mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-12 19:20:28 +03:00
deb7a84231
1) Make mmap flushes synchronous. Linux may skip flushing dirty pages already in writeback unless data-integrity sync is requested. 2) Change zfs_putpage to use TXG_WAIT. Otherwise dirty pages may be skipped due to DMU pushing back on TX assign. 3) Add missing mmap flush when doing block cloning. 4) While here, pass errors from putpage to writepage/writepages. This change fixes corruption edge cases, but unfortunately adds synchronous ZIL flushes for dirty mmap pages to llseek and bclone operations. It may be possible to avoid these sync writes later but would need more tricky refactoring of the writeback code. Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Robert Evans <evansr@google.com> Closes #15933 Closes #16019
1563 lines
40 KiB
C
1563 lines
40 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
|
|
* Copyright (c) 2015 by Chunwei Chen. All rights reserved.
|
|
* Copyright 2017 Nexenta Systems, Inc.
|
|
* Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
|
|
*/
|
|
|
|
/* Portions Copyright 2007 Jeremy Teo */
|
|
/* Portions Copyright 2010 Robert Milkowski */
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/time.h>
|
|
#include <sys/sysmacros.h>
|
|
#include <sys/vfs.h>
|
|
#include <sys/uio_impl.h>
|
|
#include <sys/file.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/cmn_err.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/zfs_dir.h>
|
|
#include <sys/zfs_acl.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/fs/zfs.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dsl_crypt.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/txg.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/policy.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/zfs_vnops.h>
|
|
#include <sys/zfs_quota.h>
|
|
#include <sys/zfs_vfsops.h>
|
|
#include <sys/zfs_znode.h>
|
|
|
|
/*
|
|
* Enable the experimental block cloning feature. If this setting is 0, then
|
|
* even if feature@block_cloning is enabled, attempts to clone blocks will act
|
|
* as though the feature is disabled.
|
|
*/
|
|
int zfs_bclone_enabled = 0;
|
|
|
|
/*
|
|
* When set zfs_clone_range() waits for dirty data to be written to disk.
|
|
* This allows the clone operation to reliably succeed when a file is modified
|
|
* and then immediately cloned. For small files this may be slower than making
|
|
* a copy of the file and is therefore not the default. However, in certain
|
|
* scenarios this behavior may be desirable so a tunable is provided.
|
|
*/
|
|
static int zfs_bclone_wait_dirty = 0;
|
|
|
|
/*
|
|
* Maximum bytes to read per chunk in zfs_read().
|
|
*/
|
|
static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024;
|
|
|
|
static ulong_t zfs_fsync_sync_cnt = 4;
|
|
|
|
int
|
|
zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
|
|
{
|
|
int error = 0;
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
|
|
(void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt);
|
|
|
|
if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
goto out;
|
|
atomic_inc_32(&zp->z_sync_writes_cnt);
|
|
zil_commit(zfsvfs->z_log, zp->z_id);
|
|
atomic_dec_32(&zp->z_sync_writes_cnt);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
}
|
|
out:
|
|
tsd_set(zfs_fsyncer_key, NULL);
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
#if defined(SEEK_HOLE) && defined(SEEK_DATA)
|
|
/*
|
|
* Lseek support for finding holes (cmd == SEEK_HOLE) and
|
|
* data (cmd == SEEK_DATA). "off" is an in/out parameter.
|
|
*/
|
|
static int
|
|
zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
|
|
{
|
|
zfs_locked_range_t *lr;
|
|
uint64_t noff = (uint64_t)*off; /* new offset */
|
|
uint64_t file_sz;
|
|
int error;
|
|
boolean_t hole;
|
|
|
|
file_sz = zp->z_size;
|
|
if (noff >= file_sz) {
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
if (cmd == F_SEEK_HOLE)
|
|
hole = B_TRUE;
|
|
else
|
|
hole = B_FALSE;
|
|
|
|
/* Flush any mmap()'d data to disk */
|
|
if (zn_has_cached_data(zp, 0, file_sz - 1))
|
|
zn_flush_cached_data(zp, B_TRUE);
|
|
|
|
lr = zfs_rangelock_enter(&zp->z_rangelock, 0, UINT64_MAX, RL_READER);
|
|
error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
|
|
zfs_rangelock_exit(lr);
|
|
|
|
if (error == ESRCH)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
/* File was dirty, so fall back to using generic logic */
|
|
if (error == EBUSY) {
|
|
if (hole)
|
|
*off = file_sz;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* We could find a hole that begins after the logical end-of-file,
|
|
* because dmu_offset_next() only works on whole blocks. If the
|
|
* EOF falls mid-block, then indicate that the "virtual hole"
|
|
* at the end of the file begins at the logical EOF, rather than
|
|
* at the end of the last block.
|
|
*/
|
|
if (noff > file_sz) {
|
|
ASSERT(hole);
|
|
noff = file_sz;
|
|
}
|
|
|
|
if (noff < *off)
|
|
return (error);
|
|
*off = noff;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
|
|
{
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
int error;
|
|
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
|
|
error = zfs_holey_common(zp, cmd, off);
|
|
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
#endif /* SEEK_HOLE && SEEK_DATA */
|
|
|
|
int
|
|
zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
|
|
{
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
int error;
|
|
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
|
|
if (flag & V_ACE_MASK)
|
|
#if defined(__linux__)
|
|
error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
|
|
zfs_init_idmap);
|
|
#else
|
|
error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
|
|
NULL);
|
|
#endif
|
|
else
|
|
#if defined(__linux__)
|
|
error = zfs_zaccess_rwx(zp, mode, flag, cr, zfs_init_idmap);
|
|
#else
|
|
error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
|
|
#endif
|
|
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Read bytes from specified file into supplied buffer.
|
|
*
|
|
* IN: zp - inode of file to be read from.
|
|
* uio - structure supplying read location, range info,
|
|
* and return buffer.
|
|
* ioflag - O_SYNC flags; used to provide FRSYNC semantics.
|
|
* O_DIRECT flag; used to bypass page cache.
|
|
* cr - credentials of caller.
|
|
*
|
|
* OUT: uio - updated offset and range, buffer filled.
|
|
*
|
|
* RETURN: 0 on success, error code on failure.
