mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-26 01:44:31 +03:00
fdc2d30371
In #13871, zfs_vdev_aggregation_limit_non_rotating and zfs_vdev_aggregation_limit being signed was pointed out as a possible reason not to eliminate an unnecessary MAX(unsigned, 0) since the unsigned value was assigned from them. There is no reason for these module parameters to be signed and upon inspection, it was found that there are a number of other module parameters that are signed, but should not be, so we make them unsigned. Making them unsigned made it clear that some other variables in the code should also be unsigned, so we also make those unsigned. This prevents users from setting negative values that could potentially cause bad behaviors. It also makes the code slightly easier to understand. Mostly module parameters that deal with timeouts, limits, bitshifts and percentages are made unsigned by this. Any that are boolean are left signed, since whether booleans should be considered signed or unsigned does not matter. Making zfs_arc_lotsfree_percent unsigned caused a `zfs_arc_lotsfree_percent >= 0` check to become redundant, so it was removed. Removing the check was also necessary to prevent a compiler error from -Werror=type-limits. Several end of line comments had to be moved to their own lines because replacing int with uint_t caused us to exceed the 80 character limit enforced by cstyle.pl. The following were kept signed because they are passed to taskq_create(), which expects signed values and modifying the OpenSolaris/Illumos DDI is out of scope of this patch: * metaslab_load_pct * zfs_sync_taskq_batch_pct * zfs_zil_clean_taskq_nthr_pct * zfs_zil_clean_taskq_minalloc * zfs_zil_clean_taskq_maxalloc * zfs_arc_prune_task_threads Also, negative values in those parameters was found to be harmless. The following were left signed because either negative values make sense, or more analysis was needed to determine whether negative values should be disallowed: * zfs_metaslab_switch_threshold * zfs_pd_bytes_max * zfs_livelist_min_percent_shared zfs_multihost_history was made static to be consistent with other parameters. A number of module parameters were marked as signed, but in reality referenced unsigned variables. upgrade_errlog_limit is one of the numerous examples. In the case of zfs_vdev_async_read_max_active, it was already uint32_t, but zdb had an extern int declaration for it. Interestingly, the documentation in zfs.4 was right for upgrade_errlog_limit despite the module parameter being wrongly marked, while the documentation for zfs_vdev_async_read_max_active (and friends) was wrong. It was also wrong for zstd_abort_size, which was unsigned, but was documented as signed. Also, the documentation in zfs.4 incorrectly described the following parameters as ulong when they were int: * zfs_arc_meta_adjust_restarts * zfs_override_estimate_recordsize They are now uint_t as of this patch and thus the man page has been updated to describe them as uint. dbuf_state_index was left alone since it does nothing and perhaps should be removed in another patch. If any module parameters were missed, they were not found by `grep -r 'ZFS_MODULE_PARAM' | grep ', INT'`. I did find a few that grep missed, but only because they were in files that had hits. This patch intentionally did not attempt to address whether some of these module parameters should be elevated to 64-bit parameters, because the length of a long on 32-bit is 32-bit. Lastly, it was pointed out during review that uint_t is a better match for these variables than uint32_t because FreeBSD kernel parameter definitions are designed for uint_t, whose bit width can change in future memory models. As a result, we change the existing parameters that are uint32_t to use uint_t. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Neal Gompa <ngompa@datto.com> Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu> Closes #13875
336 lines
8.3 KiB
C
336 lines
8.3 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2021 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/zfs_refcount.h>
|
|
|
|
#ifdef ZFS_DEBUG
|
|
/*
|
|
* Reference count tracking is disabled by default. It's memory requirements
|
|
* are reasonable, however as implemented it consumes a significant amount of
|
|
* cpu time. Until its performance is improved it should be manually enabled.
