mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-07 16:50:26 +03:00
a10e552b99
Adding O_DIRECT support to ZFS to bypass the ARC for writes/reads. O_DIRECT support in ZFS will always ensure there is coherency between buffered and O_DIRECT IO requests. This ensures that all IO requests, whether buffered or direct, will see the same file contents at all times. Just as in other FS's , O_DIRECT does not imply O_SYNC. While data is written directly to VDEV disks, metadata will not be synced until the associated TXG is synced. For both O_DIRECT read and write request the offset and request sizes, at a minimum, must be PAGE_SIZE aligned. In the event they are not, then EINVAL is returned unless the direct property is set to always (see below). For O_DIRECT writes: The request also must be block aligned (recordsize) or the write request will take the normal (buffered) write path. In the event that request is block aligned and a cached copy of the buffer in the ARC, then it will be discarded from the ARC forcing all further reads to retrieve the data from disk. For O_DIRECT reads: The only alignment restrictions are PAGE_SIZE alignment. In the event that the requested data is in buffered (in the ARC) it will just be copied from the ARC into the user buffer. For both O_DIRECT writes and reads the O_DIRECT flag will be ignored in the event that file contents are mmap'ed. In this case, all requests that are at least PAGE_SIZE aligned will just fall back to the buffered paths. If the request however is not PAGE_SIZE aligned, EINVAL will be returned as always regardless if the file's contents are mmap'ed. Since O_DIRECT writes go through the normal ZIO pipeline, the following operations are supported just as with normal buffered writes: Checksum Compression Encryption Erasure Coding There is one caveat for the data integrity of O_DIRECT writes that is distinct for each of the OS's supported by ZFS. FreeBSD - FreeBSD is able to place user pages under write protection so any data in the user buffers and written directly down to the VDEV disks is guaranteed to not change. There is no concern with data integrity and O_DIRECT writes. Linux - Linux is not able to place anonymous user pages under write protection. Because of this, if the user decides to manipulate the page contents while the write operation is occurring, data integrity can not be guaranteed. However, there is a module parameter `zfs_vdev_direct_write_verify` that controls the if a O_DIRECT writes that can occur to a top-level VDEV before a checksum verify is run before the contents of the I/O buffer are committed to disk. In the event of a checksum verification failure the write will return EIO. The number of O_DIRECT write checksum verification errors can be observed by doing `zpool status -d`, which will list all verification errors that have occurred on a top-level VDEV. Along with `zpool status`, a ZED event will be issues as `dio_verify` when a checksum verification error occurs. ZVOLs and dedup is not currently supported with Direct I/O. A new dataset property `direct` has been added with the following 3 allowable values: disabled - Accepts O_DIRECT flag, but silently ignores it and treats the request as a buffered IO request. standard - Follows the alignment restrictions outlined above for write/read IO requests when the O_DIRECT flag is used. always - Treats every write/read IO request as though it passed O_DIRECT and will do O_DIRECT if the alignment restrictions are met otherwise will redirect through the ARC. This property will not allow a request to fail. There is also a module parameter zfs_dio_enabled that can be used to force all reads and writes through the ARC. By setting this module parameter to 0, it mimics as if the direct dataset property is set to disabled. Reviewed-by: Brian Behlendorf <behlendorf@llnl.gov> Reviewed-by: Alexander Motin <mav@FreeBSD.org> Reviewed-by: Tony Hutter <hutter2@llnl.gov> Signed-off-by: Brian Atkinson <batkinson@lanl.gov> Co-authored-by: Mark Maybee <mark.maybee@delphix.com> Co-authored-by: Matt Macy <mmacy@FreeBSD.org> Co-authored-by: Brian Behlendorf <behlendorf@llnl.gov> Closes #10018
1212 lines
32 KiB
C
1212 lines
32 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2014 by Chunwei Chen. All rights reserved.
|
|
* Copyright (c) 2019 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
/*
|
|
* ARC buffer data (ABD).
|
|
*
|
|
* ABDs are an abstract data structure for the ARC which can use two
|
|
* different ways of storing the underlying data:
|
|
*
|
|
* (a) Linear buffer. In this case, all the data in the ABD is stored in one
|
|
* contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
|
|
*
|
|
* +-------------------+
|
|
* | ABD (linear) |
|
|
* | abd_flags = ... |
|
|
* | abd_size = ... | +--------------------------------+
|
|
* | abd_buf ------------->| raw buffer of size abd_size |
|
|
* +-------------------+ +--------------------------------+
|
|
* no abd_chunks
|
|
*
|
|
* (b) Scattered buffer. In this case, the data in the ABD is split into
|
|
* equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
|
|
* to the chunks recorded in an array at the end of the ABD structure.
|
|
*
|
|
* +-------------------+
|
|
* | ABD (scattered) |
|
|
* | abd_flags = ... |
|
|
* | abd_size = ... |
|
|
* | abd_offset = 0 | +-----------+
|
|
* | abd_chunks[0] ----------------------------->| chunk 0 |
|
|
* | abd_chunks[1] ---------------------+ +-----------+
|
|
* | ... | | +-----------+
|
|
* | abd_chunks[N-1] ---------+ +------->| chunk 1 |
|
|
* +-------------------+ | +-----------+
|
|
* | ...
