(W_ARRAY) */
|
|
|
|
/*
|
|
* ROTATE_LEFT rotates x left n bits.
|
|
*/
|
|
|
|
#if defined(__GNUC__) && defined(_LP64)
|
|
static __inline__ uint64_t
|
|
ROTATE_LEFT(uint64_t value, uint32_t n)
|
|
{
|
|
uint32_t t32;
|
|
|
|
t32 = (uint32_t)value;
|
|
return ((t32 << n) | (t32 >> (32 - n)));
|
|
}
|
|
|
|
#else
|
|
|
|
#define ROTATE_LEFT(x, n) \
|
|
(((x) << (n)) | ((x) >> ((sizeof (x) * NBBY)-(n))))
|
|
|
|
#endif
|
|
|
|
#if defined(__sparc)
|
|
|
|
|
|
/*
|
|
* sparc register window optimization:
|
|
*
|
|
* `a', `b', `c', `d', and `e' are passed into SHA1Transform
|
|
* explicitly since it increases the number of registers available to
|
|
* the compiler. under this scheme, these variables can be held in
|
|
* %i0 - %i4, which leaves more local and out registers available.
|
|
*
|
|
* purpose: sha1 transformation -- updates the digest based on `block'
|
|
* input: uint32_t : bytes 1 - 4 of the digest
|
|
* uint32_t : bytes 5 - 8 of the digest
|
|
* uint32_t : bytes 9 - 12 of the digest
|
|
* uint32_t : bytes 12 - 16 of the digest
|
|
* uint32_t : bytes 16 - 20 of the digest
|
|
* SHA1_CTX * : the context to update
|
|
* uint8_t [64]: the block to use to update the digest
|
|
* output: void
|
|
*/
|
|
|
|
|
|
void
|
|
SHA1Transform(uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e,
|
|
SHA1_CTX *ctx, const uint8_t blk[64])
|
|
{
|
|
/*
|
|
* sparc optimization:
|
|
*
|
|
* while it is somewhat counter-intuitive, on sparc, it is
|
|
* more efficient to place all the constants used in this
|
|
* function in an array and load the values out of the array
|
|
* than to manually load the constants. this is because
|
|
* setting a register to a 32-bit value takes two ops in most
|
|
* cases: a `sethi' and an `or', but loading a 32-bit value
|
|
* from memory only takes one `ld' (or `lduw' on v9). while
|
|
* this increases memory usage, the compiler can find enough
|
|
* other things to do while waiting to keep the pipeline does
|
|
* not stall. additionally, it is likely that many of these
|
|
* constants are cached so that later accesses do not even go
|
|
* out to the bus.
|
|
*
|
|
* this array is declared `static' to keep the compiler from
|
|
* having to bcopy() this array onto the stack frame of
|
|
* SHA1Transform() each time it is called -- which is
|
|
* unacceptably expensive.
|
|
*
|
|
* the `const' is to ensure that callers are good citizens and
|
|
* do not try to munge the array. since these routines are
|
|
* going to be called from inside multithreaded kernelland,
|
|
* this is a good safety check. -- `sha1_consts' will end up in
|
|
* .rodata.
|
|
*
|
|
* unfortunately, loading from an array in this manner hurts
|
|
* performance under Intel. So, there is a macro,
|
|
* SHA1_CONST(), used in SHA1Transform(), that either expands to
|
|
* a reference to this array, or to the actual constant,
|
|
* depending on what platform this code is compiled for.
|
|
*/
|
|
|
|
|
|
static const uint32_t sha1_consts[] = {
|
|
SHA1_CONST_0, SHA1_CONST_1, SHA1_CONST_2, SHA1_CONST_3
|
|
};
|
|
|
|
|
|
/*
|
|
* general optimization:
|
|
*
|
|
* use individual integers instead of using an array. this is a
|
|
* win, although the amount it wins by seems to vary quite a bit.
|
|
*/
|
|
|
|
|
|
uint32_t w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
|
|
uint32_t w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
|
|
|
|
|
|
/*
|
|
* sparc optimization:
|
|
*
|
|
* if `block' is already aligned on a 4-byte boundary, use
|
|
* LOAD_BIG_32() directly. otherwise, bcopy() into a
|
|
* buffer that *is* aligned on a 4-byte boundary and then do
|
|
* the LOAD_BIG_32() on that buffer. benchmarks have shown
|
|
* that using the bcopy() is better than loading the bytes
|
|
* individually and doing the endian-swap by hand.
