mirror_zfs/module/zfs/vdev_rebuild.c
Brian Behlendorf f17d146ca6 Use dsl_scan_setup_check() to setup a scrub
When a rebuild completes it will automatically schedule a follow up
scrub to verify all of the block checksums.  Before setting up the
scrub execute the counterpart dsl_scan_setup_check() function to
confirm the scrub can be started.  Prior to this change we'd only
check vdev_rebuild_active() which isn't as comprehensive, and using
the check function keeps all of this logic in one place.

Reviewed-by: Mark Maybee <mark.maybee@delphix.com>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Closes #11849
2021-04-14 13:19:49 -07:00

1151 lines
35 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
*
* Copyright (c) 2018, Intel Corporation.
* Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
*/
#include <sys/vdev_impl.h>
#include <sys/vdev_draid.h>
#include <sys/dsl_scan.h>
#include <sys/spa_impl.h>
#include <sys/metaslab_impl.h>
#include <sys/vdev_rebuild.h>
#include <sys/zio.h>
#include <sys/dmu_tx.h>
#include <sys/arc.h>
#include <sys/zap.h>
/*
* This file contains the sequential reconstruction implementation for
* resilvering. This form of resilvering is internally referred to as device
* rebuild to avoid conflating it with the traditional healing reconstruction
* performed by the dsl scan code.
*
* When replacing a device, or scrubbing the pool, ZFS has historically used
* a process called resilvering which is a form of healing reconstruction.
* This approach has the advantage that as blocks are read from disk their
* checksums can be immediately verified and the data repaired. Unfortunately,
* it also results in a random IO pattern to the disk even when extra care
* is taken to sequentialize the IO as much as possible. This substantially
* increases the time required to resilver the pool and restore redundancy.
*
* For mirrored devices it's possible to implement an alternate sequential
* reconstruction strategy when resilvering. Sequential reconstruction
* behaves like a traditional RAID rebuild and reconstructs a device in LBA
* order without verifying the checksum. After this phase completes a second
* scrub phase is started to verify all of the checksums. This two phase
* process will take longer than the healing reconstruction described above.
* However, it has that advantage that after the reconstruction first phase
* completes redundancy has been restored. At this point the pool can incur
* another device failure without risking data loss.
*
* There are a few noteworthy limitations and other advantages of resilvering
* using sequential reconstruction vs healing reconstruction.
*
* Limitations:
*
* - Sequential reconstruction is not possible on RAIDZ due to its
* variable stripe width. Note dRAID uses a fixed stripe width which
* avoids this issue, but comes at the expense of some usable capacity.
*
* - Block checksums are not verified during sequential reconstruction.
* Similar to traditional RAID the parity/mirror data is reconstructed
* but cannot be immediately double checked. For this reason when the
* last active resilver completes the pool is automatically scrubbed
* by default.
*
* - Deferred resilvers using sequential reconstruction are not currently
* supported. When adding another vdev to an active top-level resilver
* it must be restarted.
*
* Advantages:
*
* - Sequential reconstruction is performed in LBA order which may be faster
* than healing reconstruction particularly when using HDDs (or
* especially with SMR devices). Only allocated capacity is resilvered.
*
* - Sequential reconstruction is not constrained by ZFS block boundaries.
* This allows it to issue larger IOs to disk which span multiple blocks
* allowing all of these logical blocks to be repaired with a single IO.
*
* - Unlike a healing resilver or scrub which are pool wide operations,
* sequential reconstruction is handled by the top-level vdevs. This
* allows for it to be started or canceled on a top-level vdev without
* impacting any other top-level vdevs in the pool.
*
* - Data only referenced by a pool checkpoint will be repaired because
* that space is reflected in the space maps. This differs for a
* healing resilver or scrub which will not repair that data.
*/
/*
* Size of rebuild reads; defaults to 1MiB per data disk and is capped at
* SPA_MAXBLOCKSIZE.
*/
unsigned long zfs_rebuild_max_segment = 1024 * 1024;
/*
* Maximum number of parallelly executed bytes per leaf vdev caused by a
* sequential resilver. We attempt to strike a balance here between keeping
* the vdev queues full of I/Os at all times and not overflowing the queues
* to cause long latency, which would cause long txg sync times.
*
* A large default value can be safely used here because the default target
* segment size is also large (zfs_rebuild_max_segment=1M). This helps keep
* the queue depth short.
*
* 32MB was selected as the default value to achieve good performance with
* a large 90-drive dRAID HDD configuration (draid2:8d:90c:2s). A sequential
* rebuild was unable to saturate all of the drives using smaller values.
* With a value of 32MB the sequential resilver write rate was measured at
* 800MB/s sustained while rebuilding to a distributed spare.
*/
unsigned long zfs_rebuild_vdev_limit = 32 << 20;
/*
* Automatically start a pool scrub when the last active sequential resilver
* completes in order to verify the checksums of all blocks which have been
* resilvered. This option is enabled by default and is strongly recommended.
*/
int zfs_rebuild_scrub_enabled = 1;
/*
* For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
*/
static void vdev_rebuild_thread(void *arg);
/*
* Clear the per-vdev rebuild bytes value for a vdev tree.
*/
static void
clear_rebuild_bytes(vdev_t *vd)
{
vdev_stat_t *vs = &vd->vdev_stat;
for (uint64_t i = 0; i < vd->vdev_children; i++)
clear_rebuild_bytes(vd->vdev_child[i]);
mutex_enter(&vd->vdev_stat_lock);
vs->vs_rebuild_processed = 0;
mutex_exit(&vd->vdev_stat_lock);
}
/*
* Determines whether a vdev_rebuild_thread() should be stopped.
*/
static boolean_t
vdev_rebuild_should_stop(vdev_t *vd)
{
return (!vdev_writeable(vd) || vd->vdev_removing ||
vd->vdev_rebuild_exit_wanted ||
vd->vdev_rebuild_cancel_wanted ||
vd->vdev_rebuild_reset_wanted);
}
/*
* Determine if the rebuild should be canceled. This may happen when all
* vdevs with MISSING DTLs are detached.
*/
static boolean_t
vdev_rebuild_should_cancel(vdev_t *vd)
{
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
if (!vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg))
return (B_TRUE);
return (B_FALSE);
}
/*
* The sync task for updating the on-disk state of a rebuild. This is
* scheduled by vdev_rebuild_range().
*/
static void
vdev_rebuild_update_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
uint64_t txg = dmu_tx_get_txg(tx);
mutex_enter(&vd->vdev_rebuild_lock);
if (vr->vr_scan_offset[txg & TXG_MASK] > 0) {
vrp->vrp_last_offset = vr->vr_scan_offset[txg & TXG_MASK];
vr->vr_scan_offset[txg & TXG_MASK] = 0;
}
vrp->vrp_scan_time_ms = vr->vr_prev_scan_time_ms +
NSEC2MSEC(gethrtime() - vr->vr_pass_start_time);
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
mutex_exit(&vd->vdev_rebuild_lock);
}
/*
* Initialize the on-disk state for a new rebuild, start the rebuild thread.
*/
static void
vdev_rebuild_initiate_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
ASSERT(vd->vdev_rebuilding);
spa_feature_incr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
mutex_enter(&vd->vdev_rebuild_lock);
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
vrp->vrp_rebuild_state = VDEV_REBUILD_ACTIVE;
vrp->vrp_min_txg = 0;
vrp->vrp_max_txg = dmu_tx_get_txg(tx);
vrp->vrp_start_time = gethrestime_sec();
vrp->vrp_scan_time_ms = 0;
vr->vr_prev_scan_time_ms = 0;
/*
* Rebuilds are currently only used when replacing a device, in which
* case there must be DTL_MISSING entries. In the future, we could
* allow rebuilds to be used in a way similar to a scrub. This would
* be useful because it would allow us to rebuild the space used by
* pool checkpoints.
*/
VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
spa_history_log_internal(spa, "rebuild", tx,
"vdev_id=%llu vdev_guid=%llu started",
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
vd->vdev_rebuild_thread = thread_create(NULL, 0,
vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
mutex_exit(&vd->vdev_rebuild_lock);
}
static void
vdev_rebuild_log_notify(spa_t *spa, vdev_t *vd, char *name)
{
nvlist_t *aux = fnvlist_alloc();
fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE, "sequential");
spa_event_notify(spa, vd, aux, name);
nvlist_free(aux);
}
/*
* Called to request that a new rebuild be started. The feature will remain
* active for the duration of the rebuild, then revert to the enabled state.
*/
static void
vdev_rebuild_initiate(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(vd->vdev_top == vd);
ASSERT(MUTEX_HELD(&vd->vdev_rebuild_lock));
ASSERT(!vd->vdev_rebuilding);
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
vd->vdev_rebuilding = B_TRUE;
dsl_sync_task_nowait(spa_get_dsl(spa), vdev_rebuild_initiate_sync,
(void *)(uintptr_t)vd->vdev_id, tx);
dmu_tx_commit(tx);
vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_START);
}
/*
* Update the on-disk state to completed when a rebuild finishes.
*/
static void
vdev_rebuild_complete_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&vd->vdev_rebuild_lock);
vrp->vrp_rebuild_state = VDEV_REBUILD_COMPLETE;
vrp->vrp_end_time = gethrestime_sec();
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
vdev_dtl_reassess(vd, tx->tx_txg, vrp->vrp_max_txg, B_TRUE, B_TRUE);
spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
spa_history_log_internal(spa, "rebuild", tx,
"vdev_id=%llu vdev_guid=%llu complete",
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
/* Handles detaching of spares */
spa_async_request(spa, SPA_ASYNC_REBUILD_DONE);
vd->vdev_rebuilding = B_FALSE;
mutex_exit(&vd->vdev_rebuild_lock);
/*
* While we're in syncing context take the opportunity to
* setup the scrub when there are no more active rebuilds.
*/
pool_scan_func_t func = POOL_SCAN_SCRUB;
if (dsl_scan_setup_check(&func, tx) == 0 &&
zfs_rebuild_scrub_enabled) {
dsl_scan_setup_sync(&func, tx);
}
cv_broadcast(&vd->vdev_rebuild_cv);
/* Clear recent error events (i.e. duplicate events tracking) */
zfs_ereport_clear(spa, NULL);
}
/*
* Update the on-disk state to canceled when a rebuild finishes.
*/
static void
vdev_rebuild_cancel_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&vd->vdev_rebuild_lock);
vrp->vrp_rebuild_state = VDEV_REBUILD_CANCELED;
vrp->vrp_end_time = gethrestime_sec();
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
spa_feature_decr(vd->vdev_spa, SPA_FEATURE_DEVICE_REBUILD, tx);
spa_history_log_internal(spa, "rebuild", tx,
"vdev_id=%llu vdev_guid=%llu canceled",
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
vdev_rebuild_log_notify(spa, vd, ESC_ZFS_RESILVER_FINISH);
vd->vdev_rebuild_cancel_wanted = B_FALSE;
vd->vdev_rebuilding = B_FALSE;
mutex_exit(&vd->vdev_rebuild_lock);
spa_notify_waiters(spa);
cv_broadcast(&vd->vdev_rebuild_cv);
}
/*
* Resets the progress of a running rebuild. This will occur when a new
* vdev is added to rebuild.
*/
static void
vdev_rebuild_reset_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&vd->vdev_rebuild_lock);
ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
vrp->vrp_last_offset = 0;
vrp->vrp_min_txg = 0;
vrp->vrp_max_txg = dmu_tx_get_txg(tx);
vrp->vrp_bytes_scanned = 0;
vrp->vrp_bytes_issued = 0;
vrp->vrp_bytes_rebuilt = 0;
vrp->vrp_bytes_est = 0;
vrp->vrp_scan_time_ms = 0;
vr->vr_prev_scan_time_ms = 0;
/* See vdev_rebuild_initiate_sync comment */
VERIFY(vdev_resilver_needed(vd, &vrp->vrp_min_txg, &vrp->vrp_max_txg));
VERIFY0(zap_update(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
spa_history_log_internal(spa, "rebuild", tx,
"vdev_id=%llu vdev_guid=%llu reset",
(u_longlong_t)vd->vdev_id, (u_longlong_t)vd->vdev_guid);
vd->vdev_rebuild_reset_wanted = B_FALSE;
ASSERT(vd->vdev_rebuilding);
vd->vdev_rebuild_thread = thread_create(NULL, 0,
vdev_rebuild_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
mutex_exit(&vd->vdev_rebuild_lock);
}
/*
* Clear the last rebuild status.
*/
void
vdev_rebuild_clear_sync(void *arg, dmu_tx_t *tx)
{
int vdev_id = (uintptr_t)arg;
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
vdev_t *vd = vdev_lookup_top(spa, vdev_id);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
objset_t *mos = spa_meta_objset(spa);
mutex_enter(&vd->vdev_rebuild_lock);
if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD) ||
vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE) {
mutex_exit(&vd->vdev_rebuild_lock);
return;
}
clear_rebuild_bytes(vd);
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
if (vd->vdev_top_zap != 0 && zap_contains(mos, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS) == 0) {
VERIFY0(zap_update(mos, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp, tx));
}
mutex_exit(&vd->vdev_rebuild_lock);
}
/*
* The zio_done_func_t callback for each rebuild I/O issued. It's responsible
* for updating the rebuild stats and limiting the number of in flight I/Os.
*/
static void
vdev_rebuild_cb(zio_t *zio)
{
vdev_rebuild_t *vr = zio->io_private;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
vdev_t *vd = vr->vr_top_vdev;
mutex_enter(&vr->vr_io_lock);
if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
/*
* The I/O failed because the top-level vdev was unavailable.
* Attempt to roll back to the last completed offset, in order
* resume from the correct location if the pool is resumed.
* (This works because spa_sync waits on spa_txg_zio before
* it runs sync tasks.)
*/
uint64_t *off = &vr->vr_scan_offset[zio->io_txg & TXG_MASK];
*off = MIN(*off, zio->io_offset);
} else if (zio->io_error) {
vrp->vrp_errors++;
}
abd_free(zio->io_abd);
ASSERT3U(vr->vr_bytes_inflight, >, 0);
vr->vr_bytes_inflight -= zio->io_size;
cv_broadcast(&vr->vr_io_cv);
mutex_exit(&vr->vr_io_lock);
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
}
/*
* Initialize a block pointer that can be used to read the given segment
* for sequential rebuild.
*/
static void
vdev_rebuild_blkptr_init(blkptr_t *bp, vdev_t *vd, uint64_t start,
uint64_t asize)
{
ASSERT(vd->vdev_ops == &vdev_draid_ops ||
vd->vdev_ops == &vdev_mirror_ops ||
vd->vdev_ops == &vdev_replacing_ops ||
vd->vdev_ops == &vdev_spare_ops);
uint64_t psize = vd->vdev_ops == &vdev_draid_ops ?
vdev_draid_asize_to_psize(vd, asize) : asize;
BP_ZERO(bp);
DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
DVA_SET_OFFSET(&bp->blk_dva[0], start);
DVA_SET_GANG(&bp->blk_dva[0], 0);
DVA_SET_ASIZE(&bp->blk_dva[0], asize);
BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
BP_SET_LSIZE(bp, psize);
BP_SET_PSIZE(bp, psize);
BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
BP_SET_TYPE(bp, DMU_OT_NONE);
BP_SET_LEVEL(bp, 0);
BP_SET_DEDUP(bp, 0);
BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
}
/*
* Issues a rebuild I/O and takes care of rate limiting the number of queued
* rebuild I/Os. The provided start and size must be properly aligned for the
* top-level vdev type being rebuilt.
*/
static int
vdev_rebuild_range(vdev_rebuild_t *vr, uint64_t start, uint64_t size)
{
uint64_t ms_id __maybe_unused = vr->vr_scan_msp->ms_id;
vdev_t *vd = vr->vr_top_vdev;
spa_t *spa = vd->vdev_spa;
blkptr_t blk;
ASSERT3U(ms_id, ==, start >> vd->vdev_ms_shift);
ASSERT3U(ms_id, ==, (start + size - 1) >> vd->vdev_ms_shift);
vr->vr_pass_bytes_scanned += size;
vr->vr_rebuild_phys.vrp_bytes_scanned += size;
/*
* Rebuild the data in this range by constructing a special block
* pointer. It has no relation to any existing blocks in the pool.
* However, by disabling checksum verification and issuing a scrub IO
* we can reconstruct and repair any children with missing data.
*/
vdev_rebuild_blkptr_init(&blk, vd, start, size);
uint64_t psize = BP_GET_PSIZE(&blk);
if (!vdev_dtl_need_resilver(vd, &blk.blk_dva[0], psize, TXG_UNKNOWN))
return (0);
mutex_enter(&vr->vr_io_lock);
/* Limit in flight rebuild I/Os */
while (vr->vr_bytes_inflight >= vr->vr_bytes_inflight_max)
cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
vr->vr_bytes_inflight += psize;
mutex_exit(&vr->vr_io_lock);
dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
uint64_t txg = dmu_tx_get_txg(tx);
spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
mutex_enter(&vd->vdev_rebuild_lock);
/* This is the first I/O for this txg. */
if (vr->vr_scan_offset[txg & TXG_MASK] == 0) {
vr->vr_scan_offset[txg & TXG_MASK] = start;
dsl_sync_task_nowait(spa_get_dsl(spa),
vdev_rebuild_update_sync,
(void *)(uintptr_t)vd->vdev_id, tx);
}
/* When exiting write out our progress. */
if (vdev_rebuild_should_stop(vd)) {
mutex_enter(&vr->vr_io_lock);
vr->vr_bytes_inflight -= psize;
mutex_exit(&vr->vr_io_lock);
spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
mutex_exit(&vd->vdev_rebuild_lock);
dmu_tx_commit(tx);
return (SET_ERROR(EINTR));
}
mutex_exit(&vd->vdev_rebuild_lock);
dmu_tx_commit(tx);
vr->vr_scan_offset[txg & TXG_MASK] = start + size;
vr->vr_pass_bytes_issued += size;
vr->vr_rebuild_phys.vrp_bytes_issued += size;
zio_nowait(zio_read(spa->spa_txg_zio[txg & TXG_MASK], spa, &blk,
abd_alloc(psize, B_FALSE), psize, vdev_rebuild_cb, vr,
ZIO_PRIORITY_REBUILD, ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL |
ZIO_FLAG_RESILVER, NULL));
return (0);
}
/*
* Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
*/
static int
vdev_rebuild_ranges(vdev_rebuild_t *vr)
{
vdev_t *vd = vr->vr_top_vdev;
zfs_btree_t *t = &vr->vr_scan_tree->rt_root;
zfs_btree_index_t idx;
int error;
for (range_seg_t *rs = zfs_btree_first(t, &idx); rs != NULL;
rs = zfs_btree_next(t, &idx, &idx)) {
uint64_t start = rs_get_start(rs, vr->vr_scan_tree);
uint64_t size = rs_get_end(rs, vr->vr_scan_tree) - start;
/*
* zfs_scan_suspend_progress can be set to disable rebuild
* progress for testing. See comment in dsl_scan_sync().
*/
while (zfs_scan_suspend_progress &&
!vdev_rebuild_should_stop(vd)) {
delay(hz);
}
while (size > 0) {
uint64_t chunk_size;
/*
* Split range into legally-sized logical chunks
* given the constraints of the top-level vdev
* being rebuilt (dRAID or mirror).
*/
ASSERT3P(vd->vdev_ops, !=, NULL);
chunk_size = vd->vdev_ops->vdev_op_rebuild_asize(vd,
start, size, zfs_rebuild_max_segment);
error = vdev_rebuild_range(vr, start, chunk_size);
if (error != 0)
return (error);
size -= chunk_size;
start += chunk_size;
}
}
return (0);
}
/*
* Calculates the estimated capacity which remains to be scanned. Since
* we traverse the pool in metaslab order only allocated capacity beyond
* the vrp_last_offset need be considered. All lower offsets must have
* already been rebuilt and are thus already included in vrp_bytes_scanned.
*/
static void
vdev_rebuild_update_bytes_est(vdev_t *vd, uint64_t ms_id)
{
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
uint64_t bytes_est = vrp->vrp_bytes_scanned;
if (vrp->vrp_last_offset < vd->vdev_ms[ms_id]->ms_start)
return;
for (uint64_t i = ms_id; i < vd->vdev_ms_count; i++) {
metaslab_t *msp = vd->vdev_ms[i];
mutex_enter(&msp->ms_lock);
bytes_est += metaslab_allocated_space(msp);
mutex_exit(&msp->ms_lock);
}
vrp->vrp_bytes_est = bytes_est;
}
/*
* Load from disk the top-level vdev's rebuild information.
*/
int
vdev_rebuild_load(vdev_t *vd)
{
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
spa_t *spa = vd->vdev_spa;
int err = 0;
mutex_enter(&vd->vdev_rebuild_lock);
vd->vdev_rebuilding = B_FALSE;
if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) {
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
mutex_exit(&vd->vdev_rebuild_lock);
return (SET_ERROR(ENOTSUP));
}
ASSERT(vd->vdev_top == vd);
err = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
VDEV_TOP_ZAP_VDEV_REBUILD_PHYS, sizeof (uint64_t),
REBUILD_PHYS_ENTRIES, vrp);
/*
* A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
* not prevent a pool from being imported. Clear the rebuild
* status allowing a new resilver/rebuild to be started.
*/
if (err == ENOENT || err == EOVERFLOW || err == ECKSUM) {
bzero(vrp, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES);
} else if (err) {
mutex_exit(&vd->vdev_rebuild_lock);
return (err);
}
vr->vr_prev_scan_time_ms = vrp->vrp_scan_time_ms;
vr->vr_top_vdev = vd;
mutex_exit(&vd->vdev_rebuild_lock);
return (0);
}
/*
* Each scan thread is responsible for rebuilding a top-level vdev. The
* rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
*/
static void
vdev_rebuild_thread(void *arg)
{
vdev_t *vd = arg;
spa_t *spa = vd->vdev_spa;
int error = 0;
/*
* If there's a scrub in process request that it be stopped. This
* is not required for a correct rebuild, but we do want rebuilds to
* emulate the resilver behavior as much as possible.
*/
dsl_pool_t *dsl = spa_get_dsl(spa);
if (dsl_scan_scrubbing(dsl))
dsl_scan_cancel(dsl);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
mutex_enter(&vd->vdev_rebuild_lock);
ASSERT3P(vd->vdev_top, ==, vd);
ASSERT3P(vd->vdev_rebuild_thread, !=, NULL);
ASSERT(vd->vdev_rebuilding);
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REBUILD));
ASSERT3B(vd->vdev_rebuild_cancel_wanted, ==, B_FALSE);
ASSERT3B(vd->vdev_rebuild_reset_wanted, ==, B_FALSE);
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
vr->vr_top_vdev = vd;
vr->vr_scan_msp = NULL;
vr->vr_scan_tree = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
mutex_init(&vr->vr_io_lock, NULL, MUTEX_DEFAULT, NULL);
cv_init(&vr->vr_io_cv, NULL, CV_DEFAULT, NULL);
vr->vr_pass_start_time = gethrtime();
vr->vr_pass_bytes_scanned = 0;
vr->vr_pass_bytes_issued = 0;
vr->vr_bytes_inflight_max = MAX(1ULL << 20,
zfs_rebuild_vdev_limit * vd->vdev_children);
uint64_t update_est_time = gethrtime();
vdev_rebuild_update_bytes_est(vd, 0);
clear_rebuild_bytes(vr->vr_top_vdev);
mutex_exit(&vd->vdev_rebuild_lock);
/*
* Systematically walk the metaslabs and issue rebuild I/Os for
* all ranges in the allocated space map.
*/
for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
metaslab_t *msp = vd->vdev_ms[i];
vr->vr_scan_msp = msp;
/*
* Removal of vdevs from the vdev tree may eliminate the need
* for the rebuild, in which case it should be canceled. The
* vdev_rebuild_cancel_wanted flag is set until the sync task
* completes. This may be after the rebuild thread exits.
*/
if (vdev_rebuild_should_cancel(vd)) {
vd->vdev_rebuild_cancel_wanted = B_TRUE;
error = EINTR;
break;
}
ASSERT0(range_tree_space(vr->vr_scan_tree));
/* Disable any new allocations to this metaslab */
spa_config_exit(spa, SCL_CONFIG, FTAG);
metaslab_disable(msp);
mutex_enter(&msp->ms_sync_lock);
mutex_enter(&msp->ms_lock);
/*
* If there are outstanding allocations wait for them to be
* synced. This is needed to ensure all allocated ranges are
* on disk and therefore will be rebuilt.
*/
for (int j = 0; j < TXG_SIZE; j++) {
if (range_tree_space(msp->ms_allocating[j])) {
mutex_exit(&msp->ms_lock);
mutex_exit(&msp->ms_sync_lock);
txg_wait_synced(dsl, 0);
mutex_enter(&msp->ms_sync_lock);
mutex_enter(&msp->ms_lock);
break;
}
}
/*
* When a metaslab has been allocated from read its allocated
* ranges from the space map object into the vr_scan_tree.
* Then add inflight / unflushed ranges and remove inflight /
* unflushed frees. This is the minimum range to be rebuilt.
*/
if (msp->ms_sm != NULL) {
VERIFY0(space_map_load(msp->ms_sm,
vr->vr_scan_tree, SM_ALLOC));
for (int i = 0; i < TXG_SIZE; i++) {
ASSERT0(range_tree_space(
msp->ms_allocating[i]));
}
range_tree_walk(msp->ms_unflushed_allocs,
range_tree_add, vr->vr_scan_tree);
range_tree_walk(msp->ms_unflushed_frees,
range_tree_remove, vr->vr_scan_tree);
/*
* Remove ranges which have already been rebuilt based
* on the last offset. This can happen when restarting
* a scan after exporting and re-importing the pool.
*/
range_tree_clear(vr->vr_scan_tree, 0,
vrp->vrp_last_offset);
}
mutex_exit(&msp->ms_lock);
mutex_exit(&msp->ms_sync_lock);
/*
* To provide an accurate estimate re-calculate the estimated
* size every 5 minutes to account for recent allocations and
* frees made to space maps which have not yet been rebuilt.
*/
if (gethrtime() > update_est_time + SEC2NSEC(300)) {
update_est_time = gethrtime();
vdev_rebuild_update_bytes_est(vd, i);
}
/*
* Walk the allocated space map and issue the rebuild I/O.
*/
error = vdev_rebuild_ranges(vr);
range_tree_vacate(vr->vr_scan_tree, NULL, NULL);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
metaslab_enable(msp, B_FALSE, B_FALSE);
if (error != 0)
break;
}
range_tree_destroy(vr->vr_scan_tree);
spa_config_exit(spa, SCL_CONFIG, FTAG);
/* Wait for any remaining rebuild I/O to complete */
mutex_enter(&vr->vr_io_lock);
while (vr->vr_bytes_inflight > 0)
cv_wait(&vr->vr_io_cv, &vr->vr_io_lock);
mutex_exit(&vr->vr_io_lock);
mutex_destroy(&vr->vr_io_lock);
cv_destroy(&vr->vr_io_cv);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
dsl_pool_t *dp = spa_get_dsl(spa);
dmu_tx_t *tx = dmu_tx_create_dd(dp->dp_mos_dir);
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
mutex_enter(&vd->vdev_rebuild_lock);
if (error == 0) {
/*
* After a successful rebuild clear the DTLs of all ranges
* which were missing when the rebuild was started. These
* ranges must have been rebuilt as a consequence of rebuilding
* all allocated space. Note that unlike a scrub or resilver
* the rebuild operation will reconstruct data only referenced
* by a pool checkpoint. See the dsl_scan_done() comments.
*/
dsl_sync_task_nowait(dp, vdev_rebuild_complete_sync,
(void *)(uintptr_t)vd->vdev_id, tx);
} else if (vd->vdev_rebuild_cancel_wanted) {
/*
* The rebuild operation was canceled. This will occur when
* a device participating in the rebuild is detached.
*/
dsl_sync_task_nowait(dp, vdev_rebuild_cancel_sync,
(void *)(uintptr_t)vd->vdev_id, tx);
} else if (vd->vdev_rebuild_reset_wanted) {
/*
* Reset the running rebuild without canceling and restarting
* it. This will occur when a new device is attached and must
* participate in the rebuild.
*/
dsl_sync_task_nowait(dp, vdev_rebuild_reset_sync,
(void *)(uintptr_t)vd->vdev_id, tx);
} else {
/*
* The rebuild operation should be suspended. This may occur
* when detaching a child vdev or when exporting the pool. The
* rebuild is left in the active state so it will be resumed.
*/
ASSERT(vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
vd->vdev_rebuilding = B_FALSE;
}
dmu_tx_commit(tx);
vd->vdev_rebuild_thread = NULL;
mutex_exit(&vd->vdev_rebuild_lock);
spa_config_exit(spa, SCL_CONFIG, FTAG);
cv_broadcast(&vd->vdev_rebuild_cv);
thread_exit();
}
/*
* Returns B_TRUE if any top-level vdev are rebuilding.
*/
boolean_t
vdev_rebuild_active(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
boolean_t ret = B_FALSE;
if (vd == spa->spa_root_vdev) {
for (uint64_t i = 0; i < vd->vdev_children; i++) {
ret = vdev_rebuild_active(vd->vdev_child[i]);
if (ret)
return (ret);
}
} else if (vd->vdev_top_zap != 0) {
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&vd->vdev_rebuild_lock);
ret = (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE);
mutex_exit(&vd->vdev_rebuild_lock);
}
return (ret);
}
/*
* Start a rebuild operation. The rebuild may be restarted when the
* top-level vdev is currently actively rebuilding.
*/
void
vdev_rebuild(vdev_t *vd)
{
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp __maybe_unused = &vr->vr_rebuild_phys;
ASSERT(vd->vdev_top == vd);
ASSERT(vdev_is_concrete(vd));
ASSERT(!vd->vdev_removing);
ASSERT(spa_feature_is_enabled(vd->vdev_spa,
SPA_FEATURE_DEVICE_REBUILD));
mutex_enter(&vd->vdev_rebuild_lock);
if (vd->vdev_rebuilding) {
ASSERT3U(vrp->vrp_rebuild_state, ==, VDEV_REBUILD_ACTIVE);
/*
* Signal a running rebuild operation that it should restart
* from the beginning because a new device was attached. The
* vdev_rebuild_reset_wanted flag is set until the sync task
* completes. This may be after the rebuild thread exits.
*/
if (!vd->vdev_rebuild_reset_wanted)
vd->vdev_rebuild_reset_wanted = B_TRUE;
} else {
vdev_rebuild_initiate(vd);
}
mutex_exit(&vd->vdev_rebuild_lock);
}
static void
vdev_rebuild_restart_impl(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
if (vd == spa->spa_root_vdev) {
for (uint64_t i = 0; i < vd->vdev_children; i++)
vdev_rebuild_restart_impl(vd->vdev_child[i]);
} else if (vd->vdev_top_zap != 0) {
vdev_rebuild_t *vr = &vd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&vd->vdev_rebuild_lock);
if (vrp->vrp_rebuild_state == VDEV_REBUILD_ACTIVE &&
vdev_writeable(vd) && !vd->vdev_rebuilding) {
ASSERT(spa_feature_is_active(spa,
SPA_FEATURE_DEVICE_REBUILD));
vd->vdev_rebuilding = B_TRUE;
vd->vdev_rebuild_thread = thread_create(NULL, 0,
vdev_rebuild_thread, vd, 0, &p0, TS_RUN,
maxclsyspri);
}
mutex_exit(&vd->vdev_rebuild_lock);
}
}
/*
* Conditionally restart all of the vdev_rebuild_thread's for a pool. The
* feature flag must be active and the rebuild in the active state. This
* cannot be used to start a new rebuild.
*/
void
vdev_rebuild_restart(spa_t *spa)
{
ASSERT(MUTEX_HELD(&spa_namespace_lock));
vdev_rebuild_restart_impl(spa->spa_root_vdev);
}
/*
* Stop and wait for all of the vdev_rebuild_thread's associated with the
* vdev tree provide to be terminated (canceled or stopped).
*/
void
vdev_rebuild_stop_wait(vdev_t *vd)
{
spa_t *spa = vd->vdev_spa;
ASSERT(MUTEX_HELD(&spa_namespace_lock));
if (vd == spa->spa_root_vdev) {
for (uint64_t i = 0; i < vd->vdev_children; i++)
vdev_rebuild_stop_wait(vd->vdev_child[i]);
} else if (vd->vdev_top_zap != 0) {
ASSERT(vd == vd->vdev_top);
mutex_enter(&vd->vdev_rebuild_lock);
if (vd->vdev_rebuild_thread != NULL) {
vd->vdev_rebuild_exit_wanted = B_TRUE;
while (vd->vdev_rebuilding) {
cv_wait(&vd->vdev_rebuild_cv,
&vd->vdev_rebuild_lock);
}
vd->vdev_rebuild_exit_wanted = B_FALSE;
}
mutex_exit(&vd->vdev_rebuild_lock);
}
}
/*
* Stop all rebuild operations but leave them in the active state so they
* will be resumed when importing the pool.
*/
void
vdev_rebuild_stop_all(spa_t *spa)
{
vdev_rebuild_stop_wait(spa->spa_root_vdev);
}
/*
* Rebuild statistics reported per top-level vdev.
*/
int
vdev_rebuild_get_stats(vdev_t *tvd, vdev_rebuild_stat_t *vrs)
{
spa_t *spa = tvd->vdev_spa;
if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
return (SET_ERROR(ENOTSUP));
if (tvd != tvd->vdev_top || tvd->vdev_top_zap == 0)
return (SET_ERROR(EINVAL));
int error = zap_contains(spa_meta_objset(spa),
tvd->vdev_top_zap, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS);
if (error == ENOENT) {
bzero(vrs, sizeof (vdev_rebuild_stat_t));
vrs->vrs_state = VDEV_REBUILD_NONE;
error = 0;
} else if (error == 0) {
vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
mutex_enter(&tvd->vdev_rebuild_lock);
vrs->vrs_state = vrp->vrp_rebuild_state;
vrs->vrs_start_time = vrp->vrp_start_time;
vrs->vrs_end_time = vrp->vrp_end_time;
vrs->vrs_scan_time_ms = vrp->vrp_scan_time_ms;
vrs->vrs_bytes_scanned = vrp->vrp_bytes_scanned;
vrs->vrs_bytes_issued = vrp->vrp_bytes_issued;
vrs->vrs_bytes_rebuilt = vrp->vrp_bytes_rebuilt;
vrs->vrs_bytes_est = vrp->vrp_bytes_est;
vrs->vrs_errors = vrp->vrp_errors;
vrs->vrs_pass_time_ms = NSEC2MSEC(gethrtime() -
vr->vr_pass_start_time);
vrs->vrs_pass_bytes_scanned = vr->vr_pass_bytes_scanned;
vrs->vrs_pass_bytes_issued = vr->vr_pass_bytes_issued;
mutex_exit(&tvd->vdev_rebuild_lock);
}
return (error);
}
/* BEGIN CSTYLED */
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_max_segment, ULONG, ZMOD_RW,
"Max segment size in bytes of rebuild reads");
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_vdev_limit, ULONG, ZMOD_RW,
"Max bytes in flight per leaf vdev for sequential resilvers");
ZFS_MODULE_PARAM(zfs, zfs_, rebuild_scrub_enabled, INT, ZMOD_RW,
"Automatically scrub after sequential resilver completes");
/* END CSTYLED */