mirror of
				https://git.proxmox.com/git/mirror_zfs.git
				synced 2025-10-26 18:05:04 +03:00 
			
		
		
		
	 a9a6d78a9b
			
		
	
	
		a9a6d78a9b
		
	
	
	
	
		
			
			Sponsored-by: https://despairlabs.com/sponsor/ Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Reviewed-by: Tino Reichardt <milky-zfs@mcmilk.de> Signed-off-by: Rob Norris <robn@despairlabs.com> Closes #16479
		
			
				
	
	
		
			1211 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1211 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * CDDL HEADER START
 | |
|  *
 | |
|  * The contents of this file are subject to the terms of the
 | |
|  * Common Development and Distribution License (the "License").
 | |
|  * You may not use this file except in compliance with the License.
 | |
|  *
 | |
|  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 | |
|  * or https://opensource.org/licenses/CDDL-1.0.
 | |
|  * See the License for the specific language governing permissions
 | |
|  * and limitations under the License.
 | |
|  *
 | |
|  * When distributing Covered Code, include this CDDL HEADER in each
 | |
|  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 | |
|  * If applicable, add the following below this CDDL HEADER, with the
 | |
|  * fields enclosed by brackets "[]" replaced with your own identifying
 | |
|  * information: Portions Copyright [yyyy] [name of copyright owner]
 | |
|  *
 | |
|  * CDDL HEADER END
 | |
|  */
 | |
| /*
 | |
|  * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
 | |
|  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| #include <linux/compat.h>
 | |
| #endif
 | |
| #include <linux/fs.h>
 | |
| #include <sys/file.h>
 | |
| #include <sys/dmu_objset.h>
 | |
| #include <sys/zfs_znode.h>
 | |
| #include <sys/zfs_vfsops.h>
 | |
| #include <sys/zfs_vnops.h>
 | |
| #include <sys/zfs_project.h>
 | |
| #if defined(HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS) || \
 | |
|     defined(HAVE_VFS_FILEMAP_DIRTY_FOLIO)
 | |
| #include <linux/pagemap.h>
 | |
| #endif
 | |
| #ifdef HAVE_FILE_FADVISE
 | |
| #include <linux/fadvise.h>
 | |
| #endif
 | |
| #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
 | |
| #include <linux/writeback.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * When using fallocate(2) to preallocate space, inflate the requested
 | |
|  * capacity check by 10% to account for the required metadata blocks.
 | |
|  */
 | |
| static unsigned int zfs_fallocate_reserve_percent = 110;
 | |
| 
 | |
| static int
 | |
| zpl_open(struct inode *ip, struct file *filp)
 | |
| {
 | |
| 	cred_t *cr = CRED();
 | |
| 	int error;
 | |
| 	fstrans_cookie_t cookie;
 | |
| 
 | |
| 	error = generic_file_open(ip, filp);
 | |
| 	if (error)
 | |
| 		return (error);
 | |
| 
 | |
| 	crhold(cr);
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 	crfree(cr);
 | |
| 	ASSERT3S(error, <=, 0);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zpl_release(struct inode *ip, struct file *filp)
 | |
| {
 | |
| 	cred_t *cr = CRED();
 | |
| 	int error;
 | |
| 	fstrans_cookie_t cookie;
 | |
| 
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	if (ITOZ(ip)->z_atime_dirty)
 | |
| 		zfs_mark_inode_dirty(ip);
 | |
| 
 | |
| 	crhold(cr);
 | |
| 	error = -zfs_close(ip, filp->f_flags, cr);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 	crfree(cr);
 | |
| 	ASSERT3S(error, <=, 0);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zpl_iterate(struct file *filp, zpl_dir_context_t *ctx)
 | |
| {
 | |
| 	cred_t *cr = CRED();
 | |
| 	int error;
 | |
| 	fstrans_cookie_t cookie;
 | |
| 
 | |
| 	crhold(cr);
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	error = -zfs_readdir(file_inode(filp), ctx, cr);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 	crfree(cr);
 | |
| 	ASSERT3S(error, <=, 0);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| #if !defined(HAVE_VFS_ITERATE) && !defined(HAVE_VFS_ITERATE_SHARED)
 | |
| static int
 | |
| zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
 | |
| {
 | |
| 	zpl_dir_context_t ctx =
 | |
| 	    ZPL_DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
 | |
| 	int error;
 | |
| 
 | |
| 	error = zpl_iterate(filp, &ctx);
 | |
| 	filp->f_pos = ctx.pos;
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| #endif /* !HAVE_VFS_ITERATE && !HAVE_VFS_ITERATE_SHARED */
 | |
| 
 | |
| static int
 | |
| zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
 | |
| {
 | |
| 	struct inode *inode = filp->f_mapping->host;
 | |
| 	znode_t *zp = ITOZ(inode);
 | |
| 	zfsvfs_t *zfsvfs = ITOZSB(inode);
 | |
| 	cred_t *cr = CRED();
 | |
| 	int error;
 | |
| 	fstrans_cookie_t cookie;
 | |
| 
 | |
| 	/*
 | |
| 	 * The variables z_sync_writes_cnt and z_async_writes_cnt work in
 | |
| 	 * tandem so that sync writes can detect if there are any non-sync
 | |
| 	 * writes going on and vice-versa. The "vice-versa" part to this logic
 | |
| 	 * is located in zfs_putpage() where non-sync writes check if there are
 | |
| 	 * any ongoing sync writes. If any sync and non-sync writes overlap,
 | |
| 	 * we do a commit to complete the non-sync writes since the latter can
 | |
| 	 * potentially take several seconds to complete and thus block sync
 | |
| 	 * writes in the upcoming call to filemap_write_and_wait_range().
 | |
| 	 */
 | |
| 	atomic_inc_32(&zp->z_sync_writes_cnt);
 | |
| 	/*
 | |
| 	 * If the following check does not detect an overlapping non-sync write
 | |
| 	 * (say because it's just about to start), then it is guaranteed that
 | |
| 	 * the non-sync write will detect this sync write. This is because we
 | |
| 	 * always increment z_sync_writes_cnt / z_async_writes_cnt before doing
 | |
| 	 * the check on z_async_writes_cnt / z_sync_writes_cnt here and in
 | |
| 	 * zfs_putpage() respectively.
