mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-07 16:50:26 +03:00
493fcce9be
There exist a couple of macros that are used to update the blkptr birth times but they can often be confusing. For example, the BP_PHYSICAL_BIRTH() macro will provide either the physical birth time if it is set or else return back the logical birth time. The complement to this macro is BP_SET_BIRTH() which will set the logical birth time and set the physical birth time if they are not the same. Consumers may get confused when they are trying to get the physical birth time and use the BP_PHYSICAL_BIRTH() macro only to find out that the logical birth time is what is actually returned. This change cleans up these macros and makes them symmetrical. The same functionally is preserved but the name is changed. Instead of calling BP_PHYSICAL_BIRTH(), consumer can now call BP_GET_BIRTH(). In additional to cleaning up this naming conventions, two new sets of macros are introduced -- BP_[SET|GET]_LOGICAL_BIRTH() and BP_[SET|GET]_PHYSICAL_BIRTH. These new macros allow the consumer to get and set the specific birth time. As part of the cleanup, the unused GRID macros have been removed and that portion of the blkptr are currently unused. Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Signed-off-by: George Wilson <gwilson@delphix.com> Closes #15962
1486 lines
45 KiB
C
1486 lines
45 KiB
C
/*
|
||
* CDDL HEADER START
|
||
*
|
||
* The contents of this file are subject to the terms of the
|
||
* Common Development and Distribution License (the "License").
|
||
* You may not use this file except in compliance with the License.
|
||
*
|
||
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
||
* or https://opensource.org/licenses/CDDL-1.0.
|
||
* See the License for the specific language governing permissions
|
||
* and limitations under the License.
|
||
*
|
||
* When distributing Covered Code, include this CDDL HEADER in each
|
||
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
||
* If applicable, add the following below this CDDL HEADER, with the
|
||
* fields enclosed by brackets "[]" replaced with your own identifying
|
||
* information: Portions Copyright [yyyy] [name of copyright owner]
|
||
*
|
||
* CDDL HEADER END
|
||
*/
|
||
/*
|
||
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
||
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
|
||
* Copyright (c) 2013 Steven Hartland. All rights reserved.
|
||
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
||
* Copyright 2016 Nexenta Systems, Inc. All rights reserved.
|
||
*/
|
||
|
||
#include <sys/dsl_pool.h>
|
||
#include <sys/dsl_dataset.h>
|
||
#include <sys/dsl_prop.h>
|
||
#include <sys/dsl_dir.h>
|
||
#include <sys/dsl_synctask.h>
|
||
#include <sys/dsl_scan.h>
|
||
#include <sys/dnode.h>
|
||
#include <sys/dmu_tx.h>
|
||
#include <sys/dmu_objset.h>
|
||
#include <sys/arc.h>
|
||
#include <sys/zap.h>
|
||
#include <sys/zio.h>
|
||
#include <sys/zfs_context.h>
|
||
#include <sys/fs/zfs.h>
|
||
#include <sys/zfs_znode.h>
|
||
#include <sys/spa_impl.h>
|
||
#include <sys/vdev_impl.h>
|
||
#include <sys/metaslab_impl.h>
|
||
#include <sys/bptree.h>
|
||
#include <sys/zfeature.h>
|
||
#include <sys/zil_impl.h>
|
||
#include <sys/dsl_userhold.h>
|
||
#include <sys/trace_zfs.h>
|
||
#include <sys/mmp.h>
|
||
|
||
/*
|
||
* ZFS Write Throttle
|
||
* ------------------
|
||
*
|
||
* ZFS must limit the rate of incoming writes to the rate at which it is able
|
||
* to sync data modifications to the backend storage. Throttling by too much
|
||
* creates an artificial limit; throttling by too little can only be sustained
|
||
* for short periods and would lead to highly lumpy performance. On a per-pool
|
||
* basis, ZFS tracks the amount of modified (dirty) data. As operations change
|
||
* data, the amount of dirty data increases; as ZFS syncs out data, the amount
|
||
* of dirty data decreases. When the amount of dirty data exceeds a
|
||
* predetermined threshold further modifications are blocked until the amount
|
||
* of dirty data decreases (as data is synced out).
|
||
*
|
||
* The limit on dirty data is tunable, and should be adjusted according to
|
||
* both the IO capacity and available memory of the system. The larger the
|
||
* window, the more ZFS is able to aggregate and amortize metadata (and data)
|
||
* changes. However, memory is a limited resource, and allowing for more dirty
|
||
* data comes at the cost of keeping other useful data in memory (for example
|
||
* ZFS data cached by the ARC).
|
||
*
|
||
* Implementation
|
||
*
|
||
* As buffers are modified dsl_pool_willuse_space() increments both the per-
|
||
* txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
|
||
* dirty space used; dsl_pool_dirty_space() decrements those values as data
|
||
* is synced out from dsl_pool_sync(). While only the poolwide value is
|
||
* relevant, the per-txg value is useful for debugging. The tunable
|
||
* zfs_dirty_data_max determines the dirty space limit. Once that value is
|
||
* exceeded, new writes are halted until space frees up.
|
||
*
|
||
* The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
|
||
* ensure that there is a txg syncing (see the comment in txg.c for a full
|
||
* description of transaction group stages).
|
||
*
|
||
* The IO scheduler uses both the dirty space limit and current amount of
|
||
* dirty data as inputs. Those values affect the number of concurrent IOs ZFS
|
||
* issues. See the comment in vdev_queue.c for details of the IO scheduler.
|
||
*
|
||
* The delay is also calculated based on the amount of dirty data. See the
|
||
* comment above dmu_tx_delay() for details.
|
||
*/
|
||
|
||
/*
|
||
* zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
|
||
* capped at zfs_dirty_data_max_max. It can also be overridden with a module
|
||
* parameter.
|
||
*/
|
||
uint64_t zfs_dirty_data_max = 0;
|
||
uint64_t zfs_dirty_data_max_max = 0;
|
||
uint_t zfs_dirty_data_max_percent = 10;
|
||
uint_t zfs_dirty_data_max_max_percent = 25;
|
||
|
||
/*
|
||
* The upper limit of TX_WRITE log data. Write operations are throttled
|
||
* when approaching the limit until log data is cleared out after txg sync.
|
||
* It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
|
||
*/
|
||
uint64_t zfs_wrlog_data_max = 0;
|
||
|
||
/*
|
||
* If there's at least this much dirty data (as a percentage of
|
||
* zfs_dirty_data_max), push out a txg. This should be less than
|
||
* zfs_vdev_async_write_active_min_dirty_percent.
|
||
*/
|
||
static uint_t zfs_dirty_data_sync_percent = 20;
|
||
|
||
/*
|
||
* Once there is this amount of dirty data, the dmu_tx_delay() will kick in
|
||
* and delay each transaction.
|
||
* This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
|
||
*/
|
||
uint_t zfs_delay_min_dirty_percent = 60;
|
||
|
||
/*
|
||
* This controls how quickly the delay approaches infinity.
|
||
* Larger values cause it to delay more for a given amount of dirty data.
|
||
* Therefore larger values will cause there to be less dirty data for a
|
||
* given throughput.
|
||
*
|
||
* For the smoothest delay, this value should be about 1 billion divided
|
||
* by the maximum number of operations per second. This will smoothly
|
||
* handle between 10x and 1/10th this number.
|
||
*
|
||
* Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
|
||
* multiply in dmu_tx_delay().
|
||
*/
|
||
uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
|
||
|
||
/*
|
||
* These tunables determine the behavior of how zil_itxg_clean() is
|
||
* called via zil_clean() in the context of spa_sync(). When an itxg
|
||
* list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
|
||
* If the dispatch fails, the call to zil_itxg_clean() will occur
|
||
* synchronously in the context of spa_sync(), which can negatively
|
||
* impact the performance of spa_sync() (e.g. in the case of the itxg
|
||
* list having a large number of itxs that needs to be cleaned).
|
||
*
|
||
* Thus, these tunables can be used to manipulate the behavior of the
|
||
* taskq used by zil_clean(); they determine the number of taskq entries
|
||
* that are pre-populated when the taskq is first created (via the
|
||
* "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
|
||
* taskq entries that are cached after an on-demand allocation (via the
|
||
* "zfs_zil_clean_taskq_maxalloc").
|
||
*
|
||
* The idea being, we want to try reasonably hard to ensure there will
|
||
* already be a taskq entry pre-allocated by the time that it is needed
|
||
* by zil_clean(). This way, we can avoid the possibility of an
|
||
* on-demand allocation of a new taskq entry from failing, which would
|
||
* result in zil_itxg_clean() being called synchronously from zil_clean()
|
||
* (which can adversely affect performance of spa_sync()).
|
||
*
|
||
* Additionally, the number of threads used by the taskq can be
|
||
* configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
|
||
*/
|
||
static int zfs_zil_clean_taskq_nthr_pct = 100;
|
||
static int zfs_zil_clean_taskq_minalloc = 1024;
|
||
static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
|
||
|
||
int
|
||
dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
|
||
{
|
||
uint64_t obj;
|
||
int err;
|
||
|
||
err = zap_lookup(dp->dp_meta_objset,
|
||
dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
|
||
name, sizeof (obj), 1, &obj);
|
||
if (err)
|
||
return (err);
|
||
|
||
return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
|
||
}
|
||
|
||
static dsl_pool_t *
|
||
dsl_pool_open_impl(spa_t *spa, uint64_t txg)
|
||
{
|
||
dsl_pool_t *dp;
|
||
blkptr_t *bp = spa_get_rootblkptr(spa);
|
||
|
||
dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
|
||
dp->dp_spa = spa;
|
||
dp->dp_meta_rootbp = *bp;
|
||
rrw_init(&dp->dp_config_rwlock, B_TRUE);
|
||
txg_init(dp, txg);
|
||
mmp_init(spa);
|
||
|
||
txg_list_create(&dp->dp_dirty_datasets, spa,
|
||
offsetof(dsl_dataset_t, ds_dirty_link));
|
||
txg_list_create(&dp->dp_dirty_zilogs, spa,
|
||
offsetof(zilog_t, zl_dirty_link));
|
||
txg_list_create(&dp->dp_dirty_dirs, spa,
|
||
offsetof(dsl_dir_t, dd_dirty_link));
|
||
txg_list_create(&dp->dp_sync_tasks, spa,
|
||
offsetof(dsl_sync_task_t, dst_node));
|
||
txg_list_create(&dp->dp_early_sync_tasks, spa,
|
||
offsetof(dsl_sync_task_t, dst_node));
|
||
|
||
dp->dp_sync_taskq = spa_sync_tq_create(spa, "dp_sync_taskq");
|
||
|
||
dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
|
||
zfs_zil_clean_taskq_nthr_pct, minclsyspri,
|
||
zfs_zil_clean_taskq_minalloc,
|
||
zfs_zil_clean_taskq_maxalloc,
|
||
TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
|
||
|
||
mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
|
||
cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
|
||
|
||
aggsum_init(&dp->dp_wrlog_total, 0);
|
||
for (int i = 0; i < TXG_SIZE; i++) {
|
||
aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
|
||
}
|
||
|
||
dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
|
||
boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
|
||
TASKQ_THREADS_CPU_PCT);
|
||
dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
|
||
100, defclsyspri, boot_ncpus, INT_MAX,
|
||
TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
|
||
|
||
return (dp);
|
||
}
|
||
|
||
int
|
||
dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
|
||
{
|
||
int err;
|
||
dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
|
||
|
||
/*
|
||
* Initialize the caller's dsl_pool_t structure before we actually open
|
||
* the meta objset. This is done because a self-healing write zio may
|
||
* be issued as part of dmu_objset_open_impl() and the spa needs its
|
||
* dsl_pool_t initialized in order to handle the write.
|
||
*/
|
||
*dpp = dp;
|
||
|
||
err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
|
||
&dp->dp_meta_objset);
|
||
if (err != 0) {
|
||
dsl_pool_close(dp);
|
||
*dpp = NULL;
|
||
}
|
||
|
||
return (err);
|
||
}
|
||
|
||
int
|
||
dsl_pool_open(dsl_pool_t *dp)
|
||
{
|
||
int err;
|
||
dsl_dir_t *dd;
|
||
dsl_dataset_t *ds;
|
||
uint64_t obj;
|
||
|
||
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
|
||
&dp->dp_root_dir_obj);
|
||
if (err)
|
||
goto out;
|
||
|
||
err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
|
||
NULL, dp, &dp->dp_root_dir);
|
||
if (err)
|
||
goto out;
|
||
|
||
err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
|
||
if (err)
|
||
goto out;
|
||
|
||
if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
|
||
err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
|
||
if (err)
|
||
goto out;
|
||
err = dsl_dataset_hold_obj(dp,
|
||
dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
|
||
if (err == 0) {
|
||
err = dsl_dataset_hold_obj(dp,
|
||
dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
|
||
&dp->dp_origin_snap);
|
||
dsl_dataset_rele(ds, FTAG);
|
||
}
|
||
dsl_dir_rele(dd, dp);
|
||
if (err)
|
||
goto out;
|
||
}
|
||
|
||
if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
|
||
err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
|
||
&dp->dp_free_dir);
|
||
if (err)
|
||
goto out;
|
||
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
|
||
if (err)
|
||
goto out;
|
||
VERIFY0(bpobj_open(&dp->dp_free_bpobj,
|
||
dp->dp_meta_objset, obj));
|
||
}
|
||
|
||
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
|
||
if (err == 0) {
|
||
VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
|
||
dp->dp_meta_objset, obj));
|
||
} else if (err == ENOENT) {
|
||
/*
|
||
* We might not have created the remap bpobj yet.
|
||
*/
|
||
} else {
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Note: errors ignored, because the these special dirs, used for
|
||
* space accounting, are only created on demand.
|
||
*/
|
||
(void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
|
||
&dp->dp_leak_dir);
|
||
|
||
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
|
||
&dp->dp_bptree_obj);
|
||
if (err != 0)
|
||
goto out;
|
||
}
|
||
|
||
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
|
||
&dp->dp_empty_bpobj);
|
||
if (err != 0)
|
||
goto out;
|
||
}
|
||
|
||
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
|
||
&dp->dp_tmp_userrefs_obj);
|
||
if (err == ENOENT)
|
||
err = 0;
|
||
if (err)
|
||
goto out;
|
||
|
||
err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
|
||
|
||
out:
|
||
rrw_exit(&dp->dp_config_rwlock, FTAG);
|
||
return (err);
|
||
}
|
||
|
||
void
|
||
dsl_pool_close(dsl_pool_t *dp)
|
||
{
|
||
/*
|
||
* Drop our references from dsl_pool_open().
|
||
*
|
||
* Since we held the origin_snap from "syncing" context (which
|
||
* includes pool-opening context), it actually only got a "ref"
|
||
* and not a hold, so just drop that here.
|
||
*/
|
||
if (dp->dp_origin_snap != NULL)
|
||
dsl_dataset_rele(dp->dp_origin_snap, dp);
|
||
if (dp->dp_mos_dir != NULL)
|
||
dsl_dir_rele(dp->dp_mos_dir, dp);
|
||
if (dp->dp_free_dir != NULL)
|
||
dsl_dir_rele(dp->dp_free_dir, dp);
|
||
if (dp->dp_leak_dir != NULL)
|
||
dsl_dir_rele(dp->dp_leak_dir, dp);
|
||
if (dp->dp_root_dir != NULL)
|
||
dsl_dir_rele(dp->dp_root_dir, dp);
|
||
|
||
bpobj_close(&dp->dp_free_bpobj);
|
||
bpobj_close(&dp->dp_obsolete_bpobj);
|
||
|
||
/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
|
||
if (dp->dp_meta_objset != NULL)
|
||
dmu_objset_evict(dp->dp_meta_objset);
|
||
|
||
txg_list_destroy(&dp->dp_dirty_datasets);
|
||
txg_list_destroy(&dp->dp_dirty_zilogs);
|
||
txg_list_destroy(&dp->dp_sync_tasks);
|
||
txg_list_destroy(&dp->dp_early_sync_tasks);
|
||
txg_list_destroy(&dp->dp_dirty_dirs);
|
||
|
||
taskq_destroy(dp->dp_zil_clean_taskq);
|
||
spa_sync_tq_destroy(dp->dp_spa);
|
||
|
||
/*
|
||
* We can't set retry to TRUE since we're explicitly specifying
|
||
* a spa to flush. This is good enough; any missed buffers for
|
||
* this spa won't cause trouble, and they'll eventually fall
|
||
* out of the ARC just like any other unused buffer.
|
||
*/
|
||
arc_flush(dp->dp_spa, FALSE);
|
||
|
||
mmp_fini(dp->dp_spa);
|
||
txg_fini(dp);
|
||
dsl_scan_fini(dp);
|
||
dmu_buf_user_evict_wait();
|
||
|
||
rrw_destroy(&dp->dp_config_rwlock);
|
||
mutex_destroy(&dp->dp_lock);
|
||
cv_destroy(&dp->dp_spaceavail_cv);
|
||
|
||
ASSERT0(aggsum_value(&dp->dp_wrlog_total));
|
||
aggsum_fini(&dp->dp_wrlog_total);
|
||
for (int i = 0; i < TXG_SIZE; i++) {
|
||
ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
|
||
aggsum_fini(&dp->dp_wrlog_pertxg[i]);
|
||
}
|
||
|
||
taskq_destroy(dp->dp_unlinked_drain_taskq);
|
||
taskq_destroy(dp->dp_zrele_taskq);
|
||
if (dp->dp_blkstats != NULL)
|
||
vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
|
||
kmem_free(dp, sizeof (dsl_pool_t));
|
||
}
|
||
|
||
void
|
||
dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
uint64_t obj;
|
||
/*
|
||
* Currently, we only create the obsolete_bpobj where there are
|
||
* indirect vdevs with referenced mappings.
|
||
*/
|
||
ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
|
||
/* create and open the obsolete_bpobj */
|
||
obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
|
||
VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
|
||
VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
|
||
spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
|
||
}
|
||
|
||
void
|
||
dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
|
||
VERIFY0(zap_remove(dp->dp_meta_objset,
|
||
DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_OBSOLETE_BPOBJ, tx));
|
||
bpobj_free(dp->dp_meta_objset,
|
||
dp->dp_obsolete_bpobj.bpo_object, tx);
|
||
bpobj_close(&dp->dp_obsolete_bpobj);
|
||
}
|
||
|
||
dsl_pool_t *
|
||
dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
|
||
dsl_crypto_params_t *dcp, uint64_t txg)
|
||
{
|
||
int err;
|
||
dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
|
||
dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
|
||
#ifdef _KERNEL
|
||
objset_t *os;
|
||
#else
|
||
objset_t *os __attribute__((unused));
|
||
#endif
|
||
dsl_dataset_t *ds;
|
||
uint64_t obj;
|
||
|
||
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
|
||
|
||
/* create and open the MOS (meta-objset) */
|
||
dp->dp_meta_objset = dmu_objset_create_impl(spa,
|
||
NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
|
||
spa->spa_meta_objset = dp->dp_meta_objset;
|
||
|
||
/* create the pool directory */
|
||
err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
|
||
ASSERT0(err);
|
||
|
||
/* Initialize scan structures */
|
||
VERIFY0(dsl_scan_init(dp, txg));
|
||
|
||
/* create and open the root dir */
|
||
dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
|
||
VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
|
||
NULL, dp, &dp->dp_root_dir));
|
||
|
||
/* create and open the meta-objset dir */
|
||
(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
|
||
VERIFY0(dsl_pool_open_special_dir(dp,
|
||
MOS_DIR_NAME, &dp->dp_mos_dir));
|
||
|
||
if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
|
||
/* create and open the free dir */
|
||
(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
|
||
FREE_DIR_NAME, tx);
|
||
VERIFY0(dsl_pool_open_special_dir(dp,
|
||
FREE_DIR_NAME, &dp->dp_free_dir));
|
||
|
||
/* create and open the free_bplist */
|
||
obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
|
||
VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
|
||
VERIFY0(bpobj_open(&dp->dp_free_bpobj,
|
||
dp->dp_meta_objset, obj));
|
||
}
|
||
|
||
if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
|
||
dsl_pool_create_origin(dp, tx);
|
||
|
||
/*
|
||
* Some features may be needed when creating the root dataset, so we
|
||
* create the feature objects here.
|
||
*/
|
||
if (spa_version(spa) >= SPA_VERSION_FEATURES)
|
||
spa_feature_create_zap_objects(spa, tx);
|
||
|
||
if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
|
||
dcp->cp_crypt != ZIO_CRYPT_INHERIT)
|
||
spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
|
||
|
||
/* create the root dataset */
|
||
obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
|
||
|
||
/* create the root objset */
|
||
VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
|
||
DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
|
||
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
||
os = dmu_objset_create_impl(dp->dp_spa, ds,
|
||
dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
|
||
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
||
#ifdef _KERNEL
|
||
zfs_create_fs(os, kcred, zplprops, tx);
|
||
#endif
|
||
dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
|
||
|
||
dmu_tx_commit(tx);
|
||
|
||
rrw_exit(&dp->dp_config_rwlock, FTAG);
|
||
|
||
return (dp);
|
||
}
|
||
|
||
/*
|
||
* Account for the meta-objset space in its placeholder dsl_dir.
|
||
*/
|
||
void
|
||
dsl_pool_mos_diduse_space(dsl_pool_t *dp,
|
||
int64_t used, int64_t comp, int64_t uncomp)
|
||
{
|
||
ASSERT3U(comp, ==, uncomp); /* it's all metadata */
|
||
mutex_enter(&dp->dp_lock);
|
||
dp->dp_mos_used_delta += used;
|
||
dp->dp_mos_compressed_delta += comp;
|
||
dp->dp_mos_uncompressed_delta += uncomp;
|
||
mutex_exit(&dp->dp_lock);
|
||
}
|
||
|
||
static void
|
||
dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
||
dmu_objset_sync(dp->dp_meta_objset, zio, tx);
|
||
VERIFY0(zio_wait(zio));
|
||
dmu_objset_sync_done(dp->dp_meta_objset, tx);
|
||
taskq_wait(dp->dp_sync_taskq);
|
||
multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
|
||
|
||
dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
|
||
spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
|
||
}
|
||
|
||
static void
|
||
dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
|
||
{
|
||
ASSERT(MUTEX_HELD(&dp->dp_lock));
|
||
|
||
if (delta < 0)
|
||
ASSERT3U(-delta, <=, dp->dp_dirty_total);
|
||
|
||
dp->dp_dirty_total += delta;
|
||
|
||
/*
|
||
* Note: we signal even when increasing dp_dirty_total.
|
||
* This ensures forward progress -- each thread wakes the next waiter.
|
||
*/
|
||
if (dp->dp_dirty_total < zfs_dirty_data_max)
|
||
cv_signal(&dp->dp_spaceavail_cv);
|
||
}
|
||
|
||
void
|
||
dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
|
||
{
|
||
ASSERT3S(size, >=, 0);
|
||
|
||
aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
|
||
aggsum_add(&dp->dp_wrlog_total, size);
|
||
|
||
/* Choose a value slightly bigger than min dirty sync bytes */
|
||
uint64_t sync_min =
|
||
zfs_wrlog_data_max * (zfs_dirty_data_sync_percent + 10) / 200;
|
||
if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
|
||
txg_kick(dp, txg);
|
||
}
|
||
|
||
boolean_t
|
||
dsl_pool_need_wrlog_delay(dsl_pool_t *dp)
|
||
{
|
||
uint64_t delay_min_bytes =
|
||
zfs_wrlog_data_max * zfs_delay_min_dirty_percent / 100;
|
||
|
||
return (aggsum_compare(&dp->dp_wrlog_total, delay_min_bytes) > 0);
|
||
}
|
||
|
||
static void
|
||
dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
|
||
{
|
||
int64_t delta;
|
||
delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
|
||
aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
|
||
aggsum_add(&dp->dp_wrlog_total, delta);
|
||
/* Compact per-CPU sums after the big change. */
|
||
(void) aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
|
||
(void) aggsum_value(&dp->dp_wrlog_total);
|
||
}
|
||
|
||
#ifdef ZFS_DEBUG
|
||
static boolean_t
|
||
dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
|
||
{
|
||
spa_t *spa = dp->dp_spa;
|
||
vdev_t *rvd = spa->spa_root_vdev;
|
||
|
||
for (uint64_t c = 0; c < rvd->vdev_children; c++) {
|
||
vdev_t *vd = rvd->vdev_child[c];
|
||
txg_list_t *tl = &vd->vdev_ms_list;
|
||
metaslab_t *ms;
|
||
|
||
for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
|
||
ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
|
||
VERIFY(range_tree_is_empty(ms->ms_freeing));
|
||
VERIFY(range_tree_is_empty(ms->ms_checkpointing));
|
||
}
|
||
}
|
||
|
||
return (B_TRUE);
|
||
}
|
||
#else
|
||
#define dsl_early_sync_task_verify(dp, txg) \
|
||
((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
|
||
#endif
|
||
|
||
void
|
||
dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
|
||
{
|
||
zio_t *rio; /* root zio for all dirty dataset syncs */
|
||
dmu_tx_t *tx;
|
||
dsl_dir_t *dd;
|
||
dsl_dataset_t *ds;
|
||
objset_t *mos = dp->dp_meta_objset;
|
||
list_t synced_datasets;
|
||
|
||
list_create(&synced_datasets, sizeof (dsl_dataset_t),
|
||
offsetof(dsl_dataset_t, ds_synced_link));
|
||
|
||
tx = dmu_tx_create_assigned(dp, txg);
|
||
|
||
/*
|
||
* Run all early sync tasks before writing out any dirty blocks.
|
||
* For more info on early sync tasks see block comment in
|
||
* dsl_early_sync_task().
|
||
*/
|
||
if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
|
||
dsl_sync_task_t *dst;
|
||
|
||
ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
|
||
while ((dst =
|
||
txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
|
||
ASSERT(dsl_early_sync_task_verify(dp, txg));
|
||
dsl_sync_task_sync(dst, tx);
|
||
}
|
||
ASSERT(dsl_early_sync_task_verify(dp, txg));
|
||
}
|
||
|
||
/*
|
||
* Write out all dirty blocks of dirty datasets. Note, this could
|
||
* create a very large (+10k) zio tree.
|
||
*/
|
||
rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
||
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
|
||
/*
|
||
* We must not sync any non-MOS datasets twice, because
|
||
* we may have taken a snapshot of them. However, we
|
||
* may sync newly-created datasets on pass 2.
|
||
*/
|
||
ASSERT(!list_link_active(&ds->ds_synced_link));
|
||
list_insert_tail(&synced_datasets, ds);
|
||
dsl_dataset_sync(ds, rio, tx);
|
||
}
|
||
VERIFY0(zio_wait(rio));
|
||
|
||
/*
|
||
* Update the long range free counter after
|
||
* we're done syncing user data
|
||
*/
|
||
mutex_enter(&dp->dp_lock);
|
||
ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
|
||
dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
|
||
dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
|
||
mutex_exit(&dp->dp_lock);
|
||
|
||
/*
|
||
* After the data blocks have been written (ensured by the zio_wait()
|
||
* above), update the user/group/project space accounting. This happens
|
||
* in tasks dispatched to dp_sync_taskq, so wait for them before
|
||
* continuing.
|
||
*/
|
||
for (ds = list_head(&synced_datasets); ds != NULL;
|
||
ds = list_next(&synced_datasets, ds)) {
|
||
dmu_objset_sync_done(ds->ds_objset, tx);
|
||
}
|
||
taskq_wait(dp->dp_sync_taskq);
|
||
|
||
/*
|
||
* Sync the datasets again to push out the changes due to
|
||
* userspace updates. This must be done before we process the
|
||
* sync tasks, so that any snapshots will have the correct
|
||
* user accounting information (and we won't get confused
|
||
* about which blocks are part of the snapshot).
|
||
*/
|
||
rio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
|
||
while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
|
||
objset_t *os = ds->ds_objset;
|
||
|
||
ASSERT(list_link_active(&ds->ds_synced_link));
|
||
dmu_buf_rele(ds->ds_dbuf, ds);
|
||
dsl_dataset_sync(ds, rio, tx);
|
||
|
||
/*
|
||
* Release any key mappings created by calls to
|
||
* dsl_dataset_dirty() from the userquota accounting
|
||
* code paths.
|
||
*/
|
||
if (os->os_encrypted && !os->os_raw_receive &&
|
||
!os->os_next_write_raw[txg & TXG_MASK]) {
|
||
ASSERT3P(ds->ds_key_mapping, !=, NULL);
|
||
key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
|
||
}
|
||
}
|
||
VERIFY0(zio_wait(rio));
|
||
|
||
/*
|
||
* Now that the datasets have been completely synced, we can
|
||
* clean up our in-memory structures accumulated while syncing:
|
||
*
|
||
* - move dead blocks from the pending deadlist and livelists
|
||
* to the on-disk versions
|
||
* - release hold from dsl_dataset_dirty()
|
||
* - release key mapping hold from dsl_dataset_dirty()
|
||
*/
|
||
while ((ds = list_remove_head(&synced_datasets)) != NULL) {
|
||
objset_t *os = ds->ds_objset;
|
||
|
||
if (os->os_encrypted && !os->os_raw_receive &&
|
||
!os->os_next_write_raw[txg & TXG_MASK]) {
|
||
ASSERT3P(ds->ds_key_mapping, !=, NULL);
|
||
key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
|
||
}
|
||
|
||
dsl_dataset_sync_done(ds, tx);
|
||
dmu_buf_rele(ds->ds_dbuf, ds);
|
||
}
|
||
|
||
while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
|
||
dsl_dir_sync(dd, tx);
|
||
}
|
||
|
||
/*
|
||
* The MOS's space is accounted for in the pool/$MOS
|
||
* (dp_mos_dir). We can't modify the mos while we're syncing
|
||
* it, so we remember the deltas and apply them here.
|
||
*/
|
||
if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
|
||
dp->dp_mos_uncompressed_delta != 0) {
|
||
dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
|
||
dp->dp_mos_used_delta,
|
||
dp->dp_mos_compressed_delta,
|
||
dp->dp_mos_uncompressed_delta, tx);
|
||
dp->dp_mos_used_delta = 0;
|
||
dp->dp_mos_compressed_delta = 0;
|
||
dp->dp_mos_uncompressed_delta = 0;
|
||
}
|
||
|
||
if (dmu_objset_is_dirty(mos, txg)) {
|
||
dsl_pool_sync_mos(dp, tx);
|
||
}
|
||
|
||
/*
|
||
* We have written all of the accounted dirty data, so our
|
||
* dp_space_towrite should now be zero. However, some seldom-used
|
||
* code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
|
||
* the accounting of any dirtied space now.
|
||
*
|
||
* Note that, besides any dirty data from datasets, the amount of
|
||
* dirty data in the MOS is also accounted by the pool. Therefore,
|
||
* we want to do this cleanup after dsl_pool_sync_mos() so we don't
|
||
* attempt to update the accounting for the same dirty data twice.
|
||
* (i.e. at this point we only update the accounting for the space
|
||
* that we know that we "leaked").
|
||
*/
|
||
dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
|
||
|
||
/*
|
||
* If we modify a dataset in the same txg that we want to destroy it,
|
||
* its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
|
||
* dsl_dir_destroy_check() will fail if there are unexpected holds.
|
||
* Therefore, we want to sync the MOS (thus syncing the dd_dbuf
|
||
* and clearing the hold on it) before we process the sync_tasks.
|
||
* The MOS data dirtied by the sync_tasks will be synced on the next
|
||
* pass.
|
||
*/
|
||
if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
|
||
dsl_sync_task_t *dst;
|
||
/*
|
||
* No more sync tasks should have been added while we
|
||
* were syncing.
|
||
*/
|
||
ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
|
||
while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
|
||
dsl_sync_task_sync(dst, tx);
|
||
}
|
||
|
||
dmu_tx_commit(tx);
|
||
|
||
DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
|
||
}
|
||
|
||
void
|
||
dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
|
||
{
|
||
zilog_t *zilog;
|
||
|
||
while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
|
||
dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
|
||
/*
|
||
* We don't remove the zilog from the dp_dirty_zilogs
|
||
* list until after we've cleaned it. This ensures that
|
||
* callers of zilog_is_dirty() receive an accurate
|
||
* answer when they are racing with the spa sync thread.
|
||
*/
|
||
zil_clean(zilog, txg);
|
||
(void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
|
||
ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
|
||
dmu_buf_rele(ds->ds_dbuf, zilog);
|
||
}
|
||
|
||
dsl_pool_wrlog_clear(dp, txg);
|
||
|
||
ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
|
||
}
|
||
|
||
/*
|
||
* TRUE if the current thread is the tx_sync_thread or if we
|
||
* are being called from SPA context during pool initialization.
|
||
*/
|
||
int
|
||
dsl_pool_sync_context(dsl_pool_t *dp)
|
||
{
|
||
return (curthread == dp->dp_tx.tx_sync_thread ||
|
||
spa_is_initializing(dp->dp_spa) ||
|
||
taskq_member(dp->dp_sync_taskq, curthread));
|
||
}
|
||
|
||
/*
|
||
* This function returns the amount of allocatable space in the pool
|
||
* minus whatever space is currently reserved by ZFS for specific
|
||
* purposes. Specifically:
|
||
*
|
||
* 1] Any reserved SLOP space
|
||
* 2] Any space used by the checkpoint
|
||
* 3] Any space used for deferred frees
|
||
*
|
||
* The latter 2 are especially important because they are needed to
|
||
* rectify the SPA's and DMU's different understanding of how much space
|
||
* is used. Now the DMU is aware of that extra space tracked by the SPA
|
||
* without having to maintain a separate special dir (e.g similar to
|
||
* $MOS, $FREEING, and $LEAKED).
|
||
*
|
||
* Note: By deferred frees here, we mean the frees that were deferred
|
||
* in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
|
||
* segments placed in ms_defer trees during metaslab_sync_done().
|
||
*/
|
||
uint64_t
|
||
dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
|
||
{
|
||
spa_t *spa = dp->dp_spa;
|
||
uint64_t space, resv, adjustedsize;
|
||
uint64_t spa_deferred_frees =
|
||
spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
|
||
|
||
space = spa_get_dspace(spa)
|
||
- spa_get_checkpoint_space(spa) - spa_deferred_frees;
|
||
resv = spa_get_slop_space(spa);
|
||
|
||
switch (slop_policy) {
|
||
case ZFS_SPACE_CHECK_NORMAL:
|
||
break;
|
||
case ZFS_SPACE_CHECK_RESERVED:
|
||
resv >>= 1;
|
||
break;
|
||
case ZFS_SPACE_CHECK_EXTRA_RESERVED:
|
||
resv >>= 2;
|
||
break;
|
||
case ZFS_SPACE_CHECK_NONE:
|
||
resv = 0;
|
||
break;
|
||
default:
|
||
panic("invalid slop policy value: %d", slop_policy);
|
||
break;
|
||
}
|
||
adjustedsize = (space >= resv) ? (space - resv) : 0;
|
||
|
||
return (adjustedsize);
|
||
}
|
||
|
||
uint64_t
|
||
dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
|
||
{
|
||
uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
|
||
uint64_t deferred =
|
||
metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
|
||
uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
|
||
return (quota);
|
||
}
|
||
|
||
uint64_t
|
||
dsl_pool_deferred_space(dsl_pool_t *dp)
|
||
{
|
||
return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
|
||
}
|
||
|
||
boolean_t
|
||
dsl_pool_need_dirty_delay(dsl_pool_t *dp)
|
||
{
|
||
uint64_t delay_min_bytes =
|
||
zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
|
||
|
||
/*
|
||
* We are not taking the dp_lock here and few other places, since torn
|
||
* reads are unlikely: on 64-bit systems due to register size and on
|
||
* 32-bit due to memory constraints. Pool-wide locks in hot path may
|
||
* be too expensive, while we do not need a precise result here.
|
||
*/
|
||
return (dp->dp_dirty_total > delay_min_bytes);
|
||
}
|
||
|
||
static boolean_t
|
||
dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
|
||
{
|
||
uint64_t dirty_min_bytes =
|
||
zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
|
||
uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
|
||
|
||
return (dirty > dirty_min_bytes);
|
||
}
|
||
|
||
void
|
||
dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
|
||
{
|
||
if (space > 0) {
|
||
mutex_enter(&dp->dp_lock);
|
||
dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
|
||
dsl_pool_dirty_delta(dp, space);
|
||
boolean_t needsync = !dmu_tx_is_syncing(tx) &&
|
||
dsl_pool_need_dirty_sync(dp, tx->tx_txg);
|
||
mutex_exit(&dp->dp_lock);
|
||
|
||
if (needsync)
|
||
txg_kick(dp, tx->tx_txg);
|
||
}
|
||
}
|
||
|
||
void
|
||
dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
|
||
{
|
||
ASSERT3S(space, >=, 0);
|
||
if (space == 0)
|
||
return;
|
||
|
||
mutex_enter(&dp->dp_lock);
|
||
if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
|
||
/* XXX writing something we didn't dirty? */
|
||
space = dp->dp_dirty_pertxg[txg & TXG_MASK];
|
||
}
|
||
ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
|
||
dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
|
||
ASSERT3U(dp->dp_dirty_total, >=, space);
|
||
dsl_pool_dirty_delta(dp, -space);
|
||
mutex_exit(&dp->dp_lock);
|
||
}
|
||
|
||
static int
|
||
upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
|
||
{
|
||
dmu_tx_t *tx = arg;
|
||
dsl_dataset_t *ds, *prev = NULL;
|
||
int err;
|
||
|
||
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
|
||
if (err)
|
||
return (err);
|
||
|
||
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
|
||
err = dsl_dataset_hold_obj(dp,
|
||
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
|
||
if (err) {
|
||
dsl_dataset_rele(ds, FTAG);
|
||
return (err);
|
||
}
|
||
|
||
if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
|
||
break;
|
||
dsl_dataset_rele(ds, FTAG);
|
||
ds = prev;
|
||
prev = NULL;
|
||
}
|
||
|
||
if (prev == NULL) {
|
||
prev = dp->dp_origin_snap;
|
||
|
||
/*
|
||
* The $ORIGIN can't have any data, or the accounting
|
||
* will be wrong.
|
||
*/
|
||
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
||
ASSERT0(BP_GET_LOGICAL_BIRTH(&dsl_dataset_phys(prev)->ds_bp));
|
||
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
||
|
||
/* The origin doesn't get attached to itself */
|
||
if (ds->ds_object == prev->ds_object) {
|
||
dsl_dataset_rele(ds, FTAG);
|
||
return (0);
|
||
}
|
||
|
||
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
||
dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
|
||
dsl_dataset_phys(ds)->ds_prev_snap_txg =
|
||
dsl_dataset_phys(prev)->ds_creation_txg;
|
||
|
||
dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
|
||
dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
|
||
|
||
dmu_buf_will_dirty(prev->ds_dbuf, tx);
|
||
dsl_dataset_phys(prev)->ds_num_children++;
|
||
|
||
if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
|
||
ASSERT(ds->ds_prev == NULL);
|
||
VERIFY0(dsl_dataset_hold_obj(dp,
|
||
dsl_dataset_phys(ds)->ds_prev_snap_obj,
|
||
ds, &ds->ds_prev));
|
||
}
|
||
}
|
||
|
||
ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
|
||
ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
|
||
|
||
if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
|
||
dmu_buf_will_dirty(prev->ds_dbuf, tx);
|
||
dsl_dataset_phys(prev)->ds_next_clones_obj =
|
||
zap_create(dp->dp_meta_objset,
|
||
DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
|
||
}
|
||
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
||
dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
|
||
|
||
dsl_dataset_rele(ds, FTAG);
|
||
if (prev != dp->dp_origin_snap)
|
||
dsl_dataset_rele(prev, FTAG);
|
||
return (0);
|
||
}
|
||
|
||
void
|
||
dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
ASSERT(dmu_tx_is_syncing(tx));
|
||
ASSERT(dp->dp_origin_snap != NULL);
|
||
|
||
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
|
||
tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
|
||
}
|
||
|
||
static int
|
||
upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
|
||
{
|
||
dmu_tx_t *tx = arg;
|
||
objset_t *mos = dp->dp_meta_objset;
|
||
|
||
if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
|
||
dsl_dataset_t *origin;
|
||
|
||
VERIFY0(dsl_dataset_hold_obj(dp,
|
||
dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
|
||
|
||
if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
|
||
dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
|
||
dsl_dir_phys(origin->ds_dir)->dd_clones =
|
||
zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
|
||
0, tx);
|
||
}
|
||
|
||
VERIFY0(zap_add_int(dp->dp_meta_objset,
|
||
dsl_dir_phys(origin->ds_dir)->dd_clones,
|
||
ds->ds_object, tx));
|
||
|
||
dsl_dataset_rele(origin, FTAG);
|
||
}
|
||
return (0);
|
||
}
|
||
|
||
void
|
||
dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
uint64_t obj;
|
||
|
||
ASSERT(dmu_tx_is_syncing(tx));
|
||
|
||
(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
|
||
VERIFY0(dsl_pool_open_special_dir(dp,
|
||
FREE_DIR_NAME, &dp->dp_free_dir));
|
||
|
||
/*
|
||
* We can't use bpobj_alloc(), because spa_version() still
|
||
* returns the old version, and we need a new-version bpobj with
|
||
* subobj support. So call dmu_object_alloc() directly.
|
||
*/
|
||
obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
|
||
SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
|
||
VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
|
||
DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
|
||
VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
|
||
|
||
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
|
||
upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
|
||
}
|
||
|
||
void
|
||
dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
uint64_t dsobj;
|
||
dsl_dataset_t *ds;
|
||
|
||
ASSERT(dmu_tx_is_syncing(tx));
|
||
ASSERT(dp->dp_origin_snap == NULL);
|
||
ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
|
||
|
||
/* create the origin dir, ds, & snap-ds */
|
||
dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
|
||
NULL, 0, kcred, NULL, tx);
|
||
VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
|
||
dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
|
||
VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
|
||
dp, &dp->dp_origin_snap));
|
||
dsl_dataset_rele(ds, FTAG);
|
||
}
|
||
|
||
taskq_t *
|
||
dsl_pool_zrele_taskq(dsl_pool_t *dp)
|
||
{
|
||
return (dp->dp_zrele_taskq);
|
||
}
|
||
|
||
taskq_t *
|
||
dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
|
||
{
|
||
return (dp->dp_unlinked_drain_taskq);
|
||
}
|
||
|
||
/*
|
||
* Walk through the pool-wide zap object of temporary snapshot user holds
|
||
* and release them.
|
||
*/
|
||
void
|
||
dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
|
||
{
|
||
zap_attribute_t za;
|
||
zap_cursor_t zc;
|
||
objset_t *mos = dp->dp_meta_objset;
|
||
uint64_t zapobj = dp->dp_tmp_userrefs_obj;
|
||
nvlist_t *holds;
|
||
|
||
if (zapobj == 0)
|
||
return;
|
||
ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
|
||
|
||
holds = fnvlist_alloc();
|
||
|
||
for (zap_cursor_init(&zc, mos, zapobj);
|
||
zap_cursor_retrieve(&zc, &za) == 0;
|
||
zap_cursor_advance(&zc)) {
|
||
char *htag;
|
||
nvlist_t *tags;
|
||
|
||
htag = strchr(za.za_name, '-');
|
||
*htag = '\0';
|
||
++htag;
|
||
if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
|
||
tags = fnvlist_alloc();
|
||
fnvlist_add_boolean(tags, htag);
|
||
fnvlist_add_nvlist(holds, za.za_name, tags);
|
||
fnvlist_free(tags);
|
||
} else {
|
||
fnvlist_add_boolean(tags, htag);
|
||
}
|
||
}
|
||
dsl_dataset_user_release_tmp(dp, holds);
|
||
fnvlist_free(holds);
|
||
zap_cursor_fini(&zc);
|
||
}
|
||
|
||
/*
|
||
* Create the pool-wide zap object for storing temporary snapshot holds.
|
||
*/
|
||
static void
|
||
dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
|
||
{
|
||
objset_t *mos = dp->dp_meta_objset;
|
||
|
||
ASSERT(dp->dp_tmp_userrefs_obj == 0);
|
||
ASSERT(dmu_tx_is_syncing(tx));
|
||
|
||
dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
|
||
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
|
||
}
|
||
|
||
static int
|
||
dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
|
||
const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
|
||
{
|
||
objset_t *mos = dp->dp_meta_objset;
|
||
uint64_t zapobj = dp->dp_tmp_userrefs_obj;
|
||
char *name;
|
||
int error;
|
||
|
||
ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
|
||
ASSERT(dmu_tx_is_syncing(tx));
|
||
|
||
/*
|
||
* If the pool was created prior to SPA_VERSION_USERREFS, the
|
||
* zap object for temporary holds might not exist yet.
|
||
*/
|
||
if (zapobj == 0) {
|
||
if (holding) {
|
||
dsl_pool_user_hold_create_obj(dp, tx);
|
||
zapobj = dp->dp_tmp_userrefs_obj;
|
||
} else {
|
||
return (SET_ERROR(ENOENT));
|
||
}
|
||
}
|
||
|
||
name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
|
||
if (holding)
|
||
error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
|
||
else
|
||
error = zap_remove(mos, zapobj, name, tx);
|
||
kmem_strfree(name);
|
||
|
||
return (error);
|
||
}
|
||
|
||
/*
|
||
* Add a temporary hold for the given dataset object and tag.
|
||
*/
|
||
int
|
||
dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
|
||
uint64_t now, dmu_tx_t *tx)
|
||
{
|
||
return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
|
||
}
|
||
|
||
/*
|
||
* Release a temporary hold for the given dataset object and tag.
|
||
*/
|
||
int
|
||
dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
|
||
dmu_tx_t *tx)
|
||
{
|
||
return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
|
||
tx, B_FALSE));
|
||
}
|
||
|
||
/*
|
||
* DSL Pool Configuration Lock
|
||
*
|
||
* The dp_config_rwlock protects against changes to DSL state (e.g. dataset
|
||
* creation / destruction / rename / property setting). It must be held for
|
||
* read to hold a dataset or dsl_dir. I.e. you must call
|
||
* dsl_pool_config_enter() or dsl_pool_hold() before calling
|
||
* dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
|
||
* must be held continuously until all datasets and dsl_dirs are released.
|
||
*
|
||
* The only exception to this rule is that if a "long hold" is placed on
|
||
* a dataset, then the dp_config_rwlock may be dropped while the dataset
|
||
* is still held. The long hold will prevent the dataset from being
|
||
* destroyed -- the destroy will fail with EBUSY. A long hold can be
|
||
* obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
|
||
* (by calling dsl_{dataset,objset}_{try}own{_obj}).
|
||
*
|
||
* Legitimate long-holders (including owners) should be long-running, cancelable
|
||
* tasks that should cause "zfs destroy" to fail. This includes DMU
|
||
* consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
|
||
* "zfs send", and "zfs diff". There are several other long-holders whose
|
||
* uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
|
||
*
|
||
* The usual formula for long-holding would be:
|
||
* dsl_pool_hold()
|
||
* dsl_dataset_hold()
|
||
* ... perform checks ...
|
||
* dsl_dataset_long_hold()
|
||
* dsl_pool_rele()
|
||
* ... perform long-running task ...
|
||
* dsl_dataset_long_rele()
|
||
* dsl_dataset_rele()
|
||
*
|
||
* Note that when the long hold is released, the dataset is still held but
|
||
* the pool is not held. The dataset may change arbitrarily during this time
|
||
* (e.g. it could be destroyed). Therefore you shouldn't do anything to the
|
||
* dataset except release it.
|
||
*
|
||
* Operations generally fall somewhere into the following taxonomy:
|
||
*
|
||
* Read-Only Modifying
|
||
*
|
||
* Dataset Layer / MOS zfs get zfs destroy
|
||
*
|
||
* Individual Dataset read() write()
|
||
*
|
||
*
|
||
* Dataset Layer Operations
|
||
*
|
||
* Modifying operations should generally use dsl_sync_task(). The synctask
|
||
* infrastructure enforces proper locking strategy with respect to the
|
||
* dp_config_rwlock. See the comment above dsl_sync_task() for details.
|
||
*
|
||
* Read-only operations will manually hold the pool, then the dataset, obtain
|
||
* information from the dataset, then release the pool and dataset.
|
||
* dmu_objset_{hold,rele}() are convenience routines that also do the pool
|
||
* hold/rele.
|
||
*
|
||
*
|
||
* Operations On Individual Datasets
|
||
*
|
||
* Objects _within_ an objset should only be modified by the current 'owner'
|
||
* of the objset to prevent incorrect concurrent modification. Thus, use
|
||
* {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
|
||
* and fail with EBUSY if there is already an owner. The owner can then
|
||
* implement its own locking strategy, independent of the dataset layer's
|
||
* locking infrastructure.
|
||
* (E.g., the ZPL has its own set of locks to control concurrency. A regular
|
||
* vnop will not reach into the dataset layer).
|
||
*
|
||
* Ideally, objects would also only be read by the objset’s owner, so that we
|
||
* don’t observe state mid-modification.
|
||
* (E.g. the ZPL is creating a new object and linking it into a directory; if
|
||
* you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
|
||
* intermediate state. The ioctl level violates this but in pretty benign
|
||
* ways, e.g. reading the zpl props object.)
|
||
*/
|
||
|
||
int
|
||
dsl_pool_hold(const char *name, const void *tag, dsl_pool_t **dp)
|
||
{
|
||
spa_t *spa;
|
||
int error;
|
||
|
||
error = spa_open(name, &spa, tag);
|
||
if (error == 0) {
|
||
*dp = spa_get_dsl(spa);
|
||
dsl_pool_config_enter(*dp, tag);
|
||
}
|
||
return (error);
|
||
}
|
||
|
||
void
|
||
dsl_pool_rele(dsl_pool_t *dp, const void *tag)
|
||
{
|
||
dsl_pool_config_exit(dp, tag);
|
||
spa_close(dp->dp_spa, tag);
|
||
}
|
||
|
||
void
|
||
dsl_pool_config_enter(dsl_pool_t *dp, const void *tag)
|
||
{
|
||
/*
|
||
* We use a "reentrant" reader-writer lock, but not reentrantly.
|
||
*
|
||
* The rrwlock can (with the track_all flag) track all reading threads,
|
||
* which is very useful for debugging which code path failed to release
|
||
* the lock, and for verifying that the *current* thread does hold
|
||
* the lock.
|
||
*
|
||
* (Unlike a rwlock, which knows that N threads hold it for
|
||
* read, but not *which* threads, so rw_held(RW_READER) returns TRUE
|
||
* if any thread holds it for read, even if this thread doesn't).
|
||
*/
|
||
ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
|
||
rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
|
||
}
|
||
|
||
void
|
||
dsl_pool_config_enter_prio(dsl_pool_t *dp, const void *tag)
|
||
{
|
||
ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
|
||
rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
|
||
}
|
||
|
||
void
|
||
dsl_pool_config_exit(dsl_pool_t *dp, const void *tag)
|
||
{
|
||
rrw_exit(&dp->dp_config_rwlock, tag);
|
||
}
|
||
|
||
boolean_t
|
||
dsl_pool_config_held(dsl_pool_t *dp)
|
||
{
|
||
return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
|
||
}
|
||
|
||
boolean_t
|
||
dsl_pool_config_held_writer(dsl_pool_t *dp)
|
||
{
|
||
return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
|
||
}
|
||
|
||
EXPORT_SYMBOL(dsl_pool_config_enter);
|
||
EXPORT_SYMBOL(dsl_pool_config_exit);
|
||
|
||
/* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
|
||
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, UINT, ZMOD_RD,
|
||
"Max percent of RAM allowed to be dirty");
|
||
|
||
/* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
|
||
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, UINT, ZMOD_RD,
|
||
"zfs_dirty_data_max upper bound as % of RAM");
|
||
|
||
ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, UINT, ZMOD_RW,
|
||
"Transaction delay threshold");
|
||
|
||
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, U64, ZMOD_RW,
|
||
"Determines the dirty space limit");
|
||
|
||
ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, U64, ZMOD_RW,
|
||
"The size limit of write-transaction zil log data");
|
||
|
||
/* zfs_dirty_data_max_max only applied at module load in arc_init(). */
|
||
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, U64, ZMOD_RD,
|
||
"zfs_dirty_data_max upper bound in bytes");
|
||
|
||
ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, UINT, ZMOD_RW,
|
||
"Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
|
||
|
||
ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, U64, ZMOD_RW,
|
||
"How quickly delay approaches infinity");
|
||
|
||
ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
|
||
"Max percent of CPUs that are used per dp_sync_taskq");
|
||
|
||
ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
|
||
"Number of taskq entries that are pre-populated");
|
||
|
||
ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
|
||
"Max number of taskq entries that are cached");
|