mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-07 16:50:26 +03:00
793a2cff2a
This changes taskq_thread_should_stop() to limit maximum exit rate for idle threads to one per 5 seconds. I believe the previous one was broken, not allowing any thread exits for tasks arriving more than one at a time and so completing while others are running. Also while there: - Remove taskq_thread_spawn() calls on task allocation errors. - Remove extra taskq_thread_should_stop() call. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Rich Ercolani <rincebrain@gmail.com> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored by: iXsystems, Inc. Closes #15873
1440 lines
37 KiB
C
1440 lines
37 KiB
C
/*
|
|
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
|
|
* Copyright (C) 2007 The Regents of the University of California.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This file is part of the SPL, Solaris Porting Layer.
|
|
*
|
|
* The SPL is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* The SPL is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Solaris Porting Layer (SPL) Task Queue Implementation.
|
|
*/
|
|
|
|
#include <sys/timer.h>
|
|
#include <sys/taskq.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/tsd.h>
|
|
#include <sys/trace_spl.h>
|
|
#ifdef HAVE_CPU_HOTPLUG
|
|
#include <linux/cpuhotplug.h>
|
|
#endif
|
|
|
|
static int spl_taskq_thread_bind = 0;
|
|
module_param(spl_taskq_thread_bind, int, 0644);
|
|
MODULE_PARM_DESC(spl_taskq_thread_bind, "Bind taskq thread to CPU by default");
|
|
|
|
static uint_t spl_taskq_thread_timeout_ms = 5000;
|
|
/* BEGIN CSTYLED */
|
|
module_param(spl_taskq_thread_timeout_ms, uint, 0644);
|
|
/* END CSTYLED */
|
|
MODULE_PARM_DESC(spl_taskq_thread_timeout_ms,
|
|
"Minimum idle threads exit interval for dynamic taskqs");
|
|
|
|
static int spl_taskq_thread_dynamic = 1;
|
|
module_param(spl_taskq_thread_dynamic, int, 0444);
|
|
MODULE_PARM_DESC(spl_taskq_thread_dynamic, "Allow dynamic taskq threads");
|
|
|
|
static int spl_taskq_thread_priority = 1;
|
|
module_param(spl_taskq_thread_priority, int, 0644);
|
|
MODULE_PARM_DESC(spl_taskq_thread_priority,
|
|
"Allow non-default priority for taskq threads");
|
|
|
|
static uint_t spl_taskq_thread_sequential = 4;
|
|
/* BEGIN CSTYLED */
|
|
module_param(spl_taskq_thread_sequential, uint, 0644);
|
|
/* END CSTYLED */
|
|
MODULE_PARM_DESC(spl_taskq_thread_sequential,
|
|
"Create new taskq threads after N sequential tasks");
|
|
|
|
/*
|
|
* Global system-wide dynamic task queue available for all consumers. This
|
|
* taskq is not intended for long-running tasks; instead, a dedicated taskq
|
|
* should be created.
|
|
*/
|
|
taskq_t *system_taskq;
|
|
EXPORT_SYMBOL(system_taskq);
|
|
/* Global dynamic task queue for long delay */
|
|
taskq_t *system_delay_taskq;
|
|
EXPORT_SYMBOL(system_delay_taskq);
|
|
|
|
/* Private dedicated taskq for creating new taskq threads on demand. */
|
|
static taskq_t *dynamic_taskq;
|
|
static taskq_thread_t *taskq_thread_create(taskq_t *);
|
|
|
|
#ifdef HAVE_CPU_HOTPLUG
|
|
/* Multi-callback id for cpu hotplugging. */
|
|
static int spl_taskq_cpuhp_state;
|
|
#endif
|
|
|
|
/* List of all taskqs */
|
|
LIST_HEAD(tq_list);
|
|
struct rw_semaphore tq_list_sem;
|
|
static uint_t taskq_tsd;
|
|
|
|
static int
|
|
task_km_flags(uint_t flags)
|
|
{
|
|
if (flags & TQ_NOSLEEP)
|
|
return (KM_NOSLEEP);
|
|
|
|
if (flags & TQ_PUSHPAGE)
|
|
return (KM_PUSHPAGE);
|
|
|
|
return (KM_SLEEP);
|
|
}
|
|
|
|
/*
|
|
* taskq_find_by_name - Find the largest instance number of a named taskq.
|
|
*/
|
|
static int
|
|
taskq_find_by_name(const char *name)
|
|
{
|
|
struct list_head *tql = NULL;
|
|
taskq_t *tq;
|
|
|
|
list_for_each_prev(tql, &tq_list) {
|
|
tq = list_entry(tql, taskq_t, tq_taskqs);
|
|
if (strcmp(name, tq->tq_name) == 0)
|
|
return (tq->tq_instance);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* NOTE: Must be called with tq->tq_lock held, returns a list_t which
|
|
* is not attached to the free, work, or pending taskq lists.
|
|
*/
|
|
static taskq_ent_t *
|
|
task_alloc(taskq_t *tq, uint_t flags, unsigned long *irqflags)
|
|
{
|
|
taskq_ent_t *t;
|
|
int count = 0;
|
|
|
|
ASSERT(tq);
|
|
retry:
|
|
/* Acquire taskq_ent_t's from free list if available */
|
|
if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
|
|
t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
|
|
|
|
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
|
|
ASSERT(!(t->tqent_flags & TQENT_FLAG_CANCEL));
|
|
ASSERT(!timer_pending(&t->tqent_timer));
|
|
|
|
list_del_init(&t->tqent_list);
|
|
return (t);
|
|
}
|
|
|
|
/* Free list is empty and memory allocations are prohibited */
|
|
if (flags & TQ_NOALLOC)
|
|
return (NULL);
|
|
|
|
/* Hit maximum taskq_ent_t pool size */
|
|
if (tq->tq_nalloc >= tq->tq_maxalloc) {
|
|
if (flags & TQ_NOSLEEP)
|
|
return (NULL);
|
|
|
|
/*
|
|
* Sleep periodically polling the free list for an available
|
|
* taskq_ent_t. Dispatching with TQ_SLEEP should always succeed
|
|
* but we cannot block forever waiting for an taskq_ent_t to
|
|
* show up in the free list, otherwise a deadlock can happen.
|
|
*
|
|
* Therefore, we need to allocate a new task even if the number
|
|
* of allocated tasks is above tq->tq_maxalloc, but we still
|
|
* end up delaying the task allocation by one second, thereby
|
|
* throttling the task dispatch rate.