|
|
* | +-----------+
|
|
* +----------------->| chunk N-1 |
|
|
* +-----------+
|
|
*
|
|
* In addition to directly allocating a linear or scattered ABD, it is also
|
|
* possible to create an ABD by requesting the "sub-ABD" starting at an offset
|
|
* within an existing ABD. In linear buffers this is simple (set abd_buf of
|
|
* the new ABD to the starting point within the original raw buffer), but
|
|
* scattered ABDs are a little more complex. The new ABD makes a copy of the
|
|
* relevant abd_chunks pointers (but not the underlying data). However, to
|
|
* provide arbitrary rather than only chunk-aligned starting offsets, it also
|
|
* tracks an abd_offset field which represents the starting point of the data
|
|
* within the first chunk in abd_chunks. For both linear and scattered ABDs,
|
|
* creating an offset ABD marks the original ABD as the offset's parent, and the
|
|
* original ABD's abd_children refcount is incremented. This data allows us to
|
|
* ensure the root ABD isn't deleted before its children.
|
|
*
|
|
* Most consumers should never need to know what type of ABD they're using --
|
|
* the ABD public API ensures that it's possible to transparently switch from
|
|
* using a linear ABD to a scattered one when doing so would be beneficial.
|
|
*
|
|
* If you need to use the data within an ABD directly, if you know it's linear
|
|
* (because you allocated it) you can use abd_to_buf() to access the underlying
|
|
* raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
|
|
* which will allocate a raw buffer if necessary. Use the abd_return_buf*
|
|
* functions to return any raw buffers that are no longer necessary when you're
|
|
* done using them.
|
|
*
|
|
* There are a variety of ABD APIs that implement basic buffer operations:
|
|
* compare, copy, read, write, and fill with zeroes. If you need a custom
|
|
* function which progressively accesses the whole ABD, use the abd_iterate_*
|
|
* functions.
|
|
*
|
|
* As an additional feature, linear and scatter ABD's can be stitched together
|
|
* by using the gang ABD type (abd_alloc_gang()). This allows for multiple ABDs
|
|
* to be viewed as a singular ABD.
|
|
*
|
|
* It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
|
|
* B_FALSE.
|
|
*/
|
|
|
|
#include <sys/abd_impl.h>
|
|
#include <sys/param.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/zfs_znode.h>
|
|
|
|
/* see block comment above for description */
|
|
int zfs_abd_scatter_enabled = B_TRUE;
|
|
|
|
void
|
|
abd_verify(abd_t *abd)
|
|
{
|
|
#ifdef ZFS_DEBUG
|
|
if (abd_is_from_pages(abd)) {
|
|
ASSERT3U(abd->abd_size, <=, DMU_MAX_ACCESS);
|
|
} else {
|
|
ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
|
|
}
|
|
ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
|
|
ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
|
|
ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG |
|
|
ABD_FLAG_GANG_FREE | ABD_FLAG_ALLOCD | ABD_FLAG_FROM_PAGES));
|
|
IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
|
|
IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
|
|
if (abd_is_linear(abd)) {
|
|
ASSERT3U(abd->abd_size, >, 0);
|
|
ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL);
|
|
} else if (abd_is_gang(abd)) {
|
|
uint_t child_sizes = 0;
|
|
for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
|
|
cabd != NULL;
|
|
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
|
|
ASSERT(list_link_active(&cabd->abd_gang_link));
|
|
child_sizes += cabd->abd_size;
|
|
abd_verify(cabd);
|
|
}
|
|
ASSERT3U(abd->abd_size, ==, child_sizes);
|
|
} else {
|
|
ASSERT3U(abd->abd_size, >, 0);
|
|
abd_verify_scatter(abd);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
abd_init_struct(abd_t *abd)
|
|
{
|
|
list_link_init(&abd->abd_gang_link);
|
|
mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
|
|
abd->abd_flags = 0;
|
|
#ifdef ZFS_DEBUG
|
|
zfs_refcount_create(&abd->abd_children);
|
|
abd->abd_parent = NULL;
|
|
#endif
|
|
abd->abd_size = 0;
|
|
}
|
|
|
|
static void
|
|
abd_fini_struct(abd_t *abd)
|
|
{
|
|
mutex_destroy(&abd->abd_mtx);
|
|
ASSERT(!list_link_active(&abd->abd_gang_link));
|
|
#ifdef ZFS_DEBUG
|
|
zfs_refcount_destroy(&abd->abd_children);
|
|
#endif
|
|
}
|
|
|
|
abd_t *
|
|
abd_alloc_struct(size_t size)
|
|
{
|
|
abd_t *abd = abd_alloc_struct_impl(size);
|
|
abd_init_struct(abd);
|
|
abd->abd_flags |= ABD_FLAG_ALLOCD;
|
|
return (abd);
|
|
}
|
|
|
|
void
|
|
abd_free_struct(abd_t *abd)
|
|
{
|
|
abd_fini_struct(abd);
|
|
abd_free_struct_impl(abd);
|
|
}
|
|
|
|
/*
|
|
* Allocate an ABD, along with its own underlying data buffers. Use this if you
|
|
* don't care whether the ABD is linear or not.