|
|
*
|
|
* even though it's quite tempting to assign to do:
|
|
*
|
|
* blk = bcopy(ctx->buf_un.buf32, blk, sizeof (ctx->buf_un.buf32));
|
|
*
|
|
* and only have one set of LOAD_BIG_32()'s, the compiler
|
|
* *does not* like that, so please resist the urge.
|
|
*/
|
|
|
|
|
|
if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
|
|
bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
|
|
w_15 = LOAD_BIG_32(ctx->buf_un.buf32 + 15);
|
|
w_14 = LOAD_BIG_32(ctx->buf_un.buf32 + 14);
|
|
w_13 = LOAD_BIG_32(ctx->buf_un.buf32 + 13);
|
|
w_12 = LOAD_BIG_32(ctx->buf_un.buf32 + 12);
|
|
w_11 = LOAD_BIG_32(ctx->buf_un.buf32 + 11);
|
|
w_10 = LOAD_BIG_32(ctx->buf_un.buf32 + 10);
|
|
w_9 = LOAD_BIG_32(ctx->buf_un.buf32 + 9);
|
|
w_8 = LOAD_BIG_32(ctx->buf_un.buf32 + 8);
|
|
w_7 = LOAD_BIG_32(ctx->buf_un.buf32 + 7);
|
|
w_6 = LOAD_BIG_32(ctx->buf_un.buf32 + 6);
|
|
w_5 = LOAD_BIG_32(ctx->buf_un.buf32 + 5);
|
|
w_4 = LOAD_BIG_32(ctx->buf_un.buf32 + 4);
|
|
w_3 = LOAD_BIG_32(ctx->buf_un.buf32 + 3);
|
|
w_2 = LOAD_BIG_32(ctx->buf_un.buf32 + 2);
|
|
w_1 = LOAD_BIG_32(ctx->buf_un.buf32 + 1);
|
|
w_0 = LOAD_BIG_32(ctx->buf_un.buf32 + 0);
|
|
} else {
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_15 = LOAD_BIG_32(blk + 60);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_14 = LOAD_BIG_32(blk + 56);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_13 = LOAD_BIG_32(blk + 52);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_12 = LOAD_BIG_32(blk + 48);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_11 = LOAD_BIG_32(blk + 44);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_10 = LOAD_BIG_32(blk + 40);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_9 = LOAD_BIG_32(blk + 36);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_8 = LOAD_BIG_32(blk + 32);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_7 = LOAD_BIG_32(blk + 28);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_6 = LOAD_BIG_32(blk + 24);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_5 = LOAD_BIG_32(blk + 20);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_4 = LOAD_BIG_32(blk + 16);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_3 = LOAD_BIG_32(blk + 12);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_2 = LOAD_BIG_32(blk + 8);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_1 = LOAD_BIG_32(blk + 4);
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
w_0 = LOAD_BIG_32(blk + 0);
|
|
}
|
|
#else /* !defined(__sparc) */
|
|
|
|
void /* CSTYLED */
|
|
SHA1Transform(SHA1_CTX *ctx, const uint8_t blk[64])
|
|
{
|
|
/* CSTYLED */
|
|
sha1word a = ctx->state[0];
|
|
sha1word b = ctx->state[1];
|
|
sha1word c = ctx->state[2];
|
|
sha1word d = ctx->state[3];
|
|
sha1word e = ctx->state[4];
|
|
|
|
#if defined(W_ARRAY)
|
|
sha1word w[16];
|
|
#else /* !defined(W_ARRAY) */
|
|
sha1word w_0, w_1, w_2, w_3, w_4, w_5, w_6, w_7;
|
|
sha1word w_8, w_9, w_10, w_11, w_12, w_13, w_14, w_15;
|
|
#endif /* !defined(W_ARRAY) */
|
|
|
|
W(0) = LOAD_BIG_32((void *)(blk + 0));
|
|
W(1) = LOAD_BIG_32((void *)(blk + 4));
|
|
W(2) = LOAD_BIG_32((void *)(blk + 8));
|
|
W(3) = LOAD_BIG_32((void *)(blk + 12));
|
|
W(4) = LOAD_BIG_32((void *)(blk + 16));
|
|
W(5) = LOAD_BIG_32((void *)(blk + 20));
|
|
W(6) = LOAD_BIG_32((void *)(blk + 24));
|
|
W(7) = LOAD_BIG_32((void *)(blk + 28));
|
|
W(8) = LOAD_BIG_32((void *)(blk + 32));
|
|
W(9) = LOAD_BIG_32((void *)(blk + 36));
|
|
W(10) = LOAD_BIG_32((void *)(blk + 40));
|
|
W(11) = LOAD_BIG_32((void *)(blk + 44));
|
|
W(12) = LOAD_BIG_32((void *)(blk + 48));
|
|
W(13) = LOAD_BIG_32((void *)(blk + 52));
|
|
W(14) = LOAD_BIG_32((void *)(blk + 56));
|
|
W(15) = LOAD_BIG_32((void *)(blk + 60));
|
|
|
|
#endif /* !defined(__sparc) */
|
|
|
|
/*
|
|
* general optimization:
|
|
*
|
|
* even though this approach is described in the standard as
|
|
* being slower algorithmically, it is 30-40% faster than the
|
|
* "faster" version under SPARC, because this version has more
|
|
* of the constraints specified at compile-time and uses fewer
|
|
* variables (and therefore has better register utilization)
|
|
* than its "speedier" brother. (i've tried both, trust me)
|
|
*
|
|
* for either method given in the spec, there is an "assignment"
|
|
* phase where the following takes place:
|
|
*
|
|