 | |
| 	 */
 | |
| 	if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
 | |
| 		if ((error = zpl_enter(zfsvfs, FTAG)) != 0) {
 | |
| 			atomic_dec_32(&zp->z_sync_writes_cnt);
 | |
| 			return (error);
 | |
| 		}
 | |
| 		zil_commit(zfsvfs->z_log, zp->z_id);
 | |
| 		zpl_exit(zfsvfs, FTAG);
 | |
| 	}
 | |
| 
 | |
| 	error = filemap_write_and_wait_range(inode->i_mapping, start, end);
 | |
| 
 | |
| 	/*
 | |
| 	 * The sync write is not complete yet but we decrement
 | |
| 	 * z_sync_writes_cnt since zfs_fsync() increments and decrements
 | |
| 	 * it internally. If a non-sync write starts just after the decrement
 | |
| 	 * operation but before we call zfs_fsync(), it may not detect this
 | |
| 	 * overlapping sync write but it does not matter since we have already
 | |
| 	 * gone past filemap_write_and_wait_range() and we won't block due to
 | |
| 	 * the non-sync write.
 | |
| 	 */
 | |
| 	atomic_dec_32(&zp->z_sync_writes_cnt);
 | |
| 
 | |
| 	if (error)
 | |
| 		return (error);
 | |
| 
 | |
| 	crhold(cr);
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	error = -zfs_fsync(zp, datasync, cr);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 	crfree(cr);
 | |
| 	ASSERT3S(error, <=, 0);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_FILE_AIO_FSYNC
 | |
| static int
 | |
| zpl_aio_fsync(struct kiocb *kiocb, int datasync)
 | |
| {
 | |
| 	return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline int
 | |
| zfs_io_flags(struct kiocb *kiocb)
 | |
| {
 | |
| 	int flags = 0;
 | |
| 
 | |
| #if defined(IOCB_DSYNC)
 | |
| 	if (kiocb->ki_flags & IOCB_DSYNC)
 | |
| 		flags |= O_DSYNC;
 | |
| #endif
 | |
| #if defined(IOCB_SYNC)
 | |
| 	if (kiocb->ki_flags & IOCB_SYNC)
 | |
| 		flags |= O_SYNC;
 | |
| #endif
 | |
| #if defined(IOCB_APPEND)
 | |
| 	if (kiocb->ki_flags & IOCB_APPEND)
 | |
| 		flags |= O_APPEND;
 | |
| #endif
 | |
| #if defined(IOCB_DIRECT)
 | |
| 	if (kiocb->ki_flags & IOCB_DIRECT)
 | |
| 		flags |= O_DIRECT;
 | |
| #endif
 | |
| 	return (flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If relatime is enabled, call file_accessed() if zfs_relatime_need_update()
 | |
|  * is true.  This is needed since datasets with inherited "relatime" property
 | |
|  * aren't necessarily mounted with the MNT_RELATIME flag (e.g. after
 | |
|  * `zfs set relatime=...`), which is what relatime test in VFS by
 | |
|  * relatime_need_update() is based on.
 | |
|  */
 | |
| static inline void
 | |
| zpl_file_accessed(struct file *filp)
 | |
| {
 | |
| 	struct inode *ip = filp->f_mapping->host;
 | |
| 
 | |
| 	if (!IS_NOATIME(ip) && ITOZSB(ip)->z_relatime) {
 | |
| 		if (zfs_relatime_need_update(ip))
 | |
| 			file_accessed(filp);
 | |
| 	} else {
 | |
| 		file_accessed(filp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When HAVE_VFS_IOV_ITER is defined the iov_iter structure supports
 | |
|  * iovecs, kvevs, bvecs and pipes, plus all the required interfaces to
 | |
|  * manipulate the iov_iter are available.  In which case the full iov_iter
 | |
|  * can be attached to the uio and correctly handled in the lower layers.
 | |
|  * Otherwise, for older kernels extract the iovec and pass it instead.
 | |
|  */
 | |
| static void
 | |
| zpl_uio_init(zfs_uio_t *uio, struct kiocb *kiocb, struct iov_iter *to,
 | |
|     loff_t pos, ssize_t count, size_t skip)
 | |
| {
 | |
| #if defined(HAVE_VFS_IOV_ITER)
 | |
| 	zfs_uio_iov_iter_init(uio, to, pos, count, skip);
 | |
| #else
 | |
| 	zfs_uio_iovec_init(uio, zfs_uio_iter_iov(to), to->nr_segs, pos,
 | |
| 	    zfs_uio_iov_iter_type(to) & ITER_KVEC ?
 | |
| 	    UIO_SYSSPACE : UIO_USERSPACE,
 | |
| 	    count, skip);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
 | |
| {
 | |
| 	cred_t *cr = CRED();
 | |
| 	fstrans_cookie_t cookie;
 | |
| 	struct file *filp = kiocb->ki_filp;
 | |
| 	ssize_t count = iov_iter_count(to);
 | |
| 	zfs_uio_t uio;
 | |
| 
 | |
| 	zpl_uio_init(&uio, kiocb, to, kiocb->ki_pos, count, 0);
 | |
| 
 | |
| 	crhold(cr);
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 
 | |
| 	ssize_t ret = -zfs_read(ITOZ(filp->f_mapping->host), &uio,
 | |
| 	    filp->f_flags | zfs_io_flags(kiocb), cr);
 | |
| 
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 	crfree(cr);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return (ret);
 | |
| 
 | |
| 	ssize_t read = count - uio.uio_resid;
 | |
| 	kiocb->ki_pos += read;
 | |
| 
 | |
| 	zpl_file_accessed(filp);
 | |
| 
 | |
| 	return (read);
 | |
| }
 | |
| 
 | |
| static inline ssize_t
 | |
| zpl_generic_write_checks(struct kiocb *kiocb, struct iov_iter *from,
 | |
|     size_t *countp)
 | |
| {
 | |
| 	ssize_t ret = generic_write_checks(kiocb, from);
 | |
| 	if (ret <= 0)
 | |
| 		return (ret);
 | |
| 
 | |
| 	*countp = ret;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
 | |
| {
 | |
| 	cred_t *cr = CRED();
 | |
| 	fstrans_cookie_t cookie;
 | |
| 	struct file *filp = kiocb->ki_filp;
 | |
| 	struct inode *ip = filp->f_mapping->host;
 | |
| 	zfs_uio_t uio;
 | |
| 	size_t count = 0;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = zpl_generic_write_checks(kiocb, from, &count);
 | |
| 	if (ret)
 | |
| 		return (ret);
 | |
| 
 | |
| 	zpl_uio_init(&uio, kiocb, from, kiocb->ki_pos, count, from->iov_offset);
 | |
| 
 | |
| 	crhold(cr);
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 
 | |
| 	ret = -zfs_write(ITOZ(ip), &uio,
 | |
| 	    filp->f_flags | zfs_io_flags(kiocb), cr);
 | |
| 
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 	crfree(cr);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return (ret);
 | |
| 
 | |
| 	ssize_t wrote = count - uio.uio_resid;
 | |
| 	kiocb->ki_pos += wrote;
 | |
| 
 | |
| 	return (wrote);
 | |
| }
 | |
| 
 | |
| static ssize_t
 | |
| zpl_direct_IO_impl(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * All O_DIRECT requests should be handled by
 | |
| 	 * zpl_{iter/aio}_{write/read}(). There is no way kernel generic code
 | |
| 	 * should call the direct_IO address_space_operations function. We set
 | |
| 	 * this code path to be fatal if it is executed.