|
|
*/
|
|
abd_t *
|
|
abd_alloc(size_t size, boolean_t is_metadata)
|
|
{
|
|
if (abd_size_alloc_linear(size))
|
|
return (abd_alloc_linear(size, is_metadata));
|
|
|
|
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
|
|
abd_t *abd = abd_alloc_struct(size);
|
|
abd->abd_flags |= ABD_FLAG_OWNER;
|
|
abd->abd_u.abd_scatter.abd_offset = 0;
|
|
abd_alloc_chunks(abd, size);
|
|
|
|
if (is_metadata) {
|
|
abd->abd_flags |= ABD_FLAG_META;
|
|
}
|
|
abd->abd_size = size;
|
|
|
|
abd_update_scatter_stats(abd, ABDSTAT_INCR);
|
|
|
|
return (abd);
|
|
}
|
|
|
|
/*
|
|
* Allocate an ABD that must be linear, along with its own underlying data
|
|
* buffer. Only use this when it would be very annoying to write your ABD
|
|
* consumer with a scattered ABD.
|
|
*/
|
|
abd_t *
|
|
abd_alloc_linear(size_t size, boolean_t is_metadata)
|
|
{
|
|
abd_t *abd = abd_alloc_struct(0);
|
|
|
|
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
|
|
abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
|
|
if (is_metadata) {
|
|
abd->abd_flags |= ABD_FLAG_META;
|
|
}
|
|
abd->abd_size = size;
|
|
|
|
if (is_metadata) {
|
|
ABD_LINEAR_BUF(abd) = zio_buf_alloc(size);
|
|
} else {
|
|
ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size);
|
|
}
|
|
|
|
abd_update_linear_stats(abd, ABDSTAT_INCR);
|
|
|
|
return (abd);
|
|
}
|
|
|
|
static void
|
|
abd_free_linear(abd_t *abd)
|
|
{
|
|
if (abd_is_linear_page(abd)) {
|
|
abd_free_linear_page(abd);
|
|
return;
|
|
}
|
|
|
|
if (abd->abd_flags & ABD_FLAG_META) {
|
|
zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
|
|
} else {
|
|
zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
|
|
}
|
|
|
|
abd_update_linear_stats(abd, ABDSTAT_DECR);
|
|
}
|
|
|
|
static void
|
|
abd_free_gang(abd_t *abd)
|
|
{
|
|
ASSERT(abd_is_gang(abd));
|
|
abd_t *cabd;
|
|
|
|
while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) {
|
|
/*
|
|
* We must acquire the child ABDs mutex to ensure that if it
|
|
* is being added to another gang ABD we will set the link
|
|
* as inactive when removing it from this gang ABD and before
|
|
* adding it to the other gang ABD.
|
|
*/
|
|
mutex_enter(&cabd->abd_mtx);
|
|
ASSERT(list_link_active(&cabd->abd_gang_link));
|
|
list_remove(&ABD_GANG(abd).abd_gang_chain, cabd);
|
|
mutex_exit(&cabd->abd_mtx);
|
|
if (cabd->abd_flags & ABD_FLAG_GANG_FREE)
|
|
abd_free(cabd);
|
|
}
|
|
list_destroy(&ABD_GANG(abd).abd_gang_chain);
|
|
}
|
|
|
|
static void
|
|
abd_free_scatter(abd_t *abd)
|
|
{
|
|
abd_free_chunks(abd);
|
|
abd_update_scatter_stats(abd, ABDSTAT_DECR);
|
|
}
|
|
|
|
/*
|
|
* Free an ABD. Use with any kind of abd: those created with abd_alloc_*()
|
|
* and abd_get_*(), including abd_get_offset_struct().
|
|
*
|
|
* If the ABD was created with abd_alloc_*(), the underlying data
|
|
* (scatterlist or linear buffer) will also be freed. (Subject to ownership
|
|
* changes via abd_*_ownership_of_buf().)
|
|
*
|
|
* Unless the ABD was created with abd_get_offset_struct(), the abd_t will
|
|
* also be freed.
|
|
*/
|
|
void
|
|
abd_free(abd_t *abd)
|
|
{
|
|
if (abd == NULL)
|
|
return;
|
|
|
|
abd_verify(abd);
|
|
#ifdef ZFS_DEBUG
|
|
IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL);
|
|
#endif
|
|
|
|
if (abd_is_gang(abd)) {
|
|
abd_free_gang(abd);
|
|
} else if (abd_is_linear(abd)) {
|
|
if (abd->abd_flags & ABD_FLAG_OWNER)
|
|
abd_free_linear(abd);
|
|
} else {
|
|
if (abd->abd_flags & ABD_FLAG_OWNER)
|
|
abd_free_scatter(abd);
|
|
}
|
|
|
|
#ifdef ZFS_DEBUG
|
|
if (abd->abd_parent != NULL) {
|
|
(void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
|
|
abd->abd_size, abd);
|
|
}
|
|
#endif
|
|
|
|
abd_fini_struct(abd);
|
|
if (abd->abd_flags & ABD_FLAG_ALLOCD)
|
|
abd_free_struct_impl(abd);
|
|
}
|
|
|
|
/*
|
|
* Allocate an ABD of the same format (same metadata flag, same scatterize
|
|
* setting) as another ABD.
|
|
*/
|
|
abd_t *
|
|
abd_alloc_sametype(abd_t *sabd, size_t size)
|
|
{
|
|
boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
|
|
if (abd_is_linear(sabd) &&
|
|
!abd_is_linear_page(sabd)) {
|
|
return (abd_alloc_linear(size, is_metadata));
|
|
} else {
|
|
return (abd_alloc(size, is_metadata));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create gang ABD that will be the head of a list of ABD's. This is used
|
|
* to "chain" scatter/gather lists together when constructing aggregated
|
|
* IO's. To free this abd, abd_free() must be called.