|
|
*/
|
|
spin_unlock_irqrestore(&tq->tq_lock, *irqflags);
|
|
schedule_timeout(HZ / 100);
|
|
spin_lock_irqsave_nested(&tq->tq_lock, *irqflags,
|
|
tq->tq_lock_class);
|
|
if (count < 100) {
|
|
count++;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
spin_unlock_irqrestore(&tq->tq_lock, *irqflags);
|
|
t = kmem_alloc(sizeof (taskq_ent_t), task_km_flags(flags));
|
|
spin_lock_irqsave_nested(&tq->tq_lock, *irqflags, tq->tq_lock_class);
|
|
|
|
if (t) {
|
|
taskq_init_ent(t);
|
|
tq->tq_nalloc++;
|
|
}
|
|
|
|
return (t);
|
|
}
|
|
|
|
/*
|
|
* NOTE: Must be called with tq->tq_lock held, expects the taskq_ent_t
|
|
* to already be removed from the free, work, or pending taskq lists.
|
|
*/
|
|
static void
|
|
task_free(taskq_t *tq, taskq_ent_t *t)
|
|
{
|
|
ASSERT(tq);
|
|
ASSERT(t);
|
|
ASSERT(list_empty(&t->tqent_list));
|
|
ASSERT(!timer_pending(&t->tqent_timer));
|
|
|
|
kmem_free(t, sizeof (taskq_ent_t));
|
|
tq->tq_nalloc--;
|
|
}
|
|
|
|
/*
|
|
* NOTE: Must be called with tq->tq_lock held, either destroys the
|
|
* taskq_ent_t if too many exist or moves it to the free list for later use.
|
|
*/
|
|
static void
|
|
task_done(taskq_t *tq, taskq_ent_t *t)
|
|
{
|
|
ASSERT(tq);
|
|
ASSERT(t);
|
|
|
|
/* Wake tasks blocked in taskq_wait_id() */
|
|
wake_up_all(&t->tqent_waitq);
|
|
|
|
list_del_init(&t->tqent_list);
|
|
|
|
if (tq->tq_nalloc <= tq->tq_minalloc) {
|
|
t->tqent_id = TASKQID_INVALID;
|
|
t->tqent_func = NULL;
|
|
t->tqent_arg = NULL;
|
|
t->tqent_flags = 0;
|
|
|
|
list_add_tail(&t->tqent_list, &tq->tq_free_list);
|
|
} else {
|
|
task_free(tq, t);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When a delayed task timer expires remove it from the delay list and
|
|
* add it to the priority list in order for immediate processing.
|
|
*/
|
|
static void
|
|
task_expire_impl(taskq_ent_t *t)
|
|
{
|
|
taskq_ent_t *w;
|
|
taskq_t *tq = t->tqent_taskq;
|
|
struct list_head *l = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
|
|
|
|
if (t->tqent_flags & TQENT_FLAG_CANCEL) {
|
|
ASSERT(list_empty(&t->tqent_list));
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
return;
|
|
}
|
|
|
|
t->tqent_birth = jiffies;
|
|
DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
|
|
|
|
/*
|
|
* The priority list must be maintained in strict task id order
|
|
* from lowest to highest for lowest_id to be easily calculable.
|
|
*/
|
|
list_del(&t->tqent_list);
|
|
list_for_each_prev(l, &tq->tq_prio_list) {
|
|
w = list_entry(l, taskq_ent_t, tqent_list);
|
|
if (w->tqent_id < t->tqent_id) {
|
|
list_add(&t->tqent_list, l);
|
|
break;
|
|
}
|
|
}
|
|
if (l == &tq->tq_prio_list)
|
|
list_add(&t->tqent_list, &tq->tq_prio_list);
|
|
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
wake_up(&tq->tq_work_waitq);
|
|
}
|
|
|
|
static void
|
|
task_expire(spl_timer_list_t tl)
|
|
{
|
|
struct timer_list *tmr = (struct timer_list *)tl;
|
|
taskq_ent_t *t = from_timer(t, tmr, tqent_timer);
|
|
task_expire_impl(t);
|
|
}
|
|
|
|
/*
|
|
* Returns the lowest incomplete taskqid_t. The taskqid_t may
|
|
* be queued on the pending list, on the priority list, on the
|
|
* delay list, or on the work list currently being handled, but
|
|
* it is not 100% complete yet.
|
|
*/
|
|
static taskqid_t
|
|
taskq_lowest_id(taskq_t *tq)
|
|
{
|
|
taskqid_t lowest_id = tq->tq_next_id;
|
|
taskq_ent_t *t;
|
|
taskq_thread_t *tqt;
|
|
|
|
if (!list_empty(&tq->tq_pend_list)) {
|
|
t = list_entry(tq->tq_pend_list.next, taskq_ent_t, tqent_list);
|
|
lowest_id = MIN(lowest_id, t->tqent_id);
|
|
}
|
|
|
|
if (!list_empty(&tq->tq_prio_list)) {
|
|
t = list_entry(tq->tq_prio_list.next, taskq_ent_t, tqent_list);
|
|
lowest_id = MIN(lowest_id, t->tqent_id);
|
|
}
|
|
|
|
if (!list_empty(&tq->tq_delay_list)) {
|
|
t = list_entry(tq->tq_delay_list.next, taskq_ent_t, tqent_list);
|
|
lowest_id = MIN(lowest_id, t->tqent_id);
|
|
}
|
|
|
|
if (!list_empty(&tq->tq_active_list)) {
|
|
tqt = list_entry(tq->tq_active_list.next, taskq_thread_t,
|
|
tqt_active_list);
|
|
ASSERT(tqt->tqt_id != TASKQID_INVALID);
|
|
lowest_id = MIN(lowest_id, tqt->tqt_id);
|
|
}
|
|
|
|
return (lowest_id);
|
|
}
|
|
|
|
/*
|
|
* Insert a task into a list keeping the list sorted by increasing taskqid.
|
|
*/
|
|
static void
|
|
taskq_insert_in_order(taskq_t *tq, taskq_thread_t *tqt)
|
|
{
|
|
taskq_thread_t *w;
|
|
struct list_head *l = NULL;
|
|
|
|
ASSERT(tq);
|
|
ASSERT(tqt);
|
|
|
|
list_for_each_prev(l, &tq->tq_active_list) {
|
|
w = list_entry(l, taskq_thread_t, tqt_active_list);
|
|
if (w->tqt_id < tqt->tqt_id) {
|
|
list_add(&tqt->tqt_active_list, l);
|
|
break;
|
|
}
|
|
}
|
|
if (l == &tq->tq_active_list)
|
|
list_add(&tqt->tqt_active_list, &tq->tq_active_list);
|
|
}
|
|
|
|
/*
|
|
* Find and return a task from the given list if it exists. The list
|
|
* must be in lowest to highest task id order.
|
|
*/
|
|
static taskq_ent_t *
|
|
taskq_find_list(taskq_t *tq, struct list_head *lh, taskqid_t id)
|
|
{
|
|
struct list_head *l = NULL;
|
|
taskq_ent_t *t;
|
|
|
|
list_for_each(l, lh) {
|
|
t = list_entry(l, taskq_ent_t, tqent_list);
|
|
|
|
if (t->tqent_id == id)
|
|
return (t);
|
|
|
|
if (t->tqent_id > id)
|
|
break;
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find an already dispatched task given the task id regardless of what
|
|
* state it is in. If a task is still pending it will be returned.
