mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-13 03:30:34 +03:00
870fc32fc9
Most subcommands got their own manpages (e.g. create). Some related commands grouped into a single manpage and symlinks created (e.g. set, get, and inherit). I did this when topics were either too short to warrant their own file or so interrelated that a user would want to refer between commands in the same file. Corrected .Sx internal references to .Xr cross refs; lots of .Sx references from when text was all in zfs.8 needed to be changed to .Xr zfs-$SUBCOMMAND 8 cross references. Divided subcommand list in zfs(8) into sections of related functionality. This required writing new descriptions for some commands. Preserved ".Os Linux", `.Os` macro parsing behavior differs between mandoc from the "BSD" mandoc package (available on Ubuntu) and man from Ubuntu's man-db package, which calls groff to format the manpages. Groff handles the `.Os` macro differently and wrongly, defaulting it to "BSD" in `/usr/share/groff/*/tmac/mdoc/doc-common`, instead of getting the default from `uname`. A future set of changes will introduce build-time preprocessing of manpages for platform-specific documentation and can insert the correct operating system name. Added SEE ALSO sections, the newly-divided zfs-*.8 subcommand man pages needed their own SEE ALSO sections pointing to related subcommands and, in some cases, documentation from other packages (e.g. zfs-share.8). Reviewed-by: Matt Ahrens <matt@delphix.com> Reviewed-by: Kjeld Schouten <kjeld@schouten-lebbing.nl> Reviewed-by: Sean Eric Fagan <sef@ixsystems.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ross Williams <ross@ross-williams.net> Closes #9559
273 lines
8.3 KiB
Groff
273 lines
8.3 KiB
Groff
.\"
|
|
.\" CDDL HEADER START
|
|
.\"
|
|
.\" The contents of this file are subject to the terms of the
|
|
.\" Common Development and Distribution License (the "License").
|
|
.\" You may not use this file except in compliance with the License.
|
|
.\"
|
|
.\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
.\" or http://www.opensolaris.org/os/licensing.
|
|
.\" See the License for the specific language governing permissions
|
|
.\" and limitations under the License.
|
|
.\"
|
|
.\" When distributing Covered Code, include this CDDL HEADER in each
|
|
.\" file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
.\" If applicable, add the following below this CDDL HEADER, with the
|
|
.\" fields enclosed by brackets "[]" replaced with your own identifying
|
|
.\" information: Portions Copyright [yyyy] [name of copyright owner]
|
|
.\"
|
|
.\" CDDL HEADER END
|
|
.\"
|
|
.\"
|
|
.\" Copyright (c) 2009 Sun Microsystems, Inc. All Rights Reserved.
|
|
.\" Copyright 2011 Joshua M. Clulow <josh@sysmgr.org>
|
|
.\" Copyright (c) 2011, 2019 by Delphix. All rights reserved.
|
|
.\" Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
|
|
.\" Copyright (c) 2014, Joyent, Inc. All rights reserved.
|
|
.\" Copyright (c) 2014 by Adam Stevko. All rights reserved.
|
|
.\" Copyright (c) 2014 Integros [integros.com]
|
|
.\" Copyright 2019 Richard Laager. All rights reserved.
|
|
.\" Copyright 2018 Nexenta Systems, Inc.
|
|
.\" Copyright 2019 Joyent, Inc.
|
|
.\"
|
|
.Dd June 30, 2019
|
|
.Dt ZFS-LOAD-KEY 8
|
|
.Os Linux
|
|
.Sh NAME
|
|
.Nm zfs Ns Pf - Cm load-key
|
|
.Nd Load, unload, or change the encryption key used to access a dataset.
