mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-12-26 19:19:32 +03:00
09453dea6a
Coverity complained about a couple of uninitialized value reads in ZED. * zfs_deliver_dle() can pass an uninitialized string to zed_log_msg() * An uninitialized sev.sigev_signo is passed to timer_create() The former would log garbage while the latter is not a real issue, but we might as well suppress it by initializing the field to 0 for consistency's sake. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #14047
1287 lines
37 KiB
C
1287 lines
37 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012 by Delphix. All rights reserved.
|
|
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2016, 2017, Intel Corporation.
|
|
* Copyright (c) 2017 Open-E, Inc. All Rights Reserved.
|
|
*/
|
|
|
|
/*
|
|
* ZFS syseventd module.
|
|
*
|
|
* file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c
|
|
*
|
|
* The purpose of this module is to identify when devices are added to the
|
|
* system, and appropriately online or replace the affected vdevs.
|
|
*
|
|
* When a device is added to the system:
|
|
*
|
|
* 1. Search for any vdevs whose devid matches that of the newly added
|
|
* device.
|
|
*
|
|
* 2. If no vdevs are found, then search for any vdevs whose udev path
|
|
* matches that of the new device.
|
|
*
|
|
* 3. If no vdevs match by either method, then ignore the event.
|
|
*
|
|
* 4. Attempt to online the device with a flag to indicate that it should
|
|
* be unspared when resilvering completes. If this succeeds, then the
|
|
* same device was inserted and we should continue normally.
|
|
*
|
|
* 5. If the pool does not have the 'autoreplace' property set, attempt to
|
|
* online the device again without the unspare flag, which will
|
|
* generate a FMA fault.
|
|
*
|
|
* 6. If the pool has the 'autoreplace' property set, and the matching vdev
|
|
* is a whole disk, then label the new disk and attempt a 'zpool
|
|
* replace'.
|
|
*
|
|
* The module responds to EC_DEV_ADD events. The special ESC_ZFS_VDEV_CHECK
|
|
* event indicates that a device failed to open during pool load, but the
|
|
* autoreplace property was set. In this case, we deferred the associated
|
|
* FMA fault until our module had a chance to process the autoreplace logic.
|
|
* If the device could not be replaced, then the second online attempt will
|
|
* trigger the FMA fault that we skipped earlier.
|
|
*
|
|
* On Linux udev provides a disk insert for both the disk and the partition.
|
|
*/
|
|
|
|
#include <ctype.h>
|
|
#include <fcntl.h>
|
|
#include <libnvpair.h>
|
|
#include <libzfs.h>
|
|
#include <libzutil.h>
|
|
#include <limits.h>
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <syslog.h>
|
|
#include <sys/list.h>
|
|
#include <sys/sunddi.h>
|
|
#include <sys/sysevent/eventdefs.h>
|
|
#include <sys/sysevent/dev.h>
|
|
#include <thread_pool.h>
|
|
#include <pthread.h>
|
|
#include <unistd.h>
|
|
#include <errno.h>
|
|
#include "zfs_agents.h"
|
|
#include "../zed_log.h"
|
|
|
|
#define DEV_BYID_PATH "/dev/disk/by-id/"
|
|
#define DEV_BYPATH_PATH "/dev/disk/by-path/"
|
|
#define DEV_BYVDEV_PATH "/dev/disk/by-vdev/"
|
|
|
|
typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t);
|
|
|
|
libzfs_handle_t *g_zfshdl;
|
|
list_t g_pool_list; /* list of unavailable pools at initialization */
|
|
list_t g_device_list; /* list of disks with asynchronous label request */
|
|
tpool_t *g_tpool;
|
|
boolean_t g_enumeration_done;
|
|
pthread_t g_zfs_tid; /* zfs_enum_pools() thread */
|
|
|
|
typedef struct unavailpool {
|
|
zpool_handle_t *uap_zhp;
|
|
list_node_t uap_node;
|
|
} unavailpool_t;
|
|
|
|
typedef struct pendingdev {
|
|
char pd_physpath[128];
|
|
list_node_t pd_node;
|
|
} pendingdev_t;
|
|
|
|
static int
|
|
zfs_toplevel_state(zpool_handle_t *zhp)
|
|
{
|
|
nvlist_t *nvroot;
|
|
vdev_stat_t *vs;
|
|
unsigned int c;
|
|
|
|
verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL),
|
|
ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
|
|
verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS,
|
|
(uint64_t **)&vs, &c) == 0);
|
|
return (vs->vs_state);
|
|
}
|
|
|
|
static int
|
|
zfs_unavail_pool(zpool_handle_t *zhp, void *data)
|
|
{
|
|
zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)",
|
|
zpool_get_name(zhp), (int)zfs_toplevel_state(zhp));
|
|
|
|
if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) {
|
|
unavailpool_t *uap;
|
|
uap = malloc(sizeof (unavailpool_t));
|
|
if (uap == NULL) {
|
|
perror("malloc");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
uap->uap_zhp = zhp;
|
|
list_insert_tail((list_t *)data, uap);
|
|
} else {
|
|
zpool_close(zhp);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Two stage replace on Linux
|
|
* since we get disk notifications
|
|
* we can wait for partitioned disk slice to show up!
|
|
*
|
|
* First stage tags the disk, initiates async partitioning, and returns
|
|
* Second stage finds the tag and proceeds to ZFS labeling/replace
|
|
*
|
|
* disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach
|
|
*
|
|
* 1. physical match with no fs, no partition
|
|
* tag it top, partition disk
|
|
*
|
|
* 2. physical match again, see partition and tag
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* The device associated with the given vdev (either by devid or physical path)
|
|
* has been added to the system. If 'isdisk' is set, then we only attempt a
|
|
* replacement if it's a whole disk. This also implies that we should label the
|
|
* disk first.