|
|
* If a task is executing, then -EBUSY will be returned instead.
|
|
* If the task has already been run then NULL is returned.
|
|
*/
|
|
static taskq_ent_t *
|
|
taskq_find(taskq_t *tq, taskqid_t id)
|
|
{
|
|
taskq_thread_t *tqt;
|
|
struct list_head *l = NULL;
|
|
taskq_ent_t *t;
|
|
|
|
t = taskq_find_list(tq, &tq->tq_delay_list, id);
|
|
if (t)
|
|
return (t);
|
|
|
|
t = taskq_find_list(tq, &tq->tq_prio_list, id);
|
|
if (t)
|
|
return (t);
|
|
|
|
t = taskq_find_list(tq, &tq->tq_pend_list, id);
|
|
if (t)
|
|
return (t);
|
|
|
|
list_for_each(l, &tq->tq_active_list) {
|
|
tqt = list_entry(l, taskq_thread_t, tqt_active_list);
|
|
if (tqt->tqt_id == id) {
|
|
/*
|
|
* Instead of returning tqt_task, we just return a non
|
|
* NULL value to prevent misuse, since tqt_task only
|
|
* has two valid fields.
|
|
*/
|
|
return (ERR_PTR(-EBUSY));
|
|
}
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Theory for the taskq_wait_id(), taskq_wait_outstanding(), and
|
|
* taskq_wait() functions below.
|
|
*
|
|
* Taskq waiting is accomplished by tracking the lowest outstanding task
|
|
* id and the next available task id. As tasks are dispatched they are
|
|
* added to the tail of the pending, priority, or delay lists. As worker
|
|
* threads become available the tasks are removed from the heads of these
|
|
* lists and linked to the worker threads. This ensures the lists are
|
|
* kept sorted by lowest to highest task id.
|
|
*
|
|
* Therefore the lowest outstanding task id can be quickly determined by
|
|
* checking the head item from all of these lists. This value is stored
|
|
* with the taskq as the lowest id. It only needs to be recalculated when
|
|
* either the task with the current lowest id completes or is canceled.
|
|
*
|
|
* By blocking until the lowest task id exceeds the passed task id the
|
|
* taskq_wait_outstanding() function can be easily implemented. Similarly,
|
|
* by blocking until the lowest task id matches the next task id taskq_wait()
|
|
* can be implemented.
|
|
*
|
|
* Callers should be aware that when there are multiple worked threads it
|
|
* is possible for larger task ids to complete before smaller ones. Also
|
|
* when the taskq contains delay tasks with small task ids callers may
|
|
* block for a considerable length of time waiting for them to expire and
|
|
* execute.
|
|
*/
|
|
static int
|
|
taskq_wait_id_check(taskq_t *tq, taskqid_t id)
|
|
{
|
|
int rc;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
|
|
rc = (taskq_find(tq, id) == NULL);
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* The taskq_wait_id() function blocks until the passed task id completes.
|
|
* This does not guarantee that all lower task ids have completed.
|
|
*/
|
|
void
|
|
taskq_wait_id(taskq_t *tq, taskqid_t id)
|
|
{
|
|
wait_event(tq->tq_wait_waitq, taskq_wait_id_check(tq, id));
|
|
}
|
|
EXPORT_SYMBOL(taskq_wait_id);
|
|
|
|
static int
|
|
taskq_wait_outstanding_check(taskq_t *tq, taskqid_t id)
|
|
{
|
|
int rc;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
|
|
rc = (id < tq->tq_lowest_id);
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* The taskq_wait_outstanding() function will block until all tasks with a
|
|
* lower taskqid than the passed 'id' have been completed. Note that all
|
|
* task id's are assigned monotonically at dispatch time. Zero may be
|
|
* passed for the id to indicate all tasks dispatch up to this point,
|
|
* but not after, should be waited for.
|
|
*/
|
|
void
|
|
taskq_wait_outstanding(taskq_t *tq, taskqid_t id)
|
|
{
|
|
id = id ? id : tq->tq_next_id - 1;
|
|
wait_event(tq->tq_wait_waitq, taskq_wait_outstanding_check(tq, id));
|
|
}
|
|
EXPORT_SYMBOL(taskq_wait_outstanding);
|
|
|
|
static int
|
|
taskq_wait_check(taskq_t *tq)
|
|
{
|
|
int rc;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
|
|
rc = (tq->tq_lowest_id == tq->tq_next_id);
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* The taskq_wait() function will block until the taskq is empty.
|
|
* This means that if a taskq re-dispatches work to itself taskq_wait()
|
|
* callers will block indefinitely.
|
|
*/
|
|
void
|
|
taskq_wait(taskq_t *tq)
|
|
{
|
|
wait_event(tq->tq_wait_waitq, taskq_wait_check(tq));
|
|
}
|
|
EXPORT_SYMBOL(taskq_wait);
|
|
|
|
int
|
|
taskq_member(taskq_t *tq, kthread_t *t)
|
|
{
|
|
return (tq == (taskq_t *)tsd_get_by_thread(taskq_tsd, t));
|
|
}
|
|
EXPORT_SYMBOL(taskq_member);
|
|
|
|
taskq_t *
|
|
taskq_of_curthread(void)
|
|
{
|
|
return (tsd_get(taskq_tsd));
|
|
}
|
|
EXPORT_SYMBOL(taskq_of_curthread);
|
|
|
|
/*
|
|
* Cancel an already dispatched task given the task id. Still pending tasks
|
|
* will be immediately canceled, and if the task is active the function will
|
|
* block until it completes. Preallocated tasks which are canceled must be
|
|
* freed by the caller.
|
|
*/
|
|
int
|
|
taskq_cancel_id(taskq_t *tq, taskqid_t id)
|
|
{
|
|
taskq_ent_t *t;
|
|
int rc = ENOENT;
|
|
unsigned long flags;
|
|
|
|
ASSERT(tq);
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
|
|
t = taskq_find(tq, id);
|
|
if (t && t != ERR_PTR(-EBUSY)) {
|
|
list_del_init(&t->tqent_list);
|
|
t->tqent_flags |= TQENT_FLAG_CANCEL;
|
|
|
|
/*
|
|
* When canceling the lowest outstanding task id we
|
|
* must recalculate the new lowest outstanding id.
|
|
*/
|
|
if (tq->tq_lowest_id == t->tqent_id) {
|
|
tq->tq_lowest_id = taskq_lowest_id(tq);
|
|
ASSERT3S(tq->tq_lowest_id, >, t->tqent_id);
|
|
}
|
|
|
|
/*
|
|
* The task_expire() function takes the tq->tq_lock so drop
|
|
* drop the lock before synchronously cancelling the timer.