|
|
*/
|
|
abd_t *
|
|
abd_alloc_gang(void)
|
|
{
|
|
abd_t *abd = abd_alloc_struct(0);
|
|
abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER;
|
|
list_create(&ABD_GANG(abd).abd_gang_chain,
|
|
sizeof (abd_t), offsetof(abd_t, abd_gang_link));
|
|
return (abd);
|
|
}
|
|
|
|
/*
|
|
* Add a child gang ABD to a parent gang ABDs chained list.
|
|
*/
|
|
static void
|
|
abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
|
|
{
|
|
ASSERT(abd_is_gang(pabd));
|
|
ASSERT(abd_is_gang(cabd));
|
|
|
|
if (free_on_free) {
|
|
/*
|
|
* If the parent is responsible for freeing the child gang
|
|
* ABD we will just splice the child's children ABD list to
|
|
* the parent's list and immediately free the child gang ABD
|
|
* struct. The parent gang ABDs children from the child gang
|
|
* will retain all the free_on_free settings after being
|
|
* added to the parents list.
|
|
*/
|
|
#ifdef ZFS_DEBUG
|
|
/*
|
|
* If cabd had abd_parent, we have to drop it here. We can't
|
|
* transfer it to pabd, nor we can clear abd_size leaving it.
|
|
*/
|
|
if (cabd->abd_parent != NULL) {
|
|
(void) zfs_refcount_remove_many(
|
|
&cabd->abd_parent->abd_children,
|
|
cabd->abd_size, cabd);
|
|
cabd->abd_parent = NULL;
|
|
}
|
|
#endif
|
|
pabd->abd_size += cabd->abd_size;
|
|
cabd->abd_size = 0;
|
|
list_move_tail(&ABD_GANG(pabd).abd_gang_chain,
|
|
&ABD_GANG(cabd).abd_gang_chain);
|
|
ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain));
|
|
abd_verify(pabd);
|
|
abd_free(cabd);
|
|
} else {
|
|
for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain);
|
|
child != NULL;
|
|
child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) {
|
|
/*
|
|
* We always pass B_FALSE for free_on_free as it is the
|
|
* original child gang ABDs responsibility to determine
|
|
* if any of its child ABDs should be free'd on the call
|
|
* to abd_free().
|
|
*/
|
|
abd_gang_add(pabd, child, B_FALSE);
|
|
}
|
|
abd_verify(pabd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add a child ABD to a gang ABD's chained list.
|
|
*/
|
|
void
|
|
abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
|
|
{
|
|
ASSERT(abd_is_gang(pabd));
|
|
abd_t *child_abd = NULL;
|
|
|
|
/*
|
|
* If the child being added is a gang ABD, we will add the
|
|
* child's ABDs to the parent gang ABD. This allows us to account
|
|
* for the offset correctly in the parent gang ABD.
|
|
*/
|
|
if (abd_is_gang(cabd)) {
|
|
ASSERT(!list_link_active(&cabd->abd_gang_link));
|
|
return (abd_gang_add_gang(pabd, cabd, free_on_free));
|
|
}
|
|
ASSERT(!abd_is_gang(cabd));
|
|
|
|
/*
|
|
* In order to verify that an ABD is not already part of
|
|
* another gang ABD, we must lock the child ABD's abd_mtx
|
|
* to check its abd_gang_link status. We unlock the abd_mtx
|
|
* only after it is has been added to a gang ABD, which
|
|
* will update the abd_gang_link's status. See comment below
|
|
* for how an ABD can be in multiple gang ABD's simultaneously.
|
|
*/
|
|
mutex_enter(&cabd->abd_mtx);
|
|
if (list_link_active(&cabd->abd_gang_link)) {
|
|
/*
|
|
* If the child ABD is already part of another
|
|
* gang ABD then we must allocate a new
|
|
* ABD to use a separate link. We mark the newly
|
|
* allocated ABD with ABD_FLAG_GANG_FREE, before
|
|
* adding it to the gang ABD's list, to make the
|
|
* gang ABD aware that it is responsible to call
|
|
* abd_free(). We use abd_get_offset() in order
|
|
* to just allocate a new ABD but avoid copying the
|
|
* data over into the newly allocated ABD.
|
|
*
|
|
* An ABD may become part of multiple gang ABD's. For
|
|
* example, when writing ditto bocks, the same ABD
|
|
* is used to write 2 or 3 locations with 2 or 3
|
|
* zio_t's. Each of the zio's may be aggregated with
|
|
* different adjacent zio's. zio aggregation uses gang
|
|
* zio's, so the single ABD can become part of multiple
|
|
* gang zio's.
|
|
*
|
|
* The ASSERT below is to make sure that if
|
|
* free_on_free is passed as B_TRUE, the ABD can
|
|
* not be in multiple gang ABD's. The gang ABD
|
|
* can not be responsible for cleaning up the child
|
|
* ABD memory allocation if the ABD can be in
|
|
* multiple gang ABD's at one time.