 | |
| 	 */
 | |
| 	PANIC(0);
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| #if defined(HAVE_VFS_DIRECT_IO_ITER)
 | |
| static ssize_t
 | |
| zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter)
 | |
| {
 | |
| 	return (zpl_direct_IO_impl());
 | |
| }
 | |
| #elif defined(HAVE_VFS_DIRECT_IO_ITER_OFFSET)
 | |
| static ssize_t
 | |
| zpl_direct_IO(struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
 | |
| {
 | |
| 	return (zpl_direct_IO_impl());
 | |
| }
 | |
| #elif defined(HAVE_VFS_DIRECT_IO_ITER_RW_OFFSET)
 | |
| static ssize_t
 | |
| zpl_direct_IO(int rw, struct kiocb *kiocb, struct iov_iter *iter, loff_t pos)
 | |
| {
 | |
| 	return (zpl_direct_IO_impl());
 | |
| }
 | |
| #else
 | |
| #error "Unknown Direct I/O interface"
 | |
| #endif
 | |
| 
 | |
| static loff_t
 | |
| zpl_llseek(struct file *filp, loff_t offset, int whence)
 | |
| {
 | |
| #if defined(SEEK_HOLE) && defined(SEEK_DATA)
 | |
| 	fstrans_cookie_t cookie;
 | |
| 
 | |
| 	if (whence == SEEK_DATA || whence == SEEK_HOLE) {
 | |
| 		struct inode *ip = filp->f_mapping->host;
 | |
| 		loff_t maxbytes = ip->i_sb->s_maxbytes;
 | |
| 		loff_t error;
 | |
| 
 | |
| 		spl_inode_lock_shared(ip);
 | |
| 		cookie = spl_fstrans_mark();
 | |
| 		error = -zfs_holey(ITOZ(ip), whence, &offset);
 | |
| 		spl_fstrans_unmark(cookie);
 | |
| 		if (error == 0)
 | |
| 			error = lseek_execute(filp, ip, offset, maxbytes);
 | |
| 		spl_inode_unlock_shared(ip);
 | |
| 
 | |
| 		return (error);
 | |
| 	}
 | |
| #endif /* SEEK_HOLE && SEEK_DATA */
 | |
| 
 | |
| 	return (generic_file_llseek(filp, offset, whence));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's worth taking a moment to describe how mmap is implemented
 | |
|  * for zfs because it differs considerably from other Linux filesystems.
 | |
|  * However, this issue is handled the same way under OpenSolaris.
 | |
|  *
 | |
|  * The issue is that by design zfs bypasses the Linux page cache and
 | |
|  * leaves all caching up to the ARC.  This has been shown to work
 | |
|  * well for the common read(2)/write(2) case.  However, mmap(2)
 | |
|  * is problem because it relies on being tightly integrated with the
 | |
|  * page cache.  To handle this we cache mmap'ed files twice, once in
 | |
|  * the ARC and a second time in the page cache.  The code is careful
 | |
|  * to keep both copies synchronized.
 | |
|  *
 | |
|  * When a file with an mmap'ed region is written to using write(2)
 | |
|  * both the data in the ARC and existing pages in the page cache
 | |
|  * are updated.  For a read(2) data will be read first from the page
 | |
|  * cache then the ARC if needed.  Neither a write(2) or read(2) will
 | |
|  * will ever result in new pages being added to the page cache.
 | |
|  *
 | |
|  * New pages are added to the page cache only via .readpage() which
 | |
|  * is called when the vfs needs to read a page off disk to back the
 | |
|  * virtual memory region.  These pages may be modified without
 | |
|  * notifying the ARC and will be written out periodically via
 | |
|  * .writepage().  This will occur due to either a sync or the usual
 | |
|  * page aging behavior.  Note because a read(2) of a mmap'ed file
 | |
|  * will always check the page cache first even when the ARC is out
 | |
|  * of date correct data will still be returned.
 | |
|  *
 | |
|  * While this implementation ensures correct behavior it does have
 | |
|  * have some drawbacks.  The most obvious of which is that it
 | |
|  * increases the required memory footprint when access mmap'ed
 | |
|  * files.  It also adds additional complexity to the code keeping
 | |
|  * both caches synchronized.
 | |
|  *
 | |
|  * Longer term it may be possible to cleanly resolve this wart by
 | |
|  * mapping page cache pages directly on to the ARC buffers.  The
 | |
|  * Linux address space operations are flexible enough to allow
 | |
|  * selection of which pages back a particular index.  The trick
 | |
|  * would be working out the details of which subsystem is in
 | |
|  * charge, the ARC, the page cache, or both.  It may also prove
 | |
|  * helpful to move the ARC buffers to a scatter-gather lists
 | |
|  * rather than a vmalloc'ed region.
 | |
|  */
 | |
| static int
 | |
| zpl_mmap(struct file *filp, struct vm_area_struct *vma)
 | |
| {
 | |
| 	struct inode *ip = filp->f_mapping->host;
 | |
| 	int error;
 | |
| 	fstrans_cookie_t cookie;
 | |
| 
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
 | |
| 	    (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 
 | |
| 	if (error)
 | |
| 		return (error);
 | |
| 
 | |
| 	error = generic_file_mmap(filp, vma);
 | |
| 	if (error)
 | |
| 		return (error);
 | |
| 
 | |
| #if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE)
 | |
| 	znode_t *zp = ITOZ(ip);
 | |
| 	mutex_enter(&zp->z_lock);
 | |
| 	zp->z_is_mapped = B_TRUE;
 | |
| 	mutex_exit(&zp->z_lock);
 | |
| #endif
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Populate a page with data for the Linux page cache.  This function is
 | |
|  * only used to support mmap(2).  There will be an identical copy of the
 | |
|  * data in the ARC which is kept up to date via .write() and .writepage().