|
|
*/
|
|
if (timer_pending(&t->tqent_timer)) {
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
del_timer_sync(&t->tqent_timer);
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags,
|
|
tq->tq_lock_class);
|
|
}
|
|
|
|
if (!(t->tqent_flags & TQENT_FLAG_PREALLOC))
|
|
task_done(tq, t);
|
|
|
|
rc = 0;
|
|
}
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
if (t == ERR_PTR(-EBUSY)) {
|
|
taskq_wait_id(tq, id);
|
|
rc = EBUSY;
|
|
}
|
|
|
|
return (rc);
|
|
}
|
|
EXPORT_SYMBOL(taskq_cancel_id);
|
|
|
|
static int taskq_thread_spawn(taskq_t *tq);
|
|
|
|
taskqid_t
|
|
taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
|
|
{
|
|
taskq_ent_t *t;
|
|
taskqid_t rc = TASKQID_INVALID;
|
|
unsigned long irqflags;
|
|
|
|
ASSERT(tq);
|
|
ASSERT(func);
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, irqflags, tq->tq_lock_class);
|
|
|
|
/* Taskq being destroyed and all tasks drained */
|
|
if (!(tq->tq_flags & TASKQ_ACTIVE))
|
|
goto out;
|
|
|
|
/* Do not queue the task unless there is idle thread for it */
|
|
ASSERT(tq->tq_nactive <= tq->tq_nthreads);
|
|
if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads)) {
|
|
/* Dynamic taskq may be able to spawn another thread */
|
|
if (taskq_thread_spawn(tq) == 0)
|
|
goto out;
|
|
}
|
|
|
|
if ((t = task_alloc(tq, flags, &irqflags)) == NULL)
|
|
goto out;
|
|
|
|
spin_lock(&t->tqent_lock);
|
|
|
|
/* Queue to the front of the list to enforce TQ_NOQUEUE semantics */
|
|
if (flags & TQ_NOQUEUE)
|
|
list_add(&t->tqent_list, &tq->tq_prio_list);
|
|
/* Queue to the priority list instead of the pending list */
|
|
else if (flags & TQ_FRONT)
|
|
list_add_tail(&t->tqent_list, &tq->tq_prio_list);
|
|
else
|
|
list_add_tail(&t->tqent_list, &tq->tq_pend_list);
|
|
|
|
t->tqent_id = rc = tq->tq_next_id;
|
|
tq->tq_next_id++;
|
|
t->tqent_func = func;
|
|
t->tqent_arg = arg;
|
|
t->tqent_taskq = tq;
|
|
t->tqent_timer.function = NULL;
|
|
t->tqent_timer.expires = 0;
|
|
|
|
t->tqent_birth = jiffies;
|
|
DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
|
|
|
|
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
|
|
|
|
spin_unlock(&t->tqent_lock);
|
|
|
|
wake_up(&tq->tq_work_waitq);
|
|
|
|
/* Spawn additional taskq threads if required. */
|
|
if (!(flags & TQ_NOQUEUE) && tq->tq_nactive == tq->tq_nthreads)
|
|
(void) taskq_thread_spawn(tq);
|
|
out:
|
|
spin_unlock_irqrestore(&tq->tq_lock, irqflags);
|
|
return (rc);
|
|
}
|
|
EXPORT_SYMBOL(taskq_dispatch);
|
|
|
|
taskqid_t
|
|
taskq_dispatch_delay(taskq_t *tq, task_func_t func, void *arg,
|
|
uint_t flags, clock_t expire_time)
|
|
{
|
|
taskqid_t rc = TASKQID_INVALID;
|
|
taskq_ent_t *t;
|
|
unsigned long irqflags;
|
|
|
|
ASSERT(tq);
|
|
ASSERT(func);
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, irqflags, tq->tq_lock_class);
|
|
|
|
/* Taskq being destroyed and all tasks drained */
|
|
if (!(tq->tq_flags & TASKQ_ACTIVE))
|
|
goto out;
|
|
|
|
if ((t = task_alloc(tq, flags, &irqflags)) == NULL)
|
|
goto out;
|
|
|
|
spin_lock(&t->tqent_lock);
|
|
|
|
/* Queue to the delay list for subsequent execution */
|
|
list_add_tail(&t->tqent_list, &tq->tq_delay_list);
|
|
|
|
t->tqent_id = rc = tq->tq_next_id;
|
|
tq->tq_next_id++;
|
|
t->tqent_func = func;
|
|
t->tqent_arg = arg;
|
|
t->tqent_taskq = tq;
|
|
t->tqent_timer.function = task_expire;
|
|
t->tqent_timer.expires = (unsigned long)expire_time;
|
|
add_timer(&t->tqent_timer);
|
|
|
|
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
|
|
|
|
spin_unlock(&t->tqent_lock);
|
|
|
|
/* Spawn additional taskq threads if required. */
|
|
if (tq->tq_nactive == tq->tq_nthreads)
|
|
(void) taskq_thread_spawn(tq);
|
|
out:
|
|
spin_unlock_irqrestore(&tq->tq_lock, irqflags);
|
|
return (rc);
|
|
}
|
|
EXPORT_SYMBOL(taskq_dispatch_delay);
|
|
|
|
void
|
|
taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
|
|
taskq_ent_t *t)
|
|
{
|
|
unsigned long irqflags;
|
|
ASSERT(tq);
|
|
ASSERT(func);
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, irqflags,
|
|
tq->tq_lock_class);
|
|
|
|
/* Taskq being destroyed and all tasks drained */
|
|
if (!(tq->tq_flags & TASKQ_ACTIVE)) {
|
|
t->tqent_id = TASKQID_INVALID;
|
|
goto out;
|
|
}
|
|
|
|
if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads)) {
|
|
/* Dynamic taskq may be able to spawn another thread */
|
|
if (taskq_thread_spawn(tq) == 0)
|
|
goto out;
|
|
flags |= TQ_FRONT;
|
|
}
|
|
|
|
spin_lock(&t->tqent_lock);
|
|
|
|
/*
|
|
* Make sure the entry is not on some other taskq; it is important to
|
|
* ASSERT() under lock
|
|
*/
|
|
ASSERT(taskq_empty_ent(t));
|
|
|
|
/*
|
|
* Mark it as a prealloc'd task. This is important
|
|
* to ensure that we don't free it later.