* tmp = (main_computation);
|
|
* e = d; d = c; c = rotate_left(b, 30); b = a; a = tmp;
|
|
*
|
|
* we can make the algorithm go faster by not doing this work,
|
|
* but just pretending that `d' is now `e', etc. this works
|
|
* really well and obviates the need for a temporary variable.
|
|
* however, we still explicitly perform the rotate action,
|
|
* since it is cheaper on SPARC to do it once than to have to
|
|
* do it over and over again.
|
|
*/
|
|
|
|
/* round 1 */
|
|
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(0) + SHA1_CONST(0); /* 0 */
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(1) + SHA1_CONST(0); /* 1 */
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(2) + SHA1_CONST(0); /* 2 */
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(3) + SHA1_CONST(0); /* 3 */
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(4) + SHA1_CONST(0); /* 4 */
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(5) + SHA1_CONST(0); /* 5 */
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(6) + SHA1_CONST(0); /* 6 */
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(7) + SHA1_CONST(0); /* 7 */
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(8) + SHA1_CONST(0); /* 8 */
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(9) + SHA1_CONST(0); /* 9 */
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(10) + SHA1_CONST(0); /* 10 */
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(11) + SHA1_CONST(0); /* 11 */
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(12) + SHA1_CONST(0); /* 12 */
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(13) + SHA1_CONST(0); /* 13 */
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(14) + SHA1_CONST(0); /* 14 */
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
e = ROTATE_LEFT(a, 5) + F(b, c, d) + e + W(15) + SHA1_CONST(0); /* 15 */
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 16 */
|
|
d = ROTATE_LEFT(e, 5) + F(a, b, c) + d + W(0) + SHA1_CONST(0);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 17 */
|
|
c = ROTATE_LEFT(d, 5) + F(e, a, b) + c + W(1) + SHA1_CONST(0);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 18 */
|
|
b = ROTATE_LEFT(c, 5) + F(d, e, a) + b + W(2) + SHA1_CONST(0);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 19 */
|
|
a = ROTATE_LEFT(b, 5) + F(c, d, e) + a + W(3) + SHA1_CONST(0);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
/* round 2 */
|
|
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 20 */
|
|
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(4) + SHA1_CONST(1);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 21 */
|
|
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(5) + SHA1_CONST(1);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 22 */
|
|
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(6) + SHA1_CONST(1);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 23 */
|
|
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(7) + SHA1_CONST(1);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 24 */
|
|
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(8) + SHA1_CONST(1);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 25 */
|
|
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(9) + SHA1_CONST(1);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 26 */
|
|
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(10) + SHA1_CONST(1);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 27 */
|
|
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(11) + SHA1_CONST(1);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 28 */
|
|
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(12) + SHA1_CONST(1);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 29 */
|
|
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(13) + SHA1_CONST(1);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 30 */
|
|
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(14) + SHA1_CONST(1);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 31 */
|
|
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(15) + SHA1_CONST(1);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 32 */
|
|
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(0) + SHA1_CONST(1);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 33 */
|
|
