mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-26 18:04:22 +03:00
41ae864b69
In P2ALIGN, the result would be incorrect when align is unsigned integer and x is larger than max value of the type of align. In that case, -(align) would be a positive integer, which means high bits would be zero and finally stay zero after '&' when align is converted to a larger integer type. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Youzhong Yang <yyang@mathworks.com> Signed-off-by: Qiuhao Chen <chenqiuhao1997@gmail.com> Closes #15940
5023 lines
152 KiB
C
5023 lines
152 KiB
C
/*
|
||
* CDDL HEADER START
|
||
*
|
||
* The contents of this file are subject to the terms of the
|
||
* Common Development and Distribution License (the "License").
|
||
* You may not use this file except in compliance with the License.
|
||
*
|
||
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
* or https://opensource.org/licenses/CDDL-1.0.
|
||
* See the License for the specific language governing permissions
|
||
* and limitations under the License.
|
||
*
|
||
* When distributing Covered Code, include this CDDL HEADER in each
|
||
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
* If applicable, add the following below this CDDL HEADER, with the
|
||
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
*
|
||
* CDDL HEADER END
|
||
*/
|
||
|
||
/*
|
||
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
||
* Copyright (c) 2012, 2020 by Delphix. All rights reserved.
|
||
* Copyright (c) 2016 Gvozden Nešković. All rights reserved.
|
||
*/
|
||
|
||
#include <sys/zfs_context.h>
|
||
#include <sys/spa.h>
|
||
#include <sys/spa_impl.h>
|
||
#include <sys/zap.h>
|
||
#include <sys/vdev_impl.h>
|
||
#include <sys/metaslab_impl.h>
|
||
#include <sys/zio.h>
|
||
#include <sys/zio_checksum.h>
|
||
#include <sys/dmu_tx.h>
|
||
#include <sys/abd.h>
|
||
#include <sys/zfs_rlock.h>
|
||
#include <sys/fs/zfs.h>
|
||
#include <sys/fm/fs/zfs.h>
|
||
#include <sys/vdev_raidz.h>
|
||
#include <sys/vdev_raidz_impl.h>
|
||
#include <sys/vdev_draid.h>
|
||
#include <sys/uberblock_impl.h>
|
||
#include <sys/dsl_scan.h>
|
||
|
||
#ifdef ZFS_DEBUG
|
||
#include <sys/vdev.h> /* For vdev_xlate() in vdev_raidz_io_verify() */
|
||
#endif
|
||
|
||
/*
|
||
* Virtual device vector for RAID-Z.
|
||
*
|
||
* This vdev supports single, double, and triple parity. For single parity,
|
||
* we use a simple XOR of all the data columns. For double or triple parity,
|
||
* we use a special case of Reed-Solomon coding. This extends the
|
||
* technique described in "The mathematics of RAID-6" by H. Peter Anvin by
|
||
* drawing on the system described in "A Tutorial on Reed-Solomon Coding for
|
||
* Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
|
||
* former is also based. The latter is designed to provide higher performance
|
||
* for writes.
|
||
*
|
||
* Note that the Plank paper claimed to support arbitrary N+M, but was then
|
||
* amended six years later identifying a critical flaw that invalidates its
|
||
* claims. Nevertheless, the technique can be adapted to work for up to
|
||
* triple parity. For additional parity, the amendment "Note: Correction to
|
||
* the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
|
||
* is viable, but the additional complexity means that write performance will
|
||
* suffer.
|
||
*
|
||
* All of the methods above operate on a Galois field, defined over the
|
||
* integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
|
||
* can be expressed with a single byte. Briefly, the operations on the
|
||
* field are defined as follows:
|
||
*
|
||
* o addition (+) is represented by a bitwise XOR
|
||
* o subtraction (-) is therefore identical to addition: A + B = A - B
|
||
* o multiplication of A by 2 is defined by the following bitwise expression:
|
||
*
|
||
* (A * 2)_7 = A_6
|
||
* (A * 2)_6 = A_5
|
||
* (A * 2)_5 = A_4
|
||
* (A * 2)_4 = A_3 + A_7
|
||
* (A * 2)_3 = A_2 + A_7
|
||
* (A * 2)_2 = A_1 + A_7
|
||
* (A * 2)_1 = A_0
|
||
* (A * 2)_0 = A_7
|
||
*
|
||
* In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
|
||
* As an aside, this multiplication is derived from the error correcting
|
||
* primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
|
||
*
|
||
* Observe that any number in the field (except for 0) can be expressed as a
|
||
* power of 2 -- a generator for the field. We store a table of the powers of
|
||
* 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
|
||
* be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
|
||
* than field addition). The inverse of a field element A (A^-1) is therefore
|
||
* A ^ (255 - 1) = A^254.
|
||
*
|
||
* The up-to-three parity columns, P, Q, R over several data columns,
|
||
* D_0, ... D_n-1, can be expressed by field operations:
|
||
*
|
||
* P = D_0 + D_1 + ... + D_n-2 + D_n-1
|
||
* Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
|
||
* = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
|
||
* R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
|
||
* = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
|
||
*
|
||
* We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial
|
||
* XOR operation, and 2 and 4 can be computed quickly and generate linearly-
|
||
* independent coefficients. (There are no additional coefficients that have
|
||
* this property which is why the uncorrected Plank method breaks down.)
|
||
*
|
||
* See the reconstruction code below for how P, Q and R can used individually
|
||
* or in concert to recover missing data columns.
|
||
*/
|
||
|
||
#define VDEV_RAIDZ_P 0
|
||
#define VDEV_RAIDZ_Q 1
|
||
#define VDEV_RAIDZ_R 2
|
||
|
||
#define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
|
||
#define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
|
||
|
||
/*
|
||
* We provide a mechanism to perform the field multiplication operation on a
|
||
* 64-bit value all at once rather than a byte at a time. This works by
|
||
* creating a mask from the top bit in each byte and using that to
|
||
* conditionally apply the XOR of 0x1d.
|
||
*/
|
||
#define VDEV_RAIDZ_64MUL_2(x, mask) \
|
||
{ \
|
||
(mask) = (x) & 0x8080808080808080ULL; \
|
||
(mask) = ((mask) << 1) - ((mask) >> 7); \
|
||
(x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
|
||
((mask) & 0x1d1d1d1d1d1d1d1dULL); \
|
||
}
|
||
|
||
#define VDEV_RAIDZ_64MUL_4(x, mask) \
|
||
{ \
|
||
VDEV_RAIDZ_64MUL_2((x), mask); \
|
||
VDEV_RAIDZ_64MUL_2((x), mask); \
|
||
}
|
||
|
||
|
||
/*
|
||
* Big Theory Statement for how a RAIDZ VDEV is expanded
|
||
*
|
||
* An existing RAIDZ VDEV can be expanded by attaching a new disk. Expansion
|
||
* works with all three RAIDZ parity choices, including RAIDZ1, 2, or 3. VDEVs
|
||
* that have been previously expanded can be expanded again.
|
||
*
|
||
* The RAIDZ VDEV must be healthy (must be able to write to all the drives in
|
||
* the VDEV) when an expansion starts. And the expansion will pause if any
|
||
* disk in the VDEV fails, and resume once the VDEV is healthy again. All other
|
||
* operations on the pool can continue while an expansion is in progress (e.g.
|
||
* read/write, snapshot, zpool add, etc). Except zpool checkpoint, zpool trim,
|
||
* and zpool initialize which can't be run during an expansion. Following a
|
||
* reboot or export/import, the expansion resumes where it left off.
|
||
*
|
||
* == Reflowing the Data ==
|
||
*
|
||
* The expansion involves reflowing (copying) the data from the current set
|
||
* of disks to spread it across the new set which now has one more disk. This
|
||
* reflow operation is similar to reflowing text when the column width of a
|
||
* text editor window is expanded. The text doesn’t change but the location of
|
||
* the text changes to accommodate the new width. An example reflow result for
|
||
* a 4-wide RAIDZ1 to a 5-wide is shown below.
|
||
*
|
||
* Reflow End State
|
||
* Each letter indicates a parity group (logical stripe)
|
||
*
|
||
* Before expansion After Expansion
|
||
* D1 D2 D3 D4 D1 D2 D3 D4 D5
|
||
* +------+------+------+------+ +------+------+------+------+------+
|
||
* | | | | | | | | | | |
|
||
* | A | A | A | A | | A | A | A | A | B |
|
||
* | 1| 2| 3| 4| | 1| 2| 3| 4| 5|
|
||
* +------+------+------+------+ +------+------+------+------+------+
|
||
* | | | | | | | | | | |
|
||
* | B | B | C | C | | B | C | C | C | C |
|
||
* | 5| 6| 7| 8| | 6| 7| 8| 9| 10|
|
||
* +------+------+------+------+ +------+------+------+------+------+
|
||
* | | | | | | | | | | |
|
||
* | C | C | D | D | | D | D | E | E | E |
|
||
* | 9| 10| 11| 12| | 11| 12| 13| 14| 15|
|
||
* +------+------+------+------+ +------+------+------+------+------+
|
||
* | | | | | | | | | | |
|
||
* | E | E | E | E | --> | E | F | F | G | G |
|
||
* | 13| 14| 15| 16| | 16| 17| 18|p 19| 20|
|
||
* +------+------+------+------+ +------+------+------+------+------+
|
||
* | | | | | | | | | | |
|
||
* | F | F | G | G | | G | G | H | H | H |
|
||
* | 17| 18| 19| 20| | 21| 22| 23| 24| 25|
|
||
* +------+------+------+------+ +------+------+------+------+------+
|
||
* | | | | | | | | | | |
|
||
* | G | G | H | H | | H | I | I | J | J |
|
||
* | 21| 22| 23| 24| | 26| 27| 28| 29| 30|
|
||
* +------+------+------+------+ +------+------+------+------+------+
|
||
* | | | | | | | | | | |
|
||
* | H | H | I | I | | J | J | | | K |
|
||
* | 25| 26| 27| 28| | 31| 32| 33| 34| 35|
|
||
* +------+------+------+------+ +------+------+------+------+------+
|
||
*
|
||
* This reflow approach has several advantages. There is no need to read or
|
||
* modify the block pointers or recompute any block checksums. The reflow
|
||
* doesn’t need to know where the parity sectors reside. We can read and write
|
||
* data sequentially and the copy can occur in a background thread in open
|
||
* context. The design also allows for fast discovery of what data to copy.
|
||
*
|
||
* The VDEV metaslabs are processed, one at a time, to copy the block data to
|
||
* have it flow across all the disks. The metaslab is disabled for allocations
|
||
* during the copy. As an optimization, we only copy the allocated data which
|
||
* can be determined by looking at the metaslab range tree. During the copy we
|
||
* must maintain the redundancy guarantees of the RAIDZ VDEV (i.e., we still
|
||
* need to be able to survive losing parity count disks). This means we
|
||
* cannot overwrite data during the reflow that would be needed if a disk is
|
||
* lost.
|
||
*
|
||
* After the reflow completes, all newly-written blocks will have the new
|
||
* layout, i.e., they will have the parity to data ratio implied by the new
|
||
* number of disks in the RAIDZ group. Even though the reflow copies all of
|
||
* the allocated space (data and parity), it is only rearranged, not changed.
|
||
*
|
||
* This act of reflowing the data has a few implications about blocks
|
||
* that were written before the reflow completes:
|
||
*
|
||
* - Old blocks will still use the same amount of space (i.e., they will have
|
||
* the parity to data ratio implied by the old number of disks in the RAIDZ
|
||
* group).
|
||
* - Reading old blocks will be slightly slower than before the reflow, for
|
||
* two reasons. First, we will have to read from all disks in the RAIDZ
|
||
* VDEV, rather than being able to skip the children that contain only
|
||
* parity of this block (because the data of a single block is now spread
|
||
* out across all the disks). Second, in most cases there will be an extra
|
||
* bcopy, needed to rearrange the data back to its original layout in memory.
|
||
*
|
||
* == Scratch Area ==
|
||
*
|
||
* As we copy the block data, we can only progress to the point that writes
|
||
* will not overlap with blocks whose progress has not yet been recorded on
|
||
* disk. Since partially-copied rows are always read from the old location,
|
||
* we need to stop one row before the sector-wise overlap, to prevent any
|
||
* row-wise overlap. For example, in the diagram above, when we reflow sector
|
||
* B6 it will overwite the original location for B5.
|
||
*
|
||
* To get around this, a scratch space is used so that we can start copying
|
||
* without risking data loss by overlapping the row. As an added benefit, it
|
||
* improves performance at the beginning of the reflow, but that small perf
|
||
* boost wouldn't be worth the complexity on its own.
|
||
*
|
||
* Ideally we want to copy at least 2 * (new_width)^2 so that we have a
|
||
* separation of 2*(new_width+1) and a chunk size of new_width+2. With the max
|
||
* RAIDZ width of 255 and 4K sectors this would be 2MB per disk. In practice
|
||
* the widths will likely be single digits so we can get a substantial chuck
|
||
* size using only a few MB of scratch per disk.
|
||
*
|
||
* The scratch area is persisted to disk which holds a large amount of reflowed
|
||
* state. We can always read the partially written stripes when a disk fails or
|
||
* the copy is interrupted (crash) during the initial copying phase and also
|
||
* get past a small chunk size restriction. At a minimum, the scratch space
|
||
* must be large enough to get us to the point that one row does not overlap
|
||
* itself when moved (i.e new_width^2). But going larger is even better. We
|
||
* use the 3.5 MiB reserved "boot" space that resides after the ZFS disk labels
|
||
* as our scratch space to handle overwriting the initial part of the VDEV.
|
||
*
|
||
* 0 256K 512K 4M
|
||
* +------+------+-----------------------+-----------------------------
|
||
* | VDEV | VDEV | Boot Block (3.5M) | Allocatable space ...
|
||
* | L0 | L1 | Reserved | (Metaslabs)
|
||
* +------+------+-----------------------+-------------------------------
|
||
* Scratch Area
|
||
*
|
||
* == Reflow Progress Updates ==
|
||
* After the initial scratch-based reflow, the expansion process works
|
||
* similarly to device removal. We create a new open context thread which
|
||
* reflows the data, and periodically kicks off sync tasks to update logical
|
||
* state. In this case, state is the committed progress (offset of next data
|
||
* to copy). We need to persist the completed offset on disk, so that if we
|
||
* crash we know which format each VDEV offset is in.
|
||
*
|
||
* == Time Dependent Geometry ==
|
||
*
|
||
* In non-expanded RAIDZ, blocks are read from disk in a column by column
|
||
* fashion. For a multi-row block, the second sector is in the first column
|
||
* not in the second column. This allows us to issue full reads for each
|
||
* column directly into the request buffer. The block data is thus laid out
|
||
* sequentially in a column-by-column fashion.
|
||
*
|
||
* For example, in the before expansion diagram above, one logical block might
|
||
* be sectors G19-H26. The parity is in G19,H23; and the data is in
|
||
* G20,H24,G21,H25,G22,H26.
|
||
*
|
||
* After a block is reflowed, the sectors that were all in the original column
|
||
* data can now reside in different columns. When reading from an expanded
|
||
* VDEV, we need to know the logical stripe width for each block so we can
|
||
* reconstitute the block’s data after the reads are completed. Likewise,
|
||
* when we perform the combinatorial reconstruction we need to know the
|
||
* original width so we can retry combinations from the past layouts.
|
||
*
|
||
* Time dependent geometry is what we call having blocks with different layouts
|
||
* (stripe widths) in the same VDEV. This time-dependent geometry uses the
|
||
* block’s birth time (+ the time expansion ended) to establish the correct
|
||
* width for a given block. After an expansion completes, we record the time
|
||
* for blocks written with a particular width (geometry).
|
||
*
|
||
* == On Disk Format Changes ==
|
||
*
|
||
* New pool feature flag, 'raidz_expansion' whose reference count is the number
|
||
* of RAIDZ VDEVs that have been expanded.
|
||
*
|
||
* The blocks on expanded RAIDZ VDEV can have different logical stripe widths.
|
||
*
|
||
* Since the uberblock can point to arbitrary blocks, which might be on the
|
||
* expanding RAIDZ, and might or might not have been expanded. We need to know
|
||
* which way a block is laid out before reading it. This info is the next
|
||
* offset that needs to be reflowed and we persist that in the uberblock, in
|
||
* the new ub_raidz_reflow_info field, as opposed to the MOS or the vdev label.
|
||
* After the expansion is complete, we then use the raidz_expand_txgs array
|
||
* (see below) to determine how to read a block and the ub_raidz_reflow_info
|
||
* field no longer required.
|
||
*
|
||
* The uberblock's ub_raidz_reflow_info field also holds the scratch space
|
||
* state (i.e., active or not) which is also required before reading a block
|
||
* during the initial phase of reflowing the data.
|
||
*
|
||
* The top-level RAIDZ VDEV has two new entries in the nvlist:
|
||
*
|
||
* 'raidz_expand_txgs' array: logical stripe widths by txg are recorded here
|
||
* and used after the expansion is complete to
|
||
* determine how to read a raidz block
|
||
* 'raidz_expanding' boolean: present during reflow and removed after completion
|
||
* used during a spa import to resume an unfinished
|
||
* expansion
|
||
*
|
||
* And finally the VDEVs top zap adds the following informational entries:
|
||
* VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE
|
||
* VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME
|
||
* VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME
|
||
* VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED
|
||
*/
|
||
|
||
/*
|
||
* For testing only: pause the raidz expansion after reflowing this amount.
|
||
* (accessed by ZTS and ztest)
|
||
*/
|
||
#ifdef _KERNEL
|
||
static
|
||
#endif /* _KERNEL */
|
||
unsigned long raidz_expand_max_reflow_bytes = 0;
|
||
|
||
/*
|
||
* For testing only: pause the raidz expansion at a certain point.
|
||
*/
|
||
uint_t raidz_expand_pause_point = 0;
|
||
|
||
/*
|
||
* Maximum amount of copy io's outstanding at once.
|
||
*/
|
||
static unsigned long raidz_expand_max_copy_bytes = 10 * SPA_MAXBLOCKSIZE;
|
||
|
||
/*
|
||
* Apply raidz map abds aggregation if the number of rows in the map is equal
|
||
* or greater than the value below.
|
||
*/
|
||
static unsigned long raidz_io_aggregate_rows = 4;
|
||
|
||
/*
|
||
* Automatically start a pool scrub when a RAIDZ expansion completes in
|
||
* order to verify the checksums of all blocks which have been copied
|
||
* during the expansion. Automatic scrubbing is enabled by default and
|
||
* is strongly recommended.
|
||
*/
|
||
static int zfs_scrub_after_expand = 1;
|
||
|
||
static void
|
||
vdev_raidz_row_free(raidz_row_t *rr)
|
||
{
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
|
||
if (rc->rc_size != 0)
|
||
abd_free(rc->rc_abd);
|
||
if (rc->rc_orig_data != NULL)
|
||
abd_free(rc->rc_orig_data);
|
||
}
|
||
|
||
if (rr->rr_abd_empty != NULL)
|
||
abd_free(rr->rr_abd_empty);
|
||
|
||
kmem_free(rr, offsetof(raidz_row_t, rr_col[rr->rr_scols]));
|
||
}
|
||
|
||
void
|
||
vdev_raidz_map_free(raidz_map_t *rm)
|
||
{
|
||
for (int i = 0; i < rm->rm_nrows; i++)
|
||
vdev_raidz_row_free(rm->rm_row[i]);
|
||
|
||
if (rm->rm_nphys_cols) {
|
||
for (int i = 0; i < rm->rm_nphys_cols; i++) {
|
||
if (rm->rm_phys_col[i].rc_abd != NULL)
|
||
abd_free(rm->rm_phys_col[i].rc_abd);
|
||
}
|
||
|
||
kmem_free(rm->rm_phys_col, sizeof (raidz_col_t) *
|
||
rm->rm_nphys_cols);
|
||
}
|
||
|
||
ASSERT3P(rm->rm_lr, ==, NULL);
|
||
kmem_free(rm, offsetof(raidz_map_t, rm_row[rm->rm_nrows]));
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_map_free_vsd(zio_t *zio)
|
||
{
|
||
raidz_map_t *rm = zio->io_vsd;
|
||
|
||
vdev_raidz_map_free(rm);
|
||
}
|
||
|
||
static int
|
||
vdev_raidz_reflow_compare(const void *x1, const void *x2)
|
||
{
|
||
const reflow_node_t *l = x1;
|
||
const reflow_node_t *r = x2;
|
||
|
||
return (TREE_CMP(l->re_txg, r->re_txg));
|
||
}
|
||
|
||
const zio_vsd_ops_t vdev_raidz_vsd_ops = {
|
||
.vsd_free = vdev_raidz_map_free_vsd,
|
||
};
|
||
|
||
raidz_row_t *
|
||
vdev_raidz_row_alloc(int cols)
|
||
{
|
||
raidz_row_t *rr =
|
||
kmem_zalloc(offsetof(raidz_row_t, rr_col[cols]), KM_SLEEP);
|
||
|
||
rr->rr_cols = cols;
|
||
rr->rr_scols = cols;
|
||
|
||
for (int c = 0; c < cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
rc->rc_shadow_devidx = INT_MAX;
|
||
rc->rc_shadow_offset = UINT64_MAX;
|
||
rc->rc_allow_repair = 1;
|
||
}
|
||
return (rr);
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_map_alloc_write(zio_t *zio, raidz_map_t *rm, uint64_t ashift)
|
||
{
|
||
int c;
|
||
int nwrapped = 0;
|
||
uint64_t off = 0;
|
||
raidz_row_t *rr = rm->rm_row[0];
|
||
|
||
ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
|
||
ASSERT3U(rm->rm_nrows, ==, 1);
|
||
|
||
/*
|
||
* Pad any parity columns with additional space to account for skip
|
||
* sectors.
|
||
*/
|
||
if (rm->rm_skipstart < rr->rr_firstdatacol) {
|
||
ASSERT0(rm->rm_skipstart);
|
||
nwrapped = rm->rm_nskip;
|
||
} else if (rr->rr_scols < (rm->rm_skipstart + rm->rm_nskip)) {
|
||
nwrapped =
|
||
(rm->rm_skipstart + rm->rm_nskip) % rr->rr_scols;
|
||
}
|
||
|
||
/*
|
||
* Optional single skip sectors (rc_size == 0) will be handled in
|
||
* vdev_raidz_io_start_write().
|
||
*/
|
||
int skipped = rr->rr_scols - rr->rr_cols;
|
||
|
||
/* Allocate buffers for the parity columns */
|
||
for (c = 0; c < rr->rr_firstdatacol; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
|
||
/*
|
||
* Parity columns will pad out a linear ABD to account for
|
||
* the skip sector. A linear ABD is used here because
|
||
* parity calculations use the ABD buffer directly to calculate
|
||
* parity. This avoids doing a memcpy back to the ABD after the
|
||
* parity has been calculated. By issuing the parity column
|
||
* with the skip sector we can reduce contention on the child
|
||
* VDEV queue locks (vq_lock).
|
||
*/
|
||
if (c < nwrapped) {
|
||
rc->rc_abd = abd_alloc_linear(
|
||
rc->rc_size + (1ULL << ashift), B_FALSE);
|
||
abd_zero_off(rc->rc_abd, rc->rc_size, 1ULL << ashift);
|
||
skipped++;
|
||
} else {
|
||
rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
|
||
}
|
||
}
|
||
|
||
for (off = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
abd_t *abd = abd_get_offset_struct(&rc->rc_abdstruct,
|
||
zio->io_abd, off, rc->rc_size);
|
||
|
||
/*
|
||
* Generate I/O for skip sectors to improve aggregation
|
||
* continuity. We will use gang ABD's to reduce contention
|
||
* on the child VDEV queue locks (vq_lock) by issuing
|
||
* a single I/O that contains the data and skip sector.
|
||
*
|
||
* It is important to make sure that rc_size is not updated
|
||
* even though we are adding a skip sector to the ABD. When
|
||
* calculating the parity in vdev_raidz_generate_parity_row()
|
||
* the rc_size is used to iterate through the ABD's. We can
|
||
* not have zero'd out skip sectors used for calculating
|
||
* parity for raidz, because those same sectors are not used
|
||
* during reconstruction.