|
|
*/
|
|
t->tqent_flags |= TQENT_FLAG_PREALLOC;
|
|
|
|
/* Queue to the priority list instead of the pending list */
|
|
if (flags & TQ_FRONT)
|
|
list_add_tail(&t->tqent_list, &tq->tq_prio_list);
|
|
else
|
|
list_add_tail(&t->tqent_list, &tq->tq_pend_list);
|
|
|
|
t->tqent_id = tq->tq_next_id;
|
|
tq->tq_next_id++;
|
|
t->tqent_func = func;
|
|
t->tqent_arg = arg;
|
|
t->tqent_taskq = tq;
|
|
|
|
t->tqent_birth = jiffies;
|
|
DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
|
|
|
|
spin_unlock(&t->tqent_lock);
|
|
|
|
wake_up(&tq->tq_work_waitq);
|
|
|
|
/* Spawn additional taskq threads if required. */
|
|
if (tq->tq_nactive == tq->tq_nthreads)
|
|
(void) taskq_thread_spawn(tq);
|
|
out:
|
|
spin_unlock_irqrestore(&tq->tq_lock, irqflags);
|
|
}
|
|
EXPORT_SYMBOL(taskq_dispatch_ent);
|
|
|
|
int
|
|
taskq_empty_ent(taskq_ent_t *t)
|
|
{
|
|
return (list_empty(&t->tqent_list));
|
|
}
|
|
EXPORT_SYMBOL(taskq_empty_ent);
|
|
|
|
void
|
|
taskq_init_ent(taskq_ent_t *t)
|
|
{
|
|
spin_lock_init(&t->tqent_lock);
|
|
init_waitqueue_head(&t->tqent_waitq);
|
|
timer_setup(&t->tqent_timer, NULL, 0);
|
|
INIT_LIST_HEAD(&t->tqent_list);
|
|
t->tqent_id = 0;
|
|
t->tqent_func = NULL;
|
|
t->tqent_arg = NULL;
|
|
t->tqent_flags = 0;
|
|
t->tqent_taskq = NULL;
|
|
}
|
|
EXPORT_SYMBOL(taskq_init_ent);
|
|
|
|
/*
|
|
* Return the next pending task, preference is given to tasks on the
|
|
* priority list which were dispatched with TQ_FRONT.
|
|
*/
|
|
static taskq_ent_t *
|
|
taskq_next_ent(taskq_t *tq)
|
|
{
|
|
struct list_head *list;
|
|
|
|
if (!list_empty(&tq->tq_prio_list))
|
|
list = &tq->tq_prio_list;
|
|
else if (!list_empty(&tq->tq_pend_list))
|
|
list = &tq->tq_pend_list;
|
|
else
|
|
return (NULL);
|
|
|
|
return (list_entry(list->next, taskq_ent_t, tqent_list));
|
|
}
|
|
|
|
/*
|
|
* Spawns a new thread for the specified taskq.
|
|
*/
|
|
static void
|
|
taskq_thread_spawn_task(void *arg)
|
|
{
|
|
taskq_t *tq = (taskq_t *)arg;
|
|
unsigned long flags;
|
|
|
|
if (taskq_thread_create(tq) == NULL) {
|
|
/* restore spawning count if failed */
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags,
|
|
tq->tq_lock_class);
|
|
tq->tq_nspawn--;
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Spawn addition threads for dynamic taskqs (TASKQ_DYNAMIC) the current
|
|
* number of threads is insufficient to handle the pending tasks. These
|
|
* new threads must be created by the dedicated dynamic_taskq to avoid
|
|
* deadlocks between thread creation and memory reclaim. The system_taskq
|
|
* which is also a dynamic taskq cannot be safely used for this.
|
|
*/
|
|
static int
|
|
taskq_thread_spawn(taskq_t *tq)
|
|
{
|
|
int spawning = 0;
|
|
|
|
if (!(tq->tq_flags & TASKQ_DYNAMIC))
|
|
return (0);
|
|
|
|
tq->lastspawnstop = jiffies;
|
|
if ((tq->tq_nthreads + tq->tq_nspawn < tq->tq_maxthreads) &&
|
|
(tq->tq_flags & TASKQ_ACTIVE)) {
|
|
spawning = (++tq->tq_nspawn);
|
|
taskq_dispatch(dynamic_taskq, taskq_thread_spawn_task,
|
|
tq, TQ_NOSLEEP);
|
|
}
|
|
|
|
return (spawning);
|
|
}
|
|
|
|
/*
|
|
* Threads in a dynamic taskq may exit once there is no more work to do.
|
|
* To prevent threads from being created and destroyed too often limit
|
|
* the exit rate to one per spl_taskq_thread_timeout_ms.
|
|
*
|
|
* The first thread is the thread list is treated as the primary thread.
|
|
* There is nothing special about the primary thread but in order to avoid
|
|
* all the taskq pids from changing we opt to make it long running.
|
|
*/
|
|
static int
|
|
taskq_thread_should_stop(taskq_t *tq, taskq_thread_t *tqt)
|
|
{
|
|
ASSERT(!taskq_next_ent(tq));
|
|
if (!(tq->tq_flags & TASKQ_DYNAMIC) || !spl_taskq_thread_dynamic)
|
|
return (0);
|
|
if (!(tq->tq_flags & TASKQ_ACTIVE))
|
|
return (1);
|
|
if (list_first_entry(&(tq->tq_thread_list), taskq_thread_t,
|
|
tqt_thread_list) == tqt)
|
|
return (0);
|
|
ASSERT3U(tq->tq_nthreads, >, 1);
|
|
if (tq->tq_nspawn != 0)
|
|
return (0);
|
|
if (time_before(jiffies, tq->lastspawnstop +
|
|
msecs_to_jiffies(spl_taskq_thread_timeout_ms)))
|
|
return (0);
|
|
tq->lastspawnstop = jiffies;
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
taskq_thread(void *args)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
sigset_t blocked;
|
|
taskq_thread_t *tqt = args;
|
|
taskq_t *tq;
|
|
taskq_ent_t *t;
|
|
int seq_tasks = 0;
|
|
unsigned long flags;
|
|
taskq_ent_t dup_task = {};
|
|
|
|
ASSERT(tqt);
|
|
ASSERT(tqt->tqt_tq);
|
|
tq = tqt->tqt_tq;
|
|
current->flags |= PF_NOFREEZE;
|
|
|
|
(void) spl_fstrans_mark();
|
|
|
|
sigfillset(&blocked);
|
|
sigprocmask(SIG_BLOCK, &blocked, NULL);
|
|
flush_signals(current);
|
|
|
|
tsd_set(taskq_tsd, tq);
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
|
|
/*
|
|
* If we are dynamically spawned, decrease spawning count. Note that
|
|
* we could be created during taskq_create, in which case we shouldn't
|
|
* do the decrement. But it's fine because taskq_create will reset
|
|
* tq_nspawn later.