 | |
|  */
 | |
| static inline int
 | |
| zpl_readpage_common(struct page *pp)
 | |
| {
 | |
| 	fstrans_cookie_t cookie;
 | |
| 
 | |
| 	ASSERT(PageLocked(pp));
 | |
| 
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	int error = -zfs_getpage(pp->mapping->host, pp);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 
 | |
| 	unlock_page(pp);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_VFS_READ_FOLIO
 | |
| static int
 | |
| zpl_read_folio(struct file *filp, struct folio *folio)
 | |
| {
 | |
| 	return (zpl_readpage_common(&folio->page));
 | |
| }
 | |
| #else
 | |
| static int
 | |
| zpl_readpage(struct file *filp, struct page *pp)
 | |
| {
 | |
| 	return (zpl_readpage_common(pp));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| zpl_readpage_filler(void *data, struct page *pp)
 | |
| {
 | |
| 	return (zpl_readpage_common(pp));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Populate a set of pages with data for the Linux page cache.  This
 | |
|  * function will only be called for read ahead and never for demand
 | |
|  * paging.  For simplicity, the code relies on read_cache_pages() to
 | |
|  * correctly lock each page for IO and call zpl_readpage().
 | |
|  */
 | |
| #ifdef HAVE_VFS_READPAGES
 | |
| static int
 | |
| zpl_readpages(struct file *filp, struct address_space *mapping,
 | |
|     struct list_head *pages, unsigned nr_pages)
 | |
| {
 | |
| 	return (read_cache_pages(mapping, pages, zpl_readpage_filler, NULL));
 | |
| }
 | |
| #else
 | |
| static void
 | |
| zpl_readahead(struct readahead_control *ractl)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	while ((page = readahead_page(ractl)) != NULL) {
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = zpl_readpage_filler(NULL, page);
 | |
| 		put_page(page);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int
 | |
| zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
 | |
| {
 | |
| 	boolean_t *for_sync = data;
 | |
| 	fstrans_cookie_t cookie;
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(PageLocked(pp));
 | |
| 	ASSERT(!PageWriteback(pp));
 | |
| 
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	ret = zfs_putpage(pp->mapping->host, pp, wbc, *for_sync);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 
 | |
| 	return (ret);
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_WRITEPAGE_T_FOLIO
 | |
| static int
 | |
| zpl_putfolio(struct folio *pp, struct writeback_control *wbc, void *data)
 | |
| {
 | |
| 	return (zpl_putpage(&pp->page, wbc, data));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline int
 | |
| zpl_write_cache_pages(struct address_space *mapping,
 | |
|     struct writeback_control *wbc, void *data)
 | |
| {
 | |
| 	int result;
 | |
| 
 | |
| #ifdef HAVE_WRITEPAGE_T_FOLIO
 | |
| 	result = write_cache_pages(mapping, wbc, zpl_putfolio, data);
 | |
| #else
 | |
| 	result = write_cache_pages(mapping, wbc, zpl_putpage, data);
 | |
| #endif
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
 | |
| {
 | |
| 	znode_t		*zp = ITOZ(mapping->host);
 | |
| 	zfsvfs_t	*zfsvfs = ITOZSB(mapping->host);
 | |
| 	enum writeback_sync_modes sync_mode;
 | |
| 	int result;
 | |
| 
 | |
| 	if ((result = zpl_enter(zfsvfs, FTAG)) != 0)
 | |
| 		return (result);
 | |
| 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
 | |
| 		wbc->sync_mode = WB_SYNC_ALL;
 | |
| 	zpl_exit(zfsvfs, FTAG);
 | |
| 	sync_mode = wbc->sync_mode;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to run write_cache_pages() in SYNC mode here, because
 | |
| 	 * that would make putpage() wait for a single page to be committed to
 | |
| 	 * disk every single time, resulting in atrocious performance. Instead
 | |
| 	 * we run it once in non-SYNC mode so that the ZIL gets all the data,
 | |
| 	 * and then we commit it all in one go.
 | |
| 	 */
 | |
| 	boolean_t for_sync = (sync_mode == WB_SYNC_ALL);
 | |
| 	wbc->sync_mode = WB_SYNC_NONE;
 | |
| 	result = zpl_write_cache_pages(mapping, wbc, &for_sync);
 | |
| 	if (sync_mode != wbc->sync_mode) {
 | |
| 		if ((result = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
 | |
| 			return (result);
 | |
| 		if (zfsvfs->z_log != NULL)
 | |
| 			zil_commit(zfsvfs->z_log, zp->z_id);
 | |
| 		zpl_exit(zfsvfs, FTAG);
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to call write_cache_pages() again (we can't just
 | |
| 		 * return after the commit) because the previous call in
 | |
| 		 * non-SYNC mode does not guarantee that we got all the dirty
 | |
| 		 * pages (see the implementation of write_cache_pages() for
 | |
| 		 * details). That being said, this is a no-op in most cases.
 | |
| 		 */
 | |
| 		wbc->sync_mode = sync_mode;
 | |
| 		result = zpl_write_cache_pages(mapping, wbc, &for_sync);
 | |
| 	}
 | |
| 	return (result);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out dirty pages to the ARC, this function is only required to
 | |
|  * support mmap(2).  Mapped pages may be dirtied by memory operations
 | |
|  * which never call .write().  These dirty pages are kept in sync with
 | |
|  * the ARC buffers via this hook.
 | |
|  */
 | |
| static int
 | |
| zpl_writepage(struct page *pp, struct writeback_control *wbc)
 | |
| {
 | |
| 	if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
 | |
| 		wbc->sync_mode = WB_SYNC_ALL;
 | |
| 
 | |
| 	boolean_t for_sync = (wbc->sync_mode == WB_SYNC_ALL);
 | |
| 
 | |
| 	return (zpl_putpage(pp, wbc, &for_sync));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The flag combination which matches the behavior of zfs_space() is
 | |
|  * FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE.  The FALLOC_FL_PUNCH_HOLE
 | |
|  * flag was introduced in the 2.6.38 kernel.