|
||
*/
|
||
if (c >= rm->rm_skipstart && skipped < rm->rm_nskip) {
|
||
rc->rc_abd = abd_alloc_gang();
|
||
abd_gang_add(rc->rc_abd, abd, B_TRUE);
|
||
abd_gang_add(rc->rc_abd,
|
||
abd_get_zeros(1ULL << ashift), B_TRUE);
|
||
skipped++;
|
||
} else {
|
||
rc->rc_abd = abd;
|
||
}
|
||
off += rc->rc_size;
|
||
}
|
||
|
||
ASSERT3U(off, ==, zio->io_size);
|
||
ASSERT3S(skipped, ==, rm->rm_nskip);
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_map_alloc_read(zio_t *zio, raidz_map_t *rm)
|
||
{
|
||
int c;
|
||
raidz_row_t *rr = rm->rm_row[0];
|
||
|
||
ASSERT3U(rm->rm_nrows, ==, 1);
|
||
|
||
/* Allocate buffers for the parity columns */
|
||
for (c = 0; c < rr->rr_firstdatacol; c++)
|
||
rr->rr_col[c].rc_abd =
|
||
abd_alloc_linear(rr->rr_col[c].rc_size, B_FALSE);
|
||
|
||
for (uint64_t off = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
|
||
zio->io_abd, off, rc->rc_size);
|
||
off += rc->rc_size;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Divides the IO evenly across all child vdevs; usually, dcols is
|
||
* the number of children in the target vdev.
|
||
*
|
||
* Avoid inlining the function to keep vdev_raidz_io_start(), which
|
||
* is this functions only caller, as small as possible on the stack.
|
||
*/
|
||
noinline raidz_map_t *
|
||
vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
|
||
uint64_t nparity)
|
||
{
|
||
raidz_row_t *rr;
|
||
/* The starting RAIDZ (parent) vdev sector of the block. */
|
||
uint64_t b = zio->io_offset >> ashift;
|
||
/* The zio's size in units of the vdev's minimum sector size. */
|
||
uint64_t s = zio->io_size >> ashift;
|
||
/* The first column for this stripe. */
|
||
uint64_t f = b % dcols;
|
||
/* The starting byte offset on each child vdev. */
|
||
uint64_t o = (b / dcols) << ashift;
|
||
uint64_t acols, scols;
|
||
|
||
raidz_map_t *rm =
|
||
kmem_zalloc(offsetof(raidz_map_t, rm_row[1]), KM_SLEEP);
|
||
rm->rm_nrows = 1;
|
||
|
||
/*
|
||
* "Quotient": The number of data sectors for this stripe on all but
|
||
* the "big column" child vdevs that also contain "remainder" data.
|
||
*/
|
||
uint64_t q = s / (dcols - nparity);
|
||
|
||
/*
|
||
* "Remainder": The number of partial stripe data sectors in this I/O.
|
||
* This will add a sector to some, but not all, child vdevs.
|
||
*/
|
||
uint64_t r = s - q * (dcols - nparity);
|
||
|
||
/* The number of "big columns" - those which contain remainder data. */
|
||
uint64_t bc = (r == 0 ? 0 : r + nparity);
|
||
|
||
/*
|
||
* The total number of data and parity sectors associated with
|
||
* this I/O.
|
||
*/
|
||
uint64_t tot = s + nparity * (q + (r == 0 ? 0 : 1));
|
||
|
||
/*
|
||
* acols: The columns that will be accessed.
|
||
* scols: The columns that will be accessed or skipped.
|
||
*/
|
||
if (q == 0) {
|
||
/* Our I/O request doesn't span all child vdevs. */
|
||
acols = bc;
|
||
scols = MIN(dcols, roundup(bc, nparity + 1));
|
||
} else {
|
||
acols = dcols;
|
||
scols = dcols;
|
||
}
|
||
|
||
ASSERT3U(acols, <=, scols);
|
||
rr = vdev_raidz_row_alloc(scols);
|
||
rm->rm_row[0] = rr;
|
||
rr->rr_cols = acols;
|
||
rr->rr_bigcols = bc;
|
||
rr->rr_firstdatacol = nparity;
|
||
#ifdef ZFS_DEBUG
|
||
rr->rr_offset = zio->io_offset;
|
||
rr->rr_size = zio->io_size;
|
||
#endif
|
||
|
||
uint64_t asize = 0;
|
||
|
||
for (uint64_t c = 0; c < scols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
uint64_t col = f + c;
|
||
uint64_t coff = o;
|
||
if (col >= dcols) {
|
||
col -= dcols;
|
||
coff += 1ULL << ashift;
|
||
}
|
||
rc->rc_devidx = col;
|
||
rc->rc_offset = coff;
|
||
|
||
if (c >= acols)
|
||
rc->rc_size = 0;
|
||
else if (c < bc)
|
||
rc->rc_size = (q + 1) << ashift;
|
||
else
|
||
rc->rc_size = q << ashift;
|
||
|
||
asize += rc->rc_size;
|
||
}
|
||
|
||
ASSERT3U(asize, ==, tot << ashift);
|
||
rm->rm_nskip = roundup(tot, nparity + 1) - tot;
|
||
rm->rm_skipstart = bc;
|
||
|
||
/*
|
||
* If all data stored spans all columns, there's a danger that parity
|
||
* will always be on the same device and, since parity isn't read
|
||
* during normal operation, that device's I/O bandwidth won't be
|
||
* used effectively. We therefore switch the parity every 1MB.
|
||
*
|
||
* ... at least that was, ostensibly, the theory. As a practical
|
||
* matter unless we juggle the parity between all devices evenly, we
|
||
* won't see any benefit. Further, occasional writes that aren't a
|
||
* multiple of the LCM of the number of children and the minimum
|
||
* stripe width are sufficient to avoid pessimal behavior.
|
||
* Unfortunately, this decision created an implicit on-disk format
|
||
* requirement that we need to support for all eternity, but only
|
||
* for single-parity RAID-Z.
|
||
*
|
||
* If we intend to skip a sector in the zeroth column for padding
|
||
* we must make sure to note this swap. We will never intend to
|
||
* skip the first column since at least one data and one parity
|
||
* column must appear in each row.
|
||
*/
|
||
ASSERT(rr->rr_cols >= 2);
|
||
ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
|
||
|
||
if (rr->rr_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
|
||
uint64_t devidx = rr->rr_col[0].rc_devidx;
|
||
o = rr->rr_col[0].rc_offset;
|
||
rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
|
||
rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
|
||
rr->rr_col[1].rc_devidx = devidx;
|
||
rr->rr_col[1].rc_offset = o;
|
||
if (rm->rm_skipstart == 0)
|
||
rm->rm_skipstart = 1;
|
||
}
|
||
|
||
if (zio->io_type == ZIO_TYPE_WRITE) {
|
||
vdev_raidz_map_alloc_write(zio, rm, ashift);
|
||
} else {
|
||
vdev_raidz_map_alloc_read(zio, rm);
|
||
}
|
||
/* init RAIDZ parity ops */
|
||
rm->rm_ops = vdev_raidz_math_get_ops();
|
||
|
||
return (rm);
|
||
}
|
||
|
||
/*
|
||
* Everything before reflow_offset_synced should have been moved to the new
|
||
* location (read and write completed). However, this may not yet be reflected
|
||
* in the on-disk format (e.g. raidz_reflow_sync() has been called but the
|
||
* uberblock has not yet been written). If reflow is not in progress,
|
||
* reflow_offset_synced should be UINT64_MAX. For each row, if the row is
|
||
* entirely before reflow_offset_synced, it will come from the new location.
|
||
* Otherwise this row will come from the old location. Therefore, rows that
|
||
* straddle the reflow_offset_synced will come from the old location.
|
||
*
|
||
* For writes, reflow_offset_next is the next offset to copy. If a sector has
|
||
* been copied, but not yet reflected in the on-disk progress
|
||
* (reflow_offset_synced), it will also be written to the new (already copied)
|
||
* offset.
|
||
*/
|
||
noinline raidz_map_t *
|
||
vdev_raidz_map_alloc_expanded(zio_t *zio,
|
||
uint64_t ashift, uint64_t physical_cols, uint64_t logical_cols,
|
||
uint64_t nparity, uint64_t reflow_offset_synced,
|
||
uint64_t reflow_offset_next, boolean_t use_scratch)
|
||
{
|
||
abd_t *abd = zio->io_abd;
|
||
uint64_t offset = zio->io_offset;
|
||
uint64_t size = zio->io_size;
|
||
|
||
/* The zio's size in units of the vdev's minimum sector size. */
|
||
uint64_t s = size >> ashift;
|
||
|
||
/*
|
||
* "Quotient": The number of data sectors for this stripe on all but
|
||
* the "big column" child vdevs that also contain "remainder" data.
|
||
* AKA "full rows"
|
||
*/
|
||
uint64_t q = s / (logical_cols - nparity);
|
||
|
||
/*
|
||
* "Remainder": The number of partial stripe data sectors in this I/O.
|
||
* This will add a sector to some, but not all, child vdevs.
|
||
*/
|
||
uint64_t r = s - q * (logical_cols - nparity);
|
||
|
||
/* The number of "big columns" - those which contain remainder data. */
|
||
uint64_t bc = (r == 0 ? 0 : r + nparity);
|
||
|
||
/*
|
||
* The total number of data and parity sectors associated with
|
||
* this I/O.
|
||
*/
|
||
uint64_t tot = s + nparity * (q + (r == 0 ? 0 : 1));
|
||
|
||
/* How many rows contain data (not skip) */
|
||
uint64_t rows = howmany(tot, logical_cols);
|
||
int cols = MIN(tot, logical_cols);
|
||
|
||
raidz_map_t *rm =
|
||
kmem_zalloc(offsetof(raidz_map_t, rm_row[rows]),
|
||
KM_SLEEP);
|
||
rm->rm_nrows = rows;
|
||
rm->rm_nskip = roundup(tot, nparity + 1) - tot;
|
||
rm->rm_skipstart = bc;
|
||
uint64_t asize = 0;
|
||
|
||
for (uint64_t row = 0; row < rows; row++) {
|
||
boolean_t row_use_scratch = B_FALSE;
|
||
raidz_row_t *rr = vdev_raidz_row_alloc(cols);
|
||
rm->rm_row[row] = rr;
|
||
|
||
/* The starting RAIDZ (parent) vdev sector of the row. */
|
||
uint64_t b = (offset >> ashift) + row * logical_cols;
|
||
|
||
/*
|
||
* If we are in the middle of a reflow, and the copying has
|
||
* not yet completed for any part of this row, then use the
|
||
* old location of this row. Note that reflow_offset_synced
|
||
* reflects the i/o that's been completed, because it's
|
||
* updated by a synctask, after zio_wait(spa_txg_zio[]).
|
||
* This is sufficient for our check, even if that progress
|
||
* has not yet been recorded to disk (reflected in
|
||
* spa_ubsync). Also note that we consider the last row to
|
||
* be "full width" (`cols`-wide rather than `bc`-wide) for
|
||
* this calculation. This causes a tiny bit of unnecessary
|
||
* double-writes but is safe and simpler to calculate.
|
||
*/
|
||
int row_phys_cols = physical_cols;
|
||
if (b + cols > reflow_offset_synced >> ashift)
|
||
row_phys_cols--;
|
||
else if (use_scratch)
|
||
row_use_scratch = B_TRUE;
|
||
|
||
/* starting child of this row */
|
||
uint64_t child_id = b % row_phys_cols;
|
||
/* The starting byte offset on each child vdev. */
|
||
uint64_t child_offset = (b / row_phys_cols) << ashift;
|
||
|
||
/*
|
||
* Note, rr_cols is the entire width of the block, even
|
||
* if this row is shorter. This is needed because parity
|
||
* generation (for Q and R) needs to know the entire width,
|
||
* because it treats the short row as though it was
|
||
* full-width (and the "phantom" sectors were zero-filled).
|
||
*
|
||
* Another approach to this would be to set cols shorter
|
||
* (to just the number of columns that we might do i/o to)
|
||
* and have another mechanism to tell the parity generation
|
||
* about the "entire width". Reconstruction (at least
|
||
* vdev_raidz_reconstruct_general()) would also need to
|
||
* know about the "entire width".
|
||
*/
|
||
rr->rr_firstdatacol = nparity;
|
||
#ifdef ZFS_DEBUG
|
||
/*
|
||
* note: rr_size is PSIZE, not ASIZE
|
||
*/
|
||
rr->rr_offset = b << ashift;
|
||
rr->rr_size = (rr->rr_cols - rr->rr_firstdatacol) << ashift;
|
||
#endif
|
||
|
||
for (int c = 0; c < rr->rr_cols; c++, child_id++) {
|
||
if (child_id >= row_phys_cols) {
|
||
child_id -= row_phys_cols;
|
||
child_offset += 1ULL << ashift;
|
||
}
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
rc->rc_devidx = child_id;
|
||
rc->rc_offset = child_offset;
|
||
|
||
/*
|
||
* Get this from the scratch space if appropriate.
|
||
* This only happens if we crashed in the middle of
|
||
* raidz_reflow_scratch_sync() (while it's running,
|
||
* the rangelock prevents us from doing concurrent
|
||
* io), and even then only during zpool import or
|
||
* when the pool is imported readonly.
|
||
*/
|
||
if (row_use_scratch)
|
||
rc->rc_offset -= VDEV_BOOT_SIZE;
|
||
|
||
uint64_t dc = c - rr->rr_firstdatacol;
|
||
if (c < rr->rr_firstdatacol) {
|
||
rc->rc_size = 1ULL << ashift;
|
||
|
||
/*
|
||
* Parity sectors' rc_abd's are set below
|
||
* after determining if this is an aggregation.
|
||
*/
|
||
} else if (row == rows - 1 && bc != 0 && c >= bc) {
|
||
/*
|
||
* Past the end of the block (even including
|
||
* skip sectors). This sector is part of the
|
||
* map so that we have full rows for p/q parity
|
||
* generation.
|
||
*/
|
||
rc->rc_size = 0;
|
||
rc->rc_abd = NULL;
|
||
} else {
|
||
/* "data column" (col excluding parity) */
|
||
uint64_t off;
|
||
|
||
if (c < bc || r == 0) {
|
||
off = dc * rows + row;
|
||
} else {
|
||
off = r * rows +
|
||
(dc - r) * (rows - 1) + row;
|
||
}
|
||
rc->rc_size = 1ULL << ashift;
|
||
rc->rc_abd = abd_get_offset_struct(
|
||
&rc->rc_abdstruct, abd, off << ashift,
|
||
rc->rc_size);
|
||
}
|
||
|
||
if (rc->rc_size == 0)
|
||
continue;
|
||
|
||
/*
|
||
* If any part of this row is in both old and new
|
||
* locations, the primary location is the old
|
||
* location. If this sector was already copied to the
|
||
* new location, we need to also write to the new,
|
||
* "shadow" location.
|
||
*
|
||
* Note, `row_phys_cols != physical_cols` indicates
|
||
* that the primary location is the old location.
|
||
* `b+c < reflow_offset_next` indicates that the copy
|
||
* to the new location has been initiated. We know
|
||
* that the copy has completed because we have the
|
||
* rangelock, which is held exclusively while the
|
||
* copy is in progress.
|
||
*/
|
||
if (row_use_scratch ||
|
||
(row_phys_cols != physical_cols &&
|
||
b + c < reflow_offset_next >> ashift)) {
|
||
rc->rc_shadow_devidx = (b + c) % physical_cols;
|
||
rc->rc_shadow_offset =
|
||
((b + c) / physical_cols) << ashift;
|
||
if (row_use_scratch)
|
||
rc->rc_shadow_offset -= VDEV_BOOT_SIZE;
|
||
}
|
||
|
||
asize += rc->rc_size;
|
||
}
|
||
|
||
/*
|
||
* See comment in vdev_raidz_map_alloc()
|
||
*/
|
||
if (rr->rr_firstdatacol == 1 && rr->rr_cols > 1 &&
|
||
(offset & (1ULL << 20))) {
|
||
ASSERT(rr->rr_cols >= 2);
|
||
ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
|
||
|
||
int devidx0 = rr->rr_col[0].rc_devidx;
|
||
uint64_t offset0 = rr->rr_col[0].rc_offset;
|
||
int shadow_devidx0 = rr->rr_col[0].rc_shadow_devidx;
|
||
uint64_t shadow_offset0 =
|
||
rr->rr_col[0].rc_shadow_offset;
|
||
|
||
rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
|
||
rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
|
||
rr->rr_col[0].rc_shadow_devidx =
|
||
rr->rr_col[1].rc_shadow_devidx;
|
||
rr->rr_col[0].rc_shadow_offset =
|
||
rr->rr_col[1].rc_shadow_offset;
|
||
|
||
rr->rr_col[1].rc_devidx = devidx0;
|
||
rr->rr_col[1].rc_offset = offset0;
|
||
rr->rr_col[1].rc_shadow_devidx = shadow_devidx0;
|
||
rr->rr_col[1].rc_shadow_offset = shadow_offset0;
|
||
}
|
||
}
|
||
ASSERT3U(asize, ==, tot << ashift);
|
||
|
||
/*
|
||
* Determine if the block is contiguous, in which case we can use
|
||
* an aggregation.
|
||
*/
|
||
if (rows >= raidz_io_aggregate_rows) {
|
||
rm->rm_nphys_cols = physical_cols;
|
||
rm->rm_phys_col =
|
||
kmem_zalloc(sizeof (raidz_col_t) * rm->rm_nphys_cols,
|
||
KM_SLEEP);
|
||
|
||
/*
|
||
* Determine the aggregate io's offset and size, and check
|
||
* that the io is contiguous.
|
||
*/
|
||
for (int i = 0;
|
||
i < rm->rm_nrows && rm->rm_phys_col != NULL; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
raidz_col_t *prc =
|
||
&rm->rm_phys_col[rc->rc_devidx];
|
||
|
||
if (rc->rc_size == 0)
|
||
continue;
|
||
|
||
if (prc->rc_size == 0) {
|
||
ASSERT0(prc->rc_offset);
|
||
prc->rc_offset = rc->rc_offset;
|
||
} else if (prc->rc_offset + prc->rc_size !=
|
||
rc->rc_offset) {
|
||
/*
|
||
* This block is not contiguous and
|
||
* therefore can't be aggregated.
|
||
* This is expected to be rare, so
|
||
* the cost of allocating and then
|
||
* freeing rm_phys_col is not
|
||
* significant.
|
||
*/
|
||
kmem_free(rm->rm_phys_col,
|
||
sizeof (raidz_col_t) *
|
||
rm->rm_nphys_cols);
|
||
rm->rm_phys_col = NULL;
|
||
rm->rm_nphys_cols = 0;
|
||
break;
|
||
}
|
||
prc->rc_size += rc->rc_size;
|
||
}
|
||
}
|
||
}
|
||
if (rm->rm_phys_col != NULL) {
|
||
/*
|
||
* Allocate aggregate ABD's.
|
||
*/
|
||
for (int i = 0; i < rm->rm_nphys_cols; i++) {
|
||
raidz_col_t *prc = &rm->rm_phys_col[i];
|
||
|
||
prc->rc_devidx = i;
|
||
|
||
if (prc->rc_size == 0)
|
||
continue;
|
||
|
||
prc->rc_abd =
|
||
abd_alloc_linear(rm->rm_phys_col[i].rc_size,
|
||
B_FALSE);
|
||
}
|
||
|
||
/*
|
||
* Point the parity abd's into the aggregate abd's.
|
||
*/
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
for (int c = 0; c < rr->rr_firstdatacol; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
raidz_col_t *prc =
|
||
&rm->rm_phys_col[rc->rc_devidx];
|
||
rc->rc_abd =
|
||
abd_get_offset_struct(&rc->rc_abdstruct,
|
||
prc->rc_abd,
|
||
rc->rc_offset - prc->rc_offset,
|
||
rc->rc_size);
|
||
}
|
||
}
|
||
} else {
|
||
/*
|
||
* Allocate new abd's for the parity sectors.
|
||
*/
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
for (int c = 0; c < rr->rr_firstdatacol; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
rc->rc_abd =
|
||
abd_alloc_linear(rc->rc_size,
|
||
B_TRUE);
|
||
}
|
||
}
|
||
}
|
||
/* init RAIDZ parity ops */
|
||
rm->rm_ops = vdev_raidz_math_get_ops();
|
||
|
||
return (rm);
|
||
}
|
||
|
||
struct pqr_struct {
|
||
uint64_t *p;
|
||
uint64_t *q;
|
||
uint64_t *r;
|
||
};
|
||
|
||
static int
|
||
vdev_raidz_p_func(void *buf, size_t size, void *private)
|
||
{
|
||
struct pqr_struct *pqr = private;
|
||
const uint64_t *src = buf;
|
||
int cnt = size / sizeof (src[0]);
|
||
|
||
ASSERT(pqr->p && !pqr->q && !pqr->r);
|
||
|
||
for (int i = 0; i < cnt; i++, src++, pqr->p++)
|
||
*pqr->p ^= *src;
|
||
|
||
return (0);
|
||
}
|
||
|
||
static int
|
||
vdev_raidz_pq_func(void *buf, size_t size, void *private)
|
||
{
|
||
struct pqr_struct *pqr = private;
|
||
const uint64_t *src = buf;
|
||
uint64_t mask;
|
||
int cnt = size / sizeof (src[0]);
|
||
|
||
ASSERT(pqr->p && pqr->q && !pqr->r);
|
||
|
||
for (int i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
|
||
*pqr->p ^= *src;
|
||
VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
|
||
*pqr->q ^= *src;
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
static int
|
||
vdev_raidz_pqr_func(void *buf, size_t size, void *private)
|
||
{
|
||
struct pqr_struct *pqr = private;
|
||
const uint64_t *src = buf;
|
||
uint64_t mask;
|
||
int cnt = size / sizeof (src[0]);
|
||
|
||
ASSERT(pqr->p && pqr->q && pqr->r);
|
||
|
||
for (int i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
|
||
*pqr->p ^= *src;
|
||
VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
|
||
*pqr->q ^= *src;
|
||
VDEV_RAIDZ_64MUL_4(*pqr->r, mask);
|
||
*pqr->r ^= *src;
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_generate_parity_p(raidz_row_t *rr)
|
||
{
|
||
uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
|
||
|
||
for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
|
||
abd_t *src = rr->rr_col[c].rc_abd;
|
||
|
||
if (c == rr->rr_firstdatacol) {
|
||
abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
|
||
} else {
|
||
struct pqr_struct pqr = { p, NULL, NULL };
|
||
(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
|
||
vdev_raidz_p_func, &pqr);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_generate_parity_pq(raidz_row_t *rr)
|
||
{
|
||
uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
|
||
uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
|
||
uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
|
||
ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
|
||
rr->rr_col[VDEV_RAIDZ_Q].rc_size);
|
||
|
||
for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
|
||
abd_t *src = rr->rr_col[c].rc_abd;
|
||
|
||
uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
|
||
|
||
if (c == rr->rr_firstdatacol) {
|
||
ASSERT(ccnt == pcnt || ccnt == 0);
|
||
abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
|
||
(void) memcpy(q, p, rr->rr_col[c].rc_size);
|
||
|
||
for (uint64_t i = ccnt; i < pcnt; i++) {
|
||
p[i] = 0;
|
||
q[i] = 0;
|
||
}
|
||
} else {
|
||
struct pqr_struct pqr = { p, q, NULL };
|
||
|
||
ASSERT(ccnt <= pcnt);
|
||
(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
|
||
vdev_raidz_pq_func, &pqr);
|
||
|
||
/*
|
||
* Treat short columns as though they are full of 0s.
|
||
* Note that there's therefore nothing needed for P.
|
||
*/
|
||
uint64_t mask;
|
||
for (uint64_t i = ccnt; i < pcnt; i++) {
|
||
VDEV_RAIDZ_64MUL_2(q[i], mask);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_generate_parity_pqr(raidz_row_t *rr)
|
||
{
|
||
uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
|
||
uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
|
||
uint64_t *r = abd_to_buf(rr->rr_col[VDEV_RAIDZ_R].rc_abd);
|
||
uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
|
||
ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
|
||
rr->rr_col[VDEV_RAIDZ_Q].rc_size);
|
||
ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
|
||
rr->rr_col[VDEV_RAIDZ_R].rc_size);
|
||
|
||
for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
|
||
abd_t *src = rr->rr_col[c].rc_abd;
|
||
|
||
uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
|
||
|
||
if (c == rr->rr_firstdatacol) {
|
||
ASSERT(ccnt == pcnt || ccnt == 0);
|
||
abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
|
||
(void) memcpy(q, p, rr->rr_col[c].rc_size);
|
||
(void) memcpy(r, p, rr->rr_col[c].rc_size);
|
||
|
||
for (uint64_t i = ccnt; i < pcnt; i++) {
|
||
p[i] = 0;
|
||
q[i] = 0;
|
||
r[i] = 0;
|
||
}
|
||
} else {
|
||
struct pqr_struct pqr = { p, q, r };
|
||
|
||
ASSERT(ccnt <= pcnt);
|
||
(void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
|
||
vdev_raidz_pqr_func, &pqr);
|
||
|
||
/*
|
||
* Treat short columns as though they are full of 0s.