|
|
*/
|
|
if (tq->tq_flags & TASKQ_DYNAMIC)
|
|
tq->tq_nspawn--;
|
|
|
|
/* Immediately exit if more threads than allowed were created. */
|
|
if (tq->tq_nthreads >= tq->tq_maxthreads)
|
|
goto error;
|
|
|
|
tq->tq_nthreads++;
|
|
list_add_tail(&tqt->tqt_thread_list, &tq->tq_thread_list);
|
|
wake_up(&tq->tq_wait_waitq);
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
while (!kthread_should_stop()) {
|
|
|
|
if (list_empty(&tq->tq_pend_list) &&
|
|
list_empty(&tq->tq_prio_list)) {
|
|
|
|
if (taskq_thread_should_stop(tq, tqt))
|
|
break;
|
|
|
|
add_wait_queue_exclusive(&tq->tq_work_waitq, &wait);
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
schedule();
|
|
seq_tasks = 0;
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags,
|
|
tq->tq_lock_class);
|
|
remove_wait_queue(&tq->tq_work_waitq, &wait);
|
|
} else {
|
|
__set_current_state(TASK_RUNNING);
|
|
}
|
|
|
|
if ((t = taskq_next_ent(tq)) != NULL) {
|
|
list_del_init(&t->tqent_list);
|
|
|
|
/*
|
|
* A TQENT_FLAG_PREALLOC task may be reused or freed
|
|
* during the task function call. Store tqent_id and
|
|
* tqent_flags here.
|
|
*
|
|
* Also use an on stack taskq_ent_t for tqt_task
|
|
* assignment in this case; we want to make sure
|
|
* to duplicate all fields, so the values are
|
|
* correct when it's accessed via DTRACE_PROBE*.
|
|
*/
|
|
tqt->tqt_id = t->tqent_id;
|
|
tqt->tqt_flags = t->tqent_flags;
|
|
|
|
if (t->tqent_flags & TQENT_FLAG_PREALLOC) {
|
|
dup_task = *t;
|
|
t = &dup_task;
|
|
}
|
|
tqt->tqt_task = t;
|
|
|
|
taskq_insert_in_order(tq, tqt);
|
|
tq->tq_nactive++;
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
DTRACE_PROBE1(taskq_ent__start, taskq_ent_t *, t);
|
|
|
|
/* Perform the requested task */
|
|
t->tqent_func(t->tqent_arg);
|
|
|
|
DTRACE_PROBE1(taskq_ent__finish, taskq_ent_t *, t);
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags,
|
|
tq->tq_lock_class);
|
|
tq->tq_nactive--;
|
|
list_del_init(&tqt->tqt_active_list);
|
|
tqt->tqt_task = NULL;
|
|
|
|
/* For prealloc'd tasks, we don't free anything. */
|
|
if (!(tqt->tqt_flags & TQENT_FLAG_PREALLOC))
|
|
task_done(tq, t);
|
|
|
|
/*
|
|
* When the current lowest outstanding taskqid is
|
|
* done calculate the new lowest outstanding id
|
|
*/
|
|
if (tq->tq_lowest_id == tqt->tqt_id) {
|
|
tq->tq_lowest_id = taskq_lowest_id(tq);
|
|
ASSERT3S(tq->tq_lowest_id, >, tqt->tqt_id);
|
|
}
|
|
|
|
/* Spawn additional taskq threads if required. */
|
|
if ((++seq_tasks) > spl_taskq_thread_sequential &&
|
|
taskq_thread_spawn(tq))
|
|
seq_tasks = 0;
|
|
|
|
tqt->tqt_id = TASKQID_INVALID;
|
|
tqt->tqt_flags = 0;
|
|
wake_up_all(&tq->tq_wait_waitq);
|
|
}
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
}
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
tq->tq_nthreads--;
|
|
list_del_init(&tqt->tqt_thread_list);
|
|
error:
|
|
kmem_free(tqt, sizeof (taskq_thread_t));
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
tsd_set(taskq_tsd, NULL);
|
|
thread_exit();
|
|
|
|
return (0);
|
|
}
|
|
|
|
static taskq_thread_t *
|
|
taskq_thread_create(taskq_t *tq)
|
|
{
|
|
static int last_used_cpu = 0;
|
|
taskq_thread_t *tqt;
|
|
|
|
tqt = kmem_alloc(sizeof (*tqt), KM_PUSHPAGE);
|
|
INIT_LIST_HEAD(&tqt->tqt_thread_list);
|
|
INIT_LIST_HEAD(&tqt->tqt_active_list);
|
|
tqt->tqt_tq = tq;
|
|
tqt->tqt_id = TASKQID_INVALID;
|
|
|
|
tqt->tqt_thread = spl_kthread_create(taskq_thread, tqt,
|
|
"%s", tq->tq_name);
|
|
if (tqt->tqt_thread == NULL) {
|
|
kmem_free(tqt, sizeof (taskq_thread_t));
|
|
return (NULL);
|
|
}
|
|
|
|
if (spl_taskq_thread_bind) {
|
|
last_used_cpu = (last_used_cpu + 1) % num_online_cpus();
|
|
kthread_bind(tqt->tqt_thread, last_used_cpu);
|
|
}
|
|
|
|
if (spl_taskq_thread_priority)
|
|
set_user_nice(tqt->tqt_thread, PRIO_TO_NICE(tq->tq_pri));
|
|
|
|
wake_up_process(tqt->tqt_thread);
|
|
|
|
return (tqt);
|
|
}
|
|
|
|
taskq_t *
|
|
taskq_create(const char *name, int threads_arg, pri_t pri,
|
|
int minalloc, int maxalloc, uint_t flags)
|
|
{
|
|
taskq_t *tq;
|
|
taskq_thread_t *tqt;
|
|
int count = 0, rc = 0, i;
|
|
unsigned long irqflags;
|
|
int nthreads = threads_arg;
|
|
|
|
ASSERT(name != NULL);
|
|
ASSERT(minalloc >= 0);
|
|
ASSERT(!(flags & (TASKQ_CPR_SAFE))); /* Unsupported */
|
|
|
|
/* Scale the number of threads using nthreads as a percentage */
|
|
if (flags & TASKQ_THREADS_CPU_PCT) {
|
|
ASSERT(nthreads <= 100);
|
|
ASSERT(nthreads >= 0);
|
|
nthreads = MIN(threads_arg, 100);
|
|
nthreads = MAX(nthreads, 0);
|
|
nthreads = MAX((num_online_cpus() * nthreads) /100, 1);
|
|
}
|
|
|
|
tq = kmem_alloc(sizeof (*tq), KM_PUSHPAGE);
|
|
if (tq == NULL)
|
|
return (NULL);
|
|
|
|
tq->tq_hp_support = B_FALSE;
|
|
#ifdef HAVE_CPU_HOTPLUG
|
|
if (flags & TASKQ_THREADS_CPU_PCT) {
|
|
tq->tq_hp_support = B_TRUE;
|
|
if (cpuhp_state_add_instance_nocalls(spl_taskq_cpuhp_state,
|
|
&tq->tq_hp_cb_node) != 0) {
|
|
kmem_free(tq, sizeof (*tq));
|
|