|
|
*/
|
|
ASSERT3B(free_on_free, ==, B_FALSE);
|
|
child_abd = abd_get_offset(cabd, 0);
|
|
child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
|
|
} else {
|
|
child_abd = cabd;
|
|
if (free_on_free)
|
|
child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
|
|
}
|
|
ASSERT3P(child_abd, !=, NULL);
|
|
|
|
list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd);
|
|
mutex_exit(&cabd->abd_mtx);
|
|
pabd->abd_size += child_abd->abd_size;
|
|
}
|
|
|
|
/*
|
|
* Locate the ABD for the supplied offset in the gang ABD.
|
|
* Return a new offset relative to the returned ABD.
|
|
*/
|
|
abd_t *
|
|
abd_gang_get_offset(abd_t *abd, size_t *off)
|
|
{
|
|
abd_t *cabd;
|
|
|
|
ASSERT(abd_is_gang(abd));
|
|
ASSERT3U(*off, <, abd->abd_size);
|
|
for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL;
|
|
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
|
|
if (*off >= cabd->abd_size)
|
|
*off -= cabd->abd_size;
|
|
else
|
|
return (cabd);
|
|
}
|
|
VERIFY3P(cabd, !=, NULL);
|
|
return (cabd);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new ABD, using the provided struct (if non-NULL, and if
|
|
* circumstances allow - otherwise allocate the struct). The returned ABD will
|
|
* point to offset off of sabd. It shares the underlying buffer data with sabd.
|
|
* Use abd_free() to free. sabd must not be freed while any derived ABDs exist.
|
|
*/
|
|
static abd_t *
|
|
abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size)
|
|
{
|
|
abd_verify(sabd);
|
|
ASSERT3U(off + size, <=, sabd->abd_size);
|
|
|
|
if (abd_is_linear(sabd)) {
|
|
if (abd == NULL)
|
|
abd = abd_alloc_struct(0);
|
|
/*
|
|
* Even if this buf is filesystem metadata, we only track that
|
|
* if we own the underlying data buffer, which is not true in
|
|
* this case. Therefore, we don't ever use ABD_FLAG_META here.
|
|
*/
|
|
abd->abd_flags |= ABD_FLAG_LINEAR;
|
|
|
|
/*
|
|
* User pages from Direct I/O requests may be in a single page
|
|
* (ABD_FLAG_LINEAR_PAGE), and we must make sure to still flag
|
|
* that here for abd. This is required because we have to be
|
|
* careful when borrowing the buffer from the ABD because we
|
|
* can not place user pages under write protection on Linux.
|
|
* See the comments in abd_os.c for abd_borrow_buf(),
|
|
* abd_borrow_buf_copy(), abd_return_buf() and
|
|
* abd_return_buf_copy().
|
|
*/
|
|
if (abd_is_from_pages(sabd)) {
|
|
abd->abd_flags |= ABD_FLAG_FROM_PAGES |
|
|
ABD_FLAG_LINEAR_PAGE;
|
|
}
|
|
|
|
ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off;
|
|
} else if (abd_is_gang(sabd)) {
|
|
size_t left = size;
|
|
if (abd == NULL) {
|
|
abd = abd_alloc_gang();
|
|
} else {
|
|
abd->abd_flags |= ABD_FLAG_GANG;
|
|
list_create(&ABD_GANG(abd).abd_gang_chain,
|
|
sizeof (abd_t), offsetof(abd_t, abd_gang_link));
|
|
}
|
|
|
|
abd->abd_flags &= ~ABD_FLAG_OWNER;
|
|
for (abd_t *cabd = abd_gang_get_offset(sabd, &off);
|
|
cabd != NULL && left > 0;
|
|
cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) {
|
|
int csize = MIN(left, cabd->abd_size - off);
|
|
|
|
abd_t *nabd = abd_get_offset_size(cabd, off, csize);
|
|
abd_gang_add(abd, nabd, B_TRUE);
|
|
left -= csize;
|
|
off = 0;
|
|
}
|
|
ASSERT3U(left, ==, 0);
|
|
} else {
|
|
abd = abd_get_offset_scatter(abd, sabd, off, size);
|
|
}
|
|
|
|
ASSERT3P(abd, !=, NULL);
|
|
abd->abd_size = size;
|
|
#ifdef ZFS_DEBUG
|
|
abd->abd_parent = sabd;
|
|
(void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
|
|
#endif
|
|
return (abd);
|
|
}
|
|
|
|
/*
|
|
* Like abd_get_offset_size(), but memory for the abd_t is provided by the
|
|
* caller. Using this routine can improve performance by avoiding the cost
|
|
* of allocating memory for the abd_t struct, and updating the abd stats.
|
|
* Usually, the provided abd is returned, but in some circumstances (FreeBSD,
|
|
* if sabd is scatter and size is more than 2 pages) a new abd_t may need to
|
|
* be allocated. Therefore callers should be careful to use the returned
|
|
* abd_t*.
|
|
*/
|
|
abd_t *
|
|
abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size)
|
|
{
|
|
abd_t *result;
|
|
abd_init_struct(abd);
|
|
result = abd_get_offset_impl(abd, sabd, off, size);
|
|
if (result != abd)
|
|
abd_fini_struct(abd);
|
|
return (result);
|
|
}
|
|
|
|
abd_t *
|
|
abd_get_offset(abd_t *sabd, size_t off)
|
|
{
|
|
size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
|
|
VERIFY3U(size, >, 0);
|
|
return (abd_get_offset_impl(NULL, sabd, off, size));
|
|
}
|
|
|
|
abd_t *
|
|
abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
|
|
{
|
|
ASSERT3U(off + size, <=, sabd->abd_size);
|
|
return (abd_get_offset_impl(NULL, sabd, off, size));
|
|
}
|
|
|
|
/*
|
|
* Return a size scatter ABD containing only zeros.