|
|
*
|
|
* Side Effects:
|
|
* inode - atime updated if byte count > 0
|
|
*/
|
|
int
|
|
zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
|
|
{
|
|
(void) cr;
|
|
int error = 0;
|
|
boolean_t frsync = B_FALSE;
|
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
|
|
if (zp->z_pflags & ZFS_AV_QUARANTINED) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EACCES));
|
|
}
|
|
|
|
/* We don't copy out anything useful for directories. */
|
|
if (Z_ISDIR(ZTOTYPE(zp))) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EISDIR));
|
|
}
|
|
|
|
/*
|
|
* Validate file offset
|
|
*/
|
|
if (zfs_uio_offset(uio) < (offset_t)0) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Fasttrack empty reads
|
|
*/
|
|
if (zfs_uio_resid(uio) == 0) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
#ifdef FRSYNC
|
|
/*
|
|
* If we're in FRSYNC mode, sync out this znode before reading it.
|
|
* Only do this for non-snapshots.
|
|
*
|
|
* Some platforms do not support FRSYNC and instead map it
|
|
* to O_SYNC, which results in unnecessary calls to zil_commit. We
|
|
* only honor FRSYNC requests on platforms which support it.
|
|
*/
|
|
frsync = !!(ioflag & FRSYNC);
|
|
#endif
|
|
if (zfsvfs->z_log &&
|
|
(frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
|
|
zil_commit(zfsvfs->z_log, zp->z_id);
|
|
|
|
/*
|
|
* Lock the range against changes.
|
|
*/
|
|
zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
|
|
zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
|
|
|
|
/*
|
|
* If we are reading past end-of-file we can skip
|
|
* to the end; but we might still need to set atime.
|
|
*/
|
|
if (zfs_uio_offset(uio) >= zp->z_size) {
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
ASSERT(zfs_uio_offset(uio) < zp->z_size);
|
|
#if defined(__linux__)
|
|
ssize_t start_offset = zfs_uio_offset(uio);
|
|
#endif
|
|
ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
|
|
ssize_t start_resid = n;
|
|
|
|
while (n > 0) {
|
|
ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
|
|
P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
|
|
#ifdef UIO_NOCOPY
|
|
if (zfs_uio_segflg(uio) == UIO_NOCOPY)
|
|
error = mappedread_sf(zp, nbytes, uio);
|
|
else
|
|
#endif
|
|
if (zn_has_cached_data(zp, zfs_uio_offset(uio),
|
|
zfs_uio_offset(uio) + nbytes - 1) && !(ioflag & O_DIRECT)) {
|
|
error = mappedread(zp, nbytes, uio);
|
|
} else {
|
|
error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
|
|
uio, nbytes);
|
|
}
|
|
|
|
if (error) {
|
|
/* convert checksum errors into IO errors */
|
|
if (error == ECKSUM)
|
|
error = SET_ERROR(EIO);
|
|
|
|
#if defined(__linux__)
|
|
/*
|
|
* if we actually read some bytes, bubbling EFAULT
|
|
* up to become EAGAIN isn't what we want here...
|
|
*
|
|
* ...on Linux, at least. On FBSD, doing this breaks.
|
|
*/
|
|
if (error == EFAULT &&
|
|
(zfs_uio_offset(uio) - start_offset) != 0)
|
|
error = 0;
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
n -= nbytes;
|
|
}
|
|
|
|
int64_t nread = start_resid - n;
|
|
dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
|
|
task_io_account_read(nread);
|
|
out:
|
|
zfs_rangelock_exit(lr);
|
|
|
|
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
|
|
uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
|
|
{
|
|
zilog_t *zilog = zfsvfs->z_log;
|
|
const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
|
|
|
|
ASSERT(clear_setid_bits_txgp != NULL);
|
|
ASSERT(tx != NULL);
|
|
|
|
/*
|
|
* Clear Set-UID/Set-GID bits on successful write if not
|
|
* privileged and at least one of the execute bits is set.
|
|
*
|
|
* It would be nice to do this after all writes have
|
|
* been done, but that would still expose the ISUID/ISGID
|
|
* to another app after the partial write is committed.
|
|
*
|
|
* Note: we don't call zfs_fuid_map_id() here because
|
|
* user 0 is not an ephemeral uid.
|
|
*/
|
|
mutex_enter(&zp->z_acl_lock);
|
|
if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
|
|
(zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
|
|
secpolicy_vnode_setid_retain(zp, cr,
|
|
((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
|
|
uint64_t newmode;
|
|
|
|
zp->z_mode &= ~(S_ISUID | S_ISGID);
|
|
newmode = zp->z_mode;
|
|
(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
|
|
(void *)&newmode, sizeof (uint64_t), tx);
|
|
|
|
mutex_exit(&zp->z_acl_lock);
|
|
|
|
/*
|
|
* Make sure SUID/SGID bits will be removed when we replay the
|
|
* log. If the setid bits are keep coming back, don't log more
|
|
* than one TX_SETATTR per transaction group.
|
|
*/
|
|
if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
|
|
vattr_t va = {0};
|
|
|
|
va.va_mask = ATTR_MODE;
|
|
va.va_nodeid = zp->z_id;
|
|
va.va_mode = newmode;
|
|
zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
|
|
ATTR_MODE, NULL);
|
|
*clear_setid_bits_txgp = dmu_tx_get_txg(tx);
|
|
}
|
|
} else {
|
|
mutex_exit(&zp->z_acl_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write the bytes to a file.
|
|
*
|
|
* IN: zp - znode of file to be written to.
|
|
* uio - structure supplying write location, range info,
|
|
* and data buffer.
|
|
* ioflag - O_APPEND flag set if in append mode.
|
|
* O_DIRECT flag; used to bypass page cache.
|
|
* cr - credentials of caller.
|
|
*
|
|
* OUT: uio - updated offset and range.
|
|
*
|
|
* RETURN: 0 if success
|
|
* error code if failure
|
|
*
|
|
* Timestamps:
|
|
* ip - ctime|mtime updated if byte count > 0
|
|
*/
|
|
int
|
|
zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
|
|
{
|
|
int error = 0, error1;
|
|
ssize_t start_resid = zfs_uio_resid(uio);
|
|
uint64_t clear_setid_bits_txg = 0;
|
|
|
|
/*
|
|
* Fasttrack empty write
|
|
*/
|
|
ssize_t n = start_resid;
|
|
if (n == 0)
|
|
return (0);
|
|
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
|
|
sa_bulk_attr_t bulk[4];
|
|
int count = 0;
|
|
uint64_t mtime[2], ctime[2];
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
|
|
&zp->z_size, 8);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
|
|
&zp->z_pflags, 8);
|
|
|
|
/*
|
|
* Callers might not be able to detect properly that we are read-only,
|
|
* so check it explicitly here.