return (NULL);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
spin_lock_init(&tq->tq_lock);
|
|
INIT_LIST_HEAD(&tq->tq_thread_list);
|
|
INIT_LIST_HEAD(&tq->tq_active_list);
|
|
tq->tq_name = kmem_strdup(name);
|
|
tq->tq_nactive = 0;
|
|
tq->tq_nthreads = 0;
|
|
tq->tq_nspawn = 0;
|
|
tq->tq_maxthreads = nthreads;
|
|
tq->tq_cpu_pct = threads_arg;
|
|
tq->tq_pri = pri;
|
|
tq->tq_minalloc = minalloc;
|
|
tq->tq_maxalloc = maxalloc;
|
|
tq->tq_nalloc = 0;
|
|
tq->tq_flags = (flags | TASKQ_ACTIVE);
|
|
tq->tq_next_id = TASKQID_INITIAL;
|
|
tq->tq_lowest_id = TASKQID_INITIAL;
|
|
tq->lastspawnstop = jiffies;
|
|
INIT_LIST_HEAD(&tq->tq_free_list);
|
|
INIT_LIST_HEAD(&tq->tq_pend_list);
|
|
INIT_LIST_HEAD(&tq->tq_prio_list);
|
|
INIT_LIST_HEAD(&tq->tq_delay_list);
|
|
init_waitqueue_head(&tq->tq_work_waitq);
|
|
init_waitqueue_head(&tq->tq_wait_waitq);
|
|
tq->tq_lock_class = TQ_LOCK_GENERAL;
|
|
INIT_LIST_HEAD(&tq->tq_taskqs);
|
|
|
|
if (flags & TASKQ_PREPOPULATE) {
|
|
spin_lock_irqsave_nested(&tq->tq_lock, irqflags,
|
|
tq->tq_lock_class);
|
|
|
|
for (i = 0; i < minalloc; i++)
|
|
task_done(tq, task_alloc(tq, TQ_PUSHPAGE | TQ_NEW,
|
|
&irqflags));
|
|
|
|
spin_unlock_irqrestore(&tq->tq_lock, irqflags);
|
|
}
|
|
|
|
if ((flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic)
|
|
nthreads = 1;
|
|
|
|
for (i = 0; i < nthreads; i++) {
|
|
tqt = taskq_thread_create(tq);
|
|
if (tqt == NULL)
|
|
rc = 1;
|
|
else
|
|
count++;
|
|
}
|
|
|
|
/* Wait for all threads to be started before potential destroy */
|
|
wait_event(tq->tq_wait_waitq, tq->tq_nthreads == count);
|
|
/*
|
|
* taskq_thread might have touched nspawn, but we don't want them to
|
|
* because they're not dynamically spawned. So we reset it to 0
|
|
*/
|
|
tq->tq_nspawn = 0;
|
|
|
|
if (rc) {
|
|
taskq_destroy(tq);
|
|
tq = NULL;
|
|
} else {
|
|
down_write(&tq_list_sem);
|
|
tq->tq_instance = taskq_find_by_name(name) + 1;
|
|
list_add_tail(&tq->tq_taskqs, &tq_list);
|
|
up_write(&tq_list_sem);
|
|
}
|
|
|
|
return (tq);
|
|
}
|
|
EXPORT_SYMBOL(taskq_create);
|
|
|
|
void
|
|
taskq_destroy(taskq_t *tq)
|
|
{
|
|
struct task_struct *thread;
|
|
taskq_thread_t *tqt;
|
|
taskq_ent_t *t;
|
|
unsigned long flags;
|
|
|
|
ASSERT(tq);
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
|
|
tq->tq_flags &= ~TASKQ_ACTIVE;
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
#ifdef HAVE_CPU_HOTPLUG
|
|
if (tq->tq_hp_support) {
|
|
VERIFY0(cpuhp_state_remove_instance_nocalls(
|
|
spl_taskq_cpuhp_state, &tq->tq_hp_cb_node));
|
|
}
|
|
#endif
|
|
/*
|
|
* When TASKQ_ACTIVE is clear new tasks may not be added nor may
|
|
* new worker threads be spawned for dynamic taskq.
|
|
*/
|
|
if (dynamic_taskq != NULL)
|
|
taskq_wait_outstanding(dynamic_taskq, 0);
|
|
|
|
taskq_wait(tq);
|
|
|
|
/* remove taskq from global list used by the kstats */
|
|
down_write(&tq_list_sem);
|
|
list_del(&tq->tq_taskqs);
|
|
up_write(&tq_list_sem);
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
|
|
/* wait for spawning threads to insert themselves to the list */
|
|
while (tq->tq_nspawn) {
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
schedule_timeout_interruptible(1);
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags,
|
|
tq->tq_lock_class);
|
|
}
|
|
|
|
/*
|
|
* Signal each thread to exit and block until it does. Each thread
|
|
* is responsible for removing itself from the list and freeing its
|
|
* taskq_thread_t. This allows for idle threads to opt to remove
|
|
* themselves from the taskq. They can be recreated as needed.
|
|
*/
|
|
while (!list_empty(&tq->tq_thread_list)) {
|
|
tqt = list_entry(tq->tq_thread_list.next,
|
|
taskq_thread_t, tqt_thread_list);
|
|
thread = tqt->tqt_thread;
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
kthread_stop(thread);
|
|
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags,
|
|
tq->tq_lock_class);
|
|
}
|
|
|
|
while (!list_empty(&tq->tq_free_list)) {
|
|
t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
|
|
|
|
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
|
|
|
|
list_del_init(&t->tqent_list);
|
|
task_free(tq, t);
|
|
}
|
|
|
|
ASSERT0(tq->tq_nthreads);
|
|
ASSERT0(tq->tq_nalloc);
|
|
ASSERT0(tq->tq_nspawn);
|
|
ASSERT(list_empty(&tq->tq_thread_list));
|
|
ASSERT(list_empty(&tq->tq_active_list));
|
|
ASSERT(list_empty(&tq->tq_free_list));
|
|
ASSERT(list_empty(&tq->tq_pend_list));
|
|
ASSERT(list_empty(&tq->tq_prio_list));
|
|
ASSERT(list_empty(&tq->tq_delay_list));
|
|
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
kmem_strfree(tq->tq_name);
|
|
kmem_free(tq, sizeof (taskq_t));
|
|
}
|
|
EXPORT_SYMBOL(taskq_destroy);
|
|
|
|
static unsigned int spl_taskq_kick = 0;
|
|
|
|
/*
|
|
* 2.6.36 API Change
|
|
* module_param_cb is introduced to take kernel_param_ops and
|
|
* module_param_call is marked as obsolete. Also set and get operations
|
|
* were changed to take a 'const struct kernel_param *'.