|
|
*/
|
|
abd_t *
|
|
abd_get_zeros(size_t size)
|
|
{
|
|
ASSERT3P(abd_zero_scatter, !=, NULL);
|
|
ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
return (abd_get_offset_size(abd_zero_scatter, 0, size));
|
|
}
|
|
|
|
/*
|
|
* Create a linear ABD for an existing buf.
|
|
*/
|
|
static abd_t *
|
|
abd_get_from_buf_impl(abd_t *abd, void *buf, size_t size)
|
|
{
|
|
VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
|
|
|
|
/*
|
|
* Even if this buf is filesystem metadata, we only track that if we
|
|
* own the underlying data buffer, which is not true in this case.
|
|
* Therefore, we don't ever use ABD_FLAG_META here.
|
|
*/
|
|
abd->abd_flags |= ABD_FLAG_LINEAR;
|
|
abd->abd_size = size;
|
|
|
|
ABD_LINEAR_BUF(abd) = buf;
|
|
|
|
return (abd);
|
|
}
|
|
|
|
abd_t *
|
|
abd_get_from_buf(void *buf, size_t size)
|
|
{
|
|
abd_t *abd = abd_alloc_struct(0);
|
|
return (abd_get_from_buf_impl(abd, buf, size));
|
|
}
|
|
|
|
abd_t *
|
|
abd_get_from_buf_struct(abd_t *abd, void *buf, size_t size)
|
|
{
|
|
abd_init_struct(abd);
|
|
return (abd_get_from_buf_impl(abd, buf, size));
|
|
}
|
|
|
|
/*
|
|
* Get the raw buffer associated with a linear ABD.
|
|
*/
|
|
void *
|
|
abd_to_buf(abd_t *abd)
|
|
{
|
|
ASSERT(abd_is_linear(abd));
|
|
abd_verify(abd);
|
|
return (ABD_LINEAR_BUF(abd));
|
|
}
|
|
|
|
void
|
|
abd_release_ownership_of_buf(abd_t *abd)
|
|
{
|
|
ASSERT(abd_is_linear(abd));
|
|
ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
|
|
|
|
/*
|
|
* abd_free() needs to handle LINEAR_PAGE ABD's specially.
|
|
* Since that flag does not survive the
|
|
* abd_release_ownership_of_buf() -> abd_get_from_buf() ->
|
|
* abd_take_ownership_of_buf() sequence, we don't allow releasing
|
|
* these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
|
|
*/
|
|
ASSERT(!abd_is_linear_page(abd));
|
|
|
|
abd_verify(abd);
|
|
|
|
abd->abd_flags &= ~ABD_FLAG_OWNER;
|
|
/* Disable this flag since we no longer own the data buffer */
|
|
abd->abd_flags &= ~ABD_FLAG_META;
|
|
|
|
abd_update_linear_stats(abd, ABDSTAT_DECR);
|
|
}
|
|
|
|
|
|
/*
|
|
* Give this ABD ownership of the buffer that it's storing. Can only be used on
|
|
* linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
|
|
* with abd_alloc_linear() which subsequently released ownership of their buf
|
|
* with abd_release_ownership_of_buf().
|
|
*/
|
|
void
|
|
abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
|
|
{
|
|
ASSERT(abd_is_linear(abd));
|
|
ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
|
|
abd_verify(abd);
|
|
|
|
abd->abd_flags |= ABD_FLAG_OWNER;
|
|
if (is_metadata) {
|
|
abd->abd_flags |= ABD_FLAG_META;
|
|
}
|
|
|
|
abd_update_linear_stats(abd, ABDSTAT_INCR);
|
|
}
|
|
|
|
/*
|
|
* Initializes an abd_iter based on whether the abd is a gang ABD
|
|
* or just a single ABD.
|
|
*/
|
|
static inline abd_t *
|
|
abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off)
|
|
{
|
|
abd_t *cabd = NULL;
|
|
|
|
if (abd_is_gang(abd)) {
|
|
cabd = abd_gang_get_offset(abd, &off);
|
|
if (cabd) {
|
|
abd_iter_init(aiter, cabd);
|
|
abd_iter_advance(aiter, off);
|
|
}
|
|
} else {
|
|
abd_iter_init(aiter, abd);
|
|
abd_iter_advance(aiter, off);
|
|
}
|
|
return (cabd);
|
|
}
|
|
|
|
/*
|
|
* Advances an abd_iter. We have to be careful with gang ABD as
|
|
* advancing could mean that we are at the end of a particular ABD and
|
|
* must grab the ABD in the gang ABD's list.