 | |
|  *
 | |
|  * The original mode=0 (allocate space) behavior can be reasonably emulated
 | |
|  * by checking if enough space exists and creating a sparse file, as real
 | |
|  * persistent space reservation is not possible due to COW, snapshots, etc.
 | |
|  */
 | |
| static long
 | |
| zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
 | |
| {
 | |
| 	cred_t *cr = CRED();
 | |
| 	loff_t olen;
 | |
| 	fstrans_cookie_t cookie;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	int test_mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE;
 | |
| 
 | |
| 	if ((mode & ~(FALLOC_FL_KEEP_SIZE | test_mode)) != 0)
 | |
| 		return (-EOPNOTSUPP);
 | |
| 
 | |
| 	if (offset < 0 || len <= 0)
 | |
| 		return (-EINVAL);
 | |
| 
 | |
| 	spl_inode_lock(ip);
 | |
| 	olen = i_size_read(ip);
 | |
| 
 | |
| 	crhold(cr);
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	if (mode & (test_mode)) {
 | |
| 		flock64_t bf;
 | |
| 
 | |
| 		if (mode & FALLOC_FL_KEEP_SIZE) {
 | |
| 			if (offset > olen)
 | |
| 				goto out_unmark;
 | |
| 
 | |
| 			if (offset + len > olen)
 | |
| 				len = olen - offset;
 | |
| 		}
 | |
| 		bf.l_type = F_WRLCK;
 | |
| 		bf.l_whence = SEEK_SET;
 | |
| 		bf.l_start = offset;
 | |
| 		bf.l_len = len;
 | |
| 		bf.l_pid = 0;
 | |
| 
 | |
| 		error = -zfs_space(ITOZ(ip), F_FREESP, &bf, O_RDWR, offset, cr);
 | |
| 	} else if ((mode & ~FALLOC_FL_KEEP_SIZE) == 0) {
 | |
| 		unsigned int percent = zfs_fallocate_reserve_percent;
 | |
| 		struct kstatfs statfs;
 | |
| 
 | |
| 		/* Legacy mode, disable fallocate compatibility. */
 | |
| 		if (percent == 0) {
 | |
| 			error = -EOPNOTSUPP;
 | |
| 			goto out_unmark;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Use zfs_statvfs() instead of dmu_objset_space() since it
 | |
| 		 * also checks project quota limits, which are relevant here.
 | |
| 		 */
 | |
| 		error = zfs_statvfs(ip, &statfs);
 | |
| 		if (error)
 | |
| 			goto out_unmark;
 | |
| 
 | |
| 		/*
 | |
| 		 * Shrink available space a bit to account for overhead/races.
 | |
| 		 * We know the product previously fit into availbytes from
 | |
| 		 * dmu_objset_space(), so the smaller product will also fit.
 | |
| 		 */
 | |
| 		if (len > statfs.f_bavail * (statfs.f_bsize * 100 / percent)) {
 | |
| 			error = -ENOSPC;
 | |
| 			goto out_unmark;
 | |
| 		}
 | |
| 		if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > olen)
 | |
| 			error = zfs_freesp(ITOZ(ip), offset + len, 0, 0, FALSE);
 | |
| 	}
 | |
| out_unmark:
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 	spl_inode_unlock(ip);
 | |
| 
 | |
| 	crfree(cr);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| 
 | |
| static long
 | |
| zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
 | |
| {
 | |
| 	return zpl_fallocate_common(file_inode(filp),
 | |
| 	    mode, offset, len);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zpl_ioctl_getversion(struct file *filp, void __user *arg)
 | |
| {
 | |
| 	uint32_t generation = file_inode(filp)->i_generation;
 | |
| 
 | |
| 	return (copy_to_user(arg, &generation, sizeof (generation)));
 | |
| }
 | |
| 
 | |
| #ifdef HAVE_FILE_FADVISE
 | |
| static int
 | |
| zpl_fadvise(struct file *filp, loff_t offset, loff_t len, int advice)
 | |
| {
 | |
| 	struct inode *ip = file_inode(filp);
 | |
| 	znode_t *zp = ITOZ(ip);
 | |
| 	zfsvfs_t *zfsvfs = ITOZSB(ip);
 | |
| 	objset_t *os = zfsvfs->z_os;
 | |
| 	int error = 0;
 | |
| 
 | |
| 	if (S_ISFIFO(ip->i_mode))
 | |
| 		return (-ESPIPE);
 | |
| 
 | |
| 	if (offset < 0 || len < 0)
 | |
| 		return (-EINVAL);
 | |
| 
 | |
| 	if ((error = zpl_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
 | |
| 		return (error);
 | |
| 
 | |
| 	switch (advice) {
 | |
| 	case POSIX_FADV_SEQUENTIAL:
 | |
| 	case POSIX_FADV_WILLNEED:
 | |
| #ifdef HAVE_GENERIC_FADVISE
 | |
| 		if (zn_has_cached_data(zp, offset, offset + len - 1))
 | |
| 			error = generic_fadvise(filp, offset, len, advice);
 | |
| #endif
 | |
| 		/*
 | |
| 		 * Pass on the caller's size directly, but note that
 | |
| 		 * dmu_prefetch_max will effectively cap it.  If there
 | |
| 		 * really is a larger sequential access pattern, perhaps
 | |
| 		 * dmu_zfetch will detect it.