|
|
*/
|
|
static int
|
|
#ifdef module_param_cb
|
|
param_set_taskq_kick(const char *val, const struct kernel_param *kp)
|
|
#else
|
|
param_set_taskq_kick(const char *val, struct kernel_param *kp)
|
|
#endif
|
|
{
|
|
int ret;
|
|
taskq_t *tq = NULL;
|
|
taskq_ent_t *t;
|
|
unsigned long flags;
|
|
|
|
ret = param_set_uint(val, kp);
|
|
if (ret < 0 || !spl_taskq_kick)
|
|
return (ret);
|
|
/* reset value */
|
|
spl_taskq_kick = 0;
|
|
|
|
down_read(&tq_list_sem);
|
|
list_for_each_entry(tq, &tq_list, tq_taskqs) {
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags,
|
|
tq->tq_lock_class);
|
|
/* Check if the first pending is older than 5 seconds */
|
|
t = taskq_next_ent(tq);
|
|
if (t && time_after(jiffies, t->tqent_birth + 5*HZ)) {
|
|
(void) taskq_thread_spawn(tq);
|
|
printk(KERN_INFO "spl: Kicked taskq %s/%d\n",
|
|
tq->tq_name, tq->tq_instance);
|
|
}
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
}
|
|
up_read(&tq_list_sem);
|
|
return (ret);
|
|
}
|
|
|
|
#ifdef module_param_cb
|
|
static const struct kernel_param_ops param_ops_taskq_kick = {
|
|
.set = param_set_taskq_kick,
|
|
.get = param_get_uint,
|
|
};
|
|
module_param_cb(spl_taskq_kick, ¶m_ops_taskq_kick, &spl_taskq_kick, 0644);
|
|
#else
|
|
module_param_call(spl_taskq_kick, param_set_taskq_kick, param_get_uint,
|
|
&spl_taskq_kick, 0644);
|
|
#endif
|
|
MODULE_PARM_DESC(spl_taskq_kick,
|
|
"Write nonzero to kick stuck taskqs to spawn more threads");
|
|
|
|
#ifdef HAVE_CPU_HOTPLUG
|
|
/*
|
|
* This callback will be called exactly once for each core that comes online,
|
|
* for each dynamic taskq. We attempt to expand taskqs that have
|
|
* TASKQ_THREADS_CPU_PCT set. We need to redo the percentage calculation every
|
|
* time, to correctly determine whether or not to add a thread.
|
|
*/
|
|
static int
|
|
spl_taskq_expand(unsigned int cpu, struct hlist_node *node)
|
|
{
|
|
taskq_t *tq = list_entry(node, taskq_t, tq_hp_cb_node);
|
|
unsigned long flags;
|
|
int err = 0;
|
|
|
|
ASSERT(tq);
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
|
|
|
|
if (!(tq->tq_flags & TASKQ_ACTIVE)) {
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
return (err);
|
|
}
|
|
|
|
ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
|
|
int nthreads = MIN(tq->tq_cpu_pct, 100);
|
|
nthreads = MAX(((num_online_cpus() + 1) * nthreads) / 100, 1);
|
|
tq->tq_maxthreads = nthreads;
|
|
|
|
if (!((tq->tq_flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic) &&
|
|
tq->tq_maxthreads > tq->tq_nthreads) {
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
taskq_thread_t *tqt = taskq_thread_create(tq);
|
|
if (tqt == NULL)
|
|
err = -1;
|
|
return (err);
|
|
}
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* While we don't support offlining CPUs, it is possible that CPUs will fail
|
|
* to online successfully. We do need to be able to handle this case
|
|
* gracefully.
|
|
*/
|
|
static int
|
|
spl_taskq_prepare_down(unsigned int cpu, struct hlist_node *node)
|
|
{
|
|
taskq_t *tq = list_entry(node, taskq_t, tq_hp_cb_node);
|
|
unsigned long flags;
|
|
|
|
ASSERT(tq);
|
|
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
|
|
|
|
if (!(tq->tq_flags & TASKQ_ACTIVE))
|
|
goto out;
|
|
|
|
ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
|
|
int nthreads = MIN(tq->tq_cpu_pct, 100);
|
|
nthreads = MAX(((num_online_cpus()) * nthreads) / 100, 1);
|
|
tq->tq_maxthreads = nthreads;
|
|
|
|
if (!((tq->tq_flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic) &&
|
|
tq->tq_maxthreads < tq->tq_nthreads) {
|
|
ASSERT3U(tq->tq_maxthreads, ==, tq->tq_nthreads - 1);
|
|
taskq_thread_t *tqt = list_entry(tq->tq_thread_list.next,
|
|
taskq_thread_t, tqt_thread_list);
|
|
struct task_struct *thread = tqt->tqt_thread;
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
|
|
kthread_stop(thread);
|
|
|
|
return (0);
|
|
}
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&tq->tq_lock, flags);
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
spl_taskq_init(void)
|
|
{
|
|
init_rwsem(&tq_list_sem);
|
|
tsd_create(&taskq_tsd, NULL);
|
|
|
|
#ifdef HAVE_CPU_HOTPLUG
|
|
spl_taskq_cpuhp_state = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
|
|
"fs/spl_taskq:online", spl_taskq_expand, spl_taskq_prepare_down);
|
|
#endif
|
|
|
|
system_taskq = taskq_create("spl_system_taskq", MAX(boot_ncpus, 64),
|
|
maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE|TASKQ_DYNAMIC);
|
|
if (system_taskq == NULL)
|
|
return (-ENOMEM);
|
|
|
|
system_delay_taskq = taskq_create("spl_delay_taskq", MAX(boot_ncpus, 4),
|
|
maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE|TASKQ_DYNAMIC);
|
|
if (system_delay_taskq == NULL) {
|
|
#ifdef HAVE_CPU_HOTPLUG
|
|
cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
|
|
#endif
|
|
taskq_destroy(system_taskq);
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
dynamic_taskq = taskq_create("spl_dynamic_taskq", 1,
|
|
maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE);
|
|
if (dynamic_taskq == NULL) {
|
|
#ifdef HAVE_CPU_HOTPLUG
|
|
cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
|
|
#endif
|
|
taskq_destroy(system_taskq);
|
|
taskq_destroy(system_delay_taskq);
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* This is used to annotate tq_lock, so
|
|
* taskq_dispatch -> taskq_thread_spawn -> taskq_dispatch
|
|
* does not trigger a lockdep warning re: possible recursive locking
|
|
*/
|
|
dynamic_taskq->tq_lock_class = TQ_LOCK_DYNAMIC;
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
spl_taskq_fini(void)
|
|
{
|
|
taskq_destroy(dynamic_taskq);
|
|
dynamic_taskq = NULL;
|
|
|
|
taskq_destroy(system_delay_taskq);
|
|
system_delay_taskq = NULL;
|
|
|
|
taskq_destroy(system_taskq);
|
|
system_taskq = NULL;
|
|
|
|
tsd_destroy(&taskq_tsd);
|
|
|
|
#ifdef HAVE_CPU_HOTPLUG
|
|
cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
|
|
spl_taskq_cpuhp_state = 0;
|
|
#endif
|
|
}
|