|
||
* Note that there's therefore nothing needed for P.
|
||
*/
|
||
uint64_t mask;
|
||
for (uint64_t i = ccnt; i < pcnt; i++) {
|
||
VDEV_RAIDZ_64MUL_2(q[i], mask);
|
||
VDEV_RAIDZ_64MUL_4(r[i], mask);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Generate RAID parity in the first virtual columns according to the number of
|
||
* parity columns available.
|
||
*/
|
||
void
|
||
vdev_raidz_generate_parity_row(raidz_map_t *rm, raidz_row_t *rr)
|
||
{
|
||
if (rr->rr_cols == 0) {
|
||
/*
|
||
* We are handling this block one row at a time (because
|
||
* this block has a different logical vs physical width,
|
||
* due to RAIDZ expansion), and this is a pad-only row,
|
||
* which has no parity.
|
||
*/
|
||
return;
|
||
}
|
||
|
||
/* Generate using the new math implementation */
|
||
if (vdev_raidz_math_generate(rm, rr) != RAIDZ_ORIGINAL_IMPL)
|
||
return;
|
||
|
||
switch (rr->rr_firstdatacol) {
|
||
case 1:
|
||
vdev_raidz_generate_parity_p(rr);
|
||
break;
|
||
case 2:
|
||
vdev_raidz_generate_parity_pq(rr);
|
||
break;
|
||
case 3:
|
||
vdev_raidz_generate_parity_pqr(rr);
|
||
break;
|
||
default:
|
||
cmn_err(CE_PANIC, "invalid RAID-Z configuration");
|
||
}
|
||
}
|
||
|
||
void
|
||
vdev_raidz_generate_parity(raidz_map_t *rm)
|
||
{
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
vdev_raidz_generate_parity_row(rm, rr);
|
||
}
|
||
}
|
||
|
||
static int
|
||
vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
|
||
{
|
||
(void) private;
|
||
uint64_t *dst = dbuf;
|
||
uint64_t *src = sbuf;
|
||
int cnt = size / sizeof (src[0]);
|
||
|
||
for (int i = 0; i < cnt; i++) {
|
||
dst[i] ^= src[i];
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
static int
|
||
vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
|
||
void *private)
|
||
{
|
||
(void) private;
|
||
uint64_t *dst = dbuf;
|
||
uint64_t *src = sbuf;
|
||
uint64_t mask;
|
||
int cnt = size / sizeof (dst[0]);
|
||
|
||
for (int i = 0; i < cnt; i++, dst++, src++) {
|
||
VDEV_RAIDZ_64MUL_2(*dst, mask);
|
||
*dst ^= *src;
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
static int
|
||
vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private)
|
||
{
|
||
(void) private;
|
||
uint64_t *dst = buf;
|
||
uint64_t mask;
|
||
int cnt = size / sizeof (dst[0]);
|
||
|
||
for (int i = 0; i < cnt; i++, dst++) {
|
||
/* same operation as vdev_raidz_reconst_q_pre_func() on dst */
|
||
VDEV_RAIDZ_64MUL_2(*dst, mask);
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
struct reconst_q_struct {
|
||
uint64_t *q;
|
||
int exp;
|
||
};
|
||
|
||
static int
|
||
vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private)
|
||
{
|
||
struct reconst_q_struct *rq = private;
|
||
uint64_t *dst = buf;
|
||
int cnt = size / sizeof (dst[0]);
|
||
|
||
for (int i = 0; i < cnt; i++, dst++, rq->q++) {
|
||
int j;
|
||
uint8_t *b;
|
||
|
||
*dst ^= *rq->q;
|
||
for (j = 0, b = (uint8_t *)dst; j < 8; j++, b++) {
|
||
*b = vdev_raidz_exp2(*b, rq->exp);
|
||
}
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
struct reconst_pq_struct {
|
||
uint8_t *p;
|
||
uint8_t *q;
|
||
uint8_t *pxy;
|
||
uint8_t *qxy;
|
||
int aexp;
|
||
int bexp;
|
||
};
|
||
|
||
static int
|
||
vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private)
|
||
{
|
||
struct reconst_pq_struct *rpq = private;
|
||
uint8_t *xd = xbuf;
|
||
uint8_t *yd = ybuf;
|
||
|
||
for (int i = 0; i < size;
|
||
i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) {
|
||
*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
|
||
vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
|
||
*yd = *rpq->p ^ *rpq->pxy ^ *xd;
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
static int
|
||
vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
|
||
{
|
||
struct reconst_pq_struct *rpq = private;
|
||
uint8_t *xd = xbuf;
|
||
|
||
for (int i = 0; i < size;
|
||
i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) {
|
||
/* same operation as vdev_raidz_reconst_pq_func() on xd */
|
||
*xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
|
||
vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_reconstruct_p(raidz_row_t *rr, int *tgts, int ntgts)
|
||
{
|
||
int x = tgts[0];
|
||
abd_t *dst, *src;
|
||
|
||
if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
|
||
zfs_dbgmsg("reconstruct_p(rm=%px x=%u)", rr, x);
|
||
|
||
ASSERT3U(ntgts, ==, 1);
|
||
ASSERT3U(x, >=, rr->rr_firstdatacol);
|
||
ASSERT3U(x, <, rr->rr_cols);
|
||
|
||
ASSERT3U(rr->rr_col[x].rc_size, <=, rr->rr_col[VDEV_RAIDZ_P].rc_size);
|
||
|
||
src = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
|
||
dst = rr->rr_col[x].rc_abd;
|
||
|
||
abd_copy_from_buf(dst, abd_to_buf(src), rr->rr_col[x].rc_size);
|
||
|
||
for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
|
||
uint64_t size = MIN(rr->rr_col[x].rc_size,
|
||
rr->rr_col[c].rc_size);
|
||
|
||
src = rr->rr_col[c].rc_abd;
|
||
|
||
if (c == x)
|
||
continue;
|
||
|
||
(void) abd_iterate_func2(dst, src, 0, 0, size,
|
||
vdev_raidz_reconst_p_func, NULL);
|
||
}
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_reconstruct_q(raidz_row_t *rr, int *tgts, int ntgts)
|
||
{
|
||
int x = tgts[0];
|
||
int c, exp;
|
||
abd_t *dst, *src;
|
||
|
||
if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
|
||
zfs_dbgmsg("reconstruct_q(rm=%px x=%u)", rr, x);
|
||
|
||
ASSERT(ntgts == 1);
|
||
|
||
ASSERT(rr->rr_col[x].rc_size <= rr->rr_col[VDEV_RAIDZ_Q].rc_size);
|
||
|
||
for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
|
||
uint64_t size = (c == x) ? 0 : MIN(rr->rr_col[x].rc_size,
|
||
rr->rr_col[c].rc_size);
|
||
|
||
src = rr->rr_col[c].rc_abd;
|
||
dst = rr->rr_col[x].rc_abd;
|
||
|
||
if (c == rr->rr_firstdatacol) {
|
||
abd_copy(dst, src, size);
|
||
if (rr->rr_col[x].rc_size > size) {
|
||
abd_zero_off(dst, size,
|
||
rr->rr_col[x].rc_size - size);
|
||
}
|
||
} else {
|
||
ASSERT3U(size, <=, rr->rr_col[x].rc_size);
|
||
(void) abd_iterate_func2(dst, src, 0, 0, size,
|
||
vdev_raidz_reconst_q_pre_func, NULL);
|
||
(void) abd_iterate_func(dst,
|
||
size, rr->rr_col[x].rc_size - size,
|
||
vdev_raidz_reconst_q_pre_tail_func, NULL);
|
||
}
|
||
}
|
||
|
||
src = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
|
||
dst = rr->rr_col[x].rc_abd;
|
||
exp = 255 - (rr->rr_cols - 1 - x);
|
||
|
||
struct reconst_q_struct rq = { abd_to_buf(src), exp };
|
||
(void) abd_iterate_func(dst, 0, rr->rr_col[x].rc_size,
|
||
vdev_raidz_reconst_q_post_func, &rq);
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_reconstruct_pq(raidz_row_t *rr, int *tgts, int ntgts)
|
||
{
|
||
uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
|
||
abd_t *pdata, *qdata;
|
||
uint64_t xsize, ysize;
|
||
int x = tgts[0];
|
||
int y = tgts[1];
|
||
abd_t *xd, *yd;
|
||
|
||
if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
|
||
zfs_dbgmsg("reconstruct_pq(rm=%px x=%u y=%u)", rr, x, y);
|
||
|
||
ASSERT(ntgts == 2);
|
||
ASSERT(x < y);
|
||
ASSERT(x >= rr->rr_firstdatacol);
|
||
ASSERT(y < rr->rr_cols);
|
||
|
||
ASSERT(rr->rr_col[x].rc_size >= rr->rr_col[y].rc_size);
|
||
|
||
/*
|
||
* Move the parity data aside -- we're going to compute parity as
|
||
* though columns x and y were full of zeros -- Pxy and Qxy. We want to
|
||
* reuse the parity generation mechanism without trashing the actual
|
||
* parity so we make those columns appear to be full of zeros by
|
||
* setting their lengths to zero.
|
||
*/
|
||
pdata = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
|
||
qdata = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
|
||
xsize = rr->rr_col[x].rc_size;
|
||
ysize = rr->rr_col[y].rc_size;
|
||
|
||
rr->rr_col[VDEV_RAIDZ_P].rc_abd =
|
||
abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
|
||
rr->rr_col[VDEV_RAIDZ_Q].rc_abd =
|
||
abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
|
||
rr->rr_col[x].rc_size = 0;
|
||
rr->rr_col[y].rc_size = 0;
|
||
|
||
vdev_raidz_generate_parity_pq(rr);
|
||
|
||
rr->rr_col[x].rc_size = xsize;
|
||
rr->rr_col[y].rc_size = ysize;
|
||
|
||
p = abd_to_buf(pdata);
|
||
q = abd_to_buf(qdata);
|
||
pxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
|
||
qxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
|
||
xd = rr->rr_col[x].rc_abd;
|
||
yd = rr->rr_col[y].rc_abd;
|
||
|
||
/*
|
||
* We now have:
|
||
* Pxy = P + D_x + D_y
|
||
* Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
|
||
*
|
||
* We can then solve for D_x:
|
||
* D_x = A * (P + Pxy) + B * (Q + Qxy)
|
||
* where
|
||
* A = 2^(x - y) * (2^(x - y) + 1)^-1
|
||
* B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
|
||
*
|
||
* With D_x in hand, we can easily solve for D_y:
|
||
* D_y = P + Pxy + D_x
|
||
*/
|
||
|
||
a = vdev_raidz_pow2[255 + x - y];
|
||
b = vdev_raidz_pow2[255 - (rr->rr_cols - 1 - x)];
|
||
tmp = 255 - vdev_raidz_log2[a ^ 1];
|
||
|
||
aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
|
||
bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
|
||
|
||
ASSERT3U(xsize, >=, ysize);
|
||
struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp };
|
||
|
||
(void) abd_iterate_func2(xd, yd, 0, 0, ysize,
|
||
vdev_raidz_reconst_pq_func, &rpq);
|
||
(void) abd_iterate_func(xd, ysize, xsize - ysize,
|
||
vdev_raidz_reconst_pq_tail_func, &rpq);
|
||
|
||
abd_free(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
|
||
abd_free(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
|
||
|
||
/*
|
||
* Restore the saved parity data.
|
||
*/
|
||
rr->rr_col[VDEV_RAIDZ_P].rc_abd = pdata;
|
||
rr->rr_col[VDEV_RAIDZ_Q].rc_abd = qdata;
|
||
}
|
||
|
||
/*
|
||
* In the general case of reconstruction, we must solve the system of linear
|
||
* equations defined by the coefficients used to generate parity as well as
|
||
* the contents of the data and parity disks. This can be expressed with
|
||
* vectors for the original data (D) and the actual data (d) and parity (p)
|
||
* and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
|
||
*
|
||
* __ __ __ __
|
||
* | | __ __ | p_0 |
|
||
* | V | | D_0 | | p_m-1 |
|
||
* | | x | : | = | d_0 |
|
||
* | I | | D_n-1 | | : |
|
||
* | | ~~ ~~ | d_n-1 |
|
||
* ~~ ~~ ~~ ~~
|
||
*
|
||
* I is simply a square identity matrix of size n, and V is a vandermonde
|
||
* matrix defined by the coefficients we chose for the various parity columns
|
||
* (1, 2, 4). Note that these values were chosen both for simplicity, speedy
|
||
* computation as well as linear separability.
|
||
*
|
||
* __ __ __ __
|
||
* | 1 .. 1 1 1 | | p_0 |
|
||
* | 2^n-1 .. 4 2 1 | __ __ | : |
|
||
* | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 |
|
||
* | 1 .. 0 0 0 | | D_1 | | d_0 |
|
||
* | 0 .. 0 0 0 | x | D_2 | = | d_1 |
|
||
* | : : : : | | : | | d_2 |
|
||
* | 0 .. 1 0 0 | | D_n-1 | | : |
|
||
* | 0 .. 0 1 0 | ~~ ~~ | : |
|
||
* | 0 .. 0 0 1 | | d_n-1 |
|
||
* ~~ ~~ ~~ ~~
|
||
*
|
||
* Note that I, V, d, and p are known. To compute D, we must invert the
|
||
* matrix and use the known data and parity values to reconstruct the unknown
|
||
* data values. We begin by removing the rows in V|I and d|p that correspond
|
||
* to failed or missing columns; we then make V|I square (n x n) and d|p
|
||
* sized n by removing rows corresponding to unused parity from the bottom up
|
||
* to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
|
||
* using Gauss-Jordan elimination. In the example below we use m=3 parity
|
||
* columns, n=8 data columns, with errors in d_1, d_2, and p_1:
|
||
* __ __
|
||
* | 1 1 1 1 1 1 1 1 |
|
||
* | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks
|
||
* | 19 205 116 29 64 16 4 1 | / /
|
||
* | 1 0 0 0 0 0 0 0 | / /
|
||
* | 0 1 0 0 0 0 0 0 | <--' /
|
||
* (V|I) = | 0 0 1 0 0 0 0 0 | <---'
|
||
* | 0 0 0 1 0 0 0 0 |
|
||
* | 0 0 0 0 1 0 0 0 |
|
||
* | 0 0 0 0 0 1 0 0 |
|
||
* | 0 0 0 0 0 0 1 0 |
|
||
* | 0 0 0 0 0 0 0 1 |
|
||
* ~~ ~~
|
||
* __ __
|
||
* | 1 1 1 1 1 1 1 1 |
|
||
* | 128 64 32 16 8 4 2 1 |
|
||
* | 19 205 116 29 64 16 4 1 |
|
||
* | 1 0 0 0 0 0 0 0 |
|
||
* | 0 1 0 0 0 0 0 0 |
|
||
* (V|I)' = | 0 0 1 0 0 0 0 0 |
|
||
* | 0 0 0 1 0 0 0 0 |
|
||
* | 0 0 0 0 1 0 0 0 |
|
||
* | 0 0 0 0 0 1 0 0 |
|
||
* | 0 0 0 0 0 0 1 0 |
|
||
* | 0 0 0 0 0 0 0 1 |
|
||
* ~~ ~~
|
||
*
|
||
* Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
|
||
* have carefully chosen the seed values 1, 2, and 4 to ensure that this
|
||
* matrix is not singular.
|
||
* __ __
|
||
* | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
|
||
* | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
|
||
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
|
||
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
|
||
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
|
||
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
|
||
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
|
||
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
|
||
* ~~ ~~
|
||
* __ __
|
||
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
|
||
* | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
|
||
* | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
|
||
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
|
||
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
|
||
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
|
||
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
|
||
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
|
||
* ~~ ~~
|
||
* __ __
|
||
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
|
||
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
|
||
* | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 |
|
||
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
|
||
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
|
||
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
|
||
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
|
||
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
|
||
* ~~ ~~
|
||
* __ __
|
||
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
|
||
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
|
||
* | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 |
|
||
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
|
||
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
|
||
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
|
||
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
|
||
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
|
||
* ~~ ~~
|
||
* __ __
|
||
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
|
||
* | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
|
||
* | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
|
||
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
|
||
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
|
||
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
|
||
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
|
||
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
|
||
* ~~ ~~
|
||
* __ __
|
||
* | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
|
||
* | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 |
|
||
* | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
|
||
* | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
|
||
* | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
|
||
* | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
|
||
* | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
|
||
* | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
|
||
* ~~ ~~
|
||
* __ __
|
||
* | 0 0 1 0 0 0 0 0 |
|
||
* | 167 100 5 41 159 169 217 208 |
|
||
* | 166 100 4 40 158 168 216 209 |
|
||
* (V|I)'^-1 = | 0 0 0 1 0 0 0 0 |
|
||
* | 0 0 0 0 1 0 0 0 |
|
||
* | 0 0 0 0 0 1 0 0 |
|
||
* | 0 0 0 0 0 0 1 0 |
|
||
* | 0 0 0 0 0 0 0 1 |
|
||
* ~~ ~~
|
||
*
|
||
* We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
|
||
* of the missing data.
|
||
*
|
||
* As is apparent from the example above, the only non-trivial rows in the
|
||
* inverse matrix correspond to the data disks that we're trying to
|
||
* reconstruct. Indeed, those are the only rows we need as the others would
|
||
* only be useful for reconstructing data known or assumed to be valid. For
|
||
* that reason, we only build the coefficients in the rows that correspond to
|
||
* targeted columns.
|
||
*/
|
||
|
||
static void
|
||
vdev_raidz_matrix_init(raidz_row_t *rr, int n, int nmap, int *map,
|
||
uint8_t **rows)
|
||
{
|
||
int i, j;
|
||
int pow;
|
||
|
||
ASSERT(n == rr->rr_cols - rr->rr_firstdatacol);
|
||
|
||
/*
|
||
* Fill in the missing rows of interest.
|
||
*/
|
||
for (i = 0; i < nmap; i++) {
|
||
ASSERT3S(0, <=, map[i]);
|
||
ASSERT3S(map[i], <=, 2);
|
||
|
||
pow = map[i] * n;
|
||
if (pow > 255)
|
||
pow -= 255;
|
||
ASSERT(pow <= 255);
|
||
|
||
for (j = 0; j < n; j++) {
|
||
pow -= map[i];
|
||
if (pow < 0)
|
||
pow += 255;
|
||
rows[i][j] = vdev_raidz_pow2[pow];
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_matrix_invert(raidz_row_t *rr, int n, int nmissing, int *missing,
|
||
uint8_t **rows, uint8_t **invrows, const uint8_t *used)
|
||
{
|
||
int i, j, ii, jj;
|
||
uint8_t log;
|
||
|
||
/*
|
||
* Assert that the first nmissing entries from the array of used
|
||
* columns correspond to parity columns and that subsequent entries
|
||
* correspond to data columns.
|
||
*/
|
||
for (i = 0; i < nmissing; i++) {
|
||
ASSERT3S(used[i], <, rr->rr_firstdatacol);
|
||
}
|
||
for (; i < n; i++) {
|
||
ASSERT3S(used[i], >=, rr->rr_firstdatacol);
|
||
}
|
||
|
||
/*
|
||
* First initialize the storage where we'll compute the inverse rows.
|
||
*/
|
||
for (i = 0; i < nmissing; i++) {
|
||
for (j = 0; j < n; j++) {
|
||
invrows[i][j] = (i == j) ? 1 : 0;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Subtract all trivial rows from the rows of consequence.
|
||
*/
|
||
for (i = 0; i < nmissing; i++) {
|
||
for (j = nmissing; j < n; j++) {
|
||
ASSERT3U(used[j], >=, rr->rr_firstdatacol);
|
||
jj = used[j] - rr->rr_firstdatacol;
|
||
ASSERT3S(jj, <, n);
|
||
invrows[i][j] = rows[i][jj];
|
||
rows[i][jj] = 0;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* For each of the rows of interest, we must normalize it and subtract
|
||
* a multiple of it from the other rows.
|
||
*/
|
||
for (i = 0; i < nmissing; i++) {
|
||
for (j = 0; j < missing[i]; j++) {
|
||
ASSERT0(rows[i][j]);
|
||
}
|
||
ASSERT3U(rows[i][missing[i]], !=, 0);
|
||
|
||
/*
|
||
* Compute the inverse of the first element and multiply each
|
||
* element in the row by that value.
|
||
*/
|
||
log = 255 - vdev_raidz_log2[rows[i][missing[i]]];
|
||
|
||
for (j = 0; j < n; j++) {
|
||
rows[i][j] = vdev_raidz_exp2(rows[i][j], log);
|
||
invrows[i][j] = vdev_raidz_exp2(invrows[i][j], log);
|
||
}
|
||
|
||
for (ii = 0; ii < nmissing; ii++) {
|
||
if (i == ii)
|
||
continue;
|
||
|
||
ASSERT3U(rows[ii][missing[i]], !=, 0);
|
||
|
||
log = vdev_raidz_log2[rows[ii][missing[i]]];
|
||
|
||
for (j = 0; j < n; j++) {
|
||
rows[ii][j] ^=
|
||
vdev_raidz_exp2(rows[i][j], log);
|
||
invrows[ii][j] ^=
|
||
vdev_raidz_exp2(invrows[i][j], log);
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Verify that the data that is left in the rows are properly part of
|
||
* an identity matrix.
|
||
*/
|
||
for (i = 0; i < nmissing; i++) {
|
||
for (j = 0; j < n; j++) {
|
||
if (j == missing[i]) {
|
||
ASSERT3U(rows[i][j], ==, 1);
|
||
} else {
|
||
ASSERT0(rows[i][j]);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_matrix_reconstruct(raidz_row_t *rr, int n, int nmissing,
|
||
int *missing, uint8_t **invrows, const uint8_t *used)
|
||
{
|
||
int i, j, x, cc, c;
|
||
uint8_t *src;
|
||
uint64_t ccount;
|
||
uint8_t *dst[VDEV_RAIDZ_MAXPARITY] = { NULL };
|
||
uint64_t dcount[VDEV_RAIDZ_MAXPARITY] = { 0 };
|
||
uint8_t log = 0;
|
||
uint8_t val;
|
||
int ll;
|
||
uint8_t *invlog[VDEV_RAIDZ_MAXPARITY];
|
||
uint8_t *p, *pp;
|
||
size_t psize;
|
||
|
||
psize = sizeof (invlog[0][0]) * n * nmissing;
|
||
p = kmem_alloc(psize, KM_SLEEP);
|
||
|
||
for (pp = p, i = 0; i < nmissing; i++) {
|
||
invlog[i] = pp;
|
||
pp += n;
|
||
}
|
||
|
||
for (i = 0; i < nmissing; i++) {
|
||
for (j = 0; j < n; j++) {
|
||
ASSERT3U(invrows[i][j], !=, 0);
|
||
invlog[i][j] = vdev_raidz_log2[invrows[i][j]];
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < n; i++) {
|
||
c = used[i];
|
||
ASSERT3U(c, <, rr->rr_cols);
|
||
|
||
ccount = rr->rr_col[c].rc_size;
|
||
ASSERT(ccount >= rr->rr_col[missing[0]].rc_size || i > 0);
|
||
if (ccount == 0)
|
||
continue;
|
||
src = abd_to_buf(rr->rr_col[c].rc_abd);
|
||
for (j = 0; j < nmissing; j++) {
|
||
cc = missing[j] + rr->rr_firstdatacol;
|
||
ASSERT3U(cc, >=, rr->rr_firstdatacol);
|
||
ASSERT3U(cc, <, rr->rr_cols);
|
||
ASSERT3U(cc, !=, c);
|
||
|
||
dcount[j] = rr->rr_col[cc].rc_size;
|
||
if (dcount[j] != 0)
|
||
dst[j] = abd_to_buf(rr->rr_col[cc].rc_abd);
|
||
}
|
||
|
||
for (x = 0; x < ccount; x++, src++) {
|
||
if (*src != 0)
|
||
log = vdev_raidz_log2[*src];
|
||
|
||
for (cc = 0; cc < nmissing; cc++) {
|
||
if (x >= dcount[cc])
|
||
continue;
|
||
|
||
if (*src == 0) {
|
||
val = 0;
|
||
} else {
|
||
if ((ll = log + invlog[cc][i]) >= 255)
|
||
ll -= 255;
|
||
val = vdev_raidz_pow2[ll];
|
||
}
|
||
|
||
if (i == 0)
|
||
dst[cc][x] = val;
|
||
else
|
||
dst[cc][x] ^= val;
|
||
}
|
||
}
|
||
}
|
||
|
||
kmem_free(p, psize);
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_reconstruct_general(raidz_row_t *rr, int *tgts, int ntgts)
|
||
{
|
||
int i, c, t, tt;
|
||
unsigned int n;
|
||
unsigned int nmissing_rows;
|
||
int missing_rows[VDEV_RAIDZ_MAXPARITY];
|
||
int parity_map[VDEV_RAIDZ_MAXPARITY];
|
||
uint8_t *p, *pp;
|
||
size_t psize;
|
||
uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
|
||
uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
|
||
uint8_t *used;
|
||
|
||
abd_t **bufs = NULL;
|
||
|
||
if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
|
||
zfs_dbgmsg("reconstruct_general(rm=%px ntgts=%u)", rr, ntgts);
|
||
/*
|
||
* Matrix reconstruction can't use scatter ABDs yet, so we allocate
|
||
* temporary linear ABDs if any non-linear ABDs are found.