 | |
| 		 */
 | |
| 		if (len == 0)
 | |
| 			len = i_size_read(ip) - offset;
 | |
| 
 | |
| 		dmu_prefetch(os, zp->z_id, 0, offset, len,
 | |
| 		    ZIO_PRIORITY_ASYNC_READ);
 | |
| 		break;
 | |
| 	case POSIX_FADV_NORMAL:
 | |
| 	case POSIX_FADV_RANDOM:
 | |
| 	case POSIX_FADV_DONTNEED:
 | |
| 	case POSIX_FADV_NOREUSE:
 | |
| 		/* ignored for now */
 | |
| 		break;
 | |
| 	default:
 | |
| 		error = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	zfs_exit(zfsvfs, FTAG);
 | |
| 
 | |
| 	return (error);
 | |
| }
 | |
| #endif /* HAVE_FILE_FADVISE */
 | |
| 
 | |
| #define	ZFS_FL_USER_VISIBLE	(FS_FL_USER_VISIBLE | ZFS_PROJINHERIT_FL)
 | |
| #define	ZFS_FL_USER_MODIFIABLE	(FS_FL_USER_MODIFIABLE | ZFS_PROJINHERIT_FL)
 | |
| 
 | |
| static uint32_t
 | |
| __zpl_ioctl_getflags(struct inode *ip)
 | |
| {
 | |
| 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
 | |
| 	uint32_t ioctl_flags = 0;
 | |
| 
 | |
| 	if (zfs_flags & ZFS_IMMUTABLE)
 | |
| 		ioctl_flags |= FS_IMMUTABLE_FL;
 | |
| 
 | |
| 	if (zfs_flags & ZFS_APPENDONLY)
 | |
| 		ioctl_flags |= FS_APPEND_FL;
 | |
| 
 | |
| 	if (zfs_flags & ZFS_NODUMP)
 | |
| 		ioctl_flags |= FS_NODUMP_FL;
 | |
| 
 | |
| 	if (zfs_flags & ZFS_PROJINHERIT)
 | |
| 		ioctl_flags |= ZFS_PROJINHERIT_FL;
 | |
| 
 | |
| 	return (ioctl_flags & ZFS_FL_USER_VISIBLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
 | |
|  * attributes common to both Linux and Solaris are mapped.
 | |
|  */
 | |
| static int
 | |
| zpl_ioctl_getflags(struct file *filp, void __user *arg)
 | |
| {
 | |
| 	uint32_t flags;
 | |
| 	int err;
 | |
| 
 | |
| 	flags = __zpl_ioctl_getflags(file_inode(filp));
 | |
| 	err = copy_to_user(arg, &flags, sizeof (flags));
 | |
| 
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fchange() is a helper macro to detect if we have been asked to change a
 | |
|  * flag. This is ugly, but the requirement that we do this is a consequence of
 | |
|  * how the Linux file attribute interface was designed. Another consequence is
 | |
|  * that concurrent modification of files suffers from a TOCTOU race. Neither
 | |
|  * are things we can fix without modifying the kernel-userland interface, which
 | |
|  * is outside of our jurisdiction.
 | |
|  */
 | |
| 
 | |
| #define	fchange(f0, f1, b0, b1) (!((f0) & (b0)) != !((f1) & (b1)))
 | |
| 
 | |
| static int
 | |
| __zpl_ioctl_setflags(struct inode *ip, uint32_t ioctl_flags, xvattr_t *xva)
 | |
| {
 | |
| 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
 | |
| 	xoptattr_t *xoap;
 | |
| 
 | |
| 	if (ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL |
 | |
| 	    ZFS_PROJINHERIT_FL))
 | |
| 		return (-EOPNOTSUPP);
 | |
| 
 | |
| 	if (ioctl_flags & ~ZFS_FL_USER_MODIFIABLE)
 | |
| 		return (-EACCES);
 | |
| 
 | |
| 	if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
 | |
| 	    fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
 | |
| 	    !capable(CAP_LINUX_IMMUTABLE))
 | |
| 		return (-EPERM);
 | |
| 
 | |
| 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
 | |
| 		return (-EACCES);
 | |
| 
 | |
| 	xva_init(xva);
 | |
| 	xoap = xva_getxoptattr(xva);
 | |
| 
 | |
| #define	FLAG_CHANGE(iflag, zflag, xflag, xfield)	do {	\
 | |
| 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (zflag))) ||	\
 | |
| 	    ((zfs_flags & (zflag)) && !(ioctl_flags & (iflag)))) {	\
 | |
| 		XVA_SET_REQ(xva, (xflag));	\
 | |
| 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
 | |
| 	}	\
 | |
| } while (0)
 | |
| 
 | |
| 	FLAG_CHANGE(FS_IMMUTABLE_FL, ZFS_IMMUTABLE, XAT_IMMUTABLE,
 | |
| 	    xoap->xoa_immutable);
 | |
| 	FLAG_CHANGE(FS_APPEND_FL, ZFS_APPENDONLY, XAT_APPENDONLY,
 | |
| 	    xoap->xoa_appendonly);
 | |
| 	FLAG_CHANGE(FS_NODUMP_FL, ZFS_NODUMP, XAT_NODUMP,
 | |
| 	    xoap->xoa_nodump);
 | |
| 	FLAG_CHANGE(ZFS_PROJINHERIT_FL, ZFS_PROJINHERIT, XAT_PROJINHERIT,
 | |
| 	    xoap->xoa_projinherit);
 | |
| 
 | |
| #undef	FLAG_CHANGE
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zpl_ioctl_setflags(struct file *filp, void __user *arg)
 | |
| {
 | |
| 	struct inode *ip = file_inode(filp);
 | |
| 	uint32_t flags;
 | |
| 	cred_t *cr = CRED();
 | |
| 	xvattr_t xva;
 | |
| 	int err;
 | |
| 	fstrans_cookie_t cookie;
 | |
| 
 | |
| 	if (copy_from_user(&flags, arg, sizeof (flags)))
 | |
| 		return (-EFAULT);
 | |
| 
 | |
| 	err = __zpl_ioctl_setflags(ip, flags, &xva);
 | |
| 	if (err)
 | |
| 		return (err);
 | |
| 
 | |
| 	crhold(cr);
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 	crfree(cr);
 | |
| 
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zpl_ioctl_getxattr(struct file *filp, void __user *arg)
 | |
| {
 | |
| 	zfsxattr_t fsx = { 0 };
 | |
| 	struct inode *ip = file_inode(filp);
 | |
| 	int err;
 | |
| 
 | |
| 	fsx.fsx_xflags = __zpl_ioctl_getflags(ip);
 | |
| 	fsx.fsx_projid = ITOZ(ip)->z_projid;
 | |
| 	err = copy_to_user(arg, &fsx, sizeof (fsx));
 | |
| 
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static int
 | |
| zpl_ioctl_setxattr(struct file *filp, void __user *arg)
 | |
| {
 | |
| 	struct inode *ip = file_inode(filp);
 | |
| 	zfsxattr_t fsx;
 | |
| 	cred_t *cr = CRED();
 | |
| 	xvattr_t xva;
 | |
| 	xoptattr_t *xoap;
 | |
| 	int err;
 | |
| 	fstrans_cookie_t cookie;
 | |
| 
 | |
| 	if (copy_from_user(&fsx, arg, sizeof (fsx)))
 | |
| 		return (-EFAULT);
 | |
| 
 | |
| 	if (!zpl_is_valid_projid(fsx.fsx_projid))
 | |
| 		return (-EINVAL);
 | |
| 
 | |
| 	err = __zpl_ioctl_setflags(ip, fsx.fsx_xflags, &xva);
 | |
| 	if (err)
 | |
| 		return (err);
 | |
| 
 | |
| 	xoap = xva_getxoptattr(&xva);
 | |
| 	XVA_SET_REQ(&xva, XAT_PROJID);
 | |
| 	xoap->xoa_projid = fsx.fsx_projid;
 | |
| 
 | |
| 	crhold(cr);
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 	crfree(cr);
 | |
| 
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Expose Additional File Level Attributes of ZFS.