|
|
*/
|
|
int reference_tracking_enable = B_FALSE;
|
|
static uint_t reference_history = 3; /* tunable */
|
|
|
|
static kmem_cache_t *reference_cache;
|
|
static kmem_cache_t *reference_history_cache;
|
|
|
|
void
|
|
zfs_refcount_init(void)
|
|
{
|
|
reference_cache = kmem_cache_create("reference_cache",
|
|
sizeof (reference_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
|
|
reference_history_cache = kmem_cache_create("reference_history_cache",
|
|
sizeof (uint64_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
}
|
|
|
|
void
|
|
zfs_refcount_fini(void)
|
|
{
|
|
kmem_cache_destroy(reference_cache);
|
|
kmem_cache_destroy(reference_history_cache);
|
|
}
|
|
|
|
void
|
|
zfs_refcount_create(zfs_refcount_t *rc)
|
|
{
|
|
mutex_init(&rc->rc_mtx, NULL, MUTEX_DEFAULT, NULL);
|
|
list_create(&rc->rc_list, sizeof (reference_t),
|
|
offsetof(reference_t, ref_link));
|
|
list_create(&rc->rc_removed, sizeof (reference_t),
|
|
offsetof(reference_t, ref_link));
|
|
rc->rc_count = 0;
|
|
rc->rc_removed_count = 0;
|
|
rc->rc_tracked = reference_tracking_enable;
|
|
}
|
|
|
|
void
|
|
zfs_refcount_create_tracked(zfs_refcount_t *rc)
|
|
{
|
|
zfs_refcount_create(rc);
|
|
rc->rc_tracked = B_TRUE;
|
|
}
|
|
|
|
void
|
|
zfs_refcount_create_untracked(zfs_refcount_t *rc)
|
|
{
|
|
zfs_refcount_create(rc);
|
|
rc->rc_tracked = B_FALSE;
|
|
}
|
|
|
|
void
|
|
zfs_refcount_destroy_many(zfs_refcount_t *rc, uint64_t number)
|
|
{
|
|
reference_t *ref;
|
|
|
|
ASSERT3U(rc->rc_count, ==, number);
|
|
while ((ref = list_head(&rc->rc_list))) {
|
|
list_remove(&rc->rc_list, ref);
|
|
kmem_cache_free(reference_cache, ref);
|
|
}
|
|
list_destroy(&rc->rc_list);
|
|
|
|
while ((ref = list_head(&rc->rc_removed))) {
|
|
list_remove(&rc->rc_removed, ref);
|
|
kmem_cache_free(reference_history_cache, ref->ref_removed);
|
|
kmem_cache_free(reference_cache, ref);
|
|
}
|
|
list_destroy(&rc->rc_removed);
|
|
mutex_destroy(&rc->rc_mtx);
|
|
}
|
|
|
|
void
|
|
zfs_refcount_destroy(zfs_refcount_t *rc)
|
|
{
|
|
zfs_refcount_destroy_many(rc, 0);
|
|
}
|
|
|
|
int
|
|
zfs_refcount_is_zero(zfs_refcount_t *rc)
|
|
{
|
|
return (zfs_refcount_count(rc) == 0);
|
|
}
|
|
|
|
int64_t
|
|
zfs_refcount_count(zfs_refcount_t *rc)
|
|
{
|
|
return (atomic_load_64(&rc->rc_count));
|
|
}
|
|
|
|
int64_t
|
|
zfs_refcount_add_many(zfs_refcount_t *rc, uint64_t number, const void *holder)
|
|
{
|
|
reference_t *ref = NULL;
|
|
int64_t count;
|
|
|
|
if (!rc->rc_tracked) {
|
|
count = atomic_add_64_nv(&(rc)->rc_count, number);
|
|
ASSERT3U(count, >=, number);
|
|
return (count);
|
|
}
|
|
|
|
ref = kmem_cache_alloc(reference_cache, KM_SLEEP);
|
|
ref->ref_holder = holder;
|
|
ref->ref_number = number;
|