|
||
*/
|
||
for (i = rr->rr_firstdatacol; i < rr->rr_cols; i++) {
|
||
ASSERT(rr->rr_col[i].rc_abd != NULL);
|
||
if (!abd_is_linear(rr->rr_col[i].rc_abd)) {
|
||
bufs = kmem_alloc(rr->rr_cols * sizeof (abd_t *),
|
||
KM_PUSHPAGE);
|
||
|
||
for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
|
||
raidz_col_t *col = &rr->rr_col[c];
|
||
|
||
bufs[c] = col->rc_abd;
|
||
if (bufs[c] != NULL) {
|
||
col->rc_abd = abd_alloc_linear(
|
||
col->rc_size, B_TRUE);
|
||
abd_copy(col->rc_abd, bufs[c],
|
||
col->rc_size);
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
}
|
||
|
||
n = rr->rr_cols - rr->rr_firstdatacol;
|
||
|
||
/*
|
||
* Figure out which data columns are missing.
|
||
*/
|
||
nmissing_rows = 0;
|
||
for (t = 0; t < ntgts; t++) {
|
||
if (tgts[t] >= rr->rr_firstdatacol) {
|
||
missing_rows[nmissing_rows++] =
|
||
tgts[t] - rr->rr_firstdatacol;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Figure out which parity columns to use to help generate the missing
|
||
* data columns.
|
||
*/
|
||
for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
|
||
ASSERT(tt < ntgts);
|
||
ASSERT(c < rr->rr_firstdatacol);
|
||
|
||
/*
|
||
* Skip any targeted parity columns.
|
||
*/
|
||
if (c == tgts[tt]) {
|
||
tt++;
|
||
continue;
|
||
}
|
||
|
||
parity_map[i] = c;
|
||
i++;
|
||
}
|
||
|
||
psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
|
||
nmissing_rows * n + sizeof (used[0]) * n;
|
||
p = kmem_alloc(psize, KM_SLEEP);
|
||
|
||
for (pp = p, i = 0; i < nmissing_rows; i++) {
|
||
rows[i] = pp;
|
||
pp += n;
|
||
invrows[i] = pp;
|
||
pp += n;
|
||
}
|
||
used = pp;
|
||
|
||
for (i = 0; i < nmissing_rows; i++) {
|
||
used[i] = parity_map[i];
|
||
}
|
||
|
||
for (tt = 0, c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
|
||
if (tt < nmissing_rows &&
|
||
c == missing_rows[tt] + rr->rr_firstdatacol) {
|
||
tt++;
|
||
continue;
|
||
}
|
||
|
||
ASSERT3S(i, <, n);
|
||
used[i] = c;
|
||
i++;
|
||
}
|
||
|
||
/*
|
||
* Initialize the interesting rows of the matrix.
|
||
*/
|
||
vdev_raidz_matrix_init(rr, n, nmissing_rows, parity_map, rows);
|
||
|
||
/*
|
||
* Invert the matrix.
|
||
*/
|
||
vdev_raidz_matrix_invert(rr, n, nmissing_rows, missing_rows, rows,
|
||
invrows, used);
|
||
|
||
/*
|
||
* Reconstruct the missing data using the generated matrix.
|
||
*/
|
||
vdev_raidz_matrix_reconstruct(rr, n, nmissing_rows, missing_rows,
|
||
invrows, used);
|
||
|
||
kmem_free(p, psize);
|
||
|
||
/*
|
||
* copy back from temporary linear abds and free them
|
||
*/
|
||
if (bufs) {
|
||
for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
|
||
raidz_col_t *col = &rr->rr_col[c];
|
||
|
||
if (bufs[c] != NULL) {
|
||
abd_copy(bufs[c], col->rc_abd, col->rc_size);
|
||
abd_free(col->rc_abd);
|
||
}
|
||
col->rc_abd = bufs[c];
|
||
}
|
||
kmem_free(bufs, rr->rr_cols * sizeof (abd_t *));
|
||
}
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_reconstruct_row(raidz_map_t *rm, raidz_row_t *rr,
|
||
const int *t, int nt)
|
||
{
|
||
int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
|
||
int ntgts;
|
||
int i, c, ret;
|
||
int nbadparity, nbaddata;
|
||
int parity_valid[VDEV_RAIDZ_MAXPARITY];
|
||
|
||
if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
|
||
zfs_dbgmsg("reconstruct(rm=%px nt=%u cols=%u md=%u mp=%u)",
|
||
rr, nt, (int)rr->rr_cols, (int)rr->rr_missingdata,
|
||
(int)rr->rr_missingparity);
|
||
}
|
||
|
||
nbadparity = rr->rr_firstdatacol;
|
||
nbaddata = rr->rr_cols - nbadparity;
|
||
ntgts = 0;
|
||
for (i = 0, c = 0; c < rr->rr_cols; c++) {
|
||
if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
|
||
zfs_dbgmsg("reconstruct(rm=%px col=%u devid=%u "
|
||
"offset=%llx error=%u)",
|
||
rr, c, (int)rr->rr_col[c].rc_devidx,
|
||
(long long)rr->rr_col[c].rc_offset,
|
||
(int)rr->rr_col[c].rc_error);
|
||
}
|
||
if (c < rr->rr_firstdatacol)
|
||
parity_valid[c] = B_FALSE;
|
||
|
||
if (i < nt && c == t[i]) {
|
||
tgts[ntgts++] = c;
|
||
i++;
|
||
} else if (rr->rr_col[c].rc_error != 0) {
|
||
tgts[ntgts++] = c;
|
||
} else if (c >= rr->rr_firstdatacol) {
|
||
nbaddata--;
|
||
} else {
|
||
parity_valid[c] = B_TRUE;
|
||
nbadparity--;
|
||
}
|
||
}
|
||
|
||
ASSERT(ntgts >= nt);
|
||
ASSERT(nbaddata >= 0);
|
||
ASSERT(nbaddata + nbadparity == ntgts);
|
||
|
||
dt = &tgts[nbadparity];
|
||
|
||
/* Reconstruct using the new math implementation */
|
||
ret = vdev_raidz_math_reconstruct(rm, rr, parity_valid, dt, nbaddata);
|
||
if (ret != RAIDZ_ORIGINAL_IMPL)
|
||
return;
|
||
|
||
/*
|
||
* See if we can use any of our optimized reconstruction routines.
|
||
*/
|
||
switch (nbaddata) {
|
||
case 1:
|
||
if (parity_valid[VDEV_RAIDZ_P]) {
|
||
vdev_raidz_reconstruct_p(rr, dt, 1);
|
||
return;
|
||
}
|
||
|
||
ASSERT(rr->rr_firstdatacol > 1);
|
||
|
||
if (parity_valid[VDEV_RAIDZ_Q]) {
|
||
vdev_raidz_reconstruct_q(rr, dt, 1);
|
||
return;
|
||
}
|
||
|
||
ASSERT(rr->rr_firstdatacol > 2);
|
||
break;
|
||
|
||
case 2:
|
||
ASSERT(rr->rr_firstdatacol > 1);
|
||
|
||
if (parity_valid[VDEV_RAIDZ_P] &&
|
||
parity_valid[VDEV_RAIDZ_Q]) {
|
||
vdev_raidz_reconstruct_pq(rr, dt, 2);
|
||
return;
|
||
}
|
||
|
||
ASSERT(rr->rr_firstdatacol > 2);
|
||
|
||
break;
|
||
}
|
||
|
||
vdev_raidz_reconstruct_general(rr, tgts, ntgts);
|
||
}
|
||
|
||
static int
|
||
vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
|
||
uint64_t *logical_ashift, uint64_t *physical_ashift)
|
||
{
|
||
vdev_raidz_t *vdrz = vd->vdev_tsd;
|
||
uint64_t nparity = vdrz->vd_nparity;
|
||
int c;
|
||
int lasterror = 0;
|
||
int numerrors = 0;
|
||
|
||
ASSERT(nparity > 0);
|
||
|
||
if (nparity > VDEV_RAIDZ_MAXPARITY ||
|
||
vd->vdev_children < nparity + 1) {
|
||
vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
|
||
return (SET_ERROR(EINVAL));
|
||
}
|
||
|
||
vdev_open_children(vd);
|
||
|
||
for (c = 0; c < vd->vdev_children; c++) {
|
||
vdev_t *cvd = vd->vdev_child[c];
|
||
|
||
if (cvd->vdev_open_error != 0) {
|
||
lasterror = cvd->vdev_open_error;
|
||
numerrors++;
|
||
continue;
|
||
}
|
||
|
||
*asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
|
||
*max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
|
||
*logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
|
||
}
|
||
for (c = 0; c < vd->vdev_children; c++) {
|
||
vdev_t *cvd = vd->vdev_child[c];
|
||
|
||
if (cvd->vdev_open_error != 0)
|
||
continue;
|
||
*physical_ashift = vdev_best_ashift(*logical_ashift,
|
||
*physical_ashift, cvd->vdev_physical_ashift);
|
||
}
|
||
|
||
if (vd->vdev_rz_expanding) {
|
||
*asize *= vd->vdev_children - 1;
|
||
*max_asize *= vd->vdev_children - 1;
|
||
|
||
vd->vdev_min_asize = *asize;
|
||
} else {
|
||
*asize *= vd->vdev_children;
|
||
*max_asize *= vd->vdev_children;
|
||
}
|
||
|
||
if (numerrors > nparity) {
|
||
vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
|
||
return (lasterror);
|
||
}
|
||
|
||
return (0);
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_close(vdev_t *vd)
|
||
{
|
||
for (int c = 0; c < vd->vdev_children; c++) {
|
||
if (vd->vdev_child[c] != NULL)
|
||
vdev_close(vd->vdev_child[c]);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Return the logical width to use, given the txg in which the allocation
|
||
* happened. Note that BP_GET_BIRTH() is usually the txg in which the
|
||
* BP was allocated. Remapped BP's (that were relocated due to device
|
||
* removal, see remap_blkptr_cb()), will have a more recent physical birth
|
||
* which reflects when the BP was relocated, but we can ignore these because
|
||
* they can't be on RAIDZ (device removal doesn't support RAIDZ).
|
||
*/
|
||
static uint64_t
|
||
vdev_raidz_get_logical_width(vdev_raidz_t *vdrz, uint64_t txg)
|
||
{
|
||
reflow_node_t lookup = {
|
||
.re_txg = txg,
|
||
};
|
||
avl_index_t where;
|
||
|
||
uint64_t width;
|
||
mutex_enter(&vdrz->vd_expand_lock);
|
||
reflow_node_t *re = avl_find(&vdrz->vd_expand_txgs, &lookup, &where);
|
||
if (re != NULL) {
|
||
width = re->re_logical_width;
|
||
} else {
|
||
re = avl_nearest(&vdrz->vd_expand_txgs, where, AVL_BEFORE);
|
||
if (re != NULL)
|
||
width = re->re_logical_width;
|
||
else
|
||
width = vdrz->vd_original_width;
|
||
}
|
||
mutex_exit(&vdrz->vd_expand_lock);
|
||
return (width);
|
||
}
|
||
|
||
/*
|
||
* Note: If the RAIDZ vdev has been expanded, older BP's may have allocated
|
||
* more space due to the lower data-to-parity ratio. In this case it's
|
||
* important to pass in the correct txg. Note that vdev_gang_header_asize()
|
||
* relies on a constant asize for psize=SPA_GANGBLOCKSIZE=SPA_MINBLOCKSIZE,
|
||
* regardless of txg. This is assured because for a single data sector, we
|
||
* allocate P+1 sectors regardless of width ("cols", which is at least P+1).
|
||
*/
|
||
static uint64_t
|
||
vdev_raidz_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
|
||
{
|
||
vdev_raidz_t *vdrz = vd->vdev_tsd;
|
||
uint64_t asize;
|
||
uint64_t ashift = vd->vdev_top->vdev_ashift;
|
||
uint64_t cols = vdrz->vd_original_width;
|
||
uint64_t nparity = vdrz->vd_nparity;
|
||
|
||
cols = vdev_raidz_get_logical_width(vdrz, txg);
|
||
|
||
asize = ((psize - 1) >> ashift) + 1;
|
||
asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
|
||
asize = roundup(asize, nparity + 1) << ashift;
|
||
|
||
#ifdef ZFS_DEBUG
|
||
uint64_t asize_new = ((psize - 1) >> ashift) + 1;
|
||
uint64_t ncols_new = vdrz->vd_physical_width;
|
||
asize_new += nparity * ((asize_new + ncols_new - nparity - 1) /
|
||
(ncols_new - nparity));
|
||
asize_new = roundup(asize_new, nparity + 1) << ashift;
|
||
VERIFY3U(asize_new, <=, asize);
|
||
#endif
|
||
|
||
return (asize);
|
||
}
|
||
|
||
/*
|
||
* The allocatable space for a raidz vdev is N * sizeof(smallest child)
|
||
* so each child must provide at least 1/Nth of its asize.
|
||
*/
|
||
static uint64_t
|
||
vdev_raidz_min_asize(vdev_t *vd)
|
||
{
|
||
return ((vd->vdev_min_asize + vd->vdev_children - 1) /
|
||
vd->vdev_children);
|
||
}
|
||
|
||
void
|
||
vdev_raidz_child_done(zio_t *zio)
|
||
{
|
||
raidz_col_t *rc = zio->io_private;
|
||
|
||
ASSERT3P(rc->rc_abd, !=, NULL);
|
||
rc->rc_error = zio->io_error;
|
||
rc->rc_tried = 1;
|
||
rc->rc_skipped = 0;
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_shadow_child_done(zio_t *zio)
|
||
{
|
||
raidz_col_t *rc = zio->io_private;
|
||
|
||
rc->rc_shadow_error = zio->io_error;
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_io_verify(zio_t *zio, raidz_map_t *rm, raidz_row_t *rr, int col)
|
||
{
|
||
(void) rm;
|
||
#ifdef ZFS_DEBUG
|
||
range_seg64_t logical_rs, physical_rs, remain_rs;
|
||
logical_rs.rs_start = rr->rr_offset;
|
||
logical_rs.rs_end = logical_rs.rs_start +
|
||
vdev_raidz_asize(zio->io_vd, rr->rr_size,
|
||
BP_GET_BIRTH(zio->io_bp));
|
||
|
||
raidz_col_t *rc = &rr->rr_col[col];
|
||
vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx];
|
||
|
||
vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
|
||
ASSERT(vdev_xlate_is_empty(&remain_rs));
|
||
if (vdev_xlate_is_empty(&physical_rs)) {
|
||
/*
|
||
* If we are in the middle of expansion, the
|
||
* physical->logical mapping is changing so vdev_xlate()
|
||
* can't give us a reliable answer.
|
||
*/
|
||
return;
|
||
}
|
||
ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
|
||
ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
|
||
/*
|
||
* It would be nice to assert that rs_end is equal
|
||
* to rc_offset + rc_size but there might be an
|
||
* optional I/O at the end that is not accounted in
|
||
* rc_size.
|
||
*/
|
||
if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) {
|
||
ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset +
|
||
rc->rc_size + (1 << zio->io_vd->vdev_top->vdev_ashift));
|
||
} else {
|
||
ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size);
|
||
}
|
||
#endif
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_io_start_write(zio_t *zio, raidz_row_t *rr)
|
||
{
|
||
vdev_t *vd = zio->io_vd;
|
||
raidz_map_t *rm = zio->io_vsd;
|
||
|
||
vdev_raidz_generate_parity_row(rm, rr);
|
||
|
||
for (int c = 0; c < rr->rr_scols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
|
||
|
||
/* Verify physical to logical translation */
|
||
vdev_raidz_io_verify(zio, rm, rr, c);
|
||
|
||
if (rc->rc_size == 0)
|
||
continue;
|
||
|
||
ASSERT3U(rc->rc_offset + rc->rc_size, <,
|
||
cvd->vdev_psize - VDEV_LABEL_END_SIZE);
|
||
|
||
ASSERT3P(rc->rc_abd, !=, NULL);
|
||
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
|
||
rc->rc_offset, rc->rc_abd,
|
||
abd_get_size(rc->rc_abd), zio->io_type,
|
||
zio->io_priority, 0, vdev_raidz_child_done, rc));
|
||
|
||
if (rc->rc_shadow_devidx != INT_MAX) {
|
||
vdev_t *cvd2 = vd->vdev_child[rc->rc_shadow_devidx];
|
||
|
||
ASSERT3U(
|
||
rc->rc_shadow_offset + abd_get_size(rc->rc_abd), <,
|
||
cvd2->vdev_psize - VDEV_LABEL_END_SIZE);
|
||
|
||
zio_nowait(zio_vdev_child_io(zio, NULL, cvd2,
|
||
rc->rc_shadow_offset, rc->rc_abd,
|
||
abd_get_size(rc->rc_abd),
|
||
zio->io_type, zio->io_priority, 0,
|
||
vdev_raidz_shadow_child_done, rc));
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Generate optional I/Os for skip sectors to improve aggregation contiguity.
|
||
* This only works for vdev_raidz_map_alloc() (not _expanded()).
|
||
*/
|
||
static void
|
||
raidz_start_skip_writes(zio_t *zio)
|
||
{
|
||
vdev_t *vd = zio->io_vd;
|
||
uint64_t ashift = vd->vdev_top->vdev_ashift;
|
||
raidz_map_t *rm = zio->io_vsd;
|
||
ASSERT3U(rm->rm_nrows, ==, 1);
|
||
raidz_row_t *rr = rm->rm_row[0];
|
||
for (int c = 0; c < rr->rr_scols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
|
||
if (rc->rc_size != 0)
|
||
continue;
|
||
ASSERT3P(rc->rc_abd, ==, NULL);
|
||
|
||
ASSERT3U(rc->rc_offset, <,
|
||
cvd->vdev_psize - VDEV_LABEL_END_SIZE);
|
||
|
||
zio_nowait(zio_vdev_child_io(zio, NULL, cvd, rc->rc_offset,
|
||
NULL, 1ULL << ashift, zio->io_type, zio->io_priority,
|
||
ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
|
||
}
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_io_start_read_row(zio_t *zio, raidz_row_t *rr, boolean_t forceparity)
|
||
{
|
||
vdev_t *vd = zio->io_vd;
|
||
|
||
/*
|
||
* Iterate over the columns in reverse order so that we hit the parity
|
||
* last -- any errors along the way will force us to read the parity.
|
||
*/
|
||
for (int c = rr->rr_cols - 1; c >= 0; c--) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
if (rc->rc_size == 0)
|
||
continue;
|
||
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
|
||
if (!vdev_readable(cvd)) {
|
||
if (c >= rr->rr_firstdatacol)
|
||
rr->rr_missingdata++;
|
||
else
|
||
rr->rr_missingparity++;
|
||
rc->rc_error = SET_ERROR(ENXIO);
|
||
rc->rc_tried = 1; /* don't even try */
|
||
rc->rc_skipped = 1;
|
||
continue;
|
||
}
|
||
if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
|
||
if (c >= rr->rr_firstdatacol)
|
||
rr->rr_missingdata++;
|
||
else
|
||
rr->rr_missingparity++;
|
||
rc->rc_error = SET_ERROR(ESTALE);
|
||
rc->rc_skipped = 1;
|
||
continue;
|
||
}
|
||
if (forceparity ||
|
||
c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
|
||
(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
|
||
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
|
||
rc->rc_offset, rc->rc_abd, rc->rc_size,
|
||
zio->io_type, zio->io_priority, 0,
|
||
vdev_raidz_child_done, rc));
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_io_start_read_phys_cols(zio_t *zio, raidz_map_t *rm)
|
||
{
|
||
vdev_t *vd = zio->io_vd;
|
||
|
||
for (int i = 0; i < rm->rm_nphys_cols; i++) {
|
||
raidz_col_t *prc = &rm->rm_phys_col[i];
|
||
if (prc->rc_size == 0)
|
||
continue;
|
||
|
||
ASSERT3U(prc->rc_devidx, ==, i);
|
||
vdev_t *cvd = vd->vdev_child[i];
|
||
if (!vdev_readable(cvd)) {
|
||
prc->rc_error = SET_ERROR(ENXIO);
|
||
prc->rc_tried = 1; /* don't even try */
|
||
prc->rc_skipped = 1;
|
||
continue;
|
||
}
|
||
if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
|
||
prc->rc_error = SET_ERROR(ESTALE);
|
||
prc->rc_skipped = 1;
|
||
continue;
|
||
}
|
||
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
|
||
prc->rc_offset, prc->rc_abd, prc->rc_size,
|
||
zio->io_type, zio->io_priority, 0,
|
||
vdev_raidz_child_done, prc));
|
||
}
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_io_start_read(zio_t *zio, raidz_map_t *rm)
|
||
{
|
||
/*
|
||
* If there are multiple rows, we will be hitting
|
||
* all disks, so go ahead and read the parity so
|
||
* that we are reading in decent size chunks.
|
||
*/
|
||
boolean_t forceparity = rm->rm_nrows > 1;
|
||
|
||
if (rm->rm_phys_col) {
|
||
vdev_raidz_io_start_read_phys_cols(zio, rm);
|
||
} else {
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
vdev_raidz_io_start_read_row(zio, rr, forceparity);
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Start an IO operation on a RAIDZ VDev
|
||
*
|
||
* Outline:
|
||
* - For write operations:
|
||
* 1. Generate the parity data
|
||
* 2. Create child zio write operations to each column's vdev, for both
|
||
* data and parity.
|
||
* 3. If the column skips any sectors for padding, create optional dummy
|
||
* write zio children for those areas to improve aggregation continuity.
|
||
* - For read operations:
|
||
* 1. Create child zio read operations to each data column's vdev to read
|
||
* the range of data required for zio.
|
||
* 2. If this is a scrub or resilver operation, or if any of the data
|
||
* vdevs have had errors, then create zio read operations to the parity
|
||
* columns' VDevs as well.
|
||
*/
|
||
static void
|
||
vdev_raidz_io_start(zio_t *zio)
|
||
{
|
||
vdev_t *vd = zio->io_vd;
|
||
vdev_t *tvd = vd->vdev_top;
|
||
vdev_raidz_t *vdrz = vd->vdev_tsd;
|
||
raidz_map_t *rm;
|
||
|
||
uint64_t logical_width = vdev_raidz_get_logical_width(vdrz,
|
||
BP_GET_BIRTH(zio->io_bp));
|
||
if (logical_width != vdrz->vd_physical_width) {
|
||
zfs_locked_range_t *lr = NULL;
|
||
uint64_t synced_offset = UINT64_MAX;
|
||
uint64_t next_offset = UINT64_MAX;
|
||
boolean_t use_scratch = B_FALSE;
|
||
/*
|
||
* Note: when the expansion is completing, we set
|
||
* vre_state=DSS_FINISHED (in raidz_reflow_complete_sync())
|
||
* in a later txg than when we last update spa_ubsync's state
|
||
* (see the end of spa_raidz_expand_thread()). Therefore we
|
||
* may see vre_state!=SCANNING before
|
||
* VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE=DSS_FINISHED is reflected
|
||
* on disk, but the copying progress has been synced to disk
|
||
* (and reflected in spa_ubsync). In this case it's fine to
|
||
* treat the expansion as completed, since if we crash there's
|
||
* no additional copying to do.
|
||
*/
|
||
if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
|
||
ASSERT3P(vd->vdev_spa->spa_raidz_expand, ==,
|
||
&vdrz->vn_vre);
|
||
lr = zfs_rangelock_enter(&vdrz->vn_vre.vre_rangelock,
|
||
zio->io_offset, zio->io_size, RL_READER);
|
||
use_scratch =
|
||
(RRSS_GET_STATE(&vd->vdev_spa->spa_ubsync) ==
|
||
RRSS_SCRATCH_VALID);
|
||
synced_offset =
|
||
RRSS_GET_OFFSET(&vd->vdev_spa->spa_ubsync);
|
||
next_offset = vdrz->vn_vre.vre_offset;
|
||
/*
|
||
* If we haven't resumed expanding since importing the
|
||
* pool, vre_offset won't have been set yet. In
|
||
* this case the next offset to be copied is the same
|
||
* as what was synced.