 | |
|  */
 | |
| static int
 | |
| zpl_ioctl_getdosflags(struct file *filp, void __user *arg)
 | |
| {
 | |
| 	struct inode *ip = file_inode(filp);
 | |
| 	uint64_t dosflags = ITOZ(ip)->z_pflags;
 | |
| 	dosflags &= ZFS_DOS_FL_USER_VISIBLE;
 | |
| 	int err = copy_to_user(arg, &dosflags, sizeof (dosflags));
 | |
| 
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static int
 | |
| __zpl_ioctl_setdosflags(struct inode *ip, uint64_t ioctl_flags, xvattr_t *xva)
 | |
| {
 | |
| 	uint64_t zfs_flags = ITOZ(ip)->z_pflags;
 | |
| 	xoptattr_t *xoap;
 | |
| 
 | |
| 	if (ioctl_flags & (~ZFS_DOS_FL_USER_VISIBLE))
 | |
| 		return (-EOPNOTSUPP);
 | |
| 
 | |
| 	if ((fchange(ioctl_flags, zfs_flags, ZFS_IMMUTABLE, ZFS_IMMUTABLE) ||
 | |
| 	    fchange(ioctl_flags, zfs_flags, ZFS_APPENDONLY, ZFS_APPENDONLY)) &&
 | |
| 	    !capable(CAP_LINUX_IMMUTABLE))
 | |
| 		return (-EPERM);
 | |
| 
 | |
| 	if (!zpl_inode_owner_or_capable(zfs_init_idmap, ip))
 | |
| 		return (-EACCES);
 | |
| 
 | |
| 	xva_init(xva);
 | |
| 	xoap = xva_getxoptattr(xva);
 | |
| 
 | |
| #define	FLAG_CHANGE(iflag, xflag, xfield)	do {	\
 | |
| 	if (((ioctl_flags & (iflag)) && !(zfs_flags & (iflag))) ||	\
 | |
| 	    ((zfs_flags & (iflag)) && !(ioctl_flags & (iflag)))) {	\
 | |
| 		XVA_SET_REQ(xva, (xflag));	\
 | |
| 		(xfield) = ((ioctl_flags & (iflag)) != 0);	\
 | |
| 	}	\
 | |
| } while (0)
 | |
| 
 | |
| 	FLAG_CHANGE(ZFS_IMMUTABLE, XAT_IMMUTABLE, xoap->xoa_immutable);
 | |
| 	FLAG_CHANGE(ZFS_APPENDONLY, XAT_APPENDONLY, xoap->xoa_appendonly);
 | |
| 	FLAG_CHANGE(ZFS_NODUMP, XAT_NODUMP, xoap->xoa_nodump);
 | |
| 	FLAG_CHANGE(ZFS_READONLY, XAT_READONLY, xoap->xoa_readonly);
 | |
| 	FLAG_CHANGE(ZFS_HIDDEN, XAT_HIDDEN, xoap->xoa_hidden);
 | |
| 	FLAG_CHANGE(ZFS_SYSTEM, XAT_SYSTEM, xoap->xoa_system);
 | |
| 	FLAG_CHANGE(ZFS_ARCHIVE, XAT_ARCHIVE, xoap->xoa_archive);
 | |
| 	FLAG_CHANGE(ZFS_NOUNLINK, XAT_NOUNLINK, xoap->xoa_nounlink);
 | |
| 	FLAG_CHANGE(ZFS_REPARSE, XAT_REPARSE, xoap->xoa_reparse);
 | |
| 	FLAG_CHANGE(ZFS_OFFLINE, XAT_OFFLINE, xoap->xoa_offline);
 | |
| 	FLAG_CHANGE(ZFS_SPARSE, XAT_SPARSE, xoap->xoa_sparse);
 | |
| 
 | |
| #undef	FLAG_CHANGE
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set Additional File Level Attributes of ZFS.
