mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-14 20:20:26 +03:00
1ce23dcaff
Authored by: Prakash Surya <prakash.surya@delphix.com>
Reviewed by: Brad Lewis <brad.lewis@delphix.com>
Reviewed by: Matt Ahrens <mahrens@delphix.com>
Reviewed by: George Wilson <george.wilson@delphix.com>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Approved by: Dan McDonald <danmcd@joyent.com>
Ported-by: Prakash Surya <prakash.surya@delphix.com>
Problem
=======
The current implementation of zil_commit() can introduce significant
latency, beyond what is inherent due to the latency of the underlying
storage. The additional latency comes from two main problems:
1. When there's outstanding ZIL blocks being written (i.e. there's
already a "writer thread" in progress), then any new calls to
zil_commit() will block waiting for the currently oustanding ZIL
blocks to complete. The blocks written for each "writer thread" is
coined a "batch", and there can only ever be a single "batch" being
written at a time. When a batch is being written, any new ZIL
transactions will have to wait for the next batch to be written,
which won't occur until the current batch finishes.
As a result, the underlying storage may not be used as efficiently
as possible. While "new" threads enter zil_commit() and are blocked
waiting for the next batch, it's possible that the underlying
storage isn't fully utilized by the current batch of ZIL blocks. In
that case, it'd be better to allow these new threads to generate
(and issue) a new ZIL block, such that it could be serviced by the
underlying storage concurrently with the other ZIL blocks that are
being serviced.
2. Any call to zil_commit() must wait for all ZIL blocks in its "batch"
to complete, prior to zil_commit() returning. The size of any given
batch is proportional to the number of ZIL transaction in the queue
at the time that the batch starts processing the queue; which
doesn't occur until the previous batch completes. Thus, if there's a
lot of transactions in the queue, the batch could be composed of
many ZIL blocks, and each call to zil_commit() will have to wait for
all of these writes to complete (even if the thread calling
zil_commit() only cared about one of the transactions in the batch).
To further complicate the situation, these two issues result in the
following side effect:
3. If a given batch takes longer to complete than normal, this results
in larger batch sizes, which then take longer to complete and
further drive up the latency of zil_commit(). This can occur for a
number of reasons, including (but not limited to): transient changes
in the workload, and storage latency irregularites.
Solution
========
The solution attempted by this change has the following goals:
1. no on-disk changes; maintain current on-disk format.
2. modify the "batch size" to be equal to the "ZIL block size".
3. allow new batches to be generated and issued to disk, while there's
already batches being serviced by the disk.
4. allow zil_commit() to wait for as few ZIL blocks as possible.
5. use as few ZIL blocks as possible, for the same amount of ZIL
transactions, without introducing significant latency to any
individual ZIL transaction. i.e. use fewer, but larger, ZIL blocks.
In theory, with these goals met, the new allgorithm will allow the
following improvements:
1. new ZIL blocks can be generated and issued, while there's already
oustanding ZIL blocks being serviced by the storage.
2. the latency of zil_commit() should be proportional to the underlying
storage latency, rather than the incoming synchronous workload.
Porting Notes
=============
Due to the changes made in commit 119a394ab0
, the lifetime of an itx
structure differs than in OpenZFS. Specifically, the itx structure is
kept around until the data associated with the itx is considered to be
safe on disk; this is so that the itx's callback can be called after the
data is committed to stable storage. Since OpenZFS doesn't have this itx
callback mechanism, it's able to destroy the itx structure immediately
after the itx is committed to an lwb (before the lwb is written to
disk).
To support this difference, and to ensure the itx's callbacks can still
be called after the itx's data is on disk, a few changes had to be made:
* A list of itxs was added to the lwb structure. This list contains
all of the itxs that have been committed to the lwb, such that the
callbacks for these itxs can be called from zil_lwb_flush_vdevs_done(),
after the data for the itxs is committed to disk.
* A list of itxs was added on the stack of the zil_process_commit_list()
function; the "nolwb_itxs" list. In some circumstances, an itx may
not be committed to an lwb (e.g. if allocating the "next" ZIL block
on disk fails), so this list is used to keep track of which itxs
fall into this state, such that their callbacks can be called after
the ZIL's writer pipeline is "stalled".
* The logic to actually call the itx's callback was moved into the
zil_itx_destroy() function. Since all consumers of zil_itx_destroy()
were effectively performing the same logic (i.e. if callback is
non-null, call the callback), it seemed like useful code cleanup to
consolidate this logic into a single function.
Additionally, the existing Linux tracepoint infrastructure dealing with
the ZIL's probes and structures had to be updated to reflect these code
changes. Specifically:
* The "zil__cw1" and "zil__cw2" probes were removed, so they had to be
removed from "trace_zil.h" as well.