|
|
.Sh SYNOPSIS
|
|
.Nm
|
|
.Cm load-key
|
|
.Op Fl nr
|
|
.Op Fl L Ar keylocation
|
|
.Fl a | Ar filesystem
|
|
.Nm
|
|
.Cm unload-key
|
|
.Op Fl r
|
|
.Fl a | Ar filesystem
|
|
.Nm
|
|
.Cm change-key
|
|
.Op Fl l
|
|
.Op Fl o Ar keylocation Ns = Ns Ar value
|
|
.Op Fl o Ar keyformat Ns = Ns Ar value
|
|
.Op Fl o Ar pbkdf2iters Ns = Ns Ar value
|
|
.Ar filesystem
|
|
.Nm
|
|
.Cm change-key
|
|
.Fl i
|
|
.Op Fl l
|
|
.Ar filesystem
|
|
.Sh DESCRIPTION
|
|
.Bl -tag -width ""
|
|
.It Xo
|
|
.Nm
|
|
.Cm load-key
|
|
.Op Fl nr
|
|
.Op Fl L Ar keylocation
|
|
.Fl a | Ar filesystem
|
|
.Xc
|
|
Load the key for
|
|
.Ar filesystem ,
|
|
allowing it and all children that inherit the
|
|
.Sy keylocation
|
|
property to be accessed. The key will be expected in the format specified by the
|
|
.Sy keyformat
|
|
and location specified by the
|
|
.Sy keylocation
|
|
property. Note that if the
|
|
.Sy keylocation
|
|
is set to
|
|
.Sy prompt
|
|
the terminal will interactively wait for the key to be entered. Loading a key
|
|
will not automatically mount the dataset. If that functionality is desired,
|
|
.Nm zfs Cm mount Sy -l
|
|
will ask for the key and mount the dataset
|
|
.Po
|
|
see
|
|
.Xr zfs-mount 8
|
|
.Pc .
|
|
Once the key is loaded the
|
|
.Sy keystatus
|
|
property will become
|
|
.Sy available .
|
|
.Bl -tag -width "-r"
|
|
.It Fl r
|
|
Recursively loads the keys for the specified filesystem and all descendent
|
|
encryption roots.
|
|
.It Fl a
|
|
Loads the keys for all encryption roots in all imported pools.
|
|
.It Fl n
|
|
Do a dry-run
|
|
.Pq Qq No-op
|
|
load-key. This will cause zfs to simply check that the
|
|
provided key is correct. This command may be run even if the key is already
|
|
loaded.
|
|
.It Fl L Ar keylocation
|
|
Use
|
|
.Ar keylocation
|
|
instead of the
|
|
.Sy keylocation
|
|
property. This will not change the value of the property on the dataset. Note
|
|
that if used with either
|
|
.Fl r
|
|
or
|
|
.Fl a ,
|
|
.Ar keylocation
|
|
may only be given as
|
|
.Sy prompt .
|
|
.El
|
|
.It Xo
|
|
.Nm
|
|
.Cm unload-key
|
|
.Op Fl r
|
|
.Fl a | Ar filesystem
|
|
.Xc
|
|
Unloads a key from ZFS, removing the ability to access the dataset and all of
|
|
its children that inherit the
|
|
.Sy keylocation
|
|
property. This requires that the dataset is not currently open or mounted. Once
|
|
the key is unloaded the
|
|
.Sy keystatus
|
|
property will become
|
|
.Sy unavailable .
|
|
.Bl -tag -width "-r"
|
|
.It Fl r
|
|
Recursively unloads the keys for the specified filesystem and all descendent
|
|
encryption roots.
|
|
.It Fl a
|
|
Unloads the keys for all encryption roots in all imported pools.
|
|
.El
|
|
.It Xo
|
|
.Nm
|
|
.Cm change-key
|
|
.Op Fl l
|
|
.Op Fl o Ar keylocation Ns = Ns Ar value
|
|
.Op Fl o Ar keyformat Ns = Ns Ar value
|
|
.Op Fl o Ar pbkdf2iters Ns = Ns Ar value
|
|
.Ar filesystem
|
|
.Xc
|
|
.It Xo
|
|
.Nm
|
|
.Cm change-key
|
|
.Fl i
|
|
.Op Fl l
|
|
.Ar filesystem
|
|
.Xc
|
|
Allows a user to change the encryption key used to access a dataset. This
|
|
command requires that the existing key for the dataset is already loaded into
|
|
ZFS. This command may also be used to change the
|
|
.Sy keylocation ,
|
|
.Sy keyformat ,
|
|
and
|
|
.Sy pbkdf2iters
|
|
properties as needed. If the dataset was not previously an encryption root it
|
|
will become one. Alternatively, the
|
|
.Fl i
|
|
flag may be provided to cause an encryption root to inherit the parent's key
|
|
instead.
|
|
.Bl -tag -width "-r"
|
|
.It Fl l
|
|
Ensures the key is loaded before attempting to change the key. This is
|
|
effectively equivalent to
|
|
.Qq Nm zfs Cm load-key Ar filesystem ; Nm zfs Cm change-key Ar filesystem
|
|
.It Fl o Ar property Ns = Ns Ar value
|
|
Allows the user to set encryption key properties (
|
|
.Sy keyformat ,
|
|
.Sy keylocation ,
|
|
and
|
|
.Sy pbkdf2iters
|
|
) while changing the key. This is the only way to alter
|
|
.Sy keyformat
|
|
and
|
|
.Sy pbkdf2iters
|
|
after the dataset has been created.