|
|
*/
|
|
static inline abd_t *
|
|
abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter,
|
|
size_t len)
|
|
{
|
|
abd_iter_advance(aiter, len);
|
|
if (abd_is_gang(abd) && abd_iter_at_end(aiter)) {
|
|
ASSERT3P(cabd, !=, NULL);
|
|
cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd);
|
|
if (cabd) {
|
|
abd_iter_init(aiter, cabd);
|
|
abd_iter_advance(aiter, 0);
|
|
}
|
|
}
|
|
return (cabd);
|
|
}
|
|
|
|
int
|
|
abd_iterate_func(abd_t *abd, size_t off, size_t size,
|
|
abd_iter_func_t *func, void *private)
|
|
{
|
|
struct abd_iter aiter;
|
|
int ret = 0;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
abd_verify(abd);
|
|
ASSERT3U(off + size, <=, abd->abd_size);
|
|
|
|
abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
|
|
|
|
while (size > 0) {
|
|
IMPLY(abd_is_gang(abd), c_abd != NULL);
|
|
|
|
abd_iter_map(&aiter);
|
|
|
|
size_t len = MIN(aiter.iter_mapsize, size);
|
|
ASSERT3U(len, >, 0);
|
|
|
|
ret = func(aiter.iter_mapaddr, len, private);
|
|
|
|
abd_iter_unmap(&aiter);
|
|
|
|
if (ret != 0)
|
|
break;
|
|
|
|
size -= len;
|
|
c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
#if defined(__linux__) && defined(_KERNEL)
|
|
int
|
|
abd_iterate_page_func(abd_t *abd, size_t off, size_t size,
|
|
abd_iter_page_func_t *func, void *private)
|
|
{
|
|
struct abd_iter aiter;
|
|
int ret = 0;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
abd_verify(abd);
|
|
ASSERT3U(off + size, <=, abd->abd_size);
|
|
|
|
abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
|
|
|
|
while (size > 0) {
|
|
IMPLY(abd_is_gang(abd), c_abd != NULL);
|
|
|
|
abd_iter_page(&aiter);
|
|
|
|
size_t len = MIN(aiter.iter_page_dsize, size);
|
|
ASSERT3U(len, >, 0);
|
|
|
|
ret = func(aiter.iter_page, aiter.iter_page_doff,
|
|
len, private);
|
|
|
|
aiter.iter_page = NULL;
|
|
aiter.iter_page_doff = 0;
|
|
aiter.iter_page_dsize = 0;
|
|
|
|
if (ret != 0)
|
|
break;
|
|
|
|
size -= len;
|
|
c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
#endif
|
|
|
|
struct buf_arg {
|
|
void *arg_buf;
|
|
};
|
|
|
|
static int
|
|
abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
|
|
{
|
|
struct buf_arg *ba_ptr = private;
|
|
|
|
(void) memcpy(ba_ptr->arg_buf, buf, size);
|
|
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Copy abd to buf. (off is the offset in abd.)
|
|
*/
|
|
void
|
|
abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
|
|
{
|
|
struct buf_arg ba_ptr = { buf };
|
|
|
|
(void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
|
|
&ba_ptr);
|
|
}
|
|
|
|
static int
|
|
abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
|
|
{
|
|
int ret;
|
|
struct buf_arg *ba_ptr = private;
|
|
|
|
ret = memcmp(buf, ba_ptr->arg_buf, size);
|
|
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Compare the contents of abd to buf. (off is the offset in abd.)
|
|
*/
|
|
int
|
|
abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
|
|
{
|
|
struct buf_arg ba_ptr = { (void *) buf };
|
|
|
|
return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
|
|
}
|
|
|
|
static int
|
|
abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
|
|
{
|
|
struct buf_arg *ba_ptr = private;
|
|
|
|
(void) memcpy(buf, ba_ptr->arg_buf, size);
|
|
ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Copy from buf to abd. (off is the offset in abd.)
|
|
*/
|
|
void
|
|
abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
|
|
{
|
|
struct buf_arg ba_ptr = { (void *) buf };
|
|
|
|
(void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
|
|
&ba_ptr);
|
|
}
|
|
|
|
static int
|
|
abd_zero_off_cb(void *buf, size_t size, void *private)
|
|
{
|
|
(void) private;
|
|
(void) memset(buf, 0, size);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Zero out the abd from a particular offset to the end.
|
|
*/
|
|
void
|
|
abd_zero_off(abd_t *abd, size_t off, size_t size)
|
|
{
|
|
(void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
|
|
}
|
|
|
|
/*
|
|
* Iterate over two ABDs and call func incrementally on the two ABDs' data in
|
|
* equal-sized chunks (passed to func as raw buffers). func could be called many
|
|
* times during this iteration.