* Some of the zilog structure's fields were removed, which affected
the tracepoint definitions of the structure.
* New tracepoints had to be added for the following 3 new probes:
* zil__process__commit__itx
* zil__process__normal__itx
* zil__commit__io__error
OpenZFS-issue: https://www.illumos.org/issues/8585
OpenZFS-commit: https://github.com/openzfs/openzfs/commit/5d95a3a
Closes #6566
954 lines
25 KiB
C
954 lines
25 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Portions Copyright 2011 Martin Matuska
|
|
* Copyright (c) 2012, 2017 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/txg_impl.h>
|
|
#include <sys/dmu_impl.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_scan.h>
|
|
#include <sys/zil.h>
|
|
#include <sys/callb.h>
|
|
#include <sys/trace_txg.h>
|
|
|
|
/*
|
|
* ZFS Transaction Groups
|
|
* ----------------------
|
|
*
|
|
* ZFS transaction groups are, as the name implies, groups of transactions
|
|
* that act on persistent state. ZFS asserts consistency at the granularity of
|
|
* these transaction groups. Each successive transaction group (txg) is
|
|
* assigned a 64-bit consecutive identifier. There are three active
|
|
* transaction group states: open, quiescing, or syncing. At any given time,
|
|
* there may be an active txg associated with each state; each active txg may
|
|
* either be processing, or blocked waiting to enter the next state. There may
|
|
* be up to three active txgs, and there is always a txg in the open state
|
|
* (though it may be blocked waiting to enter the quiescing state). In broad
|
|
* strokes, transactions -- operations that change in-memory structures -- are
|
|
* accepted into the txg in the open state, and are completed while the txg is
|
|
* in the open or quiescing states. The accumulated changes are written to
|
|
* disk in the syncing state.
|
|
*
|
|
* Open
|
|
*
|
|
* When a new txg becomes active, it first enters the open state. New
|
|
* transactions -- updates to in-memory structures -- are assigned to the
|
|
* currently open txg. There is always a txg in the open state so that ZFS can
|
|
* accept new changes (though the txg may refuse new changes if it has hit
|
|
* some limit). ZFS advances the open txg to the next state for a variety of
|
|
* reasons such as it hitting a time or size threshold, or the execution of an
|
|
* administrative action that must be completed in the syncing state.
|
|
*
|
|
* Quiescing
|
|
*
|
|
* After a txg exits the open state, it enters the quiescing state. The
|
|
* quiescing state is intended to provide a buffer between accepting new
|
|
* transactions in the open state and writing them out to stable storage in
|
|
* the syncing state. While quiescing, transactions can continue their
|
|
* operation without delaying either of the other states. Typically, a txg is
|
|
* in the quiescing state very briefly since the operations are bounded by
|
|
* software latencies rather than, say, slower I/O latencies. After all
|
|
* transactions complete, the txg is ready to enter the next state.
|
|
*
|
|
* Syncing
|
|
*
|
|
* In the syncing state, the in-memory state built up during the open and (to
|
|
* a lesser degree) the quiescing states is written to stable storage. The
|
|
* process of writing out modified data can, in turn modify more data. For
|
|
* example when we write new blocks, we need to allocate space for them; those
|
|
* allocations modify metadata (space maps)... which themselves must be
|
|
* written to stable storage. During the sync state, ZFS iterates, writing out
|
|
* data until it converges and all in-memory changes have been written out.
|
|
* The first such pass is the largest as it encompasses all the modified user
|
|
* data (as opposed to filesystem metadata). Subsequent passes typically have
|
|
* far less data to write as they consist exclusively of filesystem metadata.
|
|
*
|
|
* To ensure convergence, after a certain number of passes ZFS begins
|
|
* overwriting locations on stable storage that had been allocated earlier in
|
|
* the syncing state (and subsequently freed). ZFS usually allocates new
|
|
* blocks to optimize for large, continuous, writes. For the syncing state to
|
|
* converge however it must complete a pass where no new blocks are allocated
|
|
* since each allocation requires a modification of persistent metadata.
|
|
* Further, to hasten convergence, after a prescribed number of passes, ZFS
|
|
* also defers frees, and stops compressing.
|
|
*
|
|
* In addition to writing out user data, we must also execute synctasks during
|
|
* the syncing context. A synctask is the mechanism by which some
|
|
* administrative activities work such as creating and destroying snapshots or
|
|
* datasets. Note that when a synctask is initiated it enters the open txg,
|
|
* and ZFS then pushes that txg as quickly as possible to completion of the
|
|
* syncing state in order to reduce the latency of the administrative
|
|
* activity. To complete the syncing state, ZFS writes out a new uberblock,
|
|
* the root of the tree of blocks that comprise all state stored on the ZFS
|
|
* pool. Finally, if there is a quiesced txg waiting, we signal that it can
|
|
* now transition to the syncing state.
|
|
*/
|
|
|
|
static void txg_sync_thread(void *arg);
|
|
static void txg_quiesce_thread(void *arg);
|
|
|
|
int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */
|
|
|
|
/*
|
|
* Prepare the txg subsystem.
|
|
*/
|
|
void
|
|
txg_init(dsl_pool_t *dp, uint64_t txg)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
int c;
|
|
bzero(tx, sizeof (tx_state_t));
|
|
|
|
tx->tx_cpu = vmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP);
|
|
|
|
for (c = 0; c < max_ncpus; c++) {
|
|
int i;
|
|
|
|
mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_NOLOCKDEP,
|
|
NULL);
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT,
|
|
NULL);
|
|
list_create(&tx->tx_cpu[c].tc_callbacks[i],
|
|
sizeof (dmu_tx_callback_t),
|
|
offsetof(dmu_tx_callback_t, dcb_node));
|
|
}
|
|
}
|
|
|
|
mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL);
|
|
|
|
tx->tx_open_txg = txg;
|
|
}
|
|
|
|
/*
|
|
* Close down the txg subsystem.
|
|
*/
|
|
void
|
|
txg_fini(dsl_pool_t *dp)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
int c;
|
|
|
|
ASSERT0(tx->tx_threads);
|
|
|
|
mutex_destroy(&tx->tx_sync_lock);
|
|
|
|
cv_destroy(&tx->tx_sync_more_cv);
|
|
cv_destroy(&tx->tx_sync_done_cv);
|
|
cv_destroy(&tx->tx_quiesce_more_cv);
|
|
cv_destroy(&tx->tx_quiesce_done_cv);
|
|
cv_destroy(&tx->tx_exit_cv);
|
|
|
|
for (c = 0; c < max_ncpus; c++) {
|
|
int i;
|
|
|
|
mutex_destroy(&tx->tx_cpu[c].tc_open_lock);
|
|
mutex_destroy(&tx->tx_cpu[c].tc_lock);
|
|
for (i = 0; i < TXG_SIZE; i++) {
|
|
cv_destroy(&tx->tx_cpu[c].tc_cv[i]);
|
|
list_destroy(&tx->tx_cpu[c].tc_callbacks[i]);
|
|
}
|
|
}
|
|
|
|
if (tx->tx_commit_cb_taskq != NULL)
|
|
taskq_destroy(tx->tx_commit_cb_taskq);
|
|
|
|
vmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t));
|
|
|
|
bzero(tx, sizeof (tx_state_t));
|
|
}
|
|
|
|
/*
|
|
* Start syncing transaction groups.
|
|
*/
|
|
void
|
|
txg_sync_start(dsl_pool_t *dp)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
|
|
dprintf("pool %p\n", dp);
|
|
|
|
ASSERT0(tx->tx_threads);
|
|
|
|
tx->tx_threads = 2;
|
|
|
|
tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread,
|
|
dp, 0, &p0, TS_RUN, defclsyspri);
|
|
|
|
/*
|
|
* The sync thread can need a larger-than-default stack size on
|
|
* 32-bit x86. This is due in part to nested pools and
|
|
* scrub_visitbp() recursion.
|
|
*/
|
|
tx->tx_sync_thread = thread_create(NULL, 0, txg_sync_thread,
|
|
dp, 0, &p0, TS_RUN, defclsyspri);
|
|
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
}
|
|
|
|
static void
|
|
txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr)
|
|
{
|
|
CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG);
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
}
|
|
|
|
static void
|
|
txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp)
|
|
{
|
|
ASSERT(*tpp != NULL);
|
|
*tpp = NULL;
|
|
tx->tx_threads--;
|
|
cv_broadcast(&tx->tx_exit_cv);
|
|
CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */
|
|
thread_exit();
|
|
}
|
|
|
|
static void
|
|
txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time)
|
|
{
|
|
CALLB_CPR_SAFE_BEGIN(cpr);
|
|
|
|
if (time)
|
|
(void) cv_timedwait_sig(cv, &tx->tx_sync_lock,
|
|
ddi_get_lbolt() + time);
|
|
else
|
|
cv_wait_sig(cv, &tx->tx_sync_lock);
|
|
|
|
CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock);
|
|
}
|
|
|
|
/*
|
|
* Stop syncing transaction groups.
|
|
*/
|
|
void
|
|
txg_sync_stop(dsl_pool_t *dp)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
dprintf("pool %p\n", dp);
|
|
/*
|
|
* Finish off any work in progress.
|
|
*/
|
|
ASSERT3U(tx->tx_threads, ==, 2);
|
|
|
|
/*
|
|
* We need to ensure that we've vacated the deferred space_maps.
|
|
*/
|
|
txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE);
|
|
|
|
/*
|
|
* Wake all sync threads and wait for them to die.
|
|
*/
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
|
|
ASSERT3U(tx->tx_threads, ==, 2);
|
|
|
|
tx->tx_exiting = 1;
|
|
|
|
cv_broadcast(&tx->tx_quiesce_more_cv);
|
|
cv_broadcast(&tx->tx_quiesce_done_cv);
|
|
cv_broadcast(&tx->tx_sync_more_cv);
|
|
|
|
while (tx->tx_threads != 0)
|
|
cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock);
|
|
|
|
tx->tx_exiting = 0;
|
|
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
}
|
|
|
|
uint64_t
|
|
txg_hold_open(dsl_pool_t *dp, txg_handle_t *th)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
tx_cpu_t *tc;
|
|
uint64_t txg;
|
|
|
|
/*
|
|
* It appears the processor id is simply used as a "random"
|
|
* number to index into the array, and there isn't any other
|
|
* significance to the chosen tx_cpu. Because.. Why not use
|
|
* the current cpu to index into the array?
|
|
*/
|
|
kpreempt_disable();
|
|
tc = &tx->tx_cpu[CPU_SEQID];
|
|
kpreempt_enable();
|
|
|
|
mutex_enter(&tc->tc_open_lock);
|
|
txg = tx->tx_open_txg;
|
|
|
|
mutex_enter(&tc->tc_lock);
|
|
tc->tc_count[txg & TXG_MASK]++;
|
|
mutex_exit(&tc->tc_lock);
|
|
|
|
th->th_cpu = tc;
|
|
th->th_txg = txg;
|
|
|
|
return (txg);
|
|
}
|
|
|
|
void
|
|
txg_rele_to_quiesce(txg_handle_t *th)
|
|
{
|
|
tx_cpu_t *tc = th->th_cpu;
|
|
|
|
ASSERT(!MUTEX_HELD(&tc->tc_lock));
|
|
mutex_exit(&tc->tc_open_lock);
|
|
}
|
|
|
|
void
|
|
txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks)
|
|
{
|
|
tx_cpu_t *tc = th->th_cpu;
|
|
int g = th->th_txg & TXG_MASK;
|
|
|
|
mutex_enter(&tc->tc_lock);
|
|
list_move_tail(&tc->tc_callbacks[g], tx_callbacks);
|
|
mutex_exit(&tc->tc_lock);
|
|
}
|
|
|
|
void
|
|
txg_rele_to_sync(txg_handle_t *th)
|
|
{
|
|
tx_cpu_t *tc = th->th_cpu;
|
|
int g = th->th_txg & TXG_MASK;
|
|
|
|
mutex_enter(&tc->tc_lock);
|
|
ASSERT(tc->tc_count[g] != 0);
|
|
if (--tc->tc_count[g] == 0)
|
|
cv_broadcast(&tc->tc_cv[g]);
|
|
mutex_exit(&tc->tc_lock);
|
|
|
|
th->th_cpu = NULL; /* defensive */
|
|
}
|
|
|
|
/*
|
|
* Blocks until all transactions in the group are committed.
|
|
*
|
|
* On return, the transaction group has reached a stable state in which it can
|
|
* then be passed off to the syncing context.
|
|
*/
|
|
static void
|
|
txg_quiesce(dsl_pool_t *dp, uint64_t txg)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
uint64_t tx_open_time;
|
|
int g = txg & TXG_MASK;
|
|
int c;
|
|
|
|
/*
|
|
* Grab all tc_open_locks so nobody else can get into this txg.
|
|
*/
|
|
for (c = 0; c < max_ncpus; c++)
|
|
mutex_enter(&tx->tx_cpu[c].tc_open_lock);
|
|
|
|
ASSERT(txg == tx->tx_open_txg);
|
|
tx->tx_open_txg++;
|
|
tx->tx_open_time = tx_open_time = gethrtime();
|
|
|
|
DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg);
|
|
DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg);
|
|
|
|
/*
|
|
* Now that we've incremented tx_open_txg, we can let threads
|
|
* enter the next transaction group.
|
|
*/
|
|
for (c = 0; c < max_ncpus; c++)
|
|
mutex_exit(&tx->tx_cpu[c].tc_open_lock);
|
|
|
|
spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_OPEN, tx_open_time);
|
|
spa_txg_history_add(dp->dp_spa, txg + 1, tx_open_time);
|
|
|
|
/*
|
|
* Quiesce the transaction group by waiting for everyone to txg_exit().
|
|
*/
|
|
for (c = 0; c < max_ncpus; c++) {
|
|
tx_cpu_t *tc = &tx->tx_cpu[c];
|
|
mutex_enter(&tc->tc_lock);
|
|
while (tc->tc_count[g] != 0)
|
|
cv_wait(&tc->tc_cv[g], &tc->tc_lock);
|
|
mutex_exit(&tc->tc_lock);
|
|
}
|
|
|
|
spa_txg_history_set(dp->dp_spa, txg, TXG_STATE_QUIESCED, gethrtime());
|
|
}
|
|
|
|
static void
|
|
txg_do_callbacks(list_t *cb_list)
|
|
{
|
|
dmu_tx_do_callbacks(cb_list, 0);
|
|
|
|
list_destroy(cb_list);
|
|
|
|
kmem_free(cb_list, sizeof (list_t));
|
|
}
|
|
|
|
/*
|
|
* Dispatch the commit callbacks registered on this txg to worker threads.
|
|
*
|
|
* If no callbacks are registered for a given TXG, nothing happens.
|
|
* This function creates a taskq for the associated pool, if needed.
|
|
*/
|
|
static void
|
|
txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg)
|
|
{
|
|
int c;
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
list_t *cb_list;
|
|
|
|
for (c = 0; c < max_ncpus; c++) {
|
|
tx_cpu_t *tc = &tx->tx_cpu[c];
|
|
/*
|
|
* No need to lock tx_cpu_t at this point, since this can
|
|
* only be called once a txg has been synced.
|
|
*/
|
|
|
|
int g = txg & TXG_MASK;
|
|
|
|
if (list_is_empty(&tc->tc_callbacks[g]))
|
|
continue;
|
|
|
|
if (tx->tx_commit_cb_taskq == NULL) {
|
|
/*
|
|
* Commit callback taskq hasn't been created yet.
|
|
*/
|
|
tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb",
|
|
max_ncpus, defclsyspri, max_ncpus, max_ncpus * 2,
|
|
TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
|
|
}
|
|
|
|
cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
|
|
list_create(cb_list, sizeof (dmu_tx_callback_t),
|
|
offsetof(dmu_tx_callback_t, dcb_node));
|
|
|
|
list_move_tail(cb_list, &tc->tc_callbacks[g]);
|
|
|
|
(void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *)
|
|
txg_do_callbacks, cb_list, TQ_SLEEP);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wait for pending commit callbacks of already-synced transactions to finish
|
|
* processing.
|
|
* Calling this function from within a commit callback will deadlock.
|
|
*/
|
|
void
|
|
txg_wait_callbacks(dsl_pool_t *dp)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
if (tx->tx_commit_cb_taskq != NULL)
|
|
taskq_wait_outstanding(tx->tx_commit_cb_taskq, 0);
|
|
}
|
|
|
|
static void
|
|
txg_sync_thread(void *arg)
|
|
{
|
|
dsl_pool_t *dp = arg;
|
|
spa_t *spa = dp->dp_spa;
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
callb_cpr_t cpr;
|
|
clock_t start, delta;
|
|
|
|
(void) spl_fstrans_mark();
|
|
txg_thread_enter(tx, &cpr);
|
|
|
|
start = delta = 0;
|
|
for (;;) {
|
|
clock_t timeout = zfs_txg_timeout * hz;
|
|
clock_t timer;
|
|
uint64_t txg;
|
|
txg_stat_t *ts;
|
|
|
|
/*
|
|
* We sync when we're scanning, there's someone waiting
|
|
* on us, or the quiesce thread has handed off a txg to
|
|
* us, or we have reached our timeout.
|
|
*/
|
|
timer = (delta >= timeout ? 0 : timeout - delta);
|
|
while (!dsl_scan_active(dp->dp_scan) &&
|
|
!tx->tx_exiting && timer > 0 &&
|
|
tx->tx_synced_txg >= tx->tx_sync_txg_waiting &&
|
|
tx->tx_quiesced_txg == 0 &&
|
|
dp->dp_dirty_total < zfs_dirty_data_sync) {
|
|
dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n",
|
|
tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
|
|
txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer);
|
|
delta = ddi_get_lbolt() - start;
|
|
timer = (delta > timeout ? 0 : timeout - delta);
|
|
}
|
|
|
|
/*
|
|
* Wait until the quiesce thread hands off a txg to us,
|
|
* prompting it to do so if necessary.
|
|
*/
|
|
while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) {
|
|
if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1)
|
|
tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1;
|
|
cv_broadcast(&tx->tx_quiesce_more_cv);
|
|
txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0);
|
|
}
|
|
|
|
if (tx->tx_exiting)
|
|
txg_thread_exit(tx, &cpr, &tx->tx_sync_thread);
|
|
|
|
/*
|
|
* Consume the quiesced txg which has been handed off to
|
|
* us. This may cause the quiescing thread to now be
|
|
* able to quiesce another txg, so we must signal it.