|
|
.It Fl i
|
|
Indicates that zfs should make
|
|
.Ar filesystem
|
|
inherit the key of its parent. Note that this command can only be run on an
|
|
encryption root that has an encrypted parent.
|
|
.El
|
|
.El
|
|
.Ss Encryption
|
|
Enabling the
|
|
.Sy encryption
|
|
feature allows for the creation of encrypted filesystems and volumes. ZFS
|
|
will encrypt file and zvol data, file attributes, ACLs, permission bits,
|
|
directory listings, FUID mappings, and
|
|
.Sy userused
|
|
/
|
|
.Sy groupused
|
|
data. ZFS will not encrypt metadata related to the pool structure, including
|
|
dataset and snapshot names, dataset hierarchy, properties, file size, file
|
|
holes, and deduplication tables (though the deduplicated data itself is
|
|
encrypted).
|
|
.Pp
|
|
Key rotation is managed by ZFS. Changing the user's key (e.g. a passphrase)
|
|
does not require re-encrypting the entire dataset. Datasets can be scrubbed,
|
|
resilvered, renamed, and deleted without the encryption keys being loaded (see the
|
|
.Nm zfs Cm load-key
|
|
subcommand for more info on key loading).
|
|
.Pp
|
|
Creating an encrypted dataset requires specifying the
|
|
.Sy encryption
|
|
and
|
|
.Sy keyformat
|
|
properties at creation time, along with an optional
|
|
.Sy keylocation
|
|
and
|
|
.Sy pbkdf2iters .
|
|
After entering an encryption key, the
|
|
created dataset will become an encryption root. Any descendant datasets will
|
|
inherit their encryption key from the encryption root by default, meaning that
|
|
loading, unloading, or changing the key for the encryption root will implicitly
|
|
do the same for all inheriting datasets. If this inheritance is not desired,
|
|
simply supply a
|
|
.Sy keyformat
|
|
when creating the child dataset or use
|
|
.Nm zfs Cm change-key
|
|
to break an existing relationship, creating a new encryption root on the child.
|
|
Note that the child's
|
|
.Sy keyformat
|
|
may match that of the parent while still creating a new encryption root, and
|
|
that changing the
|
|
.Sy encryption
|
|
property alone does not create a new encryption root; this would simply use a
|
|
different cipher suite with the same key as its encryption root. The one
|
|
exception is that clones will always use their origin's encryption key.
|
|
As a result of this exception, some encryption-related properties (namely
|
|
.Sy keystatus ,
|
|
.Sy keyformat ,
|
|
.Sy keylocation ,
|
|
and
|
|
.Sy pbkdf2iters )
|
|
do not inherit like other ZFS properties and instead use the value determined
|
|
by their encryption root. Encryption root inheritance can be tracked via the
|
|
read-only
|
|
.Sy encryptionroot
|
|
property.
|
|
.Pp
|
|
Encryption changes the behavior of a few ZFS
|
|
operations. Encryption is applied after compression so compression ratios are
|
|
preserved. Normally checksums in ZFS are 256 bits long, but for encrypted data
|
|
the checksum is 128 bits of the user-chosen checksum and 128 bits of MAC from
|
|
the encryption suite, which provides additional protection against maliciously
|
|
altered data. Deduplication is still possible with encryption enabled but for
|
|
security, datasets will only dedup against themselves, their snapshots, and
|
|
their clones.
|
|
.Pp
|
|
There are a few limitations on encrypted datasets. Encrypted data cannot be
|
|
embedded via the
|
|
.Sy embedded_data
|
|
feature. Encrypted datasets may not have
|
|
.Sy copies Ns = Ns Em 3
|
|
since the implementation stores some encryption metadata where the third copy
|
|
would normally be. Since compression is applied before encryption datasets may
|
|
be vulnerable to a CRIME-like attack if applications accessing the data allow
|
|
for it. Deduplication with encryption will leak information about which blocks
|
|
are equivalent in a dataset and will incur an extra CPU cost per block written.
|
|
.Sh SEE ALSO
|
|
.Xr zfs-create 8 ,
|
|
.Xr zfs-set 8 ,
|
|
.Xr zfsprops 8
|