|
|
*/
|
|
int
|
|
abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
|
|
size_t size, abd_iter_func2_t *func, void *private)
|
|
{
|
|
int ret = 0;
|
|
struct abd_iter daiter, saiter;
|
|
abd_t *c_dabd, *c_sabd;
|
|
|
|
if (size == 0)
|
|
return (0);
|
|
|
|
abd_verify(dabd);
|
|
abd_verify(sabd);
|
|
|
|
ASSERT3U(doff + size, <=, dabd->abd_size);
|
|
ASSERT3U(soff + size, <=, sabd->abd_size);
|
|
|
|
c_dabd = abd_init_abd_iter(dabd, &daiter, doff);
|
|
c_sabd = abd_init_abd_iter(sabd, &saiter, soff);
|
|
|
|
while (size > 0) {
|
|
IMPLY(abd_is_gang(dabd), c_dabd != NULL);
|
|
IMPLY(abd_is_gang(sabd), c_sabd != NULL);
|
|
|
|
abd_iter_map(&daiter);
|
|
abd_iter_map(&saiter);
|
|
|
|
size_t dlen = MIN(daiter.iter_mapsize, size);
|
|
size_t slen = MIN(saiter.iter_mapsize, size);
|
|
size_t len = MIN(dlen, slen);
|
|
ASSERT(dlen > 0 || slen > 0);
|
|
|
|
ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
|
|
private);
|
|
|
|
abd_iter_unmap(&saiter);
|
|
abd_iter_unmap(&daiter);
|
|
|
|
if (ret != 0)
|
|
break;
|
|
|
|
size -= len;
|
|
c_dabd =
|
|
abd_advance_abd_iter(dabd, c_dabd, &daiter, len);
|
|
c_sabd =
|
|
abd_advance_abd_iter(sabd, c_sabd, &saiter, len);
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
|
|
{
|
|
(void) private;
|
|
(void) memcpy(dbuf, sbuf, size);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Copy from sabd to dabd starting from soff and doff.
|
|
*/
|
|
void
|
|
abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
|
|
{
|
|
(void) abd_iterate_func2(dabd, sabd, doff, soff, size,
|
|
abd_copy_off_cb, NULL);
|
|
}
|
|
|
|
static int
|
|
abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
|
|
{
|
|
(void) private;
|
|
return (memcmp(bufa, bufb, size));
|
|
}
|
|
|
|
/*
|
|
* Compares the contents of two ABDs.
|
|
*/
|
|
int
|
|
abd_cmp(abd_t *dabd, abd_t *sabd)
|
|
{
|
|
ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
|
|
return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
|
|
abd_cmp_cb, NULL));
|
|
}
|
|
|
|
/*
|
|
* Check if ABD content is all-zeroes.
|
|
*/
|
|
static int
|
|
abd_cmp_zero_off_cb(void *data, size_t len, void *private)
|
|
{
|
|
(void) private;
|
|
|
|
/* This function can only check whole uint64s. Enforce that. */
|
|
ASSERT0(P2PHASE(len, 8));
|
|
|
|
uint64_t *end = (uint64_t *)((char *)data + len);
|
|
for (uint64_t *word = (uint64_t *)data; word < end; word++)
|
|
if (*word != 0)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
abd_cmp_zero_off(abd_t *abd, size_t off, size_t size)
|
|
{
|
|
return (abd_iterate_func(abd, off, size, abd_cmp_zero_off_cb, NULL));
|
|
}
|
|
|
|
/*
|
|
* Iterate over code ABDs and a data ABD and call @func_raidz_gen.
|
|
*
|
|
* @cabds parity ABDs, must have equal size
|
|
* @dabd data ABD. Can be NULL (in this case @dsize = 0)
|
|
* @func_raidz_gen should be implemented so that its behaviour
|
|
* is the same when taking linear and when taking scatter
|
|
*/
|
|
void
|
|
abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, size_t off,
|
|
size_t csize, size_t dsize, const unsigned parity,
|
|
void (*func_raidz_gen)(void **, const void *, size_t, size_t))
|
|
{
|
|
int i;
|
|
size_t len, dlen;
|
|
struct abd_iter caiters[3];
|
|
struct abd_iter daiter;
|
|
void *caddrs[3], *daddr;
|
|
unsigned long flags __maybe_unused = 0;
|
|
abd_t *c_cabds[3];
|
|
abd_t *c_dabd = NULL;
|
|
|
|
ASSERT3U(parity, <=, 3);
|
|
for (i = 0; i < parity; i++) {
|
|
abd_verify(cabds[i]);
|
|
ASSERT3U(off + csize, <=, cabds[i]->abd_size);
|
|
c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], off);
|
|
}
|
|
|
|
if (dsize > 0) {
|
|
ASSERT(dabd);
|
|
abd_verify(dabd);
|
|
ASSERT3U(off + dsize, <=, dabd->abd_size);
|
|
c_dabd = abd_init_abd_iter(dabd, &daiter, off);
|
|
}
|
|
|
|
abd_enter_critical(flags);
|
|
while (csize > 0) {
|
|
len = csize;
|
|
for (i = 0; i < parity; i++) {
|
|
IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL);
|
|
abd_iter_map(&caiters[i]);
|
|
caddrs[i] = caiters[i].iter_mapaddr;
|
|
len = MIN(caiters[i].iter_mapsize, len);
|
|
}
|
|
|
|
if (dsize > 0) {
|
|
IMPLY(abd_is_gang(dabd), c_dabd != NULL);
|
|
abd_iter_map(&daiter);
|
|
daddr = daiter.iter_mapaddr;
|
|
len = MIN(daiter.iter_mapsize, len);
|
|
dlen = len;
|
|
} else {
|
|
daddr = NULL;
|
|
dlen = 0;
|
|
}
|
|
|
|
/* must be progressive */
|
|
ASSERT3U(len, >, 0);
|
|
/*
|
|
* The iterated function likely will not do well if each
|
|
* segment except the last one is not multiple of 512 (raidz).
|
|
*/
|
|
ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
|
|
|
|
func_raidz_gen(caddrs, daddr, len, dlen);
|
|
|
|
for (i = parity-1; i >= 0; i--) {
|
|
abd_iter_unmap(&caiters[i]);
|
|
c_cabds[i] =
|
|
abