mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2024-11-17 18:11:00 +03:00
c3eabc75b1
This patch achieves the following goals: 1. It replaces the preprocessor kmem flag to gfp flag mapping with proper translation logic. This eliminates the potential for surprises that were previously possible where kmem flags were mapped to gfp flags. 2. It maps vmem_alloc() allocations to kmem_alloc() for allocations sized less than or equal to the newly-added spl_kmem_alloc_max parameter. This ensures that small allocations will not contend on a single global lock, large allocations can still be handled, and potentially limited virtual address space will not be squandered. This behavior is entirely different than under Illumos due to different memory management strategies employed by the respective kernels. However, this functionally provides the semantics required. 3. The --disable-debug-kmem, --enable-debug-kmem (default), and --enable-debug-kmem-tracking allocators have been unified in to a single spl_kmem_alloc_impl() allocation function. This was done to simplify the code and make it more maintainable. 4. Improve portability by exposing an implementation of the memory allocations functions that can be safely used in the same way they are used on Illumos. Specifically, callers may safely use KM_SLEEP in contexts which perform filesystem IO. This allows us to eliminate an entire class of Linux specific changes which were previously required to avoid deadlocking the system. This change will be largely transparent to existing callers but there are a few caveats: 1. Because the headers were refactored and extraneous includes removed callers may find they need to explicitly add additional #includes. In particular, kmem_cache.h must now be explicitly includes to access the SPL's kmem cache implementation. This behavior is different from Illumos but it was done to avoid always masking the Linux slab functions when kmem.h is included. 2. Callers, like Lustre, which made assumptions about the definitions of KM_SLEEP, KM_NOSLEEP, and KM_PUSHPAGE will need to be updated. Other callers such as ZFS which did not will not require changes. 3. KM_PUSHPAGE is no longer overloaded to imply GFP_NOIO. It retains its original meaning of allowing allocations to access reserved memory. KM_PUSHPAGE callers can be converted back to KM_SLEEP. 4. The KM_NODEBUG flags has been retired and the default warning threshold increased to 32k. 5. The kmem_virt() functions has been removed. For callers which need to distinguish between a physical and virtual address use is_vmalloc_addr(). Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
631 lines
18 KiB
C
631 lines
18 KiB
C
/*****************************************************************************\
|
|
* Copyright (C) 2010 Lawrence Livermore National Security, LLC.
|
|
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
|
|
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
|
|
* UCRL-CODE-235197
|
|
*
|
|
* This file is part of the SPL, Solaris Porting Layer.
|
|
* For details, see <http://zfsonlinux.org/>.
|
|
*
|
|
* The SPL is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* The SPL is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along
|
|
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
|
|
*****************************************************************************
|
|
* Solaris Porting Layer (SPL) Thread Specific Data Implementation.
|
|
*
|
|
* Thread specific data has implemented using a hash table, this avoids
|
|
* the need to add a member to the task structure and allows maximum
|
|
* portability between kernels. This implementation has been optimized
|
|
* to keep the tsd_set() and tsd_get() times as small as possible.
|
|
*
|
|
* The majority of the entries in the hash table are for specific tsd
|
|
* entries. These entries are hashed by the product of their key and
|
|
* pid because by design the key and pid are guaranteed to be unique.
|
|
* Their product also has the desirable properly that it will be uniformly
|
|
* distributed over the hash bins providing neither the pid nor key is zero.
|
|
* Under linux the zero pid is always the init process and thus won't be
|
|
* used, and this implementation is careful to never to assign a zero key.
|
|
* By default the hash table is sized to 512 bins which is expected to
|
|
* be sufficient for light to moderate usage of thread specific data.
|
|
*
|
|
* The hash table contains two additional type of entries. They first
|
|
* type is entry is called a 'key' entry and it is added to the hash during
|
|
* tsd_create(). It is used to store the address of the destructor function
|
|
* and it is used as an anchor point. All tsd entries which use the same
|
|
* key will be linked to this entry. This is used during tsd_destory() to
|
|
* quickly call the destructor function for all tsd associated with the key.
|
|
* The 'key' entry may be looked up with tsd_hash_search() by passing the
|
|
* key you wish to lookup and DTOR_PID constant as the pid.
|
|
*
|
|
* The second type of entry is called a 'pid' entry and it is added to the
|
|
* hash the first time a process set a key. The 'pid' entry is also used
|
|
* as an anchor and all tsd for the process will be linked to it. This
|
|
* list is using during tsd_exit() to ensure all registered destructors
|
|
* are run for the process. The 'pid' entry may be looked up with
|
|
* tsd_hash_search() by passing the PID_KEY constant as the key, and
|
|
* the process pid. Note that tsd_exit() is called by thread_exit()
|
|
* so if your using the Solaris thread API you should not need to call
|
|
* tsd_exit() directly.
|
|
*
|
|
\*****************************************************************************/
|
|
|
|
#include <sys/kmem.h>
|
|
#include <sys/thread.h>
|
|
#include <sys/tsd.h>
|
|
#include <linux/hash.h>
|
|
|
|
typedef struct tsd_hash_bin {
|
|
spinlock_t hb_lock;
|
|
struct hlist_head hb_head;
|
|
} tsd_hash_bin_t;
|
|
|
|
typedef struct tsd_hash_table {
|
|
spinlock_t ht_lock;
|
|
uint_t ht_bits;
|
|
uint_t ht_key;
|
|
tsd_hash_bin_t *ht_bins;
|
|
} tsd_hash_table_t;
|
|
|
|
typedef struct tsd_hash_entry {
|
|
uint_t he_key;
|
|
pid_t he_pid;
|
|
dtor_func_t he_dtor;
|
|
void *he_value;
|
|
struct hlist_node he_list;
|
|
struct list_head he_key_list;
|
|
struct list_head he_pid_list;
|
|
} tsd_hash_entry_t;
|
|
|
|
static tsd_hash_table_t *tsd_hash_table = NULL;
|
|
|
|
|
|
/*
|
|
* tsd_hash_search - searches hash table for tsd_hash_entry
|
|
* @table: hash table
|
|
* @key: search key
|
|
* @pid: search pid
|
|
*/
|
|
static tsd_hash_entry_t *
|
|
tsd_hash_search(tsd_hash_table_t *table, uint_t key, pid_t pid)
|
|
{
|
|
struct hlist_node *node;
|
|
tsd_hash_entry_t *entry;
|
|
tsd_hash_bin_t *bin;
|
|
ulong_t hash;
|
|
|
|
hash = hash_long((ulong_t)key * (ulong_t)pid, table->ht_bits);
|
|
bin = &table->ht_bins[hash];
|
|
spin_lock(&bin->hb_lock);
|
|
hlist_for_each(node, &bin->hb_head) {
|
|
entry = list_entry(node, tsd_hash_entry_t, he_list);
|
|
if ((entry->he_key == key) && (entry->he_pid == pid)) {
|
|
spin_unlock(&bin->hb_lock);
|
|
return (entry);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&bin->hb_lock);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* tsd_hash_dtor - call the destructor and free all entries on the list
|
|
* @work: list of hash entries
|
|
*
|
|
* For a list of entries which have all already been removed from the
|
|
* hash call their registered destructor then free the associated memory.
|
|
*/
|
|
static void
|
|
tsd_hash_dtor(struct hlist_head *work)
|
|
{
|
|
tsd_hash_entry_t *entry;
|
|
|
|
while (!hlist_empty(work)) {
|
|
entry = hlist_entry(work->first, tsd_hash_entry_t, he_list);
|
|
hlist_del(&entry->he_list);
|
|
|
|
if (entry->he_dtor && entry->he_pid != DTOR_PID)
|
|
entry->he_dtor(entry->he_value);
|
|
|
|
kmem_free(entry, sizeof(tsd_hash_entry_t));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* tsd_hash_add - adds an entry to hash table
|
|
* @table: hash table
|
|
* @key: search key
|
|
* @pid: search pid
|
|
*
|
|
* The caller is responsible for ensuring the unique key/pid do not
|
|
* already exist in the hash table. This possible because all entries
|
|
* are thread specific thus a concurrent thread will never attempt to
|
|
* add this key/pid. Because multiple bins must be checked to add
|
|
* links to the dtor and pid entries the entire table is locked.
|
|
*/
|
|
static int
|
|
tsd_hash_add(tsd_hash_table_t *table, uint_t key, pid_t pid, void *value)
|
|
{
|
|
tsd_hash_entry_t *entry, *dtor_entry, *pid_entry;
|
|
tsd_hash_bin_t *bin;
|
|
ulong_t hash;
|
|
int rc = 0;
|
|
|
|
ASSERT3P(tsd_hash_search(table, key, pid), ==, NULL);
|
|
|
|
/* New entry allocate structure, set value, and add to hash */
|
|
entry = kmem_alloc(sizeof(tsd_hash_entry_t), KM_PUSHPAGE);
|
|
if (entry == NULL)
|
|
return (ENOMEM);
|
|
|
|
entry->he_key = key;
|
|
entry->he_pid = pid;
|
|
entry->he_value = value;
|
|
INIT_HLIST_NODE(&entry->he_list);
|
|
INIT_LIST_HEAD(&entry->he_key_list);
|
|
INIT_LIST_HEAD(&entry->he_pid_list);
|
|
|
|
spin_lock(&table->ht_lock);
|
|
|
|
/* Destructor entry must exist for all valid keys */
|
|
dtor_entry = tsd_hash_search(table, entry->he_key, DTOR_PID);
|
|
ASSERT3P(dtor_entry, !=, NULL);
|
|
entry->he_dtor = dtor_entry->he_dtor;
|
|
|
|
/* Process entry must exist for all valid processes */
|
|
pid_entry = tsd_hash_search(table, PID_KEY, entry->he_pid);
|
|
ASSERT3P(pid_entry, !=, NULL);
|
|
|
|
hash = hash_long((ulong_t)key * (ulong_t)pid, table->ht_bits);
|
|
bin = &table->ht_bins[hash];
|
|
spin_lock(&bin->hb_lock);
|
|
|
|
/* Add to the hash, key, and pid lists */
|
|
hlist_add_head(&entry->he_list, &bin->hb_head);
|
|
list_add(&entry->he_key_list, &dtor_entry->he_key_list);
|
|
list_add(&entry->he_pid_list, &pid_entry->he_pid_list);
|
|
|
|
spin_unlock(&bin->hb_lock);
|
|
spin_unlock(&table->ht_lock);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/*
|
|
* tsd_hash_add_key - adds a destructor entry to the hash table
|
|
* @table: hash table
|
|
* @keyp: search key
|
|
* @dtor: key destructor
|
|
*
|
|
* For every unique key there is a single entry in the hash which is used
|
|
* as anchor. All other thread specific entries for this key are linked
|
|
* to this anchor via the 'he_key_list' list head. On return they keyp
|
|
* will be set to the next available key for the hash table.
|
|
*/
|
|
static int
|
|
tsd_hash_add_key(tsd_hash_table_t *table, uint_t *keyp, dtor_func_t dtor)
|
|
{
|
|
tsd_hash_entry_t *tmp_entry, *entry;
|
|
tsd_hash_bin_t *bin;
|
|
ulong_t hash;
|
|
int keys_checked = 0;
|
|
|
|
ASSERT3P(table, !=, NULL);
|
|
|
|
/* Allocate entry to be used as a destructor for this key */
|
|
entry = kmem_alloc(sizeof(tsd_hash_entry_t), KM_PUSHPAGE);
|
|
if (entry == NULL)
|
|
return (ENOMEM);
|
|
|
|
/* Determine next available key value */
|
|
spin_lock(&table->ht_lock);
|
|
do {
|
|
/* Limited to TSD_KEYS_MAX concurrent unique keys */
|
|
if (table->ht_key++ > TSD_KEYS_MAX)
|
|
table->ht_key = 1;
|
|
|
|
/* Ensure failure when all TSD_KEYS_MAX keys are in use */
|
|
if (keys_checked++ >= TSD_KEYS_MAX) {
|
|
spin_unlock(&table->ht_lock);
|
|
return (ENOENT);
|
|
}
|
|
|
|
tmp_entry = tsd_hash_search(table, table->ht_key, DTOR_PID);
|
|
} while (tmp_entry);
|
|
|
|
/* Add destructor entry in to hash table */
|
|
entry->he_key = *keyp = table->ht_key;
|
|
entry->he_pid = DTOR_PID;
|
|
entry->he_dtor = dtor;
|
|
entry->he_value = NULL;
|
|
INIT_HLIST_NODE(&entry->he_list);
|
|
INIT_LIST_HEAD(&entry->he_key_list);
|
|
INIT_LIST_HEAD(&entry->he_pid_list);
|
|
|
|
hash = hash_long((ulong_t)*keyp * (ulong_t)DTOR_PID, table->ht_bits);
|
|
bin = &table->ht_bins[hash];
|
|
spin_lock(&bin->hb_lock);
|
|
|
|
hlist_add_head(&entry->he_list, &bin->hb_head);
|
|
|
|
spin_unlock(&bin->hb_lock);
|
|
spin_unlock(&table->ht_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* tsd_hash_add_pid - adds a process entry to the hash table
|
|
* @table: hash table
|
|
* @pid: search pid
|
|
*
|
|
* For every process these is a single entry in the hash which is used
|
|
* as anchor. All other thread specific entries for this process are
|
|
* linked to this anchor via the 'he_pid_list' list head.
|
|
*/
|
|
static int
|
|
tsd_hash_add_pid(tsd_hash_table_t *table, pid_t pid)
|
|
{
|
|
tsd_hash_entry_t *entry;
|
|
tsd_hash_bin_t *bin;
|
|
ulong_t hash;
|
|
|
|
/* Allocate entry to be used as the process reference */
|
|
entry = kmem_alloc(sizeof(tsd_hash_entry_t), KM_PUSHPAGE);
|
|
if (entry == NULL)
|
|
return (ENOMEM);
|
|
|
|
spin_lock(&table->ht_lock);
|
|
entry->he_key = PID_KEY;
|
|
entry->he_pid = pid;
|
|
entry->he_dtor = NULL;
|
|
entry->he_value = NULL;
|
|
INIT_HLIST_NODE(&entry->he_list);
|
|
INIT_LIST_HEAD(&entry->he_key_list);
|
|
INIT_LIST_HEAD(&entry->he_pid_list);
|
|
|
|
hash = hash_long((ulong_t)PID_KEY * (ulong_t)pid, table->ht_bits);
|
|
bin = &table->ht_bins[hash];
|
|
spin_lock(&bin->hb_lock);
|
|
|
|
hlist_add_head(&entry->he_list, &bin->hb_head);
|
|
|
|
spin_unlock(&bin->hb_lock);
|
|
spin_unlock(&table->ht_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* tsd_hash_del - delete an entry from hash table, key, and pid lists
|
|
* @table: hash table
|
|
* @key: search key
|
|
* @pid: search pid
|
|
*/
|
|
static void
|
|
tsd_hash_del(tsd_hash_table_t *table, tsd_hash_entry_t *entry)
|
|
{
|
|
ASSERT(spin_is_locked(&table->ht_lock));
|
|
hlist_del(&entry->he_list);
|
|
list_del_init(&entry->he_key_list);
|
|
list_del_init(&entry->he_pid_list);
|
|
}
|
|
|
|
/*
|
|
* tsd_hash_table_init - allocate a hash table
|
|
* @bits: hash table size
|
|
*
|
|
* A hash table with 2^bits bins will be created, it may not be resized
|
|
* after the fact and must be free'd with tsd_hash_table_fini().
|
|
*/
|
|
static tsd_hash_table_t *
|
|
tsd_hash_table_init(uint_t bits)
|
|
{
|
|
tsd_hash_table_t *table;
|
|
int hash, size = (1 << bits);
|
|
|
|
table = kmem_zalloc(sizeof(tsd_hash_table_t), KM_SLEEP);
|
|
if (table == NULL)
|
|
return (NULL);
|
|
|
|
table->ht_bins = kmem_zalloc(sizeof(tsd_hash_bin_t) * size, KM_SLEEP);
|
|
if (table->ht_bins == NULL) {
|
|
kmem_free(table, sizeof(tsd_hash_table_t));
|
|
return (NULL);
|
|
}
|
|
|
|
for (hash = 0; hash < size; hash++) {
|
|
spin_lock_init(&table->ht_bins[hash].hb_lock);
|
|
INIT_HLIST_HEAD(&table->ht_bins[hash].hb_head);
|
|
}
|
|
|
|
spin_lock_init(&table->ht_lock);
|
|
table->ht_bits = bits;
|
|
table->ht_key = 1;
|
|
|
|
return (table);
|
|
}
|
|
|
|
/*
|
|
* tsd_hash_table_fini - free a hash table
|
|
* @table: hash table
|
|
*
|
|
* Free a hash table allocated by tsd_hash_table_init(). If the hash
|
|
* table is not empty this function will call the proper destructor for
|
|
* all remaining entries before freeing the memory used by those entries.
|
|
*/
|
|
static void
|
|
tsd_hash_table_fini(tsd_hash_table_t *table)
|
|
{
|
|
HLIST_HEAD(work);
|
|
tsd_hash_bin_t *bin;
|
|
tsd_hash_entry_t *entry;
|
|
int size, i;
|
|
|
|
ASSERT3P(table, !=, NULL);
|
|
spin_lock(&table->ht_lock);
|
|
for (i = 0, size = (1 << table->ht_bits); i < size; i++) {
|
|
bin = &table->ht_bins[i];
|
|
spin_lock(&bin->hb_lock);
|
|
while (!hlist_empty(&bin->hb_head)) {
|
|
entry = hlist_entry(bin->hb_head.first,
|
|
tsd_hash_entry_t, he_list);
|
|
tsd_hash_del(table, entry);
|
|
hlist_add_head(&entry->he_list, &work);
|
|
}
|
|
spin_unlock(&bin->hb_lock);
|
|
}
|
|
spin_unlock(&table->ht_lock);
|
|
|
|
tsd_hash_dtor(&work);
|
|
kmem_free(table->ht_bins, sizeof(tsd_hash_bin_t)*(1<<table->ht_bits));
|
|
kmem_free(table, sizeof(tsd_hash_table_t));
|
|
}
|
|
|
|
/*
|
|
* tsd_set - set thread specific data
|
|
* @key: lookup key
|
|
* @value: value to set
|
|
*
|
|
* Caller must prevent racing tsd_create() or tsd_destroy(), protected
|
|
* from racing tsd_get() or tsd_set() because it is thread specific.
|
|
* This function has been optimized to be fast for the update case.
|
|
* When setting the tsd initially it will be slower due to additional
|
|
* required locking and potential memory allocations.
|
|
*/
|
|
int
|
|
tsd_set(uint_t key, void *value)
|
|
{
|
|
tsd_hash_table_t *table;
|
|
tsd_hash_entry_t *entry;
|
|
pid_t pid;
|
|
int rc;
|
|
|
|
table = tsd_hash_table;
|
|
pid = curthread->pid;
|
|
ASSERT3P(table, !=, NULL);
|
|
|
|
if ((key == 0) || (key > TSD_KEYS_MAX))
|
|
return (EINVAL);
|
|
|
|
/* Entry already exists in hash table update value */
|
|
entry = tsd_hash_search(table, key, pid);
|
|
if (entry) {
|
|
entry->he_value = value;
|
|
return (0);
|
|
}
|
|
|
|
/* Add a process entry to the hash if not yet exists */
|
|
entry = tsd_hash_search(table, PID_KEY, pid);
|
|
if (entry == NULL) {
|
|
rc = tsd_hash_add_pid(table, pid);
|
|
if (rc)
|
|
return (rc);
|
|
}
|
|
|
|
rc = tsd_hash_add(table, key, pid, value);
|
|
return (rc);
|
|
}
|
|
EXPORT_SYMBOL(tsd_set);
|
|
|
|
/*
|
|
* tsd_get - get thread specific data
|
|
* @key: lookup key
|
|
*
|
|
* Caller must prevent racing tsd_create() or tsd_destroy(). This
|
|
* implementation is designed to be fast and scalable, it does not
|
|
* lock the entire table only a single hash bin.
|
|
*/
|
|
void *
|
|
tsd_get(uint_t key)
|
|
{
|
|
tsd_hash_entry_t *entry;
|
|
|
|
ASSERT3P(tsd_hash_table, !=, NULL);
|
|
|
|
if ((key == 0) || (key > TSD_KEYS_MAX))
|
|
return (NULL);
|
|
|
|
entry = tsd_hash_search(tsd_hash_table, key, curthread->pid);
|
|
if (entry == NULL)
|
|
return (NULL);
|
|
|
|
return (entry->he_value);
|
|
}
|
|
EXPORT_SYMBOL(tsd_get);
|
|
|
|
/*
|
|
* tsd_create - create thread specific data key
|
|
* @keyp: lookup key address
|
|
* @dtor: destructor called during tsd_destroy() or tsd_exit()
|
|
*
|
|
* Provided key must be set to 0 or it assumed to be already in use.
|
|
* The dtor is allowed to be NULL in which case no additional cleanup
|
|
* for the data is performed during tsd_destroy() or tsd_exit().
|
|
*
|
|
* Caller must prevent racing tsd_set() or tsd_get(), this function is
|
|
* safe from racing tsd_create(), tsd_destroy(), and tsd_exit().
|
|
*/
|
|
void
|
|
tsd_create(uint_t *keyp, dtor_func_t dtor)
|
|
{
|
|
ASSERT3P(keyp, !=, NULL);
|
|
if (*keyp)
|
|
return;
|
|
|
|
(void)tsd_hash_add_key(tsd_hash_table, keyp, dtor);
|
|
}
|
|
EXPORT_SYMBOL(tsd_create);
|
|
|
|
/*
|
|
* tsd_destroy - destroy thread specific data
|
|
* @keyp: lookup key address
|
|
*
|
|
* Destroys the thread specific data on all threads which use this key.
|
|
*
|
|
* Caller must prevent racing tsd_set() or tsd_get(), this function is
|
|
* safe from racing tsd_create(), tsd_destroy(), and tsd_exit().
|
|
*/
|
|
void
|
|
tsd_destroy(uint_t *keyp)
|
|
{
|
|
HLIST_HEAD(work);
|
|
tsd_hash_table_t *table;
|
|
tsd_hash_entry_t *dtor_entry, *entry;
|
|
tsd_hash_bin_t *dtor_entry_bin, *entry_bin;
|
|
ulong_t hash;
|
|
|
|
table = tsd_hash_table;
|
|
ASSERT3P(table, !=, NULL);
|
|
|
|
spin_lock(&table->ht_lock);
|
|
dtor_entry = tsd_hash_search(table, *keyp, DTOR_PID);
|
|
if (dtor_entry == NULL) {
|
|
spin_unlock(&table->ht_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* All threads which use this key must be linked off of the
|
|
* DTOR_PID entry. They are removed from the hash table and
|
|
* linked in to a private working list to be destroyed.
|
|
*/
|
|
while (!list_empty(&dtor_entry->he_key_list)) {
|
|
entry = list_entry(dtor_entry->he_key_list.next,
|
|
tsd_hash_entry_t, he_key_list);
|
|
ASSERT3U(dtor_entry->he_key, ==, entry->he_key);
|
|
ASSERT3P(dtor_entry->he_dtor, ==, entry->he_dtor);
|
|
|
|
hash = hash_long((ulong_t)entry->he_key *
|
|
(ulong_t)entry->he_pid, table->ht_bits);
|
|
entry_bin = &table->ht_bins[hash];
|
|
|
|
spin_lock(&entry_bin->hb_lock);
|
|
tsd_hash_del(table, entry);
|
|
hlist_add_head(&entry->he_list, &work);
|
|
spin_unlock(&entry_bin->hb_lock);
|
|
}
|
|
|
|
hash = hash_long((ulong_t)dtor_entry->he_key *
|
|
(ulong_t)dtor_entry->he_pid, table->ht_bits);
|
|
dtor_entry_bin = &table->ht_bins[hash];
|
|
|
|
spin_lock(&dtor_entry_bin->hb_lock);
|
|
tsd_hash_del(table, dtor_entry);
|
|
hlist_add_head(&dtor_entry->he_list, &work);
|
|
spin_unlock(&dtor_entry_bin->hb_lock);
|
|
spin_unlock(&table->ht_lock);
|
|
|
|
tsd_hash_dtor(&work);
|
|
*keyp = 0;
|
|
}
|
|
EXPORT_SYMBOL(tsd_destroy);
|
|
|
|
/*
|
|
* tsd_exit - destroys all thread specific data for this thread
|
|
*
|
|
* Destroys all the thread specific data for this thread.
|
|
*
|
|
* Caller must prevent racing tsd_set() or tsd_get(), this function is
|
|
* safe from racing tsd_create(), tsd_destroy(), and tsd_exit().
|
|
*/
|
|
void
|
|
tsd_exit(void)
|
|
{
|
|
HLIST_HEAD(work);
|
|
tsd_hash_table_t *table;
|
|
tsd_hash_entry_t *pid_entry, *entry;
|
|
tsd_hash_bin_t *pid_entry_bin, *entry_bin;
|
|
ulong_t hash;
|
|
|
|
table = tsd_hash_table;
|
|
ASSERT3P(table, !=, NULL);
|
|
|
|
spin_lock(&table->ht_lock);
|
|
pid_entry = tsd_hash_search(table, PID_KEY, curthread->pid);
|
|
if (pid_entry == NULL) {
|
|
spin_unlock(&table->ht_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* All keys associated with this pid must be linked off of the
|
|
* PID_KEY entry. They are removed from the hash table and
|
|
* linked in to a private working list to be destroyed.
|
|
*/
|
|
|
|
while (!list_empty(&pid_entry->he_pid_list)) {
|
|
entry = list_entry(pid_entry->he_pid_list.next,
|
|
tsd_hash_entry_t, he_pid_list);
|
|
ASSERT3U(pid_entry->he_pid, ==, entry->he_pid);
|
|
|
|
hash = hash_long((ulong_t)entry->he_key *
|
|
(ulong_t)entry->he_pid, table->ht_bits);
|
|
entry_bin = &table->ht_bins[hash];
|
|
|
|
spin_lock(&entry_bin->hb_lock);
|
|
tsd_hash_del(table, entry);
|
|
hlist_add_head(&entry->he_list, &work);
|
|
spin_unlock(&entry_bin->hb_lock);
|
|
}
|
|
|
|
hash = hash_long((ulong_t)pid_entry->he_key *
|
|
(ulong_t)pid_entry->he_pid, table->ht_bits);
|
|
pid_entry_bin = &table->ht_bins[hash];
|
|
|
|
spin_lock(&pid_entry_bin->hb_lock);
|
|
tsd_hash_del(table, pid_entry);
|
|
hlist_add_head(&pid_entry->he_list, &work);
|
|
spin_unlock(&pid_entry_bin->hb_lock);
|
|
spin_unlock(&table->ht_lock);
|
|
|
|
tsd_hash_dtor(&work);
|
|
}
|
|
EXPORT_SYMBOL(tsd_exit);
|
|
|
|
int
|
|
spl_tsd_init(void)
|
|
{
|
|
tsd_hash_table = tsd_hash_table_init(TSD_HASH_TABLE_BITS_DEFAULT);
|
|
if (tsd_hash_table == NULL)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
spl_tsd_fini(void)
|
|
{
|
|
tsd_hash_table_fini(tsd_hash_table);
|
|
tsd_hash_table = NULL;
|
|
}
|