|
||
*/
|
||
if (next_offset == UINT64_MAX) {
|
||
next_offset = synced_offset;
|
||
}
|
||
}
|
||
if (use_scratch) {
|
||
zfs_dbgmsg("zio=%px %s io_offset=%llu offset_synced="
|
||
"%lld next_offset=%lld use_scratch=%u",
|
||
zio,
|
||
zio->io_type == ZIO_TYPE_WRITE ? "WRITE" : "READ",
|
||
(long long)zio->io_offset,
|
||
(long long)synced_offset,
|
||
(long long)next_offset,
|
||
use_scratch);
|
||
}
|
||
|
||
rm = vdev_raidz_map_alloc_expanded(zio,
|
||
tvd->vdev_ashift, vdrz->vd_physical_width,
|
||
logical_width, vdrz->vd_nparity,
|
||
synced_offset, next_offset, use_scratch);
|
||
rm->rm_lr = lr;
|
||
} else {
|
||
rm = vdev_raidz_map_alloc(zio,
|
||
tvd->vdev_ashift, logical_width, vdrz->vd_nparity);
|
||
}
|
||
rm->rm_original_width = vdrz->vd_original_width;
|
||
|
||
zio->io_vsd = rm;
|
||
zio->io_vsd_ops = &vdev_raidz_vsd_ops;
|
||
if (zio->io_type == ZIO_TYPE_WRITE) {
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
vdev_raidz_io_start_write(zio, rm->rm_row[i]);
|
||
}
|
||
|
||
if (logical_width == vdrz->vd_physical_width) {
|
||
raidz_start_skip_writes(zio);
|
||
}
|
||
} else {
|
||
ASSERT(zio->io_type == ZIO_TYPE_READ);
|
||
vdev_raidz_io_start_read(zio, rm);
|
||
}
|
||
|
||
zio_execute(zio);
|
||
}
|
||
|
||
/*
|
||
* Report a checksum error for a child of a RAID-Z device.
|
||
*/
|
||
void
|
||
vdev_raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
|
||
{
|
||
vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
|
||
|
||
if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE) &&
|
||
zio->io_priority != ZIO_PRIORITY_REBUILD) {
|
||
zio_bad_cksum_t zbc;
|
||
raidz_map_t *rm = zio->io_vsd;
|
||
|
||
zbc.zbc_has_cksum = 0;
|
||
zbc.zbc_injected = rm->rm_ecksuminjected;
|
||
|
||
mutex_enter(&vd->vdev_stat_lock);
|
||
vd->vdev_stat.vs_checksum_errors++;
|
||
mutex_exit(&vd->vdev_stat_lock);
|
||
(void) zfs_ereport_post_checksum(zio->io_spa, vd,
|
||
&zio->io_bookmark, zio, rc->rc_offset, rc->rc_size,
|
||
rc->rc_abd, bad_data, &zbc);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* We keep track of whether or not there were any injected errors, so that
|
||
* any ereports we generate can note it.
|
||
*/
|
||
static int
|
||
raidz_checksum_verify(zio_t *zio)
|
||
{
|
||
zio_bad_cksum_t zbc = {0};
|
||
raidz_map_t *rm = zio->io_vsd;
|
||
|
||
int ret = zio_checksum_error(zio, &zbc);
|
||
if (ret != 0 && zbc.zbc_injected != 0)
|
||
rm->rm_ecksuminjected = 1;
|
||
|
||
return (ret);
|
||
}
|
||
|
||
/*
|
||
* Generate the parity from the data columns. If we tried and were able to
|
||
* read the parity without error, verify that the generated parity matches the
|
||
* data we read. If it doesn't, we fire off a checksum error. Return the
|
||
* number of such failures.
|
||
*/
|
||
static int
|
||
raidz_parity_verify(zio_t *zio, raidz_row_t *rr)
|
||
{
|
||
abd_t *orig[VDEV_RAIDZ_MAXPARITY];
|
||
int c, ret = 0;
|
||
raidz_map_t *rm = zio->io_vsd;
|
||
raidz_col_t *rc;
|
||
|
||
blkptr_t *bp = zio->io_bp;
|
||
enum zio_checksum checksum = (bp == NULL ? zio->io_prop.zp_checksum :
|
||
(BP_IS_GANG(bp) ? ZIO_CHECKSUM_GANG_HEADER : BP_GET_CHECKSUM(bp)));
|
||
|
||
if (checksum == ZIO_CHECKSUM_NOPARITY)
|
||
return (ret);
|
||
|
||
for (c = 0; c < rr->rr_firstdatacol; c++) {
|
||
rc = &rr->rr_col[c];
|
||
if (!rc->rc_tried || rc->rc_error != 0)
|
||
continue;
|
||
|
||
orig[c] = rc->rc_abd;
|
||
ASSERT3U(abd_get_size(rc->rc_abd), ==, rc->rc_size);
|
||
rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
|
||
}
|
||
|
||
/*
|
||
* Verify any empty sectors are zero filled to ensure the parity
|
||
* is calculated correctly even if these non-data sectors are damaged.
|
||
*/
|
||
if (rr->rr_nempty && rr->rr_abd_empty != NULL)
|
||
ret += vdev_draid_map_verify_empty(zio, rr);
|
||
|
||
/*
|
||
* Regenerates parity even for !tried||rc_error!=0 columns. This
|
||
* isn't harmful but it does have the side effect of fixing stuff
|
||
* we didn't realize was necessary (i.e. even if we return 0).
|
||
*/
|
||
vdev_raidz_generate_parity_row(rm, rr);
|
||
|
||
for (c = 0; c < rr->rr_firstdatacol; c++) {
|
||
rc = &rr->rr_col[c];
|
||
|
||
if (!rc->rc_tried || rc->rc_error != 0)
|
||
continue;
|
||
|
||
if (abd_cmp(orig[c], rc->rc_abd) != 0) {
|
||
zfs_dbgmsg("found error on col=%u devidx=%u off %llx",
|
||
c, (int)rc->rc_devidx, (u_longlong_t)rc->rc_offset);
|
||
vdev_raidz_checksum_error(zio, rc, orig[c]);
|
||
rc->rc_error = SET_ERROR(ECKSUM);
|
||
ret++;
|
||
}
|
||
abd_free(orig[c]);
|
||
}
|
||
|
||
return (ret);
|
||
}
|
||
|
||
static int
|
||
vdev_raidz_worst_error(raidz_row_t *rr)
|
||
{
|
||
int error = 0;
|
||
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
error = zio_worst_error(error, rr->rr_col[c].rc_error);
|
||
error = zio_worst_error(error, rr->rr_col[c].rc_shadow_error);
|
||
}
|
||
|
||
return (error);
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_io_done_verified(zio_t *zio, raidz_row_t *rr)
|
||
{
|
||
int unexpected_errors = 0;
|
||
int parity_errors = 0;
|
||
int parity_untried = 0;
|
||
int data_errors = 0;
|
||
|
||
ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
|
||
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
|
||
if (rc->rc_error) {
|
||
if (c < rr->rr_firstdatacol)
|
||
parity_errors++;
|
||
else
|
||
data_errors++;
|
||
|
||
if (!rc->rc_skipped)
|
||
unexpected_errors++;
|
||
} else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
|
||
parity_untried++;
|
||
}
|
||
|
||
if (rc->rc_force_repair)
|
||
unexpected_errors++;
|
||
}
|
||
|
||
/*
|
||
* If we read more parity disks than were used for
|
||
* reconstruction, confirm that the other parity disks produced
|
||
* correct data.
|
||
*
|
||
* Note that we also regenerate parity when resilvering so we
|
||
* can write it out to failed devices later.
|
||
*/
|
||
if (parity_errors + parity_untried <
|
||
rr->rr_firstdatacol - data_errors ||
|
||
(zio->io_flags & ZIO_FLAG_RESILVER)) {
|
||
int n = raidz_parity_verify(zio, rr);
|
||
unexpected_errors += n;
|
||
}
|
||
|
||
if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
|
||
(unexpected_errors > 0 || (zio->io_flags & ZIO_FLAG_RESILVER))) {
|
||
/*
|
||
* Use the good data we have in hand to repair damaged children.
|
||
*/
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
vdev_t *vd = zio->io_vd;
|
||
vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
|
||
|
||
if (!rc->rc_allow_repair) {
|
||
continue;
|
||
} else if (!rc->rc_force_repair &&
|
||
(rc->rc_error == 0 || rc->rc_size == 0)) {
|
||
continue;
|
||
}
|
||
|
||
zfs_dbgmsg("zio=%px repairing c=%u devidx=%u "
|
||
"offset=%llx",
|
||
zio, c, rc->rc_devidx, (long long)rc->rc_offset);
|
||
|
||
zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
|
||
rc->rc_offset, rc->rc_abd, rc->rc_size,
|
||
ZIO_TYPE_WRITE,
|
||
zio->io_priority == ZIO_PRIORITY_REBUILD ?
|
||
ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
|
||
ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
|
||
ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Scrub or resilver i/o's: overwrite any shadow locations with the
|
||
* good data. This ensures that if we've already copied this sector,
|
||
* it will be corrected if it was damaged. This writes more than is
|
||
* necessary, but since expansion is paused during scrub/resilver, at
|
||
* most a single row will have a shadow location.
|
||
*/
|
||
if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
|
||
(zio->io_flags & (ZIO_FLAG_RESILVER | ZIO_FLAG_SCRUB))) {
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
vdev_t *vd = zio->io_vd;
|
||
|
||
if (rc->rc_shadow_devidx == INT_MAX || rc->rc_size == 0)
|
||
continue;
|
||
vdev_t *cvd = vd->vdev_child[rc->rc_shadow_devidx];
|
||
|
||
/*
|
||
* Note: We don't want to update the repair stats
|
||
* because that would incorrectly indicate that there
|
||
* was bad data to repair, which we aren't sure about.
|
||
* By clearing the SCAN_THREAD flag, we prevent this
|
||
* from happening, despite having the REPAIR flag set.
|
||
* We need to set SELF_HEAL so that this i/o can't be
|
||
* bypassed by zio_vdev_io_start().
|
||
*/
|
||
zio_t *cio = zio_vdev_child_io(zio, NULL, cvd,
|
||
rc->rc_shadow_offset, rc->rc_abd, rc->rc_size,
|
||
ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
|
||
ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
|
||
NULL, NULL);
|
||
cio->io_flags &= ~ZIO_FLAG_SCAN_THREAD;
|
||
zio_nowait(cio);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
raidz_restore_orig_data(raidz_map_t *rm)
|
||
{
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
if (rc->rc_need_orig_restore) {
|
||
abd_copy(rc->rc_abd,
|
||
rc->rc_orig_data, rc->rc_size);
|
||
rc->rc_need_orig_restore = B_FALSE;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/*
|
||
* During raidz_reconstruct() for expanded VDEV, we need special consideration
|
||
* failure simulations. See note in raidz_reconstruct() on simulating failure
|
||
* of a pre-expansion device.
|
||
*
|
||
* Treating logical child i as failed, return TRUE if the given column should
|
||
* be treated as failed. The idea of logical children allows us to imagine
|
||
* that a disk silently failed before a RAIDZ expansion (reads from this disk
|
||
* succeed but return the wrong data). Since the expansion doesn't verify
|
||
* checksums, the incorrect data will be moved to new locations spread among
|
||
* the children (going diagonally across them).
|
||
*
|
||
* Higher "logical child failures" (values of `i`) indicate these
|
||
* "pre-expansion failures". The first physical_width values imagine that a
|
||
* current child failed; the next physical_width-1 values imagine that a
|
||
* child failed before the most recent expansion; the next physical_width-2
|
||
* values imagine a child failed in the expansion before that, etc.
|
||
*/
|
||
static boolean_t
|
||
raidz_simulate_failure(int physical_width, int original_width, int ashift,
|
||
int i, raidz_col_t *rc)
|
||
{
|
||
uint64_t sector_id =
|
||
physical_width * (rc->rc_offset >> ashift) +
|
||
rc->rc_devidx;
|
||
|
||
for (int w = physical_width; w >= original_width; w--) {
|
||
if (i < w) {
|
||
return (sector_id % w == i);
|
||
} else {
|
||
i -= w;
|
||
}
|
||
}
|
||
ASSERT(!"invalid logical child id");
|
||
return (B_FALSE);
|
||
}
|
||
|
||
/*
|
||
* returns EINVAL if reconstruction of the block will not be possible
|
||
* returns ECKSUM if this specific reconstruction failed
|
||
* returns 0 on successful reconstruction
|
||
*/
|
||
static int
|
||
raidz_reconstruct(zio_t *zio, int *ltgts, int ntgts, int nparity)
|
||
{
|
||
raidz_map_t *rm = zio->io_vsd;
|
||
int physical_width = zio->io_vd->vdev_children;
|
||
int original_width = (rm->rm_original_width != 0) ?
|
||
rm->rm_original_width : physical_width;
|
||
int dbgmsg = zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT;
|
||
|
||
if (dbgmsg) {
|
||
zfs_dbgmsg("raidz_reconstruct_expanded(zio=%px ltgts=%u,%u,%u "
|
||
"ntgts=%u", zio, ltgts[0], ltgts[1], ltgts[2], ntgts);
|
||
}
|
||
|
||
/* Reconstruct each row */
|
||
for (int r = 0; r < rm->rm_nrows; r++) {
|
||
raidz_row_t *rr = rm->rm_row[r];
|
||
int my_tgts[VDEV_RAIDZ_MAXPARITY]; /* value is child id */
|
||
int t = 0;
|
||
int dead = 0;
|
||
int dead_data = 0;
|
||
|
||
if (dbgmsg)
|
||
zfs_dbgmsg("raidz_reconstruct_expanded(row=%u)", r);
|
||
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
ASSERT0(rc->rc_need_orig_restore);
|
||
if (rc->rc_error != 0) {
|
||
dead++;
|
||
if (c >= nparity)
|
||
dead_data++;
|
||
continue;
|
||
}
|
||
if (rc->rc_size == 0)
|
||
continue;
|
||
for (int lt = 0; lt < ntgts; lt++) {
|
||
if (raidz_simulate_failure(physical_width,
|
||
original_width,
|
||
zio->io_vd->vdev_top->vdev_ashift,
|
||
ltgts[lt], rc)) {
|
||
if (rc->rc_orig_data == NULL) {
|
||
rc->rc_orig_data =
|
||
abd_alloc_linear(
|
||
rc->rc_size, B_TRUE);
|
||
abd_copy(rc->rc_orig_data,
|
||
rc->rc_abd, rc->rc_size);
|
||
}
|
||
rc->rc_need_orig_restore = B_TRUE;
|
||
|
||
dead++;
|
||
if (c >= nparity)
|
||
dead_data++;
|
||
/*
|
||
* Note: simulating failure of a
|
||
* pre-expansion device can hit more
|
||
* than one column, in which case we
|
||
* might try to simulate more failures
|
||
* than can be reconstructed, which is
|
||
* also more than the size of my_tgts.
|
||
* This check prevents accessing past
|
||
* the end of my_tgts. The "dead >
|
||
* nparity" check below will fail this
|
||
* reconstruction attempt.
|
||
*/
|
||
if (t < VDEV_RAIDZ_MAXPARITY) {
|
||
my_tgts[t++] = c;
|
||
if (dbgmsg) {
|
||
zfs_dbgmsg("simulating "
|
||
"failure of col %u "
|
||
"devidx %u", c,
|
||
(int)rc->rc_devidx);
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if (dead > nparity) {
|
||
/* reconstruction not possible */
|
||
if (dbgmsg) {
|
||
zfs_dbgmsg("reconstruction not possible; "
|
||
"too many failures");
|
||
}
|
||
raidz_restore_orig_data(rm);
|
||
return (EINVAL);
|
||
}
|
||
if (dead_data > 0)
|
||
vdev_raidz_reconstruct_row(rm, rr, my_tgts, t);
|
||
}
|
||
|
||
/* Check for success */
|
||
if (raidz_checksum_verify(zio) == 0) {
|
||
|
||
/* Reconstruction succeeded - report errors */
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
if (rc->rc_need_orig_restore) {
|
||
/*
|
||
* Note: if this is a parity column,
|
||
* we don't really know if it's wrong.
|
||
* We need to let
|
||
* vdev_raidz_io_done_verified() check
|
||
* it, and if we set rc_error, it will
|
||
* think that it is a "known" error
|
||
* that doesn't need to be checked
|
||
* or corrected.
|
||
*/
|
||
if (rc->rc_error == 0 &&
|
||
c >= rr->rr_firstdatacol) {
|
||
vdev_raidz_checksum_error(zio,
|
||
rc, rc->rc_orig_data);
|
||
rc->rc_error =
|
||
SET_ERROR(ECKSUM);
|
||
}
|
||
rc->rc_need_orig_restore = B_FALSE;
|
||
}
|
||
}
|
||
|
||
vdev_raidz_io_done_verified(zio, rr);
|
||
}
|
||
|
||
zio_checksum_verified(zio);
|
||
|
||
if (dbgmsg) {
|
||
zfs_dbgmsg("reconstruction successful "
|
||
"(checksum verified)");
|
||
}
|
||
return (0);
|
||
}
|
||
|
||
/* Reconstruction failed - restore original data */
|
||
raidz_restore_orig_data(rm);
|
||
if (dbgmsg) {
|
||
zfs_dbgmsg("raidz_reconstruct_expanded(zio=%px) checksum "
|
||
"failed", zio);
|
||
}
|
||
return (ECKSUM);
|
||
}
|
||
|
||
/*
|
||
* Iterate over all combinations of N bad vdevs and attempt a reconstruction.
|
||
* Note that the algorithm below is non-optimal because it doesn't take into
|
||
* account how reconstruction is actually performed. For example, with
|
||
* triple-parity RAID-Z the reconstruction procedure is the same if column 4
|
||
* is targeted as invalid as if columns 1 and 4 are targeted since in both
|
||
* cases we'd only use parity information in column 0.
|
||
*
|
||
* The order that we find the various possible combinations of failed
|
||
* disks is dictated by these rules:
|
||
* - Examine each "slot" (the "i" in tgts[i])
|
||
* - Try to increment this slot (tgts[i] += 1)
|
||
* - if we can't increment because it runs into the next slot,
|
||
* reset our slot to the minimum, and examine the next slot
|
||
*
|
||
* For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose
|
||
* 3 columns to reconstruct), we will generate the following sequence:
|
||
*
|
||
* STATE ACTION
|
||
* 0 1 2 special case: skip since these are all parity
|
||
* 0 1 3 first slot: reset to 0; middle slot: increment to 2
|
||
* 0 2 3 first slot: increment to 1
|
||
* 1 2 3 first: reset to 0; middle: reset to 1; last: increment to 4
|
||
* 0 1 4 first: reset to 0; middle: increment to 2
|
||
* 0 2 4 first: increment to 1
|
||
* 1 2 4 first: reset to 0; middle: increment to 3
|
||
* 0 3 4 first: increment to 1
|
||
* 1 3 4 first: increment to 2
|
||
* 2 3 4 first: reset to 0; middle: reset to 1; last: increment to 5
|
||
* 0 1 5 first: reset to 0; middle: increment to 2
|
||
* 0 2 5 first: increment to 1
|
||
* 1 2 5 first: reset to 0; middle: increment to 3
|
||
* 0 3 5 first: increment to 1
|
||
* 1 3 5 first: increment to 2
|
||
* 2 3 5 first: reset to 0; middle: increment to 4
|
||
* 0 4 5 first: increment to 1
|
||
* 1 4 5 first: increment to 2
|
||
* 2 4 5 first: increment to 3
|
||
* 3 4 5 done
|
||
*
|
||
* This strategy works for dRAID but is less efficient when there are a large
|
||
* number of child vdevs and therefore permutations to check. Furthermore,
|
||
* since the raidz_map_t rows likely do not overlap, reconstruction would be
|
||
* possible as long as there are no more than nparity data errors per row.
|
||
* These additional permutations are not currently checked but could be as
|
||
* a future improvement.
|
||
*
|
||
* Returns 0 on success, ECKSUM on failure.
|
||
*/
|
||
static int
|
||
vdev_raidz_combrec(zio_t *zio)
|
||
{
|
||
int nparity = vdev_get_nparity(zio->io_vd);
|
||
raidz_map_t *rm = zio->io_vsd;
|
||
int physical_width = zio->io_vd->vdev_children;
|
||
int original_width = (rm->rm_original_width != 0) ?
|
||
rm->rm_original_width : physical_width;
|
||
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
int total_errors = 0;
|
||
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
if (rr->rr_col[c].rc_error)
|
||
total_errors++;
|
||
}
|
||
|
||
if (total_errors > nparity)
|
||
return (vdev_raidz_worst_error(rr));
|
||
}
|
||
|
||
for (int num_failures = 1; num_failures <= nparity; num_failures++) {
|
||
int tstore[VDEV_RAIDZ_MAXPARITY + 2];
|
||
int *ltgts = &tstore[1]; /* value is logical child ID */
|
||
|
||
|
||
/*
|
||
* Determine number of logical children, n. See comment
|
||
* above raidz_simulate_failure().
|
||
*/
|
||
int n = 0;
|
||
for (int w = physical_width;
|
||
w >= original_width; w--) {
|
||
n += w;
|
||
}
|
||
|
||
ASSERT3U(num_failures, <=, nparity);
|
||
ASSERT3U(num_failures, <=, VDEV_RAIDZ_MAXPARITY);
|
||
|
||
/* Handle corner cases in combrec logic */
|
||
ltgts[-1] = -1;
|
||
for (int i = 0; i < num_failures; i++) {
|
||
ltgts[i] = i;
|
||
}
|
||
ltgts[num_failures] = n;
|
||
|
||
for (;;) {
|
||
int err = raidz_reconstruct(zio, ltgts, num_failures,
|
||
nparity);
|
||
if (err == EINVAL) {
|
||
/*
|
||
* Reconstruction not possible with this #
|
||
* failures; try more failures.
|
||
*/
|
||
break;
|
||
} else if (err == 0)
|
||
return (0);
|
||
|
||
/* Compute next targets to try */
|
||
for (int t = 0; ; t++) {
|
||
ASSERT3U(t, <, num_failures);
|
||
ltgts[t]++;
|
||
if (ltgts[t] == n) {
|
||
/* try more failures */
|
||
ASSERT3U(t, ==, num_failures - 1);
|
||
if (zfs_flags &
|
||
ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
|
||
zfs_dbgmsg("reconstruction "
|
||
"failed for num_failures="
|
||
"%u; tried all "
|
||
"combinations",
|
||
num_failures);
|
||
}
|
||
break;
|
||
}
|
||
|
||
ASSERT3U(ltgts[t], <, n);
|
||
ASSERT3U(ltgts[t], <=, ltgts[t + 1]);
|
||
|
||
/*
|
||
* If that spot is available, we're done here.
|
||
* Try the next combination.
|
||
*/
|
||
if (ltgts[t] != ltgts[t + 1])
|
||
break; // found next combination
|
||
|
||
/*
|
||
* Otherwise, reset this tgt to the minimum,
|
||
* and move on to the next tgt.
|
||
*/
|
||
ltgts[t] = ltgts[t - 1] + 1;
|
||
ASSERT3U(ltgts[t], ==, t);
|
||
}
|
||
|
||
/* Increase the number of failures and keep trying. */
|
||
if (ltgts[num_failures - 1] == n)
|
||
break;
|
||
}
|
||
}
|
||
if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
|
||
zfs_dbgmsg("reconstruction failed for all num_failures");
|
||
return (ECKSUM);
|
||
}
|
||
|
||
void
|
||
vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
|
||
{
|
||
for (uint64_t row = 0; row < rm->rm_nrows; row++) {
|
||
raidz_row_t *rr = rm->rm_row[row];
|
||
vdev_raidz_reconstruct_row(rm, rr, t, nt);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Complete a write IO operation on a RAIDZ VDev
|
||
*
|
||
* Outline:
|
||
* 1. Check for errors on the child IOs.
|
||
* 2. Return, setting an error code if too few child VDevs were written
|
||
* to reconstruct the data later. Note that partial writes are
|
||
* considered successful if they can be reconstructed at all.
|
||
*/
|
||
static void
|
||
vdev_raidz_io_done_write_impl(zio_t *zio, raidz_row_t *rr)
|
||
{
|
||
int normal_errors = 0;
|
||
int shadow_errors = 0;
|
||
|
||
ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
|
||
ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
|
||
ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
|
||
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
|
||
if (rc->rc_error != 0) {
|
||
ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
|
||
normal_errors++;
|
||
}
|
||
if (rc->rc_shadow_error != 0) {
|
||
ASSERT(rc->rc_shadow_error != ECKSUM);
|
||
shadow_errors++;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Treat partial writes as a success. If we couldn't write enough
|
||
* columns to reconstruct the data, the I/O failed. Otherwise, good
|
||
* enough. Note that in the case of a shadow write (during raidz
|
||
* expansion), depending on if we crash, either the normal (old) or
|
||
* shadow (new) location may become the "real" version of the block,
|
||
* so both locations must have sufficient redundancy.
|
||
*
|
||
* Now that we support write reallocation, it would be better
|
||
* to treat partial failure as real failure unless there are
|
||
* no non-degraded top-level vdevs left, and not update DTLs
|
||
* if we intend to reallocate.
|
||
*/
|
||
if (normal_errors > rr->rr_firstdatacol ||
|
||
shadow_errors > rr->rr_firstdatacol) {
|
||
zio->io_error = zio_worst_error(zio->io_error,
|
||
vdev_raidz_worst_error(rr));
|
||
}
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_io_done_reconstruct_known_missing(zio_t *zio, raidz_map_t *rm,
|
||
raidz_row_t *rr)
|
||
{
|
||
int parity_errors = 0;
|
||
int parity_untried = 0;
|
||
int data_errors = 0;
|
||
int total_errors = 0;
|
||
|
||
ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
|
||
ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
|
||
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
|
||
/*
|
||
* If scrubbing and a replacing/sparing child vdev determined
|
||
* that not all of its children have an identical copy of the
|
||
* data, then clear the error so the column is treated like
|
||
* any other read and force a repair to correct the damage.
|
||
*/
|
||
if (rc->rc_error == ECKSUM) {
|
||
ASSERT(zio->io_flags & ZIO_FLAG_SCRUB);
|
||
vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
|
||
rc->rc_force_repair = 1;
|
||
rc->rc_error = 0;
|
||
}
|
||
|
||
if (rc->rc_error) {
|
||
if (c < rr->rr_firstdatacol)
|
||
parity_errors++;
|
||
else
|
||
data_errors++;
|
||
|
||
total_errors++;
|
||
} else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
|
||
parity_untried++;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* If there were data errors and the number of errors we saw was
|
||
* correctable -- less than or equal to the number of parity disks read
|
||
* -- reconstruct based on the missing data.
|
||
*/
|
||
if (data_errors != 0 &&
|
||
total_errors <= rr->rr_firstdatacol - parity_untried) {
|
||
/*
|
||
* We either attempt to read all the parity columns or
|
||
* none of them. If we didn't try to read parity, we
|
||
* wouldn't be here in the correctable case. There must
|
||
* also have been fewer parity errors than parity
|
||
* columns or, again, we wouldn't be in this code path.
|
||
*/
|
||
ASSERT(parity_untried == 0);
|
||
ASSERT(parity_errors < rr->rr_firstdatacol);
|
||
|
||
/*
|
||
* Identify the data columns that reported an error.
|
||
*/
|
||
int n = 0;
|
||
int tgts[VDEV_RAIDZ_MAXPARITY];
|
||
for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
if (rc->rc_error != 0) {
|
||
ASSERT(n < VDEV_RAIDZ_MAXPARITY);
|
||
tgts[n++] = c;
|
||
}
|
||
}
|
||
|
||
ASSERT(rr->rr_firstdatacol >= n);
|
||
|
||
vdev_raidz_reconstruct_row(rm, rr, tgts, n);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Return the number of reads issued.
|
||
*/
|
||
static int
|
||
vdev_raidz_read_all(zio_t *zio, raidz_row_t *rr)
|
||
{
|
||
vdev_t *vd = zio->io_vd;
|
||
int nread = 0;
|
||
|
||
rr->rr_missingdata = 0;
|
||
rr->rr_missingparity = 0;
|
||
|
||
/*
|
||
* If this rows contains empty sectors which are not required
|
||
* for a normal read then allocate an ABD for them now so they
|
||
* may be read, verified, and any needed repairs performed.
|
||
*/
|
||
if (rr->rr_nempty != 0 && rr->rr_abd_empty == NULL)
|
||
vdev_draid_map_alloc_empty(zio, rr);
|
||
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
if (rc->rc_tried || rc->rc_size == 0)
|
||
continue;
|
||
|
||
zio_nowait(zio_vdev_child_io(zio, NULL,
|
||
vd->vdev_child[rc->rc_devidx],
|
||
rc->rc_offset, rc->rc_abd, rc->rc_size,
|
||
zio->io_type, zio->io_priority, 0,
|
||
vdev_raidz_child_done, rc));
|
||
nread++;
|
||
}
|
||
return (nread);
|
||
}
|
||
|
||
/*
|
||
* We're here because either there were too many errors to even attempt
|
||
* reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec()
|
||
* failed. In either case, there is enough bad data to prevent reconstruction.
|
||
* Start checksum ereports for all children which haven't failed.
|
||
*/
|
||
static void
|
||
vdev_raidz_io_done_unrecoverable(zio_t *zio)
|
||
{
|
||
raidz_map_t *rm = zio->io_vsd;
|
||
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx];
|
||
|
||
if (rc->rc_error != 0)
|
||
continue;
|
||
|
||
zio_bad_cksum_t zbc;
|
||
zbc.zbc_has_cksum = 0;
|
||
zbc.zbc_injected = rm->rm_ecksuminjected;
|
||
|
||
mutex_enter(&cvd->vdev_stat_lock);
|
||
cvd->vdev_stat.vs_checksum_errors++;
|
||
mutex_exit(&cvd->vdev_stat_lock);
|
||
(void) zfs_ereport_start_checksum(zio->io_spa,
|
||
cvd, &zio->io_bookmark, zio, rc->rc_offset,
|
||
rc->rc_size, &zbc);
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
vdev_raidz_io_done(zio_t *zio)
|
||
{
|
||
raidz_map_t *rm = zio->io_vsd;
|
||
|
||
ASSERT(zio->io_bp != NULL);
|
||
if (zio->io_type == ZIO_TYPE_WRITE) {
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
vdev_raidz_io_done_write_impl(zio, rm->rm_row[i]);
|
||
}
|
||
} else {
|
||
if (rm->rm_phys_col) {
|
||
/*
|
||
* This is an aggregated read. Copy the data and status
|
||
* from the aggregate abd's to the individual rows.
|
||
*/
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
|
||
for (int c = 0; c < rr->rr_cols; c++) {
|
||
raidz_col_t *rc = &rr->rr_col[c];
|
||
if (rc->rc_tried || rc->rc_size == 0)
|
||
continue;
|
||
|
||
raidz_col_t *prc =
|
||
&rm->rm_phys_col[rc->rc_devidx];
|
||
rc->rc_error = prc->rc_error;
|
||
rc->rc_tried = prc->rc_tried;
|
||
rc->rc_skipped = prc->rc_skipped;
|
||
if (c >= rr->rr_firstdatacol) {
|
||
/*
|
||
* Note: this is slightly faster
|
||
* than using abd_copy_off().
|
||
*/
|
||
char *physbuf = abd_to_buf(
|
||
prc->rc_abd);
|
||
void *physloc = physbuf +
|
||
rc->rc_offset -
|
||
prc->rc_offset;
|
||
|
||
abd_copy_from_buf(rc->rc_abd,
|
||
physloc, rc->rc_size);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
vdev_raidz_io_done_reconstruct_known_missing(zio,
|
||
rm, rr);
|
||
}
|
||
|
||
if (raidz_checksum_verify(zio) == 0) {
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
raidz_row_t *rr = rm->rm_row[i];
|
||
vdev_raidz_io_done_verified(zio, rr);
|
||
}
|
||
zio_checksum_verified(zio);
|
||
} else {
|
||
/*
|
||
* A sequential resilver has no checksum which makes
|
||
* combinatoral reconstruction impossible. This code
|
||
* path is unreachable since raidz_checksum_verify()
|
||
* has no checksum to verify and must succeed.
|
||
*/
|
||
ASSERT3U(zio->io_priority, !=, ZIO_PRIORITY_REBUILD);
|
||
|
||
/*
|
||
* This isn't a typical situation -- either we got a
|
||
* read error or a child silently returned bad data.
|
||
* Read every block so we can try again with as much
|
||
* data and parity as we can track down. If we've
|
||
* already been through once before, all children will
|
||
* be marked as tried so we'll proceed to combinatorial
|
||
* reconstruction.
|
||
*/
|
||
int nread = 0;
|
||
for (int i = 0; i < rm->rm_nrows; i++) {
|
||
nread += vdev_raidz_read_all(zio,
|
||
rm->rm_row[i]);
|
||
}
|
||
if (nread != 0) {
|
||
/*
|
||
* Normally our stage is VDEV_IO_DONE, but if
|
||
* we've already called redone(), it will have
|
||
* changed to VDEV_IO_START, in which case we
|
||
* don't want to call redone() again.
|
||
*/
|
||
if (zio->io_stage != ZIO_STAGE_VDEV_IO_START)
|
||
zio_vdev_io_redone(zio);
|
||
return;
|
||
}
|
||
/*
|
||
* It would be too expensive to try every possible
|
||
* combination of failed sectors in every row, so
|
||
* instead we try every combination of failed current or
|
||
* past physical disk. This means that if the incorrect
|
||
* sectors were all on Nparity disks at any point in the
|
||
* past, we will find the correct data. The only known
|
||
* case where this is less durable than a non-expanded
|
||
* RAIDZ, is if we have a silent failure during
|
||
* expansion. In that case, one block could be
|
||
* partially in the old format and partially in the
|
||
* new format, so we'd lost some sectors from the old
|
||
* format and some from the new format.
|
||
*
|
||
* e.g. logical_width=4 physical_width=6
|
||
* the 15 (6+5+4) possible failed disks are:
|
||
* width=6 child=0
|
||
* width=6 child=1
|
||
* width=6 child=2
|
||
* width=6 child=3
|
||
* width=6 child=4
|
||
* width=6 child=5
|
||
* width=5 child=0
|
||
* width=5 child=1
|
||
* width=5 child=2
|
||
* width=5 child=3
|
||
* width=5 child=4
|
||
* width=4 child=0
|
||
* width=4 child=1
|
||
* width=4 child=2
|
||
* width=4 child=3
|
||
* And we will try every combination of Nparity of these
|
||
* failing.
|
||
*
|
||
* As a first pass, we can generate every combo,
|
||
* and try reconstructing, ignoring any known
|
||
* failures. If any row has too many known + simulated
|
||
* failures, then we bail on reconstructing with this
|
||
* number of simulated failures. As an improvement,
|
||
* we could detect the number of whole known failures
|
||
* (i.e. we have known failures on these disks for
|
||
* every row; the disks never succeeded), and
|
||
* subtract that from the max # failures to simulate.
|
||
* We could go even further like the current
|
||
* combrec code, but that doesn't seem like it
|
||
* gains us very much. If we simulate a failure
|
||
* that is also a known failure, that's fine.
|
||
*/
|
||
zio->io_error = vdev_raidz_combrec(zio);
|
||
if (zio->io_error == ECKSUM &&
|
||
!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
|
||
vdev_raidz_io_done_unrecoverable(zio);
|
||
}
|
||
}
|
||
}
|
||
if (rm->rm_lr != NULL) {
|
||
zfs_rangelock_exit(rm->rm_lr);
|
||
rm->rm_lr = NULL;
|
||
}
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
|
||
{
|
||
vdev_raidz_t *vdrz = vd->vdev_tsd;
|
||
if (faulted > vdrz->vd_nparity)
|
||
vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
|
||
VDEV_AUX_NO_REPLICAS);
|
||
else if (degraded + faulted != 0)
|
||
vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
|
||
else
|
||
vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
|
||
}
|
||
|
||
/*
|
||
* Determine if any portion of the provided block resides on a child vdev
|
||
* with a dirty DTL and therefore needs to be resilvered. The function
|
||
* assumes that at least one DTL is dirty which implies that full stripe
|
||
* width blocks must be resilvered.
|
||
*/
|
||
static boolean_t
|
||
vdev_raidz_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
|
||
uint64_t phys_birth)
|
||
{
|
||
vdev_raidz_t *vdrz = vd->vdev_tsd;
|
||
|
||
/*
|
||
* If we're in the middle of a RAIDZ expansion, this block may be in
|
||
* the old and/or new location. For simplicity, always resilver it.
|
||
*/
|
||
if (vdrz->vn_vre.vre_state == DSS_SCANNING)
|
||
return (B_TRUE);
|
||
|
||
uint64_t dcols = vd->vdev_children;
|
||
uint64_t nparity = vdrz->vd_nparity;
|
||
uint64_t ashift = vd->vdev_top->vdev_ashift;
|
||
/* The starting RAIDZ (parent) vdev sector of the block. */
|
||
uint64_t b = DVA_GET_OFFSET(dva) >> ashift;
|
||
/* The zio's size in units of the vdev's minimum sector size. */
|
||
uint64_t s = ((psize - 1) >> ashift) + 1;
|
||
/* The first column for this stripe. */
|
||
uint64_t f = b % dcols;
|
||
|
||
/* Unreachable by sequential resilver. */
|
||
ASSERT3U(phys_birth, !=, TXG_UNKNOWN);
|
||
|
||
if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
|
||
return (B_FALSE);
|
||
|
||
if (s + nparity >= dcols)
|
||
return (B_TRUE);
|
||
|
||
for (uint64_t c = 0; c < s + nparity; c++) {
|
||
uint64_t devidx = (f + c) % dcols;
|
||
vdev_t *cvd = vd->vdev_child[devidx];
|
||
|
||
/*
|
||
* dsl_scan_need_resilver() already checked vd with
|
||
* vdev_dtl_contains(). So here just check cvd with
|
||
* vdev_dtl_empty(), cheaper and a good approximation.
|
||
*/
|
||
if (!vdev_dtl_empty(cvd, DTL_PARTIAL))
|
||
return (B_TRUE);
|
||
}
|
||
|
||
return (B_FALSE);
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
|
||
range_seg64_t *physical_rs, range_seg64_t *remain_rs)
|
||
{
|
||
(void) remain_rs;
|
||
|
||
vdev_t *raidvd = cvd->vdev_parent;
|
||
ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
|
||
|
||
vdev_raidz_t *vdrz = raidvd->vdev_tsd;
|
||
|
||
if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
|
||
/*
|
||
* We're in the middle of expansion, in which case the
|
||
* translation is in flux. Any answer we give may be wrong
|
||
* by the time we return, so it isn't safe for the caller to
|
||
* act on it. Therefore we say that this range isn't present
|
||
* on any children. The only consumers of this are "zpool
|
||
* initialize" and trimming, both of which are "best effort"
|
||
* anyway.
|
||
*/
|
||
physical_rs->rs_start = physical_rs->rs_end = 0;
|
||
remain_rs->rs_start = remain_rs->rs_end = 0;
|
||
return;
|
||
}
|
||
|
||
uint64_t width = vdrz->vd_physical_width;
|
||
uint64_t tgt_col = cvd->vdev_id;
|
||
uint64_t ashift = raidvd->vdev_top->vdev_ashift;
|
||
|
||
/* make sure the offsets are block-aligned */
|
||
ASSERT0(logical_rs->rs_start % (1 << ashift));
|
||
ASSERT0(logical_rs->rs_end % (1 << ashift));
|
||
uint64_t b_start = logical_rs->rs_start >> ashift;
|
||
uint64_t b_end = logical_rs->rs_end >> ashift;
|
||
|
||
uint64_t start_row = 0;
|
||
if (b_start > tgt_col) /* avoid underflow */
|
||
start_row = ((b_start - tgt_col - 1) / width) + 1;
|
||
|
||
uint64_t end_row = 0;
|
||
if (b_end > tgt_col)
|
||
end_row = ((b_end - tgt_col - 1) / width) + 1;
|
||
|
||
physical_rs->rs_start = start_row << ashift;
|
||
physical_rs->rs_end = end_row << ashift;
|
||
|
||
ASSERT3U(physical_rs->rs_start, <=, logical_rs->rs_start);
|
||
ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
|
||
logical_rs->rs_end - logical_rs->rs_start);
|
||
}
|
||
|
||
static void
|
||
raidz_reflow_sync(void *arg, dmu_tx_t *tx)
|
||
{
|
||
spa_t *spa = arg;
|
||
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
|
||
vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
|
||
|
||
/*
|
||
* Ensure there are no i/os to the range that is being committed.
|
||
*/
|
||
uint64_t old_offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
|
||
ASSERT3U(vre->vre_offset_pertxg[txgoff], >=, old_offset);
|
||
|
||
mutex_enter(&vre->vre_lock);
|
||
uint64_t new_offset =
|
||
MIN(vre->vre_offset_pertxg[txgoff], vre->vre_failed_offset);
|
||
/*
|
||
* We should not have committed anything that failed.
|
||
*/
|
||
VERIFY3U(vre->vre_failed_offset, >=, old_offset);
|
||
mutex_exit(&vre->vre_lock);
|
||
|
||
zfs_locked_range_t *lr = zfs_rangelock_enter(&vre->vre_rangelock,
|
||
old_offset, new_offset - old_offset,
|
||
RL_WRITER);
|
||
|
||
/*
|
||
* Update the uberblock that will be written when this txg completes.
|
||
*/
|
||
RAIDZ_REFLOW_SET(&spa->spa_uberblock,
|
||
RRSS_SCRATCH_INVALID_SYNCED_REFLOW, new_offset);
|
||
vre->vre_offset_pertxg[txgoff] = 0;
|
||
zfs_rangelock_exit(lr);
|
||
|
||
mutex_enter(&vre->vre_lock);
|
||
vre->vre_bytes_copied += vre->vre_bytes_copied_pertxg[txgoff];
|
||
vre->vre_bytes_copied_pertxg[txgoff] = 0;
|
||
mutex_exit(&vre->vre_lock);
|
||
|
||
vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
|
||
VERIFY0(zap_update(spa->spa_meta_objset,
|
||
vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED,
|
||
sizeof (vre->vre_bytes_copied), 1, &vre->vre_bytes_copied, tx));
|
||
}
|
||
|
||
static void
|
||
raidz_reflow_complete_sync(void *arg, dmu_tx_t *tx)
|
||
{
|
||
spa_t *spa = arg;
|
||
vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
|
||
vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
|
||
vdev_raidz_t *vdrz = raidvd->vdev_tsd;
|
||
|
||
for (int i = 0; i < TXG_SIZE; i++)
|
||
VERIFY0(vre->vre_offset_pertxg[i]);
|
||
|
||
reflow_node_t *re = kmem_zalloc(sizeof (*re), KM_SLEEP);
|
||
re->re_txg = tx->tx_txg + TXG_CONCURRENT_STATES;
|
||
re->re_logical_width = vdrz->vd_physical_width;
|
||
mutex_enter(&vdrz->vd_expand_lock);
|
||
avl_add(&vdrz->vd_expand_txgs, re);
|
||
mutex_exit(&vdrz->vd_expand_lock);
|
||
|
||
vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
|
||
|
||
/*
|
||
* Dirty the config so that the updated ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS
|
||
* will get written (based on vd_expand_txgs).
|
||
*/
|
||
vdev_config_dirty(vd);
|
||
|
||
/*
|
||
* Before we change vre_state, the on-disk state must reflect that we
|
||
* have completed all copying, so that vdev_raidz_io_start() can use
|
||
* vre_state to determine if the reflow is in progress. See also the
|
||
* end of spa_raidz_expand_thread().
|
||
*/
|
||
VERIFY3U(RRSS_GET_OFFSET(&spa->spa_ubsync), ==,
|
||
raidvd->vdev_ms_count << raidvd->vdev_ms_shift);
|
||
|
||
vre->vre_end_time = gethrestime_sec();
|
||
vre->vre_state = DSS_FINISHED;
|
||
|
||
uint64_t state = vre->vre_state;
|
||
VERIFY0(zap_update(spa->spa_meta_objset,
|
||
vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
|
||
sizeof (state), 1, &state, tx));
|
||
|
||
uint64_t end_time = vre->vre_end_time;
|
||
VERIFY0(zap_update(spa->spa_meta_objset,
|
||
vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME,
|
||
sizeof (end_time), 1, &end_time, tx));
|
||
|
||
spa->spa_uberblock.ub_raidz_reflow_info = 0;
|
||
|
||
spa_history_log_internal(spa, "raidz vdev expansion completed", tx,
|
||
"%s vdev %llu new width %llu", spa_name(spa),
|
||
(unsigned long long)vd->vdev_id,
|
||
(unsigned long long)vd->vdev_children);
|
||
|
||
spa->spa_raidz_expand = NULL;
|
||
raidvd->vdev_rz_expanding = B_FALSE;
|
||
|
||
spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
|
||
spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
|
||
spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
|
||
|
||
spa_notify_waiters(spa);
|
||
|
||
/*
|
||
* While we're in syncing context take the opportunity to
|
||
* setup a scrub. All the data has been sucessfully copied
|
||
* but we have not validated any checksums.
|
||
*/
|
||
pool_scan_func_t func = POOL_SCAN_SCRUB;
|
||
if (zfs_scrub_after_expand && dsl_scan_setup_check(&func, tx) == 0)
|
||
dsl_scan_setup_sync(&func, tx);
|
||
}
|
||
|
||
/*
|
||
* Struct for one copy zio.
|
||
*/
|
||
typedef struct raidz_reflow_arg {
|
||
vdev_raidz_expand_t *rra_vre;
|
||
zfs_locked_range_t *rra_lr;
|
||
uint64_t rra_txg;
|
||
} raidz_reflow_arg_t;
|
||
|
||
/*
|
||
* The write of the new location is done.
|
||
*/
|
||
static void
|
||
raidz_reflow_write_done(zio_t *zio)
|
||
{
|
||
raidz_reflow_arg_t *rra = zio->io_private;
|
||
vdev_raidz_expand_t *vre = rra->rra_vre;
|
||
|
||
abd_free(zio->io_abd);
|
||
|
||
mutex_enter(&vre->vre_lock);
|
||
if (zio->io_error != 0) {
|
||
/* Force a reflow pause on errors */
|
||
vre->vre_failed_offset =
|
||
MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
|
||
}
|
||
ASSERT3U(vre->vre_outstanding_bytes, >=, zio->io_size);
|
||
vre->vre_outstanding_bytes -= zio->io_size;
|
||
if (rra->rra_lr->lr_offset + rra->rra_lr->lr_length <
|
||
vre->vre_failed_offset) {
|
||
vre->vre_bytes_copied_pertxg[rra->rra_txg & TXG_MASK] +=
|
||
zio->io_size;
|
||
}
|
||
cv_signal(&vre->vre_cv);
|
||
mutex_exit(&vre->vre_lock);
|
||
|
||
zfs_rangelock_exit(rra->rra_lr);
|
||
|
||
kmem_free(rra, sizeof (*rra));
|
||
spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
|
||
}
|
||
|
||
/*
|
||
* The read of the old location is done. The parent zio is the write to
|
||
* the new location. Allow it to start.
|
||
*/
|
||
static void
|
||
raidz_reflow_read_done(zio_t *zio)
|
||
{
|
||
raidz_reflow_arg_t *rra = zio->io_private;
|
||
vdev_raidz_expand_t *vre = rra->rra_vre;
|
||
|
||
/*
|
||
* If the read failed, or if it was done on a vdev that is not fully
|
||
* healthy (e.g. a child that has a resilver in progress), we may not
|
||
* have the correct data. Note that it's OK if the write proceeds.
|
||
* It may write garbage but the location is otherwise unused and we
|
||
* will retry later due to vre_failed_offset.
|
||
*/
|
||
if (zio->io_error != 0 || !vdev_dtl_empty(zio->io_vd, DTL_MISSING)) {
|
||
zfs_dbgmsg("reflow read failed off=%llu size=%llu txg=%llu "
|
||
"err=%u partial_dtl_empty=%u missing_dtl_empty=%u",
|
||
(long long)rra->rra_lr->lr_offset,
|
||
(long long)rra->rra_lr->lr_length,
|
||
(long long)rra->rra_txg,
|
||
zio->io_error,
|
||
vdev_dtl_empty(zio->io_vd, DTL_PARTIAL),
|
||
vdev_dtl_empty(zio->io_vd, DTL_MISSING));
|
||
mutex_enter(&vre->vre_lock);
|
||
/* Force a reflow pause on errors */
|
||
vre->vre_failed_offset =
|
||
MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
|
||
mutex_exit(&vre->vre_lock);
|
||
}
|
||
|
||
zio_nowait(zio_unique_parent(zio));
|
||
}
|
||
|
||
static void
|
||
raidz_reflow_record_progress(vdev_raidz_expand_t *vre, uint64_t offset,
|
||
dmu_tx_t *tx)
|
||
{
|
||
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
|
||
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
||
|
||
if (offset == 0)
|
||
return;
|
||
|
||
mutex_enter(&vre->vre_lock);
|
||
ASSERT3U(vre->vre_offset, <=, offset);
|
||
vre->vre_offset = offset;
|
||
mutex_exit(&vre->vre_lock);
|
||
|
||
if (vre->vre_offset_pertxg[txgoff] == 0) {
|
||
dsl_sync_task_nowait(dmu_tx_pool(tx), raidz_reflow_sync,
|
||
spa, tx);
|
||
}
|
||
vre->vre_offset_pertxg[txgoff] = offset;
|
||
}
|
||
|
||
static boolean_t
|
||
vdev_raidz_expand_child_replacing(vdev_t *raidz_vd)
|
||
{
|
||
for (int i = 0; i < raidz_vd->vdev_children; i++) {
|
||
/* Quick check if a child is being replaced */
|
||
if (!raidz_vd->vdev_child[i]->vdev_ops->vdev_op_leaf)
|
||
return (B_TRUE);
|
||
}
|
||
return (B_FALSE);
|
||
}
|
||
|
||
static boolean_t
|
||
raidz_reflow_impl(vdev_t *vd, vdev_raidz_expand_t *vre, range_tree_t *rt,
|
||
dmu_tx_t *tx)
|
||
{
|
||
spa_t *spa = vd->vdev_spa;
|
||
int ashift = vd->vdev_top->vdev_ashift;
|
||
uint64_t offset, size;
|
||
|
||
if (!range_tree_find_in(rt, 0, vd->vdev_top->vdev_asize,
|
||
&offset, &size)) {
|
||
return (B_FALSE);
|
||
}
|
||
ASSERT(IS_P2ALIGNED(offset, 1 << ashift));
|
||
ASSERT3U(size, >=, 1 << ashift);
|
||
uint64_t length = 1 << ashift;
|
||
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
|
||
|
||
uint64_t blkid = offset >> ashift;
|
||
|
||
int old_children = vd->vdev_children - 1;
|
||
|
||
/*
|
||
* We can only progress to the point that writes will not overlap
|
||
* with blocks whose progress has not yet been recorded on disk.
|
||
* Since partially-copied rows are still read from the old location,
|
||
* we need to stop one row before the sector-wise overlap, to prevent
|
||
* row-wise overlap.
|
||
*
|
||
* Note that even if we are skipping over a large unallocated region,
|
||
* we can't move the on-disk progress to `offset`, because concurrent
|
||
* writes/allocations could still use the currently-unallocated
|
||
* region.
|
||
*/
|
||
uint64_t ubsync_blkid =
|
||
RRSS_GET_OFFSET(&spa->spa_ubsync) >> ashift;
|
||
uint64_t next_overwrite_blkid = ubsync_blkid +
|
||
ubsync_blkid / old_children - old_children;
|
||
VERIFY3U(next_overwrite_blkid, >, ubsync_blkid);
|
||
|
||
if (blkid >= next_overwrite_blkid) {
|
||
raidz_reflow_record_progress(vre,
|
||
next_overwrite_blkid << ashift, tx);
|
||
return (B_TRUE);
|
||
}
|
||
|
||
range_tree_remove(rt, offset, length);
|
||
|
||
raidz_reflow_arg_t *rra = kmem_zalloc(sizeof (*rra), KM_SLEEP);
|
||
rra->rra_vre = vre;
|
||
rra->rra_lr = zfs_rangelock_enter(&vre->vre_rangelock,
|
||
offset, length, RL_WRITER);
|
||
rra->rra_txg = dmu_tx_get_txg(tx);
|
||
|
||
raidz_reflow_record_progress(vre, offset + length, tx);
|
||
|
||
mutex_enter(&vre->vre_lock);
|
||
vre->vre_outstanding_bytes += length;
|
||
mutex_exit(&vre->vre_lock);
|
||
|
||
/*
|
||
* SCL_STATE will be released when the read and write are done,
|
||
* by raidz_reflow_write_done().
|
||
*/
|
||
spa_config_enter(spa, SCL_STATE, spa, RW_READER);
|
||
|
||
/* check if a replacing vdev was added, if so treat it as an error */
|
||
if (vdev_raidz_expand_child_replacing(vd)) {
|
||
zfs_dbgmsg("replacing vdev encountered, reflow paused at "
|
||
"offset=%llu txg=%llu",
|
||
(long long)rra->rra_lr->lr_offset,
|
||
(long long)rra->rra_txg);
|
||
|
||
mutex_enter(&vre->vre_lock);
|
||
vre->vre_failed_offset =
|
||
MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
|
||
cv_signal(&vre->vre_cv);
|
||
mutex_exit(&vre->vre_lock);
|
||
|
||
/* drop everything we acquired */
|
||
zfs_rangelock_exit(rra->rra_lr);
|
||
kmem_free(rra, sizeof (*rra));
|
||
spa_config_exit(spa, SCL_STATE, spa);
|
||
return (B_TRUE);
|
||
}
|
||
|
||
zio_t *pio = spa->spa_txg_zio[txgoff];
|
||
abd_t *abd = abd_alloc_for_io(length, B_FALSE);
|
||
zio_t *write_zio = zio_vdev_child_io(pio, NULL,
|
||
vd->vdev_child[blkid % vd->vdev_children],
|
||
(blkid / vd->vdev_children) << ashift,
|
||
abd, length,
|
||
ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
|
||
ZIO_FLAG_CANFAIL,
|
||
raidz_reflow_write_done, rra);
|
||
|
||
zio_nowait(zio_vdev_child_io(write_zio, NULL,
|
||
vd->vdev_child[blkid % old_children],
|
||
(blkid / old_children) << ashift,
|
||
abd, length,
|
||
ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
|
||
ZIO_FLAG_CANFAIL,
|
||
raidz_reflow_read_done, rra));
|
||
|
||
return (B_FALSE);
|
||
}
|
||
|
||
/*
|
||
* For testing (ztest specific)
|
||
*/
|
||
static void
|
||
raidz_expand_pause(uint_t pause_point)
|
||
{
|
||
while (raidz_expand_pause_point != 0 &&
|
||
raidz_expand_pause_point <= pause_point)
|
||
delay(hz);
|
||
}
|
||
|
||
static void
|
||
raidz_scratch_child_done(zio_t *zio)
|
||
{
|
||
zio_t *pio = zio->io_private;
|
||
|
||
mutex_enter(&pio->io_lock);
|
||
pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
|
||
mutex_exit(&pio->io_lock);
|
||
}
|
||
|
||
/*
|
||
* Reflow the beginning portion of the vdev into an intermediate scratch area
|
||
* in memory and on disk. This operation must be persisted on disk before we
|
||
* proceed to overwrite the beginning portion with the reflowed data.
|
||
*
|
||
* This multi-step task can fail to complete if disk errors are encountered
|
||
* and we can return here after a pause (waiting for disk to become healthy).
|
||
*/
|
||
static void
|
||
raidz_reflow_scratch_sync(void *arg, dmu_tx_t *tx)
|
||
{
|
||
vdev_raidz_expand_t *vre = arg;
|
||
spa_t *spa = dmu_tx_pool(tx)->dp_spa;
|
||
zio_t *pio;
|
||
int error;
|
||
|
||
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
||
vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
|
||
int ashift = raidvd->vdev_ashift;
|
||
uint64_t write_size = P2ALIGN_TYPED(VDEV_BOOT_SIZE, 1 << ashift,
|
||
uint64_t);
|
||
uint64_t logical_size = write_size * raidvd->vdev_children;
|
||
uint64_t read_size =
|
||
P2ROUNDUP(DIV_ROUND_UP(logical_size, (raidvd->vdev_children - 1)),
|
||
1 << ashift);
|
||
|
||
/*
|
||
* The scratch space must be large enough to get us to the point
|
||
* that one row does not overlap itself when moved. This is checked
|
||
* by vdev_raidz_attach_check().
|
||
*/
|
||
VERIFY3U(write_size, >=, raidvd->vdev_children << ashift);
|
||
VERIFY3U(write_size, <=, VDEV_BOOT_SIZE);
|
||
VERIFY3U(write_size, <=, read_size);
|
||
|
||
zfs_locked_range_t *lr = zfs_rangelock_enter(&vre->vre_rangelock,
|
||
0, logical_size, RL_WRITER);
|
||
|
||
abd_t **abds = kmem_alloc(raidvd->vdev_children * sizeof (abd_t *),
|
||
KM_SLEEP);
|
||
for (int i = 0; i < raidvd->vdev_children; i++) {
|
||
abds[i] = abd_alloc_linear(read_size, B_FALSE);
|
||
}
|
||
|
||
raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_1);
|
||
|
||
/*
|
||
* If we have already written the scratch area then we must read from
|
||
* there, since new writes were redirected there while we were paused
|
||
* or the original location may have been partially overwritten with
|
||
* reflowed data.
|
||
*/
|
||
if (RRSS_GET_STATE(&spa->spa_ubsync) == RRSS_SCRATCH_VALID) {
|
||
VERIFY3U(RRSS_GET_OFFSET(&spa->spa_ubsync), ==, logical_size);
|
||
/*
|
||
* Read from scratch space.
|
||
*/
|
||
pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
|
||
for (int i = 0; i < raidvd->vdev_children; i++) {
|
||
/*
|
||
* Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE
|
||
* to the offset to calculate the physical offset to
|
||
* write to. Passing in a negative offset makes us
|
||
* access the scratch area.
|
||
*/
|
||
zio_nowait(zio_vdev_child_io(pio, NULL,
|
||
raidvd->vdev_child[i],
|
||
VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
|
||
write_size, ZIO_TYPE_READ, ZIO_PRIORITY_ASYNC_READ,
|
||
ZIO_FLAG_CANFAIL, raidz_scratch_child_done, pio));
|
||
}
|
||
error = zio_wait(pio);
|
||
if (error != 0) {
|
||
zfs_dbgmsg("reflow: error %d reading scratch location",
|
||
error);
|
||
goto io_error_exit;
|
||
}
|
||
goto overwrite;
|
||
}
|
||
|
||
/*
|
||
* Read from original location.
|
||
*/
|
||
pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
|
||
for (int i = 0; i < raidvd->vdev_children - 1; i++) {
|
||
ASSERT0(vdev_is_dead(raidvd->vdev_child[i]));
|
||
zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
|
||
0, abds[i], read_size, ZIO_TYPE_READ,
|
||
ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
|
||
raidz_scratch_child_done, pio));
|
||
}
|
||
error = zio_wait(pio);
|
||
if (error != 0) {
|
||
zfs_dbgmsg("reflow: error %d reading original location", error);
|
||
io_error_exit:
|
||
for (int i = 0; i < raidvd->vdev_children; i++)
|
||
abd_free(abds[i]);
|
||
kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
|
||
zfs_rangelock_exit(lr);
|
||
spa_config_exit(spa, SCL_STATE, FTAG);
|
||
return;
|
||
}
|
||
|
||
raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_2);
|
||
|
||
/*
|
||
* Reflow in memory.
|
||
*/
|
||
uint64_t logical_sectors = logical_size >> ashift;
|
||
for (int i = raidvd->vdev_children - 1; i < logical_sectors; i++) {
|
||
int oldchild = i % (raidvd->vdev_children - 1);
|
||
uint64_t oldoff = (i / (raidvd->vdev_children - 1)) << ashift;
|
||
|
||
int newchild = i % raidvd->vdev_children;
|
||
uint64_t newoff = (i / raidvd->vdev_children) << ashift;
|
||
|
||
/* a single sector should not be copying over itself */
|
||
ASSERT(!(newchild == oldchild && newoff == oldoff));
|
||
|
||
abd_copy_off(abds[newchild], abds[oldchild],
|
||
newoff, oldoff, 1 << ashift);
|
||
}
|
||
|
||
/*
|
||
* Verify that we filled in everything we intended to (write_size on
|
||
* each child).
|
||
*/
|
||
VERIFY0(logical_sectors % raidvd->vdev_children);
|
||
VERIFY3U((logical_sectors / raidvd->vdev_children) << ashift, ==,
|
||
write_size);
|
||
|
||
/*
|
||
* Write to scratch location (boot area).
|
||
*/
|
||
pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
|
||
for (int i = 0; i < raidvd->vdev_children; i++) {
|
||
/*
|
||
* Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE to
|
||
* the offset to calculate the physical offset to write to.
|
||
* Passing in a negative offset lets us access the boot area.
|
||
*/
|
||
zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
|
||
VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
|
||
write_size, ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
|
||
ZIO_FLAG_CANFAIL, raidz_scratch_child_done, pio));
|
||
}
|
||
error = zio_wait(pio);
|
||
if (error != 0) {
|
||
zfs_dbgmsg("reflow: error %d writing scratch location", error);
|
||
goto io_error_exit;
|
||
}
|
||
pio = zio_root(spa, NULL, NULL, 0);
|
||
zio_flush(pio, raidvd);
|
||
zio_wait(pio);
|
||
|
||
zfs_dbgmsg("reflow: wrote %llu bytes (logical) to scratch area",
|
||
(long long)logical_size);
|
||
|
||
raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_3);
|
||
|
||
/*
|
||
* Update uberblock to indicate that scratch space is valid. This is
|
||
* needed because after this point, the real location may be
|
||
* overwritten. If we crash, we need to get the data from the
|
||
* scratch space, rather than the real location.
|
||
*
|
||
* Note: ub_timestamp is bumped so that vdev_uberblock_compare()
|
||
* will prefer this uberblock.
|
||
*/
|
||
RAIDZ_REFLOW_SET(&spa->spa_ubsync, RRSS_SCRATCH_VALID, logical_size);
|
||
spa->spa_ubsync.ub_timestamp++;
|
||
ASSERT0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
|
||
&spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
|
||
if (spa_multihost(spa))
|
||
mmp_update_uberblock(spa, &spa->spa_ubsync);
|
||
|
||
zfs_dbgmsg("reflow: uberblock updated "
|
||
"(txg %llu, SCRATCH_VALID, size %llu, ts %llu)",
|
||
(long long)spa->spa_ubsync.ub_txg,
|
||
(long long)logical_size,
|
||
(long long)spa->spa_ubsync.ub_timestamp);
|
||
|
||
raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_VALID);
|
||
|
||
/*
|
||
* Overwrite with reflow'ed data.
|
||
*/
|
||
overwrite:
|
||
pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
|
||
for (int i = 0; i < raidvd->vdev_children; i++) {
|
||
zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
|
||
0, abds[i], write_size, ZIO_TYPE_WRITE,
|
||
ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL,
|
||
raidz_scratch_child_done, pio));
|
||
}
|
||
error = zio_wait(pio);
|
||
if (error != 0) {
|
||
/*
|
||
* When we exit early here and drop the range lock, new
|
||
* writes will go into the scratch area so we'll need to
|
||
* read from there when we return after pausing.
|
||
*/
|
||
zfs_dbgmsg("reflow: error %d writing real location", error);
|
||
/*
|
||
* Update the uberblock that is written when this txg completes.
|
||
*/
|
||
RAIDZ_REFLOW_SET(&spa->spa_uberblock, RRSS_SCRATCH_VALID,
|
||
logical_size);
|
||
goto io_error_exit;
|
||
}
|
||
pio = zio_root(spa, NULL, NULL, 0);
|
||
zio_flush(pio, raidvd);
|
||
zio_wait(pio);
|
||
|
||
zfs_dbgmsg("reflow: overwrote %llu bytes (logical) to real location",
|
||
(long long)logical_size);
|
||
for (int i = 0; i < raidvd->vdev_children; i++)
|
||
abd_free(abds[i]);
|
||
kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
|
||
|
||
raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_REFLOWED);
|
||
|
||
/*
|
||
* Update uberblock to indicate that the initial part has been
|
||
* reflow'ed. This is needed because after this point (when we exit
|
||
* the rangelock), we allow regular writes to this region, which will
|
||
* be written to the new location only (because reflow_offset_next ==
|
||
* reflow_offset_synced). If we crashed and re-copied from the
|
||
* scratch space, we would lose the regular writes.
|
||
*/
|
||
RAIDZ_REFLOW_SET(&spa->spa_ubsync, RRSS_SCRATCH_INVALID_SYNCED,
|
||
logical_size);
|
||
spa->spa_ubsync.ub_timestamp++;
|
||
ASSERT0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
|
||
&spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
|
||
if (spa_multihost(spa))
|
||
mmp_update_uberblock(spa, &spa->spa_ubsync);
|
||
|
||
zfs_dbgmsg("reflow: uberblock updated "
|
||
"(txg %llu, SCRATCH_NOT_IN_USE, size %llu, ts %llu)",
|
||
(long long)spa->spa_ubsync.ub_txg,
|
||
(long long)logical_size,
|
||
(long long)spa->spa_ubsync.ub_timestamp);
|
||
|
||
raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_1);
|
||
|
||
/*
|
||
* Update progress.
|
||
*/
|
||
vre->vre_offset = logical_size;
|
||
zfs_rangelock_exit(lr);
|
||
spa_config_exit(spa, SCL_STATE, FTAG);
|
||
|
||
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
|
||
vre->vre_offset_pertxg[txgoff] = vre->vre_offset;
|
||
vre->vre_bytes_copied_pertxg[txgoff] = vre->vre_bytes_copied;
|
||
/*
|
||
* Note - raidz_reflow_sync() will update the uberblock state to
|
||
* RRSS_SCRATCH_INVALID_SYNCED_REFLOW
|
||
*/
|
||
raidz_reflow_sync(spa, tx);
|
||
|
||
raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2);
|
||
}
|
||
|
||
/*
|
||
* We crashed in the middle of raidz_reflow_scratch_sync(); complete its work
|
||
* here. No other i/o can be in progress, so we don't need the vre_rangelock.
|
||
*/
|
||
void
|
||
vdev_raidz_reflow_copy_scratch(spa_t *spa)
|
||
{
|
||
vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
|
||
uint64_t logical_size = RRSS_GET_OFFSET(&spa->spa_uberblock);
|
||
ASSERT3U(RRSS_GET_STATE(&spa->spa_uberblock), ==, RRSS_SCRATCH_VALID);
|
||
|
||
spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
|
||
vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
|
||
ASSERT0(logical_size % raidvd->vdev_children);
|
||
uint64_t write_size = logical_size / raidvd->vdev_children;
|
||
|
||
zio_t *pio;
|
||
|
||
/*
|
||
* Read from scratch space.
|
||
*/
|
||
abd_t **abds = kmem_alloc(raidvd->vdev_children * sizeof (abd_t *),
|
||
KM_SLEEP);
|
||
for (int i = 0; i < raidvd->vdev_children; i++) {
|
||
abds[i] = abd_alloc_linear(write_size, B_FALSE);
|
||
}
|
||
|
||
pio = zio_root(spa, NULL, NULL, 0);
|
||
for (int i = 0; i < raidvd->vdev_children; i++) {
|
||
/*
|
||
* Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE to
|
||
* the offset to calculate the physical offset to write to.
|
||
* Passing in a negative offset lets us access the boot area.
|
||
*/
|
||
zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
|
||
VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
|
||
write_size, ZIO_TYPE_READ,
|
||
ZIO_PRIORITY_ASYNC_READ, 0,
|
||
raidz_scratch_child_done, pio));
|
||
}
|
||
zio_wait(pio);
|
||
|
||
/*
|
||
* Overwrite real location with reflow'ed data.
|
||
*/
|
||
pio = zio_root(spa, NULL, NULL, 0);
|
||
for (int i = 0; i < raidvd->vdev_children; i++) {
|
||
zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
|
||
0, abds[i], write_size, ZIO_TYPE_WRITE,
|
||
ZIO_PRIORITY_ASYNC_WRITE, 0,
|
||
raidz_scratch_child_done, pio));
|
||
}
|
||
zio_wait(pio);
|
||
pio = zio_root(spa, NULL, NULL, 0);
|
||
zio_flush(pio, raidvd);
|
||
zio_wait(pio);
|
||
|
||
zfs_dbgmsg("reflow recovery: overwrote %llu bytes (logical) "
|
||
"to real location", (long long)logical_size);
|
||
|
||
for (int i = 0; i < raidvd->vdev_children; i++)
|
||
abd_free(abds[i]);
|
||
kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
|
||
|
||
/*
|
||
* Update uberblock.
|
||
*/
|
||
RAIDZ_REFLOW_SET(&spa->spa_ubsync,
|
||
RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT, logical_size);
|
||
spa->spa_ubsync.ub_timestamp++;
|
||
VERIFY0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
|
||
&spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
|
||
if (spa_multihost(spa))
|
||
mmp_update_uberblock(spa, &spa->spa_ubsync);
|
||
|
||
zfs_dbgmsg("reflow recovery: uberblock updated "
|
||
"(txg %llu, SCRATCH_NOT_IN_USE, size %llu, ts %llu)",
|
||
(long long)spa->spa_ubsync.ub_txg,
|
||
(long long)logical_size,
|
||
(long long)spa->spa_ubsync.ub_timestamp);
|
||
|
||
dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
|
||
spa_first_txg(spa));
|
||
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
|
||
vre->vre_offset = logical_size;
|
||
vre->vre_offset_pertxg[txgoff] = vre->vre_offset;
|
||
vre->vre_bytes_copied_pertxg[txgoff] = vre->vre_bytes_copied;
|
||
/*
|
||
* Note that raidz_reflow_sync() will update the uberblock once more
|
||
*/
|
||
raidz_reflow_sync(spa, tx);
|
||
|
||
dmu_tx_commit(tx);
|
||
|
||
spa_config_exit(spa, SCL_STATE, FTAG);
|
||
}
|
||
|
||
static boolean_t
|
||
spa_raidz_expand_thread_check(void *arg, zthr_t *zthr)
|
||
{
|
||
(void) zthr;
|
||
spa_t *spa = arg;
|
||
|
||
return (spa->spa_raidz_expand != NULL &&
|
||
!spa->spa_raidz_expand->vre_waiting_for_resilver);
|
||
}
|
||
|
||
/*
|
||
* RAIDZ expansion background thread
|
||
*
|
||
* Can be called multiple times if the reflow is paused
|
||
*/
|
||
static void
|
||
spa_raidz_expand_thread(void *arg, zthr_t *zthr)
|
||
{
|
||
spa_t *spa = arg;
|
||
vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
|
||
|
||
if (RRSS_GET_STATE(&spa->spa_ubsync) == RRSS_SCRATCH_VALID)
|
||
vre->vre_offset = 0;
|
||
else
|
||
vre->vre_offset = RRSS_GET_OFFSET(&spa->spa_ubsync);
|
||
|
||
/* Reflow the begining portion using the scratch area */
|
||
if (vre->vre_offset == 0) {
|
||
VERIFY0(dsl_sync_task(spa_name(spa),
|
||
NULL, raidz_reflow_scratch_sync,
|
||
vre, 0, ZFS_SPACE_CHECK_NONE));
|
||
|
||
/* if we encountered errors then pause */
|
||
if (vre->vre_offset == 0) {
|
||
mutex_enter(&vre->vre_lock);
|
||
vre->vre_waiting_for_resilver = B_TRUE;
|
||
mutex_exit(&vre->vre_lock);
|
||
return;
|
||
}
|
||
}
|
||
|
||
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
||
vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
|
||
|
||
uint64_t guid = raidvd->vdev_guid;
|
||
|
||
/* Iterate over all the remaining metaslabs */
|
||
for (uint64_t i = vre->vre_offset >> raidvd->vdev_ms_shift;
|
||
i < raidvd->vdev_ms_count &&
|
||
!zthr_iscancelled(zthr) &&
|
||
vre->vre_failed_offset == UINT64_MAX; i++) {
|
||
metaslab_t *msp = raidvd->vdev_ms[i];
|
||
|
||
metaslab_disable(msp);
|
||
mutex_enter(&msp->ms_lock);
|
||
|
||
/*
|
||
* The metaslab may be newly created (for the expanded
|
||
* space), in which case its trees won't exist yet,
|
||
* so we need to bail out early.
|
||
*/
|
||
if (msp->ms_new) {
|
||
mutex_exit(&msp->ms_lock);
|
||
metaslab_enable(msp, B_FALSE, B_FALSE);
|
||
continue;
|
||
}
|
||
|
||
VERIFY0(metaslab_load(msp));
|
||
|
||
/*
|
||
* We want to copy everything except the free (allocatable)
|
||
* space. Note that there may be a little bit more free
|
||
* space (e.g. in ms_defer), and it's fine to copy that too.