|
mutex_enter(&rc->rc_mtx);
|
|
list_insert_head(&rc->rc_list, ref);
|
|
rc->rc_count += number;
|
|
count = rc->rc_count;
|
|
mutex_exit(&rc->rc_mtx);
|
|
|
|
return (count);
|
|
}
|
|
|
|
int64_t
|
|
zfs_refcount_add(zfs_refcount_t *rc, const void *holder)
|
|
{
|
|
return (zfs_refcount_add_many(rc, 1, holder));
|
|
}
|
|
|
|
int64_t
|
|
zfs_refcount_remove_many(zfs_refcount_t *rc, uint64_t number,
|
|
const void *holder)
|
|
{
|
|
reference_t *ref;
|
|
int64_t count;
|
|
|
|
if (!rc->rc_tracked) {
|
|
count = atomic_add_64_nv(&(rc)->rc_count, -number);
|
|
ASSERT3S(count, >=, 0);
|
|
return (count);
|
|
}
|
|
|
|
mutex_enter(&rc->rc_mtx);
|
|
ASSERT3U(rc->rc_count, >=, number);
|
|
for (ref = list_head(&rc->rc_list); ref;
|
|
ref = list_next(&rc->rc_list, ref)) {
|
|
if (ref->ref_holder == holder && ref->ref_number == number) {
|
|
list_remove(&rc->rc_list, ref);
|
|
if (reference_history > 0) {
|
|
ref->ref_removed =
|
|
kmem_cache_alloc(reference_history_cache,
|
|
KM_SLEEP);
|
|
list_insert_head(&rc->rc_removed, ref);
|
|
rc->rc_removed_count++;
|
|
if (rc->rc_removed_count > reference_history) {
|
|
ref = list_tail(&rc->rc_removed);
|
|
list_remove(&rc->rc_removed, ref);
|
|
kmem_cache_free(reference_history_cache,
|
|
ref->ref_removed);
|
|
kmem_cache_free(reference_cache, ref);
|
|
rc->rc_removed_count--;
|
|
}
|
|
} else {
|
|
kmem_cache_free(reference_cache, ref);
|
|
}
|
|
rc->rc_count -= number;
|
|
count = rc->rc_count;
|
|
mutex_exit(&rc->rc_mtx);
|
|
return (count);
|
|
}
|
|
}
|
|
panic("No such hold %p on refcount %llx", holder,
|
|
(u_longlong_t)(uintptr_t)rc);
|
|
return (-1);
|
|
}
|
|
|
|
int64_t
|
|
zfs_refcount_remove(zfs_refcount_t *rc, const void *holder)
|
|
{
|
|
return (zfs_refcount_remove_many(rc, 1, holder));
|
|
}
|
|
|
|
void
|
|
zfs_refcount_transfer(zfs_refcount_t *dst, zfs_refcount_t *src)
|
|
{
|
|
int64_t count, removed_count;
|
|
list_t list, removed;
|
|
|
|
list_create(&list, sizeof (reference_t),
|
|
offsetof(reference_t, ref_link));
|
|
list_create(&removed, sizeof (reference_t),
|
|
offsetof(reference_t, ref_link));
|
|
|
|
mutex_enter(&src->rc_mtx);
|
|
count = src->rc_count;
|
|
removed_count = src->rc_removed_count;
|
|
src->rc_count = 0;
|
|
src->rc_removed_count = 0;
|
|
list_move_tail(&list, &src->rc_list);
|
|
list_move_tail(&removed, &src->rc_removed);
|
|
mutex_exit(&src->rc_mtx);
|
|
|
|
mutex_enter(&dst->rc_mtx);
|
|
dst->rc_count += count;
|
|
dst->rc_removed_count += removed_count;
|
|
list_move_tail(&dst->rc_list, &list);
|
|
list_move_tail(&dst->rc_removed, &removed);
|
|
mutex_exit(&dst->rc_mtx);
|
|
|
|
list_destroy(&list);
|
|
list_destroy(&removed);
|
|
}
|
|
|
|
void
|
|
zfs_refcount_transfer_ownership_many(zfs_refcount_t *rc, uint64_t number,
|
|
const void *current_holder, const void *new_holder)
|
|
{
|
|
reference_t *ref;
|
|
boolean_t found = B_FALSE;
|
|
|
|
if (!rc->rc_tracked)
|
|
return;
|
|
|
|
mutex_enter(&rc->rc_mtx);
|
|
for (ref = list_head(&rc->rc_list); ref;
|
|
ref = list_next(&rc->rc_list, ref)) {
|
|
if (ref->ref_holder == current_holder &&
|
|
ref->ref_number == number) {
|
|
ref->ref_holder = new_holder;
|
|
found = B_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
ASSERT(found);
|
|
mutex_exit(&rc->rc_mtx);
|
|
}
|
|
|
|
void
|
|
zfs_refcount_transfer_ownership(zfs_refcount_t *rc, const void *current_holder,
|
|
const void *new_holder)
|
|
{
|
|
return (zfs_refcount_transfer_ownership_many(rc, 1, current_holder,
|
|
new_holder));
|
|
}
|
|
|
|
/*
|
|
* If tracking is enabled, return true if a reference exists that matches
|
|
* the "holder" tag. If tracking is disabled, then return true if a reference
|
|
* might be held.
|
|
*/
|
|
boolean_t
|
|
zfs_refcount_held(zfs_refcount_t *rc, const void *holder)
|
|
{
|
|
reference_t *ref;
|
|
|
|
if (!rc->rc_tracked)
|
|
return (zfs_refcount_count(rc) > 0);
|
|
|
|
mutex_enter(&rc->rc_mtx);
|
|
for (ref = list_head(&rc->rc_list); ref;
|
|
ref = list_next(&rc->rc_list, ref)) {
|
|
if (ref->ref_holder == holder) {
|
|
mutex_exit(&rc->rc_mtx);
|
|
return (B_TRUE);
|
|
}
|
|
}
|
|
mutex_exit(&rc->rc_mtx);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* If tracking is enabled, return true if a reference does not exist that
|
|
* matches the "holder" tag. If tracking is disabled, always return true
|
|
* since the reference might not be held.
|
|
*/
|
|
boolean_t
|
|
zfs_refcount_not_held(zfs_refcount_t *rc, const void *holder)
|
|
{
|
|
reference_t *ref;
|
|
|
|
if (!rc->rc_tracked)
|
|
return (B_TRUE);
|
|
|
|
mutex_enter(&rc->rc_mtx);
|
|
for (ref = list_head(&rc->rc_list); ref;
|
|
ref = list_next(&rc->rc_list, ref)) {
|
|
if (ref->ref_holder == holder) {
|
|
mutex_exit(&rc->rc_mtx);
|
|
return (B_FALSE);
|
|
}
|
|
}
|
|
mutex_exit(&rc->rc_mtx);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
EXPORT_SYMBOL(zfs_refcount_create);
|
|
EXPORT_SYMBOL(zfs_refcount_destroy);
|
|
EXPORT_SYMBOL(zfs_refcount_is_zero);
|
|
EXPORT_SYMBOL(zfs_refcount_count);
|
|
EXPORT_SYMBOL(zfs_refcount_add);
|
|
EXPORT_SYMBOL(zfs_refcount_remove);
|
|
EXPORT_SYMBOL(zfs_refcount_held);
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs, , reference_tracking_enable, INT, ZMOD_RW,
|
|
"Track reference holders to refcount_t objects");
|
|
|
|
ZFS_MODULE_PARAM(zfs, , reference_history, UINT, ZMOD_RW,
|
|
"Maximum reference holders being tracked");
|
|
/* END CSTYLED */
|
|
#endif /* ZFS_DEBUG */
|