 | |
|  */
 | |
| static int
 | |
| zpl_ioctl_setdosflags(struct file *filp, void __user *arg)
 | |
| {
 | |
| 	struct inode *ip = file_inode(filp);
 | |
| 	uint64_t dosflags;
 | |
| 	cred_t *cr = CRED();
 | |
| 	xvattr_t xva;
 | |
| 	int err;
 | |
| 	fstrans_cookie_t cookie;
 | |
| 
 | |
| 	if (copy_from_user(&dosflags, arg, sizeof (dosflags)))
 | |
| 		return (-EFAULT);
 | |
| 
 | |
| 	err = __zpl_ioctl_setdosflags(ip, dosflags, &xva);
 | |
| 	if (err)
 | |
| 		return (err);
 | |
| 
 | |
| 	crhold(cr);
 | |
| 	cookie = spl_fstrans_mark();
 | |
| 	err = -zfs_setattr(ITOZ(ip), (vattr_t *)&xva, 0, cr, zfs_init_idmap);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 	crfree(cr);
 | |
| 
 | |
| 	return (err);
 | |
| }
 | |
| 
 | |
| static long
 | |
| zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	switch (cmd) {
 | |
| 	case FS_IOC_GETVERSION:
 | |
| 		return (zpl_ioctl_getversion(filp, (void *)arg));
 | |
| 	case FS_IOC_GETFLAGS:
 | |
| 		return (zpl_ioctl_getflags(filp, (void *)arg));
 | |
| 	case FS_IOC_SETFLAGS:
 | |
| 		return (zpl_ioctl_setflags(filp, (void *)arg));
 | |
| 	case ZFS_IOC_FSGETXATTR:
 | |
| 		return (zpl_ioctl_getxattr(filp, (void *)arg));
 | |
| 	case ZFS_IOC_FSSETXATTR:
 | |
| 		return (zpl_ioctl_setxattr(filp, (void *)arg));
 | |
| 	case ZFS_IOC_GETDOSFLAGS:
 | |
| 		return (zpl_ioctl_getdosflags(filp, (void *)arg));
 | |
| 	case ZFS_IOC_SETDOSFLAGS:
 | |
| 		return (zpl_ioctl_setdosflags(filp, (void *)arg));
 | |
| 	case ZFS_IOC_COMPAT_FICLONE:
 | |
| 		return (zpl_ioctl_ficlone(filp, (void *)arg));
 | |
| 	case ZFS_IOC_COMPAT_FICLONERANGE:
 | |
| 		return (zpl_ioctl_ficlonerange(filp, (void *)arg));
 | |
| 	case ZFS_IOC_COMPAT_FIDEDUPERANGE:
 | |
| 		return (zpl_ioctl_fideduperange(filp, (void *)arg));
 | |
| 	default:
 | |
| 		return (-ENOTTY);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| static long
 | |
| zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	switch (cmd) {
 | |
| 	case FS_IOC32_GETVERSION:
 | |
| 		cmd = FS_IOC_GETVERSION;
 | |
| 		break;
 | |
| 	case FS_IOC32_GETFLAGS:
 | |
| 		cmd = FS_IOC_GETFLAGS;
 | |
| 		break;
 | |
| 	case FS_IOC32_SETFLAGS:
 | |
| 		cmd = FS_IOC_SETFLAGS;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return (-ENOTTY);
 | |
| 	}
 | |
| 	return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
 | |
| }
 | |
| #endif /* CONFIG_COMPAT */
 | |
| 
 | |
| const struct address_space_operations zpl_address_space_operations = {
 | |
| #ifdef HAVE_VFS_READPAGES
 | |
| 	.readpages	= zpl_readpages,
 | |
| #else
 | |
| 	.readahead	= zpl_readahead,
 | |
| #endif
 | |
| #ifdef HAVE_VFS_READ_FOLIO
 | |
| 	.read_folio	= zpl_read_folio,
 | |
| #else
 | |
| 	.readpage	= zpl_readpage,
 | |
| #endif
 | |
| 	.writepage	= zpl_writepage,
 | |
| 	.writepages	= zpl_writepages,
 | |
| 	.direct_IO	= zpl_direct_IO,
 | |
| #ifdef HAVE_VFS_SET_PAGE_DIRTY_NOBUFFERS
 | |
| 	.set_page_dirty = __set_page_dirty_nobuffers,
 | |
| #endif
 | |
| #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
 | |
| 	.dirty_folio	= filemap_dirty_folio,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
 | |
| const struct file_operations_extend zpl_file_operations = {
 | |
| 	.kabi_fops = {
 | |
| #else
 | |
| const struct file_operations zpl_file_operations = {
 | |
| #endif
 | |
| 	.open		= zpl_open,
 | |
| 	.release	= zpl_release,
 | |
| 	.llseek		= zpl_llseek,
 | |
| #ifdef HAVE_NEW_SYNC_READ
 | |
| 	.read		= new_sync_read,
 | |
| 	.write		= new_sync_write,
 | |
| #endif
 | |
| 	.read_iter	= zpl_iter_read,
 | |
| 	.write_iter	= zpl_iter_write,
 | |
| #ifdef HAVE_VFS_IOV_ITER
 | |
| #ifdef HAVE_COPY_SPLICE_READ
 | |
| 	.splice_read	= copy_splice_read,
 | |
| #else
 | |
| 	.splice_read	= generic_file_splice_read,
 | |
| #endif
 | |
| 	.splice_write	= iter_file_splice_write,
 | |
| #endif
 | |
| 	.mmap		= zpl_mmap,
 | |
| 	.fsync		= zpl_fsync,
 | |
| #ifdef HAVE_FILE_AIO_FSYNC
 | |
| 	.aio_fsync	= zpl_aio_fsync,
 | |
| #endif
 | |
| 	.fallocate	= zpl_fallocate,
 | |
| #ifdef HAVE_VFS_COPY_FILE_RANGE
 | |
| 	.copy_file_range	= zpl_copy_file_range,
 | |
| #endif
 | |
| #ifdef HAVE_VFS_CLONE_FILE_RANGE
 | |
| 	.clone_file_range	= zpl_clone_file_range,
 | |
| #endif
 | |
| #ifdef HAVE_VFS_REMAP_FILE_RANGE
 | |
| 	.remap_file_range	= zpl_remap_file_range,
 | |
| #endif
 | |
| #ifdef HAVE_VFS_DEDUPE_FILE_RANGE
 | |
| 	.dedupe_file_range	= zpl_dedupe_file_range,
 | |
| #endif
 | |
| #ifdef HAVE_FILE_FADVISE
 | |
| 	.fadvise	= zpl_fadvise,
 | |
| #endif
 | |
| 	.unlocked_ioctl	= zpl_ioctl,
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	.compat_ioctl	= zpl_compat_ioctl,
 | |
| #endif
 | |
| #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
 | |
| 	}, /* kabi_fops */
 | |
| 	.copy_file_range	= zpl_copy_file_range,
 | |
| 	.clone_file_range	= zpl_clone_file_range,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| const struct file_operations zpl_dir_file_operations = {
 | |
| 	.llseek		= generic_file_llseek,
 | |
| 	.read		= generic_read_dir,
 | |
| #if defined(HAVE_VFS_ITERATE_SHARED)
 | |
| 	.iterate_shared	= zpl_iterate,
 | |
| #elif defined(HAVE_VFS_ITERATE)
 | |
| 	.iterate	= zpl_iterate,
 | |
| #else
 | |
| 	.readdir	= zpl_readdir,
 | |
| #endif
 | |
| 	.fsync		= zpl_fsync,
 | |
| 	.unlocked_ioctl = zpl_ioctl,
 | |
| #ifdef CONFIG_COMPAT
 | |
| 	.compat_ioctl   = zpl_compat_ioctl,
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /* CSTYLED */
 | |
| module_param(zfs_fallocate_reserve_percent, uint, 0644);
 | |
| MODULE_PARM_DESC(zfs_fallocate_reserve_percent,
 | |
| 	"Percentage of length to use for the available capacity check");
 |