|
||
*/
|
||
range_tree_t *rt = range_tree_create(NULL, RANGE_SEG64,
|
||
NULL, 0, 0);
|
||
range_tree_add(rt, msp->ms_start, msp->ms_size);
|
||
range_tree_walk(msp->ms_allocatable, range_tree_remove, rt);
|
||
mutex_exit(&msp->ms_lock);
|
||
|
||
/*
|
||
* Force the last sector of each metaslab to be copied. This
|
||
* ensures that we advance the on-disk progress to the end of
|
||
* this metaslab while the metaslab is disabled. Otherwise, we
|
||
* could move past this metaslab without advancing the on-disk
|
||
* progress, and then an allocation to this metaslab would not
|
||
* be copied.
|
||
*/
|
||
int sectorsz = 1 << raidvd->vdev_ashift;
|
||
uint64_t ms_last_offset = msp->ms_start +
|
||
msp->ms_size - sectorsz;
|
||
if (!range_tree_contains(rt, ms_last_offset, sectorsz)) {
|
||
range_tree_add(rt, ms_last_offset, sectorsz);
|
||
}
|
||
|
||
/*
|
||
* When we are resuming from a paused expansion (i.e.
|
||
* when importing a pool with a expansion in progress),
|
||
* discard any state that we have already processed.
|
||
*/
|
||
range_tree_clear(rt, 0, vre->vre_offset);
|
||
|
||
while (!zthr_iscancelled(zthr) &&
|
||
!range_tree_is_empty(rt) &&
|
||
vre->vre_failed_offset == UINT64_MAX) {
|
||
|
||
/*
|
||
* We need to periodically drop the config lock so that
|
||
* writers can get in. Additionally, we can't wait
|
||
* for a txg to sync while holding a config lock
|
||
* (since a waiting writer could cause a 3-way deadlock
|
||
* with the sync thread, which also gets a config
|
||
* lock for reader). So we can't hold the config lock
|
||
* while calling dmu_tx_assign().
|
||
*/
|
||
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
||
|
||
/*
|
||
* If requested, pause the reflow when the amount
|
||
* specified by raidz_expand_max_reflow_bytes is reached
|
||
*
|
||
* This pause is only used during testing or debugging.
|
||
*/
|
||
while (raidz_expand_max_reflow_bytes != 0 &&
|
||
raidz_expand_max_reflow_bytes <=
|
||
vre->vre_bytes_copied && !zthr_iscancelled(zthr)) {
|
||
delay(hz);
|
||
}
|
||
|
||
mutex_enter(&vre->vre_lock);
|
||
while (vre->vre_outstanding_bytes >
|
||
raidz_expand_max_copy_bytes) {
|
||
cv_wait(&vre->vre_cv, &vre->vre_lock);
|
||
}
|
||
mutex_exit(&vre->vre_lock);
|
||
|
||
dmu_tx_t *tx =
|
||
dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
|
||
|
||
VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
|
||
uint64_t txg = dmu_tx_get_txg(tx);
|
||
|
||
/*
|
||
* Reacquire the vdev_config lock. Theoretically, the
|
||
* vdev_t that we're expanding may have changed.
|
||
*/
|
||
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
||
raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
|
||
|
||
boolean_t needsync =
|
||
raidz_reflow_impl(raidvd, vre, rt, tx);
|
||
|
||
dmu_tx_commit(tx);
|
||
|
||
if (needsync) {
|
||
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
||
txg_wait_synced(spa->spa_dsl_pool, txg);
|
||
spa_config_enter(spa, SCL_CONFIG, FTAG,
|
||
RW_READER);
|
||
}
|
||
}
|
||
|
||
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
||
|
||
metaslab_enable(msp, B_FALSE, B_FALSE);
|
||
range_tree_vacate(rt, NULL, NULL);
|
||
range_tree_destroy(rt);
|
||
|
||
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
|
||
raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
|
||
}
|
||
|
||
spa_config_exit(spa, SCL_CONFIG, FTAG);
|
||
|
||
/*
|
||
* The txg_wait_synced() here ensures that all reflow zio's have
|
||
* completed, and vre_failed_offset has been set if necessary. It
|
||
* also ensures that the progress of the last raidz_reflow_sync() is
|
||
* written to disk before raidz_reflow_complete_sync() changes the
|
||
* in-memory vre_state. vdev_raidz_io_start() uses vre_state to
|
||
* determine if a reflow is in progress, in which case we may need to
|
||
* write to both old and new locations. Therefore we can only change
|
||
* vre_state once this is not necessary, which is once the on-disk
|
||
* progress (in spa_ubsync) has been set past any possible writes (to
|
||
* the end of the last metaslab).
|
||
*/
|
||
txg_wait_synced(spa->spa_dsl_pool, 0);
|
||
|
||
if (!zthr_iscancelled(zthr) &&
|
||
vre->vre_offset == raidvd->vdev_ms_count << raidvd->vdev_ms_shift) {
|
||
/*
|
||
* We are not being canceled or paused, so the reflow must be
|
||
* complete. In that case also mark it as completed on disk.
|
||
*/
|
||
ASSERT3U(vre->vre_failed_offset, ==, UINT64_MAX);
|
||
VERIFY0(dsl_sync_task(spa_name(spa), NULL,
|
||
raidz_reflow_complete_sync, spa,
|
||
0, ZFS_SPACE_CHECK_NONE));
|
||
(void) vdev_online(spa, guid, ZFS_ONLINE_EXPAND, NULL);
|
||
} else {
|
||
/*
|
||
* Wait for all copy zio's to complete and for all the
|
||
* raidz_reflow_sync() synctasks to be run.
|
||
*/
|
||
spa_history_log_internal(spa, "reflow pause",
|
||
NULL, "offset=%llu failed_offset=%lld",
|
||
(long long)vre->vre_offset,
|
||
(long long)vre->vre_failed_offset);
|
||
mutex_enter(&vre->vre_lock);
|
||
if (vre->vre_failed_offset != UINT64_MAX) {
|
||
/*
|
||
* Reset progress so that we will retry everything
|
||
* after the point that something failed.
|
||
*/
|
||
vre->vre_offset = vre->vre_failed_offset;
|
||
vre->vre_failed_offset = UINT64_MAX;
|
||
vre->vre_waiting_for_resilver = B_TRUE;
|
||
}
|
||
mutex_exit(&vre->vre_lock);
|
||
}
|
||
}
|
||
|
||
void
|
||
spa_start_raidz_expansion_thread(spa_t *spa)
|
||
{
|
||
ASSERT3P(spa->spa_raidz_expand_zthr, ==, NULL);
|
||
spa->spa_raidz_expand_zthr = zthr_create("raidz_expand",
|
||
spa_raidz_expand_thread_check, spa_raidz_expand_thread,
|
||
spa, defclsyspri);
|
||
}
|
||
|
||
void
|
||
raidz_dtl_reassessed(vdev_t *vd)
|
||
{
|
||
spa_t *spa = vd->vdev_spa;
|
||
if (spa->spa_raidz_expand != NULL) {
|
||
vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
|
||
/*
|
||
* we get called often from vdev_dtl_reassess() so make
|
||
* sure it's our vdev and any replacing is complete
|
||
*/
|
||
if (vd->vdev_top->vdev_id == vre->vre_vdev_id &&
|
||
!vdev_raidz_expand_child_replacing(vd->vdev_top)) {
|
||
mutex_enter(&vre->vre_lock);
|
||
if (vre->vre_waiting_for_resilver) {
|
||
vdev_dbgmsg(vd, "DTL reassessed, "
|
||
"continuing raidz expansion");
|
||
vre->vre_waiting_for_resilver = B_FALSE;
|
||
zthr_wakeup(spa->spa_raidz_expand_zthr);
|
||
}
|
||
mutex_exit(&vre->vre_lock);
|
||
}
|
||
}
|
||
}
|
||
|
||
int
|
||
vdev_raidz_attach_check(vdev_t *new_child)
|
||
{
|
||
vdev_t *raidvd = new_child->vdev_parent;
|
||
uint64_t new_children = raidvd->vdev_children;
|
||
|
||
/*
|
||
* We use the "boot" space as scratch space to handle overwriting the
|
||
* initial part of the vdev. If it is too small, then this expansion
|
||
* is not allowed. This would be very unusual (e.g. ashift > 13 and
|
||
* >200 children).
|
||
*/
|
||
if (new_children << raidvd->vdev_ashift > VDEV_BOOT_SIZE) {
|
||
return (EINVAL);
|
||
}
|
||
return (0);
|
||
}
|
||
|
||
void
|
||
vdev_raidz_attach_sync(void *arg, dmu_tx_t *tx)
|
||
{
|
||
vdev_t *new_child = arg;
|
||
spa_t *spa = new_child->vdev_spa;
|
||
vdev_t *raidvd = new_child->vdev_parent;
|
||
vdev_raidz_t *vdrz = raidvd->vdev_tsd;
|
||
ASSERT3P(raidvd->vdev_ops, ==, &vdev_raidz_ops);
|
||
ASSERT3P(raidvd->vdev_top, ==, raidvd);
|
||
ASSERT3U(raidvd->vdev_children, >, vdrz->vd_original_width);
|
||
ASSERT3U(raidvd->vdev_children, ==, vdrz->vd_physical_width + 1);
|
||
ASSERT3P(raidvd->vdev_child[raidvd->vdev_children - 1], ==,
|
||
new_child);
|
||
|
||
spa_feature_incr(spa, SPA_FEATURE_RAIDZ_EXPANSION, tx);
|
||
|
||
vdrz->vd_physical_width++;
|
||
|
||
VERIFY0(spa->spa_uberblock.ub_raidz_reflow_info);
|
||
vdrz->vn_vre.vre_vdev_id = raidvd->vdev_id;
|
||
vdrz->vn_vre.vre_offset = 0;
|
||
vdrz->vn_vre.vre_failed_offset = UINT64_MAX;
|
||
spa->spa_raidz_expand = &vdrz->vn_vre;
|
||
zthr_wakeup(spa->spa_raidz_expand_zthr);
|
||
|
||
/*
|
||
* Dirty the config so that ZPOOL_CONFIG_RAIDZ_EXPANDING will get
|
||
* written to the config.
|
||
*/
|
||
vdev_config_dirty(raidvd);
|
||
|
||
vdrz->vn_vre.vre_start_time = gethrestime_sec();
|
||
vdrz->vn_vre.vre_end_time = 0;
|
||
vdrz->vn_vre.vre_state = DSS_SCANNING;
|
||
vdrz->vn_vre.vre_bytes_copied = 0;
|
||
|
||
uint64_t state = vdrz->vn_vre.vre_state;
|
||
VERIFY0(zap_update(spa->spa_meta_objset,
|
||
raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
|
||
sizeof (state), 1, &state, tx));
|
||
|
||
uint64_t start_time = vdrz->vn_vre.vre_start_time;
|
||
VERIFY0(zap_update(spa->spa_meta_objset,
|
||
raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME,
|
||
sizeof (start_time), 1, &start_time, tx));
|
||
|
||
(void) zap_remove(spa->spa_meta_objset,
|
||
raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME, tx);
|
||
(void) zap_remove(spa->spa_meta_objset,
|
||
raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED, tx);
|
||
|
||
spa_history_log_internal(spa, "raidz vdev expansion started", tx,
|
||
"%s vdev %llu new width %llu", spa_name(spa),
|
||
(unsigned long long)raidvd->vdev_id,
|
||
(unsigned long long)raidvd->vdev_children);
|
||
}
|
||
|
||
int
|
||
vdev_raidz_load(vdev_t *vd)
|
||
{
|
||
vdev_raidz_t *vdrz = vd->vdev_tsd;
|
||
int err;
|
||
|
||
uint64_t state = DSS_NONE;
|
||
uint64_t start_time = 0;
|
||
uint64_t end_time = 0;
|
||
uint64_t bytes_copied = 0;
|
||
|
||
if (vd->vdev_top_zap != 0) {
|
||
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
||
vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
|
||
sizeof (state), 1, &state);
|
||
if (err != 0 && err != ENOENT)
|
||
return (err);
|
||
|
||
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
||
vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME,
|
||
sizeof (start_time), 1, &start_time);
|
||
if (err != 0 && err != ENOENT)
|
||
return (err);
|
||
|
||
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
||
vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME,
|
||
sizeof (end_time), 1, &end_time);
|
||
if (err != 0 && err != ENOENT)
|
||
return (err);
|
||
|
||
err = zap_lookup(vd->vdev_spa->spa_meta_objset,
|
||
vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED,
|
||
sizeof (bytes_copied), 1, &bytes_copied);
|
||
if (err != 0 && err != ENOENT)
|
||
return (err);
|
||
}
|
||
|
||
/*
|
||
* If we are in the middle of expansion, vre_state should have
|
||
* already been set by vdev_raidz_init().
|
||
*/
|
||
EQUIV(vdrz->vn_vre.vre_state == DSS_SCANNING, state == DSS_SCANNING);
|
||
vdrz->vn_vre.vre_state = (dsl_scan_state_t)state;
|
||
vdrz->vn_vre.vre_start_time = start_time;
|
||
vdrz->vn_vre.vre_end_time = end_time;
|
||
vdrz->vn_vre.vre_bytes_copied = bytes_copied;
|
||
|
||
return (0);
|
||
}
|
||
|
||
int
|
||
spa_raidz_expand_get_stats(spa_t *spa, pool_raidz_expand_stat_t *pres)
|
||
{
|
||
vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
|
||
|
||
if (vre == NULL) {
|
||
/* no removal in progress; find most recent completed */
|
||
for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
|
||
vdev_t *vd = spa->spa_root_vdev->vdev_child[c];
|
||
if (vd->vdev_ops == &vdev_raidz_ops) {
|
||
vdev_raidz_t *vdrz = vd->vdev_tsd;
|
||
|
||
if (vdrz->vn_vre.vre_end_time != 0 &&
|
||
(vre == NULL ||
|
||
vdrz->vn_vre.vre_end_time >
|
||
vre->vre_end_time)) {
|
||
vre = &vdrz->vn_vre;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (vre == NULL) {
|
||
return (SET_ERROR(ENOENT));
|
||
}
|
||
|
||
pres->pres_state = vre->vre_state;
|
||
pres->pres_expanding_vdev = vre->vre_vdev_id;
|
||
|
||
vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
|
||
pres->pres_to_reflow = vd->vdev_stat.vs_alloc;
|
||
|
||
mutex_enter(&vre->vre_lock);
|
||
pres->pres_reflowed = vre->vre_bytes_copied;
|
||
for (int i = 0; i < TXG_SIZE; i++)
|
||
pres->pres_reflowed += vre->vre_bytes_copied_pertxg[i];
|
||
mutex_exit(&vre->vre_lock);
|
||
|
||
pres->pres_start_time = vre->vre_start_time;
|
||
pres->pres_end_time = vre->vre_end_time;
|
||
pres->pres_waiting_for_resilver = vre->vre_waiting_for_resilver;
|
||
|
||
return (0);
|
||
}
|
||
|
||
/*
|
||
* Initialize private RAIDZ specific fields from the nvlist.
|
||
*/
|
||
static int
|
||
vdev_raidz_init(spa_t *spa, nvlist_t *nv, void **tsd)
|
||
{
|
||
uint_t children;
|
||
nvlist_t **child;
|
||
int error = nvlist_lookup_nvlist_array(nv,
|
||
ZPOOL_CONFIG_CHILDREN, &child, &children);
|
||
if (error != 0)
|
||
return (SET_ERROR(EINVAL));
|
||
|
||
uint64_t nparity;
|
||
if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) {
|
||
if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
|
||
return (SET_ERROR(EINVAL));
|
||
|
||
/*
|
||
* Previous versions could only support 1 or 2 parity
|
||
* device.
|
||
*/
|
||
if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2)
|
||
return (SET_ERROR(EINVAL));
|
||
else if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3)
|
||
return (SET_ERROR(EINVAL));
|
||
} else {
|
||
/*
|
||
* We require the parity to be specified for SPAs that
|
||
* support multiple parity levels.
|
||
*/
|
||
if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
|
||
return (SET_ERROR(EINVAL));
|
||
|
||
/*
|
||
* Otherwise, we default to 1 parity device for RAID-Z.
|
||
*/
|
||
nparity = 1;
|
||
}
|
||
|
||
vdev_raidz_t *vdrz = kmem_zalloc(sizeof (*vdrz), KM_SLEEP);
|
||
vdrz->vn_vre.vre_vdev_id = -1;
|
||
vdrz->vn_vre.vre_offset = UINT64_MAX;
|
||
vdrz->vn_vre.vre_failed_offset = UINT64_MAX;
|
||
mutex_init(&vdrz->vn_vre.vre_lock, NULL, MUTEX_DEFAULT, NULL);
|
||
cv_init(&vdrz->vn_vre.vre_cv, NULL, CV_DEFAULT, NULL);
|
||
zfs_rangelock_init(&vdrz->vn_vre.vre_rangelock, NULL, NULL);
|
||
mutex_init(&vdrz->vd_expand_lock, NULL, MUTEX_DEFAULT, NULL);
|
||
avl_create(&vdrz->vd_expand_txgs, vdev_raidz_reflow_compare,
|
||
sizeof (reflow_node_t), offsetof(reflow_node_t, re_link));
|
||
|
||
vdrz->vd_physical_width = children;
|
||
vdrz->vd_nparity = nparity;
|
||
|
||
/* note, the ID does not exist when creating a pool */
|
||
(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID,
|
||
&vdrz->vn_vre.vre_vdev_id);
|
||
|
||
boolean_t reflow_in_progress =
|
||
nvlist_exists(nv, ZPOOL_CONFIG_RAIDZ_EXPANDING);
|
||
if (reflow_in_progress) {
|
||
spa->spa_raidz_expand = &vdrz->vn_vre;
|
||
vdrz->vn_vre.vre_state = DSS_SCANNING;
|
||
}
|
||
|
||
vdrz->vd_original_width = children;
|
||
uint64_t *txgs;
|
||
unsigned int txgs_size = 0;
|
||
error = nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS,
|
||
&txgs, &txgs_size);
|
||
if (error == 0) {
|
||
for (int i = 0; i < txgs_size; i++) {
|
||
reflow_node_t *re = kmem_zalloc(sizeof (*re), KM_SLEEP);
|
||
re->re_txg = txgs[txgs_size - i - 1];
|
||
re->re_logical_width = vdrz->vd_physical_width - i;
|
||
|
||
if (reflow_in_progress)
|
||
re->re_logical_width--;
|
||
|
||
avl_add(&vdrz->vd_expand_txgs, re);
|
||
}
|
||
|
||
vdrz->vd_original_width = vdrz->vd_physical_width - txgs_size;
|
||
}
|
||
if (reflow_in_progress) {
|
||
vdrz->vd_original_width--;
|
||
zfs_dbgmsg("reflow_in_progress, %u wide, %d prior expansions",
|
||
children, txgs_size);
|
||
}
|
||
|
||
*tsd = vdrz;
|
||
|
||
return (0);
|
||
}
|
||
|
||
static void
|
||
vdev_raidz_fini(vdev_t *vd)
|
||
{
|
||
vdev_raidz_t *vdrz = vd->vdev_tsd;
|
||
if (vd->vdev_spa->spa_raidz_expand == &vdrz->vn_vre)
|
||
vd->vdev_spa->spa_raidz_expand = NULL;
|
||
reflow_node_t *re;
|
||
void *cookie = NULL;
|
||
avl_tree_t *tree = &vdrz->vd_expand_txgs;
|
||
while ((re = avl_destroy_nodes(tree, &cookie)) != NULL)
|
||
kmem_free(re, sizeof (*re));
|
||
avl_destroy(&vdrz->vd_expand_txgs);
|
||
mutex_destroy(&vdrz->vd_expand_lock);
|
||
mutex_destroy(&vdrz->vn_vre.vre_lock);
|
||
cv_destroy(&vdrz->vn_vre.vre_cv);
|
||
zfs_rangelock_fini(&vdrz->vn_vre.vre_rangelock);
|
||
kmem_free(vdrz, sizeof (*vdrz));
|
||
}
|
||
|
||
/*
|
||
* Add RAIDZ specific fields to the config nvlist.
|
||
*/
|
||
static void
|
||
vdev_raidz_config_generate(vdev_t *vd, nvlist_t *nv)
|
||
{
|
||
ASSERT3P(vd->vdev_ops, ==, &vdev_raidz_ops);
|
||
vdev_raidz_t *vdrz = vd->vdev_tsd;
|
||
|
||
/*
|
||
* Make sure someone hasn't managed to sneak a fancy new vdev
|
||
* into a crufty old storage pool.
|
||
*/
|
||
ASSERT(vdrz->vd_nparity == 1 ||
|
||
(vdrz->vd_nparity <= 2 &&
|
||
spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ2) ||
|
||
(vdrz->vd_nparity <= 3 &&
|
||
spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ3));
|
||
|
||
/*
|
||
* Note that we'll add these even on storage pools where they
|
||
* aren't strictly required -- older software will just ignore
|
||
* it.
|
||
*/
|
||
fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdrz->vd_nparity);
|
||
|
||
if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
|
||
fnvlist_add_boolean(nv, ZPOOL_CONFIG_RAIDZ_EXPANDING);
|
||
}
|
||
|
||
mutex_enter(&vdrz->vd_expand_lock);
|
||
if (!avl_is_empty(&vdrz->vd_expand_txgs)) {
|
||
uint64_t count = avl_numnodes(&vdrz->vd_expand_txgs);
|
||
uint64_t *txgs = kmem_alloc(sizeof (uint64_t) * count,
|
||
KM_SLEEP);
|
||
uint64_t i = 0;
|
||
|
||
for (reflow_node_t *re = avl_first(&vdrz->vd_expand_txgs);
|
||
re != NULL; re = AVL_NEXT(&vdrz->vd_expand_txgs, re)) {
|
||
txgs[i++] = re->re_txg;
|
||
}
|
||
|
||
fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS,
|
||
txgs, count);
|
||
|
||
kmem_free(txgs, sizeof (uint64_t) * count);
|
||
}
|
||
mutex_exit(&vdrz->vd_expand_lock);
|
||
}
|
||
|
||
static uint64_t
|
||
vdev_raidz_nparity(vdev_t *vd)
|
||
{
|
||
vdev_raidz_t *vdrz = vd->vdev_tsd;
|
||
return (vdrz->vd_nparity);
|
||
}
|
||
|
||
static uint64_t
|
||
vdev_raidz_ndisks(vdev_t *vd)
|
||
{
|
||
return (vd->vdev_children);
|
||
}
|
||
|
||
vdev_ops_t vdev_raidz_ops = {
|
||
.vdev_op_init = vdev_raidz_init,
|
||
.vdev_op_fini = vdev_raidz_fini,
|
||
.vdev_op_open = vdev_raidz_open,
|
||
.vdev_op_close = vdev_raidz_close,
|
||
.vdev_op_asize = vdev_raidz_asize,
|
||
.vdev_op_min_asize = vdev_raidz_min_asize,
|
||
.vdev_op_min_alloc = NULL,
|
||
.vdev_op_io_start = vdev_raidz_io_start,
|
||
.vdev_op_io_done = vdev_raidz_io_done,
|
||
.vdev_op_state_change = vdev_raidz_state_change,
|
||
.vdev_op_need_resilver = vdev_raidz_need_resilver,
|
||
.vdev_op_hold = NULL,
|
||
.vdev_op_rele = NULL,
|
||
.vdev_op_remap = NULL,
|
||
.vdev_op_xlate = vdev_raidz_xlate,
|
||
.vdev_op_rebuild_asize = NULL,
|
||
.vdev_op_metaslab_init = NULL,
|
||
.vdev_op_config_generate = vdev_raidz_config_generate,
|
||
.vdev_op_nparity = vdev_raidz_nparity,
|
||
.vdev_op_ndisks = vdev_raidz_ndisks,
|
||
.vdev_op_type = VDEV_TYPE_RAIDZ, /* name of this vdev type */
|
||
.vdev_op_leaf = B_FALSE /* not a leaf vdev */
|
||
};
|
||
|
||
/* BEGIN CSTYLED */
|
||
ZFS_MODULE_PARAM(zfs_vdev, raidz_, expand_max_reflow_bytes, ULONG, ZMOD_RW,
|
||
"For testing, pause RAIDZ expansion after reflowing this many bytes");
|
||
ZFS_MODULE_PARAM(zfs_vdev, raidz_, expand_max_copy_bytes, ULONG, ZMOD_RW,
|
||
"Max amount of concurrent i/o for RAIDZ expansion");
|
||
ZFS_MODULE_PARAM(zfs_vdev, raidz_, io_aggregate_rows, ULONG, ZMOD_RW,
|
||
"For expanded RAIDZ, aggregate reads that have more rows than this");
|
||
ZFS_MODULE_PARAM(zfs, zfs_, scrub_after_expand, INT, ZMOD_RW,
|
||
"For expanded RAIDZ, automatically start a pool scrub when expansion "
|
||
"completes");
|
||
/* END CSTYLED */
|