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(1) + SHA1_CONST(1);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 34 */
|
|
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(2) + SHA1_CONST(1);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 35 */
|
|
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(3) + SHA1_CONST(1);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 36 */
|
|
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(4) + SHA1_CONST(1);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 37 */
|
|
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(5) + SHA1_CONST(1);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 38 */
|
|
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(6) + SHA1_CONST(1);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 39 */
|
|
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(7) + SHA1_CONST(1);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
/* round 3 */
|
|
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 40 */
|
|
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(8) + SHA1_CONST(2);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 41 */
|
|
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(9) + SHA1_CONST(2);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 42 */
|
|
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(10) + SHA1_CONST(2);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 43 */
|
|
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(11) + SHA1_CONST(2);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 44 */
|
|
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(12) + SHA1_CONST(2);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 45 */
|
|
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(13) + SHA1_CONST(2);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 46 */
|
|
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(14) + SHA1_CONST(2);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 47 */
|
|
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(15) + SHA1_CONST(2);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 48 */
|
|
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(0) + SHA1_CONST(2);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 49 */
|
|
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(1) + SHA1_CONST(2);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 50 */
|
|
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(2) + SHA1_CONST(2);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 51 */
|
|
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(3) + SHA1_CONST(2);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 52 */
|
|
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(4) + SHA1_CONST(2);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 53 */
|
|
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(5) + SHA1_CONST(2);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 54 */
|
|
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(6) + SHA1_CONST(2);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 55 */
|
|
e = ROTATE_LEFT(a, 5) + H(b, c, d) + e + W(7) + SHA1_CONST(2);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 56 */
|
|
d = ROTATE_LEFT(e, 5) + H(a, b, c) + d + W(8) + SHA1_CONST(2);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 57 */
|
|
c = ROTATE_LEFT(d, 5) + H(e, a, b) + c + W(9) + SHA1_CONST(2);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 58 */
|
|
b = ROTATE_LEFT(c, 5) + H(d, e, a) + b + W(10) + SHA1_CONST(2);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 59 */
|
|
a = ROTATE_LEFT(b, 5) + H(c, d, e) + a + W(11) + SHA1_CONST(2);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
/* round 4 */
|
|
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 60 */
|
|
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(12) + SHA1_CONST(3);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 61 */
|
|
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(13) + SHA1_CONST(3);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 62 */
|
|
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(14) + SHA1_CONST(3);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 63 */
|
|
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(15) + SHA1_CONST(3);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(0) = ROTATE_LEFT((W(13) ^ W(8) ^ W(2) ^ W(0)), 1); /* 64 */
|
|
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(0) + SHA1_CONST(3);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
W(1) = ROTATE_LEFT((W(14) ^ W(9) ^ W(3) ^ W(1)), 1); /* 65 */
|
|
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(1) + SHA1_CONST(3);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(2) = ROTATE_LEFT((W(15) ^ W(10) ^ W(4) ^ W(2)), 1); /* 66 */
|
|
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(2) + SHA1_CONST(3);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(3) = ROTATE_LEFT((W(0) ^ W(11) ^ W(5) ^ W(3)), 1); /* 67 */
|
|
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(3) + SHA1_CONST(3);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(4) = ROTATE_LEFT((W(1) ^ W(12) ^ W(6) ^ W(4)), 1); /* 68 */
|
|
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(4) + SHA1_CONST(3);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(5) = ROTATE_LEFT((W(2) ^ W(13) ^ W(7) ^ W(5)), 1); /* 69 */
|
|
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(5) + SHA1_CONST(3);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
W(6) = ROTATE_LEFT((W(3) ^ W(14) ^ W(8) ^ W(6)), 1); /* 70 */
|
|
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(6) + SHA1_CONST(3);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(7) = ROTATE_LEFT((W(4) ^ W(15) ^ W(9) ^ W(7)), 1); /* 71 */
|
|
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(7) + SHA1_CONST(3);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(8) = ROTATE_LEFT((W(5) ^ W(0) ^ W(10) ^ W(8)), 1); /* 72 */
|
|
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(8) + SHA1_CONST(3);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(9) = ROTATE_LEFT((W(6) ^ W(1) ^ W(11) ^ W(9)), 1); /* 73 */
|
|
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(9) + SHA1_CONST(3);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(10) = ROTATE_LEFT((W(7) ^ W(2) ^ W(12) ^ W(10)), 1); /* 74 */
|
|
a = ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(10) + SHA1_CONST(3);
|
|
c = ROTATE_LEFT(c, 30);
|
|
|
|
W(11) = ROTATE_LEFT((W(8) ^ W(3) ^ W(13) ^ W(11)), 1); /* 75 */
|
|
e = ROTATE_LEFT(a, 5) + G(b, c, d) + e + W(11) + SHA1_CONST(3);
|
|
b = ROTATE_LEFT(b, 30);
|
|
|
|
W(12) = ROTATE_LEFT((W(9) ^ W(4) ^ W(14) ^ W(12)), 1); /* 76 */
|
|
d = ROTATE_LEFT(e, 5) + G(a, b, c) + d + W(12) + SHA1_CONST(3);
|
|
a = ROTATE_LEFT(a, 30);
|
|
|
|
W(13) = ROTATE_LEFT((W(10) ^ W(5) ^ W(15) ^ W(13)), 1); /* 77 */
|
|
c = ROTATE_LEFT(d, 5) + G(e, a, b) + c + W(13) + SHA1_CONST(3);
|
|
e = ROTATE_LEFT(e, 30);
|
|
|
|
W(14) = ROTATE_LEFT((W(11) ^ W(6) ^ W(0) ^ W(14)), 1); /* 78 */
|
|
b = ROTATE_LEFT(c, 5) + G(d, e, a) + b + W(14) + SHA1_CONST(3);
|
|
d = ROTATE_LEFT(d, 30);
|
|
|
|
W(15) = ROTATE_LEFT((W(12) ^ W(7) ^ W(1) ^ W(15)), 1); /* 79 */
|
|
|
|
ctx->state[0] += ROTATE_LEFT(b, 5) + G(c, d, e) + a + W(15) +
|
|
SHA1_CONST(3);
|
|
ctx->state[1] += b;
|
|
ctx->state[2] += ROTATE_LEFT(c, 30);
|
|
ctx->state[3] += d;
|
|
ctx->state[4] += e;
|
|
|
|
/* zeroize sensitive information */
|
|
W(0) = W(1) = W(2) = W(3) = W(4) = W(5) = W(6) = W(7) = W(8) = 0;
|
|
W(9) = W(10) = W(11) = W(12) = W(13) = W(14) = W(15) = 0;
|
|
}
|
|
#endif /* !__amd64 */
|
|
|
|
|
|
/*
|
|
* Encode()
|
|
*
|
|
* purpose: to convert a list of numbers from little endian to big endian
|
|
* input: uint8_t * : place to store the converted big endian numbers
|
|
* uint32_t * : place to get numbers to convert from
|
|
* size_t : the length of the input in bytes
|
|
* output: void
|
|
*/
|
|
|
|
static void
|
|
Encode(uint8_t *_RESTRICT_KYWD output, const uint32_t *_RESTRICT_KYWD input,
|
|
size_t len)
|
|
{
|
|
size_t i, j;
|
|
|
|
#if defined(__sparc)
|
|
if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
|
|
for (i = 0, j = 0; j < len; i++, j += 4) {
|
|
/* LINTED E_BAD_PTR_CAST_ALIGN */
|
|
*((uint32_t *)(output + j)) = input[i];
|
|
}
|
|
} else {
|
|
#endif /* little endian -- will work on big endian, but slowly */
|
|
|
|
for (i = 0, j = 0; j < len; i++, j += 4) {
|
|
output[j] = (input[i] >> 24) & 0xff;
|
|
output[j + 1] = (input[i] >> 16) & 0xff;
|
|
output[j + 2] = (input[i] >> 8) & 0xff;
|
|
output[j + 3] = input[i] & 0xff;
|
|
}
|
|
#if defined(__sparc)
|
|
}
|
|
#endif
|
|
}
|