|
|
*/
|
|
if (zfs_is_readonly(zfsvfs)) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EROFS));
|
|
}
|
|
|
|
/*
|
|
* If immutable or not appending then return EPERM.
|
|
* Intentionally allow ZFS_READONLY through here.
|
|
* See zfs_zaccess_common()
|
|
*/
|
|
if ((zp->z_pflags & ZFS_IMMUTABLE) ||
|
|
((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
|
|
(zfs_uio_offset(uio) < zp->z_size))) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EPERM));
|
|
}
|
|
|
|
/*
|
|
* Validate file offset
|
|
*/
|
|
offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
|
|
if (woff < 0) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Pre-fault the pages to ensure slow (eg NFS) pages
|
|
* don't hold up txg.
|
|
*/
|
|
ssize_t pfbytes = MIN(n, DMU_MAX_ACCESS >> 1);
|
|
if (zfs_uio_prefaultpages(pfbytes, uio)) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EFAULT));
|
|
}
|
|
|
|
/*
|
|
* If in append mode, set the io offset pointer to eof.
|
|
*/
|
|
zfs_locked_range_t *lr;
|
|
if (ioflag & O_APPEND) {
|
|
/*
|
|
* Obtain an appending range lock to guarantee file append
|
|
* semantics. We reset the write offset once we have the lock.
|
|
*/
|
|
lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
|
|
woff = lr->lr_offset;
|
|
if (lr->lr_length == UINT64_MAX) {
|
|
/*
|
|
* We overlocked the file because this write will cause
|
|
* the file block size to increase.
|
|
* Note that zp_size cannot change with this lock held.
|
|
*/
|
|
woff = zp->z_size;
|
|
}
|
|
zfs_uio_setoffset(uio, woff);
|
|
} else {
|
|
/*
|
|
* Note that if the file block size will change as a result of
|
|
* this write, then this range lock will lock the entire file
|
|
* so that we can re-write the block safely.
|
|
*/
|
|
lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
|
|
}
|
|
|
|
if (zn_rlimit_fsize_uio(zp, uio)) {
|
|
zfs_rangelock_exit(lr);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EFBIG));
|
|
}
|
|
|
|
const rlim64_t limit = MAXOFFSET_T;
|
|
|
|
if (woff >= limit) {
|
|
zfs_rangelock_exit(lr);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EFBIG));
|
|
}
|
|
|
|
if (n > limit - woff)
|
|
n = limit - woff;
|
|
|
|
uint64_t end_size = MAX(zp->z_size, woff + n);
|
|
zilog_t *zilog = zfsvfs->z_log;
|
|
|
|
const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
|
|
const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
|
|
const uint64_t projid = zp->z_projid;
|
|
|
|
/*
|
|
* Write the file in reasonable size chunks. Each chunk is written
|
|
* in a separate transaction; this keeps the intent log records small
|
|
* and allows us to do more fine-grained space accounting.
|
|
*/
|
|
while (n > 0) {
|
|
woff = zfs_uio_offset(uio);
|
|
|
|
if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
|
|
zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
|
|
(projid != ZFS_DEFAULT_PROJID &&
|
|
zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
|
|
projid))) {
|
|
error = SET_ERROR(EDQUOT);
|
|
break;
|
|
}
|
|
|
|
uint64_t blksz;
|
|
if (lr->lr_length == UINT64_MAX && zp->z_size <= zp->z_blksz) {
|
|
if (zp->z_blksz > zfsvfs->z_max_blksz &&
|
|
!ISP2(zp->z_blksz)) {
|
|
/*
|
|
* File's blocksize is already larger than the
|
|
* "recordsize" property. Only let it grow to
|
|
* the next power of 2.
|
|
*/
|
|
blksz = 1 << highbit64(zp->z_blksz);
|
|
} else {
|
|
blksz = zfsvfs->z_max_blksz;
|
|
}
|
|
blksz = MIN(blksz, P2ROUNDUP(end_size,
|
|
SPA_MINBLOCKSIZE));
|
|
blksz = MAX(blksz, zp->z_blksz);
|
|
} else {
|
|
blksz = zp->z_blksz;
|
|
}
|
|
|
|
arc_buf_t *abuf = NULL;
|
|
ssize_t nbytes = n;
|
|
if (n >= blksz && woff >= zp->z_size &&
|
|
P2PHASE(woff, blksz) == 0 &&
|
|
(blksz >= SPA_OLD_MAXBLOCKSIZE || n < 4 * blksz)) {
|
|
/*
|
|
* This write covers a full block. "Borrow" a buffer
|
|
* from the dmu so that we can fill it before we enter
|
|
* a transaction. This avoids the possibility of
|
|
* holding up the transaction if the data copy hangs
|
|
* up on a pagefault (e.g., from an NFS server mapping).
|
|
*/
|
|
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
|
|
blksz);
|
|
ASSERT(abuf != NULL);
|
|
ASSERT(arc_buf_size(abuf) == blksz);
|
|
if ((error = zfs_uiocopy(abuf->b_data, blksz,
|
|
UIO_WRITE, uio, &nbytes))) {
|
|
dmu_return_arcbuf(abuf);
|
|
break;
|
|
}
|
|
ASSERT3S(nbytes, ==, blksz);
|
|
} else {
|
|
nbytes = MIN(n, (DMU_MAX_ACCESS >> 1) -
|
|
P2PHASE(woff, blksz));
|
|
if (pfbytes < nbytes) {
|
|
if (zfs_uio_prefaultpages(nbytes, uio)) {
|
|
error = SET_ERROR(EFAULT);
|
|
break;
|
|
}
|
|
pfbytes = nbytes;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start a transaction.
|
|
*/
|
|
dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
|
|
DB_DNODE_ENTER(db);
|
|
dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff, nbytes);
|
|
DB_DNODE_EXIT(db);
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error) {
|
|
dmu_tx_abort(tx);
|
|
if (abuf != NULL)
|
|
dmu_return_arcbuf(abuf);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* NB: We must call zfs_clear_setid_bits_if_necessary before
|
|
* committing the transaction!
|
|
*/
|
|
|
|
/*
|
|
* If rangelock_enter() over-locked we grow the blocksize
|
|
* and then reduce the lock range. This will only happen
|
|
* on the first iteration since rangelock_reduce() will
|
|
* shrink down lr_length to the appropriate size.
|
|
*/
|
|
if (lr->lr_length == UINT64_MAX) {
|
|
zfs_grow_blocksize(zp, blksz, tx);
|
|
zfs_rangelock_reduce(lr, woff, n);
|
|
}
|
|
|
|
ssize_t tx_bytes;
|
|
if (abuf == NULL) {
|
|
tx_bytes = zfs_uio_resid(uio);
|
|
zfs_uio_fault_disable(uio, B_TRUE);
|
|
error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
|
|
uio, nbytes, tx);
|
|
zfs_uio_fault_disable(uio, B_FALSE);
|
|
#ifdef __linux__
|
|
if (error == EFAULT) {
|
|
zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
|
|
cr, &clear_setid_bits_txg, tx);
|
|
dmu_tx_commit(tx);
|
|
/*
|
|
* Account for partial writes before
|
|
* continuing the loop.
|
|
* Update needs to occur before the next
|
|
* zfs_uio_prefaultpages, or prefaultpages may
|
|
* error, and we may break the loop early.
|
|
*/
|
|
n -= tx_bytes - zfs_uio_resid(uio);
|
|
pfbytes -= tx_bytes - zfs_uio_resid(uio);
|
|
continue;
|
|
}
|
|
#endif
|
|
/*
|
|
* On FreeBSD, EFAULT should be propagated back to the
|
|
* VFS, which will handle faulting and will retry.
|
|
*/
|
|
if (error != 0 && error != EFAULT) {
|
|
zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
|
|
cr, &clear_setid_bits_txg, tx);
|
|
dmu_tx_commit(tx);
|
|
break;
|
|
}
|
|
tx_bytes -= zfs_uio_resid(uio);
|
|
} else {
|
|
/*
|
|
* Thus, we're writing a full block at a block-aligned
|
|
* offset and extending the file past EOF.
|
|
*
|
|
* dmu_assign_arcbuf_by_dbuf() will directly assign the
|
|
* arc buffer to a dbuf.
|
|
*/
|
|
error = dmu_assign_arcbuf_by_dbuf(
|
|
sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
|
|
if (error != 0) {
|
|
/*
|
|
* XXX This might not be necessary if
|
|
* dmu_assign_arcbuf_by_dbuf is guaranteed
|
|
* to be atomic.
|
|
*/
|
|
zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
|
|
cr, &clear_setid_bits_txg, tx);
|
|
dmu_return_arcbuf(abuf);
|
|
dmu_tx_commit(tx);
|
|
break;
|
|
}
|
|
ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
|
|
zfs_uioskip(uio, nbytes);
|
|
tx_bytes = nbytes;
|
|
}
|
|
if (tx_bytes &&
|
|
zn_has_cached_data(zp, woff, woff + tx_bytes - 1) &&
|
|
!(ioflag & O_DIRECT)) {
|
|
update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
|
|
}
|
|
|
|
/*
|
|
* If we made no progress, we're done. If we made even
|
|
* partial progress, update the znode and ZIL accordingly.
|
|
*/
|
|
if (tx_bytes == 0) {
|
|
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
|
|
(void *)&zp->z_size, sizeof (uint64_t), tx);
|
|
dmu_tx_commit(tx);
|
|
ASSERT(error != 0);
|
|
break;
|
|
}
|
|
|
|
zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
|
|
&clear_setid_bits_txg, tx);
|
|
|
|
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
|
|
|
|
/*
|
|
* Update the file size (zp_size) if it has changed;
|
|
* account for possible concurrent updates.
|
|
*/
|
|
while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
|
|
(void) atomic_cas_64(&zp->z_size, end_size,
|
|
zfs_uio_offset(uio));
|
|
ASSERT(error == 0 || error == EFAULT);
|
|
}
|
|
/*
|
|
* If we are replaying and eof is non zero then force
|
|
* the file size to the specified eof. Note, there's no
|
|
* concurrency during replay.
|
|
*/
|
|
if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
|
|
zp->z_size = zfsvfs->z_replay_eof;
|
|
|
|
error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
|
|
if (error1 != 0)
|
|
/* Avoid clobbering EFAULT. */
|
|
error = error1;
|
|
|
|
/*
|
|
* NB: During replay, the TX_SETATTR record logged by
|
|
* zfs_clear_setid_bits_if_necessary must precede any of
|
|
* the TX_WRITE records logged here.
|
|
*/
|
|
zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
|
|
NULL, NULL);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
if (error != 0)
|
|
break;
|
|
ASSERT3S(tx_bytes, ==, nbytes);
|
|
n -= nbytes;
|
|
pfbytes -= nbytes;
|
|
}
|
|
|
|
zfs_znode_update_vfs(zp);
|
|
zfs_rangelock_exit(lr);
|
|
|
|
/*
|
|
* If we're in replay mode, or we made no progress, or the
|
|
* uio data is inaccessible return an error. Otherwise, it's
|
|
* at least a partial write, so it's successful.
|
|
*/
|
|
if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
|
|
error == EFAULT) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
if (ioflag & (O_SYNC | O_DSYNC) ||
|
|
zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, zp->z_id);
|
|
|
|
const int64_t nwritten = start_resid - zfs_uio_resid(uio);
|
|
dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
|
|
task_io_account_write(nwritten);
|
|
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
|
|
{
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
int error;
|
|
boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
|
|
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
error = zfs_getacl(zp, vsecp, skipaclchk, cr);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
|
|
{
|
|
zfsvfs_t *zfsvfs = ZTOZSB(zp);
|
|
int error;
|
|
boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
|
|
zilog_t *zilog;
|
|
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
zilog = zfsvfs->z_log;
|
|
error = zfs_setacl(zp, vsecp, skipaclchk, cr);
|
|
|
|
if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
|
|
zil_commit(zilog, 0);
|
|
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
#ifdef ZFS_DEBUG
|
|
static int zil_fault_io = 0;
|
|
#endif
|
|
|
|
static void zfs_get_done(zgd_t *zgd, int error);
|
|
|
|
/*
|
|
* Get data to generate a TX_WRITE intent log record.
|
|
*/
|
|
int
|
|
zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
|
|
struct lwb *lwb, zio_t *zio)
|
|
{
|
|
zfsvfs_t *zfsvfs = arg;
|
|
objset_t *os = zfsvfs->z_os;
|
|
znode_t *zp;
|
|
uint64_t object = lr->lr_foid;
|
|
uint64_t offset = lr->lr_offset;
|
|
uint64_t size = lr->lr_length;
|
|
dmu_buf_t *db;
|
|
zgd_t *zgd;
|
|
int error = 0;
|
|
uint64_t zp_gen;
|
|
|
|
ASSERT3P(lwb, !=, NULL);
|
|
ASSERT3U(size, !=, 0);
|
|
|
|
/*
|
|
* Nothing to do if the file has been removed
|
|
*/
|
|
if (zfs_zget(zfsvfs, object, &zp) != 0)
|
|
return (SET_ERROR(ENOENT));
|
|
if (zp->z_unlinked) {
|
|
/*
|
|
* Release the vnode asynchronously as we currently have the
|
|
* txg stopped from syncing.
|
|
*/
|
|
zfs_zrele_async(zp);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
/* check if generation number matches */
|
|
if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
|
|
sizeof (zp_gen)) != 0) {
|
|
zfs_zrele_async(zp);
|
|
return (SET_ERROR(EIO));
|
|
}
|
|
if (zp_gen != gen) {
|
|
zfs_zrele_async(zp);
|
|
return (SET_ERROR(ENOENT));
|
|
}
|
|
|
|
zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
|
|
zgd->zgd_lwb = lwb;
|
|
zgd->zgd_private = zp;
|
|
|
|
/*
|
|
* Write records come in two flavors: immediate and indirect.
|
|
* For small writes it's cheaper to store the data with the
|
|
* log record (immediate); for large writes it's cheaper to
|
|
* sync the data and get a pointer to it (indirect) so that
|
|
* we don't have to write the data twice.
|
|
*/
|
|
if (buf != NULL) { /* immediate write */
|
|
zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
|
|
offset, size, RL_READER);
|
|
/* test for truncation needs to be done while range locked */
|
|
if (offset >= zp->z_size) {
|
|
error = SET_ERROR(ENOENT);
|
|
} else {
|
|
error = dmu_read(os, object, offset, size, buf,
|
|
DMU_READ_NO_PREFETCH);
|
|
}
|
|
ASSERT(error == 0 || error == ENOENT);
|
|
} else { /* indirect write */
|
|
ASSERT3P(zio, !=, NULL);
|
|
/*
|
|
* Have to lock the whole block to ensure when it's
|
|
* written out and its checksum is being calculated
|
|
* that no one can change the data. We need to re-check
|
|
* blocksize after we get the lock in case it's changed!
|
|
*/
|
|
for (;;) {
|
|
uint64_t blkoff;
|
|
size = zp->z_blksz;
|
|
blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
|
|
offset -= blkoff;
|
|
zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
|
|
offset, size, RL_READER);
|
|
if (zp->z_blksz == size)
|
|
break;
|
|
offset += blkoff;
|
|
zfs_rangelock_exit(zgd->zgd_lr);
|
|
}
|
|
/* test for truncation needs to be done while range locked */
|
|
if (lr->lr_offset >= zp->z_size)
|
|
error = SET_ERROR(ENOENT);
|
|
#ifdef ZFS_DEBUG
|
|
if (zil_fault_io) {
|
|
error = SET_ERROR(EIO);
|
|
zil_fault_io = 0;
|
|
}
|
|
#endif
|
|
if (error == 0)
|
|
error = dmu_buf_hold_noread(os, object, offset, zgd,
|
|
&db);
|
|
|
|
if (error == 0) {
|
|
blkptr_t *bp = &lr->lr_blkptr;
|
|
|
|
zgd->zgd_db = db;
|
|
zgd->zgd_bp = bp;
|
|
|
|
ASSERT(db->db_offset == offset);
|
|
ASSERT(db->db_size == size);
|
|
|
|
error = dmu_sync(zio, lr->lr_common.lrc_txg,
|
|
zfs_get_done, zgd);
|
|
ASSERT(error || lr->lr_length <= size);
|
|
|
|
/*
|
|
* On success, we need to wait for the write I/O
|
|
* initiated by dmu_sync() to complete before we can
|
|
* release this dbuf. We will finish everything up
|
|
* in the zfs_get_done() callback.
|
|
*/
|
|
if (error == 0)
|
|
return (0);
|
|
|
|
if (error == EALREADY) {
|
|
lr->lr_common.lrc_txtype = TX_WRITE2;
|
|
/*
|
|
* TX_WRITE2 relies on the data previously
|
|
* written by the TX_WRITE that caused
|
|
* EALREADY. We zero out the BP because
|
|
* it is the old, currently-on-disk BP.
|
|
*/
|
|
zgd->zgd_bp = NULL;
|
|
BP_ZERO(bp);
|
|
error = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
zfs_get_done(zgd, error);
|
|
|
|
return (error);
|
|
}
|
|
|
|
|
|
static void
|
|
zfs_get_done(zgd_t *zgd, int error)
|
|
{
|
|
(void) error;
|
|
znode_t *zp = zgd->zgd_private;
|
|
|
|
if (zgd->zgd_db)
|
|
dmu_buf_rele(zgd->zgd_db, zgd);
|
|
|
|
zfs_rangelock_exit(zgd->zgd_lr);
|
|
|
|
/*
|
|
* Release the vnode asynchronously as we currently have the
|
|
* txg stopped from syncing.
|
|
*/
|
|
zfs_zrele_async(zp);
|
|
|
|
kmem_free(zgd, sizeof (zgd_t));
|
|
}
|
|
|
|
static int
|
|
zfs_enter_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
|
|
{
|
|
int error;
|
|
|
|
/* Swap. Not sure if the order of zfs_enter()s is important. */
|
|
if (zfsvfs1 > zfsvfs2) {
|
|
zfsvfs_t *tmpzfsvfs;
|
|
|
|
tmpzfsvfs = zfsvfs2;
|
|
zfsvfs2 = zfsvfs1;
|
|
zfsvfs1 = tmpzfsvfs;
|
|
}
|
|
|
|
error = zfs_enter(zfsvfs1, tag);
|
|
if (error != 0)
|
|
return (error);
|
|
if (zfsvfs1 != zfsvfs2) {
|
|
error = zfs_enter(zfsvfs2, tag);
|
|
if (error != 0) {
|
|
zfs_exit(zfsvfs1, tag);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
zfs_exit_two(zfsvfs_t *zfsvfs1, zfsvfs_t *zfsvfs2, const char *tag)
|
|
{
|
|
|
|
zfs_exit(zfsvfs1, tag);
|
|
if (zfsvfs1 != zfsvfs2)
|
|
zfs_exit(zfsvfs2, tag);
|
|
}
|
|
|
|
/*
|
|
* We split each clone request in chunks that can fit into a single ZIL
|
|
* log entry. Each ZIL log entry can fit 130816 bytes for a block cloning
|
|
* operation (see zil_max_log_data() and zfs_log_clone_range()). This gives
|
|
* us room for storing 1022 block pointers.
|
|
*
|
|
* On success, the function return the number of bytes copied in *lenp.
|
|
* Note, it doesn't return how much bytes are left to be copied.
|
|
* On errors which are caused by any file system limitations or
|
|
* brt limitations `EINVAL` is returned. In the most cases a user
|
|
* requested bad parameters, it could be possible to clone the file but
|
|
* some parameters don't match the requirements.
|
|
*/
|
|
int
|
|
zfs_clone_range(znode_t *inzp, uint64_t *inoffp, znode_t *outzp,
|
|
uint64_t *outoffp, uint64_t *lenp, cred_t *cr)
|
|
{
|
|
zfsvfs_t *inzfsvfs, *outzfsvfs;
|
|
objset_t *inos, *outos;
|
|
zfs_locked_range_t *inlr, *outlr;
|
|
dmu_buf_impl_t *db;
|
|
dmu_tx_t *tx;
|
|
zilog_t *zilog;
|
|
uint64_t inoff, outoff, len, done;
|
|
uint64_t outsize, size;
|
|
int error;
|
|
int count = 0;
|
|
sa_bulk_attr_t bulk[3];
|
|
uint64_t mtime[2], ctime[2];
|
|
uint64_t uid, gid, projid;
|
|
blkptr_t *bps;
|
|
size_t maxblocks, nbps;
|
|
uint_t inblksz;
|
|
uint64_t clear_setid_bits_txg = 0;
|
|
uint64_t last_synced_txg = 0;
|
|
|
|
inoff = *inoffp;
|
|
outoff = *outoffp;
|
|
len = *lenp;
|
|
done = 0;
|
|
|
|
inzfsvfs = ZTOZSB(inzp);
|
|
outzfsvfs = ZTOZSB(outzp);
|
|
|
|
/*
|
|
* We need to call zfs_enter() potentially on two different datasets,
|
|
* so we need a dedicated function for that.
|
|
*/
|
|
error = zfs_enter_two(inzfsvfs, outzfsvfs, FTAG);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
inos = inzfsvfs->z_os;
|
|
outos = outzfsvfs->z_os;
|
|
|
|
/*
|
|
* Both source and destination have to belong to the same storage pool.
|
|
*/
|
|
if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EXDEV));
|
|
}
|
|
|
|
/*
|
|
* outos and inos belongs to the same storage pool.
|
|
* see a few lines above, only one check.
|
|
*/
|
|
if (!spa_feature_is_enabled(dmu_objset_spa(outos),
|
|
SPA_FEATURE_BLOCK_CLONING)) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EOPNOTSUPP));
|
|
}
|
|
|
|
ASSERT(!outzfsvfs->z_replay);
|
|
|
|
/*
|
|
* Block cloning from an unencrypted dataset into an encrypted
|
|
* dataset and vice versa is not supported.
|
|
*/
|
|
if (inos->os_encrypted != outos->os_encrypted) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EXDEV));
|
|
}
|
|
|
|
/*
|
|
* Cloning across encrypted datasets is possible only if they
|
|
* share the same master key.
|
|
*/
|
|
if (inos != outos && inos->os_encrypted &&
|
|
!dmu_objset_crypto_key_equal(inos, outos)) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EXDEV));
|
|
}
|
|
|
|
error = zfs_verify_zp(inzp);
|
|
if (error == 0)
|
|
error = zfs_verify_zp(outzp);
|
|
if (error != 0) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* We don't copy source file's flags that's why we don't allow to clone
|
|
* files that are in quarantine.
|
|
*/
|
|
if (inzp->z_pflags & ZFS_AV_QUARANTINED) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EACCES));
|
|
}
|
|
|
|
if (inoff >= inzp->z_size) {
|
|
*lenp = 0;
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (0);
|
|
}
|
|
if (len > inzp->z_size - inoff) {
|
|
len = inzp->z_size - inoff;
|
|
}
|
|
if (len == 0) {
|
|
*lenp = 0;
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Callers might not be able to detect properly that we are read-only,
|
|
* so check it explicitly here.
|
|
*/
|
|
if (zfs_is_readonly(outzfsvfs)) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EROFS));
|
|
}
|
|
|
|
/*
|
|
* If immutable or not appending then return EPERM.
|
|
* Intentionally allow ZFS_READONLY through here.
|
|
* See zfs_zaccess_common()
|
|
*/
|
|
if ((outzp->z_pflags & ZFS_IMMUTABLE) != 0) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EPERM));
|
|
}
|
|
|
|
/*
|
|
* No overlapping if we are cloning within the same file.
|
|
*/
|
|
if (inzp == outzp) {
|
|
if (inoff < outoff + len && outoff < inoff + len) {
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
/* Flush any mmap()'d data to disk */
|
|
if (zn_has_cached_data(inzp, inoff, inoff + len - 1))
|
|
zn_flush_cached_data(inzp, B_TRUE);
|
|
|
|
/*
|
|
* Maintain predictable lock order.
|
|
*/
|
|
if (inzp < outzp || (inzp == outzp && inoff < outoff)) {
|
|
inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
|
|
RL_READER);
|
|
outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
|
|
RL_WRITER);
|
|
} else {
|
|
outlr = zfs_rangelock_enter(&outzp->z_rangelock, outoff, len,
|
|
RL_WRITER);
|
|
inlr = zfs_rangelock_enter(&inzp->z_rangelock, inoff, len,
|
|
RL_READER);
|
|
}
|
|
|
|
inblksz = inzp->z_blksz;
|
|
|
|
/*
|
|
* We cannot clone into a file with different block size if we can't
|
|
* grow it (block size is already bigger, has more than one block, or
|
|
* not locked for growth). There are other possible reasons for the
|
|
* grow to fail, but we cover what we can before opening transaction
|
|
* and the rest detect after we try to do it.
|
|
*/
|
|
if (inblksz < outzp->z_blksz) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
if (inblksz != outzp->z_blksz && (outzp->z_size > outzp->z_blksz ||
|
|
outlr->lr_length != UINT64_MAX)) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Block size must be power-of-2 if destination offset != 0.
|
|
* There can be no multiple blocks of non-power-of-2 size.
|
|
*/
|
|
if (outoff != 0 && !ISP2(inblksz)) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* Offsets and len must be at block boundries.
|
|
*/
|
|
if ((inoff % inblksz) != 0 || (outoff % inblksz) != 0) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
/*
|
|
* Length must be multipe of blksz, except for the end of the file.
|
|
*/
|
|
if ((len % inblksz) != 0 &&
|
|
(len < inzp->z_size - inoff || len < outzp->z_size - outoff)) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* If we are copying only one block and it is smaller than recordsize
|
|
* property, do not allow destination to grow beyond one block if it
|
|
* is not there yet. Otherwise the destination will get stuck with
|
|
* that block size forever, that can be as small as 512 bytes, no
|
|
* matter how big the destination grow later.
|
|
*/
|
|
if (len <= inblksz && inblksz < outzfsvfs->z_max_blksz &&
|
|
outzp->z_size <= inblksz && outoff + len > inblksz) {
|
|
error = SET_ERROR(EINVAL);
|
|
goto unlock;
|
|
}
|
|
|
|
error = zn_rlimit_fsize(outoff + len);
|
|
if (error != 0) {
|
|
goto unlock;
|
|
}
|
|
|
|
if (inoff >= MAXOFFSET_T || outoff >= MAXOFFSET_T) {
|
|
error = SET_ERROR(EFBIG);
|
|
goto unlock;
|
|
}
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(outzfsvfs), NULL,
|
|
&mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(outzfsvfs), NULL,
|
|
&ctime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(outzfsvfs), NULL,
|
|
&outzp->z_size, 8);
|
|
|
|
zilog = outzfsvfs->z_log;
|
|
maxblocks = zil_max_log_data(zilog, sizeof (lr_clone_range_t)) /
|
|
sizeof (bps[0]);
|
|
|
|
uid = KUID_TO_SUID(ZTOUID(outzp));
|
|
gid = KGID_TO_SGID(ZTOGID(outzp));
|
|
projid = outzp->z_projid;
|
|
|
|
bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP);
|
|
|
|
/*
|
|
* Clone the file in reasonable size chunks. Each chunk is cloned
|
|
* in a separate transaction; this keeps the intent log records small
|
|
* and allows us to do more fine-grained space accounting.
|
|
*/
|
|
while (len > 0) {
|
|
size = MIN(inblksz * maxblocks, len);
|
|
|
|
if (zfs_id_overblockquota(outzfsvfs, DMU_USERUSED_OBJECT,
|
|
uid) ||
|
|
zfs_id_overblockquota(outzfsvfs, DMU_GROUPUSED_OBJECT,
|
|
gid) ||
|
|
(projid != ZFS_DEFAULT_PROJID &&
|
|
zfs_id_overblockquota(outzfsvfs, DMU_PROJECTUSED_OBJECT,
|
|
projid))) {
|
|
error = SET_ERROR(EDQUOT);
|
|
break;
|
|
}
|
|
|
|
nbps = maxblocks;
|
|
last_synced_txg = spa_last_synced_txg(dmu_objset_spa(inos));
|
|
error = dmu_read_l0_bps(inos, inzp->z_id, inoff, size, bps,
|
|
&nbps);
|
|
if (error != 0) {
|
|
/*
|
|
* If we are trying to clone a block that was created
|
|
* in the current transaction group, the error will be
|
|
* EAGAIN here. Based on zfs_bclone_wait_dirty either
|
|
* return a shortened range to the caller so it can
|
|
* fallback, or wait for the next TXG and check again.
|
|
*/
|
|
if (error == EAGAIN && zfs_bclone_wait_dirty) {
|
|
txg_wait_synced(dmu_objset_pool(inos),
|
|
last_synced_txg + 1);
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Start a transaction.
|
|
*/
|
|
tx = dmu_tx_create(outos);
|
|
dmu_tx_hold_sa(tx, outzp->z_sa_hdl, B_FALSE);
|
|
db = (dmu_buf_impl_t *)sa_get_db(outzp->z_sa_hdl);
|
|
DB_DNODE_ENTER(db);
|
|
dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), outoff, size);
|
|
DB_DNODE_EXIT(db);
|
|
zfs_sa_upgrade_txholds(tx, outzp);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error != 0) {
|
|
dmu_tx_abort(tx);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Copy source znode's block size. This is done only if the
|
|
* whole znode is locked (see zfs_rangelock_cb()) and only
|
|
* on the first iteration since zfs_rangelock_reduce() will
|
|
* shrink down lr_length to the appropriate size.
|
|
*/
|
|
if (outlr->lr_length == UINT64_MAX) {
|
|
zfs_grow_blocksize(outzp, inblksz, tx);
|
|
|
|
/*
|
|
* Block growth may fail for many reasons we can not
|
|
* predict here. If it happen the cloning is doomed.
|
|
*/
|
|
if (inblksz != outzp->z_blksz) {
|
|
error = SET_ERROR(EINVAL);
|
|
dmu_tx_abort(tx);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Round range lock up to the block boundary, so we
|
|
* prevent appends until we are done.
|
|
*/
|
|
zfs_rangelock_reduce(outlr, outoff,
|
|
((len - 1) / inblksz + 1) * inblksz);
|
|
}
|
|
|
|
error = dmu_brt_clone(outos, outzp->z_id, outoff, size, tx,
|
|
bps, nbps);
|
|
if (error != 0) {
|
|
dmu_tx_commit(tx);
|
|
break;
|
|
}
|
|
|
|
if (zn_has_cached_data(outzp, outoff, outoff + size - 1)) {
|
|
update_pages(outzp, outoff, size, outos);
|
|
}
|
|
|
|
zfs_clear_setid_bits_if_necessary(outzfsvfs, outzp, cr,
|
|
&clear_setid_bits_txg, tx);
|
|
|
|
zfs_tstamp_update_setup(outzp, CONTENT_MODIFIED, mtime, ctime);
|
|
|
|
/*
|
|
* Update the file size (zp_size) if it has changed;
|
|
* account for possible concurrent updates.
|
|
*/
|
|
while ((outsize = outzp->z_size) < outoff + size) {
|
|
(void) atomic_cas_64(&outzp->z_size, outsize,
|
|
outoff + size);
|
|
}
|
|
|
|
error = sa_bulk_update(outzp->z_sa_hdl, bulk, count, tx);
|
|
|
|
zfs_log_clone_range(zilog, tx, TX_CLONE_RANGE, outzp, outoff,
|
|
size, inblksz, bps, nbps);
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
if (error != 0)
|
|
break;
|
|
|
|
inoff += size;
|
|
outoff += size;
|
|
len -= size;
|
|
done += size;
|
|
}
|
|
|
|
vmem_free(bps, sizeof (bps[0]) * maxblocks);
|
|
zfs_znode_update_vfs(outzp);
|
|
|
|
unlock:
|
|
zfs_rangelock_exit(outlr);
|
|
zfs_rangelock_exit(inlr);
|
|
|
|
if (done > 0) {
|
|
/*
|
|
* If we have made at least partial progress, reset the error.
|
|
*/
|
|
error = 0;
|
|
|
|
ZFS_ACCESSTIME_STAMP(inzfsvfs, inzp);
|
|
|
|
if (outos->os_sync == ZFS_SYNC_ALWAYS) {
|
|
zil_commit(zilog, outzp->z_id);
|
|
}
|
|
|
|
*inoffp += done;
|
|
*outoffp += done;
|
|
*lenp = done;
|
|
} else {
|
|
/*
|
|
* If we made no progress, there must be a good reason.
|
|
* EOF is handled explicitly above, before the loop.
|
|
*/
|
|
ASSERT3S(error, !=, 0);
|
|
}
|
|
|
|
zfs_exit_two(inzfsvfs, outzfsvfs, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Usual pattern would be to call zfs_clone_range() from zfs_replay_clone(),
|
|
* but we cannot do that, because when replaying we don't have source znode
|
|
* available. This is why we need a dedicated replay function.
|
|
*/
|
|
int
|
|
zfs_clone_range_replay(znode_t *zp, uint64_t off, uint64_t len, uint64_t blksz,
|
|
const blkptr_t *bps, size_t nbps)
|
|
{
|
|
zfsvfs_t *zfsvfs;
|
|
dmu_buf_impl_t *db;
|
|
dmu_tx_t *tx;
|
|
int error;
|
|
int count = 0;
|
|
sa_bulk_attr_t bulk[3];
|
|
uint64_t mtime[2], ctime[2];
|
|
|
|
ASSERT3U(off, <, MAXOFFSET_T);
|
|
ASSERT3U(len, >, 0);
|
|
ASSERT3U(nbps, >, 0);
|
|
|
|
zfsvfs = ZTOZSB(zp);
|
|
|
|
ASSERT(spa_feature_is_enabled(dmu_objset_spa(zfsvfs->z_os),
|
|
SPA_FEATURE_BLOCK_CLONING));
|
|
|
|
if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
|
|
return (error);
|
|
|
|
ASSERT(zfsvfs->z_replay);
|
|
ASSERT(!zfs_is_readonly(zfsvfs));
|
|
|
|
if ((off % blksz) != 0) {
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
|
|
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
|
|
&zp->z_size, 8);
|
|
|
|
/*
|
|
* Start a transaction.
|
|
*/
|
|
tx = dmu_tx_create(zfsvfs->z_os);
|
|
|
|
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
|
|
db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
|
|
DB_DNODE_ENTER(db);
|
|
dmu_tx_hold_clone_by_dnode(tx, DB_DNODE(db), off, len);
|
|
DB_DNODE_EXIT(db);
|
|
zfs_sa_upgrade_txholds(tx, zp);
|
|
error = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (error != 0) {
|
|
dmu_tx_abort(tx);
|
|
zfs_exit(zfsvfs, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
if (zp->z_blksz < blksz)
|
|
zfs_grow_blocksize(zp, blksz, tx);
|
|
|
|
dmu_brt_clone(zfsvfs->z_os, zp->z_id, off, len, tx, bps, nbps);
|
|
|
|
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
|
|
|
|
if (zp->z_size < off + len)
|
|
zp->z_size = off + len;
|
|
|
|
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
|
|
|
|
/*
|
|
* zil_replaying() not only check if we are replaying ZIL, but also
|
|
* updates the ZIL header to record replay progress.
|
|
*/
|
|
VERIFY(zil_replaying(zfsvfs->z_log, tx));
|
|
|
|
dmu_tx_commit(tx);
|
|
|
|
zfs_znode_update_vfs(zp);
|
|
|
|
zfs_exit(zfsvfs, FTAG);
|
|
|
|
return (error);
|
|
}
|
|
|
|
EXPORT_SYMBOL(zfs_access);
|
|
EXPORT_SYMBOL(zfs_fsync);
|
|
EXPORT_SYMBOL(zfs_holey);
|
|
EXPORT_SYMBOL(zfs_read);
|
|
EXPORT_SYMBOL(zfs_write);
|
|
EXPORT_SYMBOL(zfs_getsecattr);
|
|
EXPORT_SYMBOL(zfs_setsecattr);
|
|
EXPORT_SYMBOL(zfs_clone_range);
|
|
EXPORT_SYMBOL(zfs_clone_range_replay);
|
|
|
|
ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
|
|
"Bytes to read per chunk");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, bclone_enabled, INT, ZMOD_RW,
|
|
"Enable block cloning");
|
|
|
|
ZFS_MODULE_PARAM(zfs, zfs_, bclone_wait_dirty, INT, ZMOD_RW,
|
|
"Wait for dirty blocks when cloning");
|