|
|
*
|
|
* First, we attempt to online the device (making sure to undo any spare
|
|
* operation when finished). If this succeeds, then we're done. If it fails,
|
|
* and the new state is VDEV_CANT_OPEN, it indicates that the device was opened,
|
|
* but that the label was not what we expected. If the 'autoreplace' property
|
|
* is enabled, then we relabel the disk (if specified), and attempt a 'zpool
|
|
* replace'. If the online is successful, but the new state is something else
|
|
* (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of
|
|
* race, and we should avoid attempting to relabel the disk.
|
|
*
|
|
* Also can arrive here from a ESC_ZFS_VDEV_CHECK event
|
|
*/
|
|
static void
|
|
zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled)
|
|
{
|
|
char *path;
|
|
vdev_state_t newstate;
|
|
nvlist_t *nvroot, *newvd;
|
|
pendingdev_t *device;
|
|
uint64_t wholedisk = 0ULL;
|
|
uint64_t offline = 0ULL, faulted = 0ULL;
|
|
uint64_t guid = 0ULL;
|
|
char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL;
|
|
char rawpath[PATH_MAX], fullpath[PATH_MAX];
|
|
char devpath[PATH_MAX];
|
|
int ret;
|
|
boolean_t is_sd = B_FALSE;
|
|
boolean_t is_mpath_wholedisk = B_FALSE;
|
|
uint_t c;
|
|
vdev_stat_t *vs;
|
|
|
|
if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0)
|
|
return;
|
|
|
|
/* Skip healthy disks */
|
|
verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS,
|
|
(uint64_t **)&vs, &c) == 0);
|
|
if (vs->vs_state == VDEV_STATE_HEALTHY) {
|
|
zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.",
|
|
__func__, path);
|
|
return;
|
|
}
|
|
|
|
(void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath);
|
|
(void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
|
|
&enc_sysfs_path);
|
|
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
|
|
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline);
|
|
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_FAULTED, &faulted);
|
|
|
|
(void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid);
|
|
|
|
/*
|
|
* Special case:
|
|
*
|
|
* We've seen times where a disk won't have a ZPOOL_CONFIG_PHYS_PATH
|
|
* entry in their config. For example, on this force-faulted disk:
|
|
*
|
|
* children[0]:
|
|
* type: 'disk'
|
|
* id: 0
|
|
* guid: 14309659774640089719
|
|
* path: '/dev/disk/by-vdev/L28'
|
|
* whole_disk: 0
|
|
* DTL: 654
|
|
* create_txg: 4
|
|
* com.delphix:vdev_zap_leaf: 1161
|
|
* faulted: 1
|
|
* aux_state: 'external'
|
|
* children[1]:
|
|
* type: 'disk'
|
|
* id: 1
|
|
* guid: 16002508084177980912
|
|
* path: '/dev/disk/by-vdev/L29'
|
|
* devid: 'dm-uuid-mpath-35000c500a61d68a3'
|
|
* phys_path: 'L29'
|
|
* vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
|
|
* whole_disk: 0
|
|
* DTL: 1028
|
|
* create_txg: 4
|
|
* com.delphix:vdev_zap_leaf: 131
|
|
*
|
|
* If the disk's path is a /dev/disk/by-vdev/ path, then we can infer
|
|
* the ZPOOL_CONFIG_PHYS_PATH from the by-vdev disk name.
|
|
*/
|
|
if (physpath == NULL && path != NULL) {
|
|
/* If path begins with "/dev/disk/by-vdev/" ... */
|
|
if (strncmp(path, DEV_BYVDEV_PATH,
|
|
strlen(DEV_BYVDEV_PATH)) == 0) {
|
|
/* Set physpath to the char after "/dev/disk/by-vdev" */
|
|
physpath = &path[strlen(DEV_BYVDEV_PATH)];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We don't want to autoreplace offlined disks. However, we do want to
|
|
* replace force-faulted disks (`zpool offline -f`). Force-faulted
|
|
* disks have both offline=1 and faulted=1 in the nvlist.
|
|
*/
|
|
if (offline && !faulted) {
|
|
zed_log_msg(LOG_INFO, "%s: %s is offline, skip autoreplace",
|
|
__func__, path);
|
|
return;
|
|
}
|
|
|
|
is_mpath_wholedisk = is_mpath_whole_disk(path);
|
|
zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'"
|
|
" %s blank disk, %s mpath blank disk, %s labeled, enc sysfs '%s', "
|
|
"(guid %llu)",
|
|
zpool_get_name(zhp), path,
|
|
physpath ? physpath : "NULL",
|
|
wholedisk ? "is" : "not",
|
|
is_mpath_wholedisk? "is" : "not",
|
|
labeled ? "is" : "not",
|
|
enc_sysfs_path,
|
|
(long long unsigned int)guid);
|
|
|
|
/*
|
|
* The VDEV guid is preferred for identification (gets passed in path)
|
|
*/
|
|
if (guid != 0) {
|
|
(void) snprintf(fullpath, sizeof (fullpath), "%llu",
|
|
(long long unsigned int)guid);
|
|
} else {
|
|
/*
|
|
* otherwise use path sans partition suffix for whole disks
|
|
*/
|
|
(void) strlcpy(fullpath, path, sizeof (fullpath));
|
|
if (wholedisk) {
|
|
char *spath = zfs_strip_partition(fullpath);
|
|
if (!spath) {
|
|
zed_log_msg(LOG_INFO, "%s: Can't alloc",
|
|
__func__);
|
|
return;
|
|
}
|
|
|
|
(void) strlcpy(fullpath, spath, sizeof (fullpath));
|
|
free(spath);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Attempt to online the device.
|
|
*/
|
|
if (zpool_vdev_online(zhp, fullpath,
|
|
ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE, &newstate) == 0 &&
|
|
(newstate == VDEV_STATE_HEALTHY ||
|
|
newstate == VDEV_STATE_DEGRADED)) {
|
|
zed_log_msg(LOG_INFO,
|
|
" zpool_vdev_online: vdev '%s' ('%s') is "
|
|
"%s", fullpath, physpath, (newstate == VDEV_STATE_HEALTHY) ?
|
|
"HEALTHY" : "DEGRADED");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* vdev_id alias rule for using scsi_debug devices (FMA automated
|
|
* testing)
|
|
*/
|
|
if (physpath != NULL && strcmp("scsidebug", physpath) == 0)
|
|
is_sd = B_TRUE;
|
|
|
|
/*
|
|
* If the pool doesn't have the autoreplace property set, then use
|
|
* vdev online to trigger a FMA fault by posting an ereport.
|
|
*/
|
|
if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) ||
|
|
!(wholedisk || is_mpath_wholedisk) || (physpath == NULL)) {
|
|
(void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
|
|
&newstate);
|
|
zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or "
|
|
"not a blank disk for '%s' ('%s')", fullpath,
|
|
physpath);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Convert physical path into its current device node. Rawpath
|
|
* needs to be /dev/disk/by-vdev for a scsi_debug device since
|
|
* /dev/disk/by-path will not be present.
|
|
*/
|
|
(void) snprintf(rawpath, sizeof (rawpath), "%s%s",
|
|
is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath);
|
|
|
|
if (realpath(rawpath, devpath) == NULL && !is_mpath_wholedisk) {
|
|
zed_log_msg(LOG_INFO, " realpath: %s failed (%s)",
|
|
rawpath, strerror(errno));
|
|
|
|
(void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
|
|
&newstate);
|
|
|
|
zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s)",
|
|
fullpath, libzfs_error_description(g_zfshdl));
|
|
return;
|
|
}
|
|
|
|
/* Only autoreplace bad disks */
|
|
if ((vs->vs_state != VDEV_STATE_DEGRADED) &&
|
|
(vs->vs_state != VDEV_STATE_FAULTED) &&
|
|
(vs->vs_state != VDEV_STATE_CANT_OPEN)) {
|
|
zed_log_msg(LOG_INFO, " not autoreplacing since disk isn't in "
|
|
"a bad state (currently %llu)", vs->vs_state);
|
|
return;
|
|
}
|
|
|
|
nvlist_lookup_string(vdev, "new_devid", &new_devid);
|
|
|
|
if (is_mpath_wholedisk) {
|
|
/* Don't label device mapper or multipath disks. */
|
|
} else if (!labeled) {
|
|
/*
|
|
* we're auto-replacing a raw disk, so label it first
|
|
*/
|
|
char *leafname;
|
|
|
|
/*
|
|
* If this is a request to label a whole disk, then attempt to
|
|
* write out the label. Before we can label the disk, we need
|
|
* to map the physical string that was matched on to the under
|
|
* lying device node.
|
|
*
|
|
* If any part of this process fails, then do a force online
|
|
* to trigger a ZFS fault for the device (and any hot spare
|
|
* replacement).
|
|
*/
|
|
leafname = strrchr(devpath, '/') + 1;
|
|
|
|
/*
|
|
* If this is a request to label a whole disk, then attempt to
|
|
* write out the label.
|
|
*/
|
|
if (zpool_label_disk(g_zfshdl, zhp, leafname) != 0) {
|
|
zed_log_msg(LOG_INFO, " zpool_label_disk: could not "
|
|
"label '%s' (%s)", leafname,
|
|
libzfs_error_description(g_zfshdl));
|
|
|
|
(void) zpool_vdev_online(zhp, fullpath,
|
|
ZFS_ONLINE_FORCEFAULT, &newstate);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The disk labeling is asynchronous on Linux. Just record
|
|
* this label request and return as there will be another
|
|
* disk add event for the partition after the labeling is
|
|
* completed.
|
|
*/
|
|
device = malloc(sizeof (pendingdev_t));
|
|
if (device == NULL) {
|
|
perror("malloc");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
(void) strlcpy(device->pd_physpath, physpath,
|
|
sizeof (device->pd_physpath));
|
|
list_insert_tail(&g_device_list, device);
|
|
|
|
zed_log_msg(LOG_INFO, " zpool_label_disk: async '%s' (%llu)",
|
|
leafname, (u_longlong_t)guid);
|
|
|
|
return; /* resumes at EC_DEV_ADD.ESC_DISK for partition */
|
|
|
|
} else /* labeled */ {
|
|
boolean_t found = B_FALSE;
|
|
/*
|
|
* match up with request above to label the disk
|
|
*/
|
|
for (device = list_head(&g_device_list); device != NULL;
|
|
device = list_next(&g_device_list, device)) {
|
|
if (strcmp(physpath, device->pd_physpath) == 0) {
|
|
list_remove(&g_device_list, device);
|
|
free(device);
|
|
found = B_TRUE;
|
|
break;
|
|
}
|
|
zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s",
|
|
physpath, device->pd_physpath);
|
|
}
|
|
if (!found) {
|
|
/* unexpected partition slice encountered */
|
|
zed_log_msg(LOG_INFO, "labeled disk %s unexpected here",
|
|
fullpath);
|
|
(void) zpool_vdev_online(zhp, fullpath,
|
|
ZFS_ONLINE_FORCEFAULT, &newstate);
|
|
return;
|
|
}
|
|
|
|
zed_log_msg(LOG_INFO, " zpool_label_disk: resume '%s' (%llu)",
|
|
physpath, (u_longlong_t)guid);
|
|
|
|
(void) snprintf(devpath, sizeof (devpath), "%s%s",
|
|
DEV_BYID_PATH, new_devid);
|
|
}
|
|
|
|
/*
|
|
* Construct the root vdev to pass to zpool_vdev_attach(). While adding
|
|
* the entire vdev structure is harmless, we construct a reduced set of
|
|
* path/physpath/wholedisk to keep it simple.
|
|
*/
|
|
if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) {
|
|
zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
|
|
return;
|
|
}
|
|
if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) {
|
|
zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
|
|
nvlist_free(nvroot);
|
|
return;
|
|
}
|
|
|
|
if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 ||
|
|
nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 ||
|
|
nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 ||
|
|
(physpath != NULL && nvlist_add_string(newvd,
|
|
ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) ||
|
|
(enc_sysfs_path != NULL && nvlist_add_string(newvd,
|
|
ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) ||
|
|
nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 ||
|
|
nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 ||
|
|
nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
|
|
(const nvlist_t **)&newvd, 1) != 0) {
|
|
zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs");
|
|
nvlist_free(newvd);
|
|
nvlist_free(nvroot);
|
|
return;
|
|
}
|
|
|
|
nvlist_free(newvd);
|
|
|
|
/*
|
|
* Wait for udev to verify the links exist, then auto-replace
|
|
* the leaf disk at same physical location.
|
|
*/
|
|
if (zpool_label_disk_wait(path, 3000) != 0) {
|
|
zed_log_msg(LOG_WARNING, "zfs_mod: expected replacement "
|
|
"disk %s is missing", path);
|
|
nvlist_free(nvroot);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Prefer sequential resilvering when supported (mirrors and dRAID),
|
|
* otherwise fallback to a traditional healing resilver.
|
|
*/
|
|
ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE);
|
|
if (ret != 0) {
|
|
ret = zpool_vdev_attach(zhp, fullpath, path, nvroot,
|
|
B_TRUE, B_FALSE);
|
|
}
|
|
|
|
zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)",
|
|
fullpath, path, (ret == 0) ? "no errors" :
|
|
libzfs_error_description(g_zfshdl));
|
|
|
|
nvlist_free(nvroot);
|
|
}
|
|
|
|
/*
|
|
* Utility functions to find a vdev matching given criteria.
|
|
*/
|
|
typedef struct dev_data {
|
|
const char *dd_compare;
|
|
const char *dd_prop;
|
|
zfs_process_func_t dd_func;
|
|
boolean_t dd_found;
|
|
boolean_t dd_islabeled;
|
|
uint64_t dd_pool_guid;
|
|
uint64_t dd_vdev_guid;
|
|
const char *dd_new_devid;
|
|
} dev_data_t;
|
|
|
|
static void
|
|
zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data)
|
|
{
|
|
dev_data_t *dp = data;
|
|
char *path = NULL;
|
|
uint_t c, children;
|
|
nvlist_t **child;
|
|
|
|
/*
|
|
* First iterate over any children.
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN,
|
|
&child, &children) == 0) {
|
|
for (c = 0; c < children; c++)
|
|
zfs_iter_vdev(zhp, child[c], data);
|
|
}
|
|
|
|
/*
|
|
* Iterate over any spares and cache devices
|
|
*/
|
|
if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_SPARES,
|
|
&child, &children) == 0) {
|
|
for (c = 0; c < children; c++)
|
|
zfs_iter_vdev(zhp, child[c], data);
|
|
}
|
|
if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_L2CACHE,
|
|
&child, &children) == 0) {
|
|
for (c = 0; c < children; c++)
|
|
zfs_iter_vdev(zhp, child[c], data);
|
|
}
|
|
|
|
/* once a vdev was matched and processed there is nothing left to do */
|
|
if (dp->dd_found)
|
|
return;
|
|
|
|
/*
|
|
* Match by GUID if available otherwise fallback to devid or physical
|
|
*/
|
|
if (dp->dd_vdev_guid != 0) {
|
|
uint64_t guid;
|
|
|
|
if (nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID,
|
|
&guid) != 0 || guid != dp->dd_vdev_guid) {
|
|
return;
|
|
}
|
|
zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched on %llu", guid);
|
|
dp->dd_found = B_TRUE;
|
|
|
|
} else if (dp->dd_compare != NULL) {
|
|
/*
|
|
* NOTE: On Linux there is an event for partition, so unlike
|
|
* illumos, substring matching is not required to accommodate
|
|
* the partition suffix. An exact match will be present in
|
|
* the dp->dd_compare value.
|
|
*/
|
|
if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 ||
|
|
strcmp(dp->dd_compare, path) != 0) {
|
|
zed_log_msg(LOG_INFO, " %s: no match (%s != vdev %s)",
|
|
__func__, dp->dd_compare, path);
|
|
return;
|
|
}
|
|
|
|
zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched %s on %s",
|
|
dp->dd_prop, path);
|
|
dp->dd_found = B_TRUE;
|
|
|
|
/* pass the new devid for use by replacing code */
|
|
if (dp->dd_new_devid != NULL) {
|
|
(void) nvlist_add_string(nvl, "new_devid",
|
|
dp->dd_new_devid);
|
|
}
|
|
}
|
|
|
|
(dp->dd_func)(zhp, nvl, dp->dd_islabeled);
|
|
}
|
|
|
|
static void
|
|
zfs_enable_ds(void *arg)
|
|
{
|
|
unavailpool_t *pool = (unavailpool_t *)arg;
|
|
|
|
(void) zpool_enable_datasets(pool->uap_zhp, NULL, 0);
|
|
zpool_close(pool->uap_zhp);
|
|
free(pool);
|
|
}
|
|
|
|
static int
|
|
zfs_iter_pool(zpool_handle_t *zhp, void *data)
|
|
{
|
|
nvlist_t *config, *nvl;
|
|
dev_data_t *dp = data;
|
|
uint64_t pool_guid;
|
|
unavailpool_t *pool;
|
|
|
|
zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)",
|
|
zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop);
|
|
|
|
/*
|
|
* For each vdev in this pool, look for a match to apply dd_func
|
|
*/
|
|
if ((config = zpool_get_config(zhp, NULL)) != NULL) {
|
|
if (dp->dd_pool_guid == 0 ||
|
|
(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
|
|
&pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) {
|
|
(void) nvlist_lookup_nvlist(config,
|
|
ZPOOL_CONFIG_VDEV_TREE, &nvl);
|
|
zfs_iter_vdev(zhp, nvl, data);
|
|
}
|
|
} else {
|
|
zed_log_msg(LOG_INFO, "%s: no config\n", __func__);
|
|
}
|
|
|
|
/*
|
|
* if this pool was originally unavailable,
|
|
* then enable its datasets asynchronously
|
|
*/
|
|
if (g_enumeration_done) {
|
|
for (pool = list_head(&g_pool_list); pool != NULL;
|
|
pool = list_next(&g_pool_list, pool)) {
|
|
|
|
if (strcmp(zpool_get_name(zhp),
|
|
zpool_get_name(pool->uap_zhp)))
|
|
continue;
|
|
if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) {
|
|
list_remove(&g_pool_list, pool);
|
|
(void) tpool_dispatch(g_tpool, zfs_enable_ds,
|
|
pool);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
zpool_close(zhp);
|
|
return (dp->dd_found); /* cease iteration after a match */
|
|
}
|
|
|
|
/*
|
|
* Given a physical device location, iterate over all
|
|
* (pool, vdev) pairs which correspond to that location.
|
|
*/
|
|
static boolean_t
|
|
devphys_iter(const char *physical, const char *devid, zfs_process_func_t func,
|
|
boolean_t is_slice)
|
|
{
|
|
dev_data_t data = { 0 };
|
|
|
|
data.dd_compare = physical;
|
|
data.dd_func = func;
|
|
data.dd_prop = ZPOOL_CONFIG_PHYS_PATH;
|
|
data.dd_found = B_FALSE;
|
|
data.dd_islabeled = is_slice;
|
|
data.dd_new_devid = devid; /* used by auto replace code */
|
|
|
|
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
|
|
|
|
return (data.dd_found);
|
|
}
|
|
|
|
/*
|
|
* Given a device identifier, find any vdevs with a matching by-vdev
|
|
* path. Normally we shouldn't need this as the comparison would be
|
|
* made earlier in the devphys_iter(). For example, if we were replacing
|
|
* /dev/disk/by-vdev/L28, normally devphys_iter() would match the
|
|
* ZPOOL_CONFIG_PHYS_PATH of "L28" from the old disk config to "L28"
|
|
* of the new disk config. However, we've seen cases where
|
|
* ZPOOL_CONFIG_PHYS_PATH was not in the config for the old disk. Here's
|
|
* an example of a real 2-disk mirror pool where one disk was force
|
|
* faulted:
|
|
*
|
|
* com.delphix:vdev_zap_top: 129
|
|
* children[0]:
|
|
* type: 'disk'
|
|
* id: 0
|
|
* guid: 14309659774640089719
|
|
* path: '/dev/disk/by-vdev/L28'
|
|
* whole_disk: 0
|
|
* DTL: 654
|
|
* create_txg: 4
|
|
* com.delphix:vdev_zap_leaf: 1161
|
|
* faulted: 1
|
|
* aux_state: 'external'
|
|
* children[1]:
|
|
* type: 'disk'
|
|
* id: 1
|
|
* guid: 16002508084177980912
|
|
* path: '/dev/disk/by-vdev/L29'
|
|
* devid: 'dm-uuid-mpath-35000c500a61d68a3'
|
|
* phys_path: 'L29'
|
|
* vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
|
|
* whole_disk: 0
|
|
* DTL: 1028
|
|
* create_txg: 4
|
|
* com.delphix:vdev_zap_leaf: 131
|
|
*
|
|
* So in the case above, the only thing we could compare is the path.
|
|
*
|
|
* We can do this because we assume by-vdev paths are authoritative as physical
|
|
* paths. We could not assume this for normal paths like /dev/sda since the
|
|
* physical location /dev/sda points to could change over time.
|
|
*/
|
|
static boolean_t
|
|
by_vdev_path_iter(const char *by_vdev_path, const char *devid,
|
|
zfs_process_func_t func, boolean_t is_slice)
|
|
{
|
|
dev_data_t data = { 0 };
|
|
|
|
data.dd_compare = by_vdev_path;
|
|
data.dd_func = func;
|
|
data.dd_prop = ZPOOL_CONFIG_PATH;
|
|
data.dd_found = B_FALSE;
|
|
data.dd_islabeled = is_slice;
|
|
data.dd_new_devid = devid;
|
|
|
|
if (strncmp(by_vdev_path, DEV_BYVDEV_PATH,
|
|
strlen(DEV_BYVDEV_PATH)) != 0) {
|
|
/* by_vdev_path doesn't start with "/dev/disk/by-vdev/" */
|
|
return (B_FALSE);
|
|
}
|
|
|
|
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
|
|
|
|
return (data.dd_found);
|
|
}
|
|
|
|
/*
|
|
* Given a device identifier, find any vdevs with a matching devid.
|
|
* On Linux we can match devid directly which is always a whole disk.
|
|
*/
|
|
static boolean_t
|
|
devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice)
|
|
{
|
|
dev_data_t data = { 0 };
|
|
|
|
data.dd_compare = devid;
|
|
data.dd_func = func;
|
|
data.dd_prop = ZPOOL_CONFIG_DEVID;
|
|
data.dd_found = B_FALSE;
|
|
data.dd_islabeled = is_slice;
|
|
data.dd_new_devid = devid;
|
|
|
|
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
|
|
|
|
return (data.dd_found);
|
|
}
|
|
|
|
/*
|
|
* Given a device guid, find any vdevs with a matching guid.
|
|
*/
|
|
static boolean_t
|
|
guid_iter(uint64_t pool_guid, uint64_t vdev_guid, const char *devid,
|
|
zfs_process_func_t func, boolean_t is_slice)
|
|
{
|
|
dev_data_t data = { 0 };
|
|
|
|
data.dd_func = func;
|
|
data.dd_found = B_FALSE;
|
|
data.dd_pool_guid = pool_guid;
|
|
data.dd_vdev_guid = vdev_guid;
|
|
data.dd_islabeled = is_slice;
|
|
data.dd_new_devid = devid;
|
|
|
|
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
|
|
|
|
return (data.dd_found);
|
|
}
|
|
|
|
/*
|
|
* Handle a EC_DEV_ADD.ESC_DISK event.
|
|
*
|
|
* illumos
|
|
* Expects: DEV_PHYS_PATH string in schema
|
|
* Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
|
|
*
|
|
* path: '/dev/dsk/c0t1d0s0' (persistent)
|
|
* devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a'
|
|
* phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a'
|
|
*
|
|
* linux
|
|
* provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema
|
|
* Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
|
|
*
|
|
* path: '/dev/sdc1' (not persistent)
|
|
* devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1'
|
|
* phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0'
|
|
*/
|
|
static int
|
|
zfs_deliver_add(nvlist_t *nvl)
|
|
{
|
|
char *devpath = NULL, *devid = NULL;
|
|
uint64_t pool_guid = 0, vdev_guid = 0;
|
|
boolean_t is_slice;
|
|
|
|
/*
|
|
* Expecting a devid string and an optional physical location and guid
|
|
*/
|
|
if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) {
|
|
zed_log_msg(LOG_INFO, "%s: no dev identifier\n", __func__);
|
|
return (-1);
|
|
}
|
|
|
|
(void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath);
|
|
(void) nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &pool_guid);
|
|
(void) nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &vdev_guid);
|
|
|
|
is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0);
|
|
|
|
zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)",
|
|
devid, devpath ? devpath : "NULL", is_slice);
|
|
|
|
/*
|
|
* Iterate over all vdevs looking for a match in the following order:
|
|
* 1. ZPOOL_CONFIG_DEVID (identifies the unique disk)
|
|
* 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location).
|
|
* 3. ZPOOL_CONFIG_GUID (identifies unique vdev).
|
|
* 4. ZPOOL_CONFIG_PATH for /dev/disk/by-vdev devices only (since
|
|
* by-vdev paths represent physical paths).
|
|
*/
|
|
if (devid_iter(devid, zfs_process_add, is_slice))
|
|
return (0);
|
|
if (devpath != NULL && devphys_iter(devpath, devid, zfs_process_add,
|
|
is_slice))
|
|
return (0);
|
|
if (vdev_guid != 0)
|
|
(void) guid_iter(pool_guid, vdev_guid, devid, zfs_process_add,
|
|
is_slice);
|
|
|
|
if (devpath != NULL) {
|
|
/* Can we match a /dev/disk/by-vdev/ path? */
|
|
char by_vdev_path[MAXPATHLEN];
|
|
snprintf(by_vdev_path, sizeof (by_vdev_path),
|
|
"/dev/disk/by-vdev/%s", devpath);
|
|
if (by_vdev_path_iter(by_vdev_path, devid, zfs_process_add,
|
|
is_slice))
|
|
return (0);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Called when we receive a VDEV_CHECK event, which indicates a device could not
|
|
* be opened during initial pool open, but the autoreplace property was set on
|
|
* the pool. In this case, we treat it as if it were an add event.
|
|
*/
|
|
static int
|
|
zfs_deliver_check(nvlist_t *nvl)
|
|
{
|
|
dev_data_t data = { 0 };
|
|
|
|
if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID,
|
|
&data.dd_pool_guid) != 0 ||
|
|
nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID,
|
|
&data.dd_vdev_guid) != 0 ||
|
|
data.dd_vdev_guid == 0)
|
|
return (0);
|
|
|
|
zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu",
|
|
data.dd_pool_guid, data.dd_vdev_guid);
|
|
|
|
data.dd_func = zfs_process_add;
|
|
|
|
(void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Given a path to a vdev, lookup the vdev's physical size from its
|
|
* config nvlist.
|
|
*
|
|
* Returns the vdev's physical size in bytes on success, 0 on error.
|
|
*/
|
|
static uint64_t
|
|
vdev_size_from_config(zpool_handle_t *zhp, const char *vdev_path)
|
|
{
|
|
nvlist_t *nvl = NULL;
|
|
boolean_t avail_spare, l2cache, log;
|
|
vdev_stat_t *vs = NULL;
|
|
uint_t c;
|
|
|
|
nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log);
|
|
if (!nvl)
|
|
return (0);
|
|
|
|
verify(nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_VDEV_STATS,
|
|
(uint64_t **)&vs, &c) == 0);
|
|
if (!vs) {
|
|
zed_log_msg(LOG_INFO, "%s: no nvlist for '%s'", __func__,
|
|
vdev_path);
|
|
return (0);
|
|
}
|
|
|
|
return (vs->vs_pspace);
|
|
}
|
|
|
|
/*
|
|
* Given a path to a vdev, lookup if the vdev is a "whole disk" in the
|
|
* config nvlist. "whole disk" means that ZFS was passed a whole disk
|
|
* at pool creation time, which it partitioned up and has full control over.
|
|
* Thus a partition with wholedisk=1 set tells us that zfs created the
|
|
* partition at creation time. A partition without whole disk set would have
|
|
* been created by externally (like with fdisk) and passed to ZFS.
|
|
*
|
|
* Returns the whole disk value (either 0 or 1).
|
|
*/
|
|
static uint64_t
|
|
vdev_whole_disk_from_config(zpool_handle_t *zhp, const char *vdev_path)
|
|
{
|
|
nvlist_t *nvl = NULL;
|
|
boolean_t avail_spare, l2cache, log;
|
|
uint64_t wholedisk;
|
|
|
|
nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log);
|
|
if (!nvl)
|
|
return (0);
|
|
|
|
verify(nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_WHOLE_DISK,
|
|
&wholedisk) == 0);
|
|
|
|
return (wholedisk);
|
|
}
|
|
|
|
/*
|
|
* If the device size grew more than 1% then return true.
|
|
*/
|
|
#define DEVICE_GREW(oldsize, newsize) \
|
|
((newsize > oldsize) && \
|
|
((newsize / (newsize - oldsize)) <= 100))
|
|
|
|
static int
|
|
zfsdle_vdev_online(zpool_handle_t *zhp, void *data)
|
|
{
|
|
boolean_t avail_spare, l2cache;
|
|
nvlist_t *udev_nvl = data;
|
|
nvlist_t *tgt;
|
|
int error;
|
|
|
|
char *tmp_devname, devname[MAXPATHLEN] = "";
|
|
uint64_t guid;
|
|
|
|
if (nvlist_lookup_uint64(udev_nvl, ZFS_EV_VDEV_GUID, &guid) == 0) {
|
|
sprintf(devname, "%llu", (u_longlong_t)guid);
|
|
} else if (nvlist_lookup_string(udev_nvl, DEV_PHYS_PATH,
|
|
&tmp_devname) == 0) {
|
|
strlcpy(devname, tmp_devname, MAXPATHLEN);
|
|
zfs_append_partition(devname, MAXPATHLEN);
|
|
} else {
|
|
zed_log_msg(LOG_INFO, "%s: no guid or physpath", __func__);
|
|
}
|
|
|
|
zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'",
|
|
devname, zpool_get_name(zhp));
|
|
|
|
if ((tgt = zpool_find_vdev_by_physpath(zhp, devname,
|
|
&avail_spare, &l2cache, NULL)) != NULL) {
|
|
char *path, fullpath[MAXPATHLEN];
|
|
uint64_t wholedisk;
|
|
|
|
error = nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path);
|
|
if (error) {
|
|
zpool_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
error = nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK,
|
|
&wholedisk);
|
|
if (error)
|
|
wholedisk = 0;
|
|
|
|
if (wholedisk) {
|
|
path = strrchr(path, '/');
|
|
if (path != NULL) {
|
|
path = zfs_strip_partition(path + 1);
|
|
if (path == NULL) {
|
|
zpool_close(zhp);
|
|
return (0);
|
|
}
|
|
} else {
|
|
zpool_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
(void) strlcpy(fullpath, path, sizeof (fullpath));
|
|
free(path);
|
|
|
|
/*
|
|
* We need to reopen the pool associated with this
|
|
* device so that the kernel can update the size of
|
|
* the expanded device. When expanding there is no
|
|
* need to restart the scrub from the beginning.
|
|
*/
|
|
boolean_t scrub_restart = B_FALSE;
|
|
(void) zpool_reopen_one(zhp, &scrub_restart);
|
|
} else {
|
|
(void) strlcpy(fullpath, path, sizeof (fullpath));
|
|
}
|
|
|
|
if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) {
|
|
vdev_state_t newstate;
|
|
|
|
if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) {
|
|
/*
|
|
* If this disk size has not changed, then
|
|
* there's no need to do an autoexpand. To
|
|
* check we look at the disk's size in its
|
|
* config, and compare it to the disk size
|
|
* that udev is reporting.
|
|
*/
|
|
uint64_t udev_size = 0, conf_size = 0,
|
|
wholedisk = 0, udev_parent_size = 0;
|
|
|
|
/*
|
|
* Get the size of our disk that udev is
|
|
* reporting.
|
|
*/
|
|
if (nvlist_lookup_uint64(udev_nvl, DEV_SIZE,
|
|
&udev_size) != 0) {
|
|
udev_size = 0;
|
|
}
|
|
|
|
/*
|
|
* Get the size of our disk's parent device
|
|
* from udev (where sda1's parent is sda).
|
|
*/
|
|
if (nvlist_lookup_uint64(udev_nvl,
|
|
DEV_PARENT_SIZE, &udev_parent_size) != 0) {
|
|
udev_parent_size = 0;
|
|
}
|
|
|
|
conf_size = vdev_size_from_config(zhp,
|
|
fullpath);
|
|
|
|
wholedisk = vdev_whole_disk_from_config(zhp,
|
|
fullpath);
|
|
|
|
/*
|
|
* Only attempt an autoexpand if the vdev size
|
|
* changed. There are two different cases
|
|
* to consider.
|
|
*
|
|
* 1. wholedisk=1
|
|
* If you do a 'zpool create' on a whole disk
|
|
* (like /dev/sda), then zfs will create
|
|
* partitions on the disk (like /dev/sda1). In
|
|
* that case, wholedisk=1 will be set in the
|
|
* partition's nvlist config. So zed will need
|
|
* to see if your parent device (/dev/sda)
|
|
* expanded in size, and if so, then attempt
|
|
* the autoexpand.
|
|
*
|
|
* 2. wholedisk=0
|
|
* If you do a 'zpool create' on an existing
|
|
* partition, or a device that doesn't allow
|
|
* partitions, then wholedisk=0, and you will
|
|
* simply need to check if the device itself
|
|
* expanded in size.
|
|
*/
|
|
if (DEVICE_GREW(conf_size, udev_size) ||
|
|
(wholedisk && DEVICE_GREW(conf_size,
|
|
udev_parent_size))) {
|
|
error = zpool_vdev_online(zhp, fullpath,
|
|
0, &newstate);
|
|
|
|
zed_log_msg(LOG_INFO,
|
|
"%s: autoexpanding '%s' from %llu"
|
|
" to %llu bytes in pool '%s': %d",
|
|
__func__, fullpath, conf_size,
|
|
MAX(udev_size, udev_parent_size),
|
|
zpool_get_name(zhp), error);
|
|
}
|
|
}
|
|
}
|
|
zpool_close(zhp);
|
|
return (1);
|
|
}
|
|
zpool_close(zhp);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* This function handles the ESC_DEV_DLE device change event. Use the
|
|
* provided vdev guid when looking up a disk or partition, when the guid
|
|
* is not present assume the entire disk is owned by ZFS and append the
|
|
* expected -part1 partition information then lookup by physical path.
|
|
*/
|
|
static int
|
|
zfs_deliver_dle(nvlist_t *nvl)
|
|
{
|
|
char *devname, name[MAXPATHLEN];
|
|
uint64_t guid;
|
|
|
|
if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) {
|
|
sprintf(name, "%llu", (u_longlong_t)guid);
|
|
} else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) {
|
|
strlcpy(name, devname, MAXPATHLEN);
|
|
zfs_append_partition(name, MAXPATHLEN);
|
|
} else {
|
|
sprintf(name, "unknown");
|
|
zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath");
|
|
}
|
|
|
|
if (zpool_iter(g_zfshdl, zfsdle_vdev_online, nvl) != 1) {
|
|
zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not "
|
|
"found", name);
|
|
return (1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* syseventd daemon module event handler
|
|
*
|
|
* Handles syseventd daemon zfs device related events:
|
|
*
|
|
* EC_DEV_ADD.ESC_DISK
|
|
* EC_DEV_STATUS.ESC_DEV_DLE
|
|
* EC_ZFS.ESC_ZFS_VDEV_CHECK
|
|
*
|
|
* Note: assumes only one thread active at a time (not thread safe)
|
|
*/
|
|
static int
|
|
zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl)
|
|
{
|
|
int ret;
|
|
boolean_t is_check = B_FALSE, is_dle = B_FALSE;
|
|
|
|
if (strcmp(class, EC_DEV_ADD) == 0) {
|
|
/*
|
|
* We're mainly interested in disk additions, but we also listen
|
|
* for new loop devices, to allow for simplified testing.
|
|
*/
|
|
if (strcmp(subclass, ESC_DISK) != 0 &&
|
|
strcmp(subclass, ESC_LOFI) != 0)
|
|
return (0);
|
|
|
|
is_check = B_FALSE;
|
|
} else if (strcmp(class, EC_ZFS) == 0 &&
|
|
strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) {
|
|
/*
|
|
* This event signifies that a device failed to open
|
|
* during pool load, but the 'autoreplace' property was
|
|
* set, so we should pretend it's just been added.
|
|
*/
|
|
is_check = B_TRUE;
|
|
} else if (strcmp(class, EC_DEV_STATUS) == 0 &&
|
|
strcmp(subclass, ESC_DEV_DLE) == 0) {
|
|
is_dle = B_TRUE;
|
|
} else {
|
|
return (0);
|
|
}
|
|
|
|
if (is_dle)
|
|
ret = zfs_deliver_dle(nvl);
|
|
else if (is_check)
|
|
ret = zfs_deliver_check(nvl);
|
|
else
|
|
ret = zfs_deliver_add(nvl);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static void *
|
|
zfs_enum_pools(void *arg)
|
|
{
|
|
(void) arg;
|
|
|
|
(void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list);
|
|
/*
|
|
* Linux - instead of using a thread pool, each list entry
|
|
* will spawn a thread when an unavailable pool transitions
|
|
* to available. zfs_slm_fini will wait for these threads.
|
|
*/
|
|
g_enumeration_done = B_TRUE;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* called from zed daemon at startup
|
|
*
|
|
* sent messages from zevents or udev monitor
|
|
*
|
|
* For now, each agent has its own libzfs instance
|
|
*/
|
|
int
|
|
zfs_slm_init(void)
|
|
{
|
|
if ((g_zfshdl = libzfs_init()) == NULL)
|
|
return (-1);
|
|
|
|
/*
|
|
* collect a list of unavailable pools (asynchronously,
|
|
* since this can take a while)
|
|
*/
|
|
list_create(&g_pool_list, sizeof (struct unavailpool),
|
|
offsetof(struct unavailpool, uap_node));
|
|
|
|
if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) {
|
|
list_destroy(&g_pool_list);
|
|
libzfs_fini(g_zfshdl);
|
|
return (-1);
|
|
}
|
|
|
|
pthread_setname_np(g_zfs_tid, "enum-pools");
|
|
list_create(&g_device_list, sizeof (struct pendingdev),
|
|
offsetof(struct pendingdev, pd_node));
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
zfs_slm_fini(void)
|
|
{
|
|
unavailpool_t *pool;
|
|
pendingdev_t *device;
|
|
|
|
/* wait for zfs_enum_pools thread to complete */
|
|
(void) pthread_join(g_zfs_tid, NULL);
|
|
/* destroy the thread pool */
|
|
if (g_tpool != NULL) {
|
|
tpool_wait(g_tpool);
|
|
tpool_destroy(g_tpool);
|
|
}
|
|
|
|
while ((pool = (list_head(&g_pool_list))) != NULL) {
|
|
list_remove(&g_pool_list, pool);
|
|
zpool_close(pool->uap_zhp);
|
|
free(pool);
|
|
}
|
|
list_destroy(&g_pool_list);
|
|
|
|
while ((device = (list_head(&g_device_list))) != NULL) {
|
|
list_remove(&g_device_list, device);
|
|
free(device);
|
|
}
|
|
list_destroy(&g_device_list);
|
|
|
|
libzfs_fini(g_zfshdl);
|
|
}
|
|
|
|
void
|
|
zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl)
|
|
{
|
|
zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass);
|
|
(void) zfs_slm_deliver_event(class, subclass, nvl);
|
|
}
|