|
|
*/
|
|
txg = tx->tx_quiesced_txg;
|
|
tx->tx_quiesced_txg = 0;
|
|
tx->tx_syncing_txg = txg;
|
|
DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg);
|
|
ts = spa_txg_history_init_io(spa, txg, dp);
|
|
cv_broadcast(&tx->tx_quiesce_more_cv);
|
|
|
|
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
|
|
txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
|
|
start = ddi_get_lbolt();
|
|
spa_sync(spa, txg);
|
|
delta = ddi_get_lbolt() - start;
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
tx->tx_synced_txg = txg;
|
|
tx->tx_syncing_txg = 0;
|
|
DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg);
|
|
spa_txg_history_fini_io(spa, ts);
|
|
cv_broadcast(&tx->tx_sync_done_cv);
|
|
|
|
/*
|
|
* Dispatch commit callbacks to worker threads.
|
|
*/
|
|
txg_dispatch_callbacks(dp, txg);
|
|
}
|
|
}
|
|
|
|
static void
|
|
txg_quiesce_thread(void *arg)
|
|
{
|
|
dsl_pool_t *dp = arg;
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
callb_cpr_t cpr;
|
|
|
|
txg_thread_enter(tx, &cpr);
|
|
|
|
for (;;) {
|
|
uint64_t txg;
|
|
|
|
/*
|
|
* We quiesce when there's someone waiting on us.
|
|
* However, we can only have one txg in "quiescing" or
|
|
* "quiesced, waiting to sync" state. So we wait until
|
|
* the "quiesced, waiting to sync" txg has been consumed
|
|
* by the sync thread.
|
|
*/
|
|
while (!tx->tx_exiting &&
|
|
(tx->tx_open_txg >= tx->tx_quiesce_txg_waiting ||
|
|
tx->tx_quiesced_txg != 0))
|
|
txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0);
|
|
|
|
if (tx->tx_exiting)
|
|
txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread);
|
|
|
|
txg = tx->tx_open_txg;
|
|
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
|
|
txg, tx->tx_quiesce_txg_waiting,
|
|
tx->tx_sync_txg_waiting);
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
txg_quiesce(dp, txg);
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
|
|
/*
|
|
* Hand this txg off to the sync thread.
|
|
*/
|
|
dprintf("quiesce done, handing off txg %llu\n", txg);
|
|
tx->tx_quiesced_txg = txg;
|
|
DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg);
|
|
cv_broadcast(&tx->tx_sync_more_cv);
|
|
cv_broadcast(&tx->tx_quiesce_done_cv);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delay this thread by delay nanoseconds if we are still in the open
|
|
* transaction group and there is already a waiting txg quiesing or quiesced.
|
|
* Abort the delay if this txg stalls or enters the quiesing state.
|
|
*/
|
|
void
|
|
txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
hrtime_t start = gethrtime();
|
|
|
|
/* don't delay if this txg could transition to quiescing immediately */
|
|
if (tx->tx_open_txg > txg ||
|
|
tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1)
|
|
return;
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) {
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
return;
|
|
}
|
|
|
|
while (gethrtime() - start < delay &&
|
|
tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) {
|
|
(void) cv_timedwait_hires(&tx->tx_quiesce_more_cv,
|
|
&tx->tx_sync_lock, delay, resolution, 0);
|
|
}
|
|
|
|
DMU_TX_STAT_BUMP(dmu_tx_delay);
|
|
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
}
|
|
|
|
void
|
|
txg_wait_synced(dsl_pool_t *dp, uint64_t txg)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
ASSERT(!dsl_pool_config_held(dp));
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
ASSERT3U(tx->tx_threads, ==, 2);
|
|
if (txg == 0)
|
|
txg = tx->tx_open_txg + TXG_DEFER_SIZE;
|
|
if (tx->tx_sync_txg_waiting < txg)
|
|
tx->tx_sync_txg_waiting = txg;
|
|
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
|
|
txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
|
|
while (tx->tx_synced_txg < txg) {
|
|
dprintf("broadcasting sync more "
|
|
"tx_synced=%llu waiting=%llu dp=%p\n",
|
|
tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp);
|
|
cv_broadcast(&tx->tx_sync_more_cv);
|
|
cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock);
|
|
}
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
}
|
|
|
|
void
|
|
txg_wait_open(dsl_pool_t *dp, uint64_t txg)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
ASSERT(!dsl_pool_config_held(dp));
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
ASSERT3U(tx->tx_threads, ==, 2);
|
|
if (txg == 0)
|
|
txg = tx->tx_open_txg + 1;
|
|
if (tx->tx_quiesce_txg_waiting < txg)
|
|
tx->tx_quiesce_txg_waiting = txg;
|
|
dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n",
|
|
txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting);
|
|
while (tx->tx_open_txg < txg) {
|
|
cv_broadcast(&tx->tx_quiesce_more_cv);
|
|
cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock);
|
|
}
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
}
|
|
|
|
/*
|
|
* If there isn't a txg syncing or in the pipeline, push another txg through
|
|
* the pipeline by queiscing the open txg.
|
|
*/
|
|
void
|
|
txg_kick(dsl_pool_t *dp)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
ASSERT(!dsl_pool_config_held(dp));
|
|
|
|
mutex_enter(&tx->tx_sync_lock);
|
|
if (tx->tx_syncing_txg == 0 &&
|
|
tx->tx_quiesce_txg_waiting <= tx->tx_open_txg &&
|
|
tx->tx_sync_txg_waiting <= tx->tx_synced_txg &&
|
|
tx->tx_quiesced_txg <= tx->tx_synced_txg) {
|
|
tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1;
|
|
cv_broadcast(&tx->tx_quiesce_more_cv);
|
|
}
|
|
mutex_exit(&tx->tx_sync_lock);
|
|
}
|
|
|
|
boolean_t
|
|
txg_stalled(dsl_pool_t *dp)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg);
|
|
}
|
|
|
|
boolean_t
|
|
txg_sync_waiting(dsl_pool_t *dp)
|
|
{
|
|
tx_state_t *tx = &dp->dp_tx;
|
|
|
|
return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting ||
|
|
tx->tx_quiesced_txg != 0);
|
|
}
|
|
|
|
/*
|
|
* Verify that this txg is active (open, quiescing, syncing). Non-active
|
|
* txg's should not be manipulated.
|
|
*/
|
|
void
|
|
txg_verify(spa_t *spa, uint64_t txg)
|
|
{
|
|
ASSERTV(dsl_pool_t *dp = spa_get_dsl(spa));
|
|
if (txg <= TXG_INITIAL || txg == ZILTEST_TXG)
|
|
return;
|
|
ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg);
|
|
ASSERT3U(txg, >=, dp->dp_tx.tx_synced_txg);
|
|
ASSERT3U(txg, >=, dp->dp_tx.tx_open_txg - TXG_CONCURRENT_STATES);
|
|
}
|
|
|
|
/*
|
|
* Per-txg object lists.
|
|
*/
|
|
void
|
|
txg_list_create(txg_list_t *tl, spa_t *spa, size_t offset)
|
|
{
|
|
int t;
|
|
|
|
mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
tl->tl_offset = offset;
|
|
tl->tl_spa = spa;
|
|
|
|
for (t = 0; t < TXG_SIZE; t++)
|
|
tl->tl_head[t] = NULL;
|
|
}
|
|
|
|
void
|
|
txg_list_destroy(txg_list_t *tl)
|
|
{
|
|
int t;
|
|
|
|
for (t = 0; t < TXG_SIZE; t++)
|
|
ASSERT(txg_list_empty(tl, t));
|
|
|
|
mutex_destroy(&tl->tl_lock);
|
|
}
|
|
|
|
boolean_t
|
|
txg_list_empty(txg_list_t *tl, uint64_t txg)
|
|
{
|
|
txg_verify(tl->tl_spa, txg);
|
|
return (tl->tl_head[txg & TXG_MASK] == NULL);
|
|
}
|
|
|
|
/*
|
|
* Returns true if all txg lists are empty.
|
|
*
|
|
* Warning: this is inherently racy (an item could be added immediately
|
|
* after this function returns). We don't bother with the lock because
|
|
* it wouldn't change the semantics.
|
|
*/
|
|
boolean_t
|
|
txg_all_lists_empty(txg_list_t *tl)
|
|
{
|
|
for (int i = 0; i < TXG_SIZE; i++) {
|
|
if (!txg_list_empty(tl, i)) {
|
|
return (B_FALSE);
|
|
}
|
|
}
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Add an entry to the list (unless it's already on the list).
|
|
* Returns B_TRUE if it was actually added.
|
|
*/
|
|
boolean_t
|
|
txg_list_add(txg_list_t *tl, void *p, uint64_t txg)
|
|
{
|
|
int t = txg & TXG_MASK;
|
|
txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
|
|
boolean_t add;
|
|
|
|
txg_verify(tl->tl_spa, txg);
|
|
mutex_enter(&tl->tl_lock);
|
|
add = (tn->tn_member[t] == 0);
|
|
if (add) {
|
|
tn->tn_member[t] = 1;
|
|
tn->tn_next[t] = tl->tl_head[t];
|
|
tl->tl_head[t] = tn;
|
|
}
|
|
mutex_exit(&tl->tl_lock);
|
|
|
|
return (add);
|
|
}
|
|
|
|
/*
|
|
* Add an entry to the end of the list, unless it's already on the list.
|
|
* (walks list to find end)
|
|
* Returns B_TRUE if it was actually added.
|
|
*/
|
|
boolean_t
|
|
txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg)
|
|
{
|
|
int t = txg & TXG_MASK;
|
|
txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
|
|
boolean_t add;
|
|
|
|
txg_verify(tl->tl_spa, txg);
|
|
mutex_enter(&tl->tl_lock);
|
|
add = (tn->tn_member[t] == 0);
|
|
if (add) {
|
|
txg_node_t **tp;
|
|
|
|
for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t])
|
|
continue;
|
|
|
|
tn->tn_member[t] = 1;
|
|
tn->tn_next[t] = NULL;
|
|
*tp = tn;
|
|
}
|
|
mutex_exit(&tl->tl_lock);
|
|
|
|
return (add);
|
|
}
|
|
|
|
/*
|
|
* Remove the head of the list and return it.
|
|
*/
|
|
void *
|
|
txg_list_remove(txg_list_t *tl, uint64_t txg)
|
|
{
|
|
int t = txg & TXG_MASK;
|
|
txg_node_t *tn;
|
|
void *p = NULL;
|
|
|
|
txg_verify(tl->tl_spa, txg);
|
|
mutex_enter(&tl->tl_lock);
|
|
if ((tn = tl->tl_head[t]) != NULL) {
|
|
p = (char *)tn - tl->tl_offset;
|
|
tl->tl_head[t] = tn->tn_next[t];
|
|
tn->tn_next[t] = NULL;
|
|
tn->tn_member[t] = 0;
|
|
}
|
|
mutex_exit(&tl->tl_lock);
|
|
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Remove a specific item from the list and return it.
|
|
*/
|
|
void *
|
|
txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg)
|
|
{
|
|
int t = txg & TXG_MASK;
|
|
txg_node_t *tn, **tp;
|
|
|
|
txg_verify(tl->tl_spa, txg);
|
|
mutex_enter(&tl->tl_lock);
|
|
|
|
for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) {
|
|
if ((char *)tn - tl->tl_offset == p) {
|
|
*tp = tn->tn_next[t];
|
|
tn->tn_next[t] = NULL;
|
|
tn->tn_member[t] = 0;
|
|
mutex_exit(&tl->tl_lock);
|
|
return (p);
|
|
}
|
|
}
|
|
|
|
mutex_exit(&tl->tl_lock);
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
boolean_t
|
|
txg_list_member(txg_list_t *tl, void *p, uint64_t txg)
|
|
{
|
|
int t = txg & TXG_MASK;
|
|
txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
|
|
|
|
txg_verify(tl->tl_spa, txg);
|
|
return (tn->tn_member[t] != 0);
|
|
}
|
|
|
|
/*
|
|
* Walk a txg list -- only safe if you know it's not changing.
|
|
*/
|
|
void *
|
|
txg_list_head(txg_list_t *tl, uint64_t txg)
|
|
{
|
|
int t = txg & TXG_MASK;
|
|
txg_node_t *tn = tl->tl_head[t];
|
|
|
|
txg_verify(tl->tl_spa, txg);
|
|
return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
|
|
}
|
|
|
|
void *
|
|
txg_list_next(txg_list_t *tl, void *p, uint64_t txg)
|
|
{
|
|
int t = txg & TXG_MASK;
|
|
txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset);
|
|
|
|
txg_verify(tl->tl_spa, txg);
|
|
tn = tn->tn_next[t];
|
|
|
|
return (tn == NULL ? NULL : (char *)tn - tl->tl_offset);
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
EXPORT_SYMBOL(txg_init);
|
|
EXPORT_SYMBOL(txg_fini);
|
|
EXPORT_SYMBOL(txg_sync_start);
|
|
EXPORT_SYMBOL(txg_sync_stop);
|
|
EXPORT_SYMBOL(txg_hold_open);
|
|
EXPORT_SYMBOL(txg_rele_to_quiesce);
|
|
EXPORT_SYMBOL(txg_rele_to_sync);
|
|
EXPORT_SYMBOL(txg_register_callbacks);
|
|
EXPORT_SYMBOL(txg_delay);
|
|
EXPORT_SYMBOL(txg_wait_synced);
|
|
EXPORT_SYMBOL(txg_wait_open);
|
|
EXPORT_SYMBOL(txg_wait_callbacks);
|
|
EXPORT_SYMBOL(txg_stalled);
|
|
EXPORT_SYMBOL(txg_sync_waiting);
|
|
|
|
module_param(zfs_txg_timeout, int, 0644);
|
|
MODULE_PARM_DESC(zfs_txg_timeout, "Max seconds worth of delta per txg");
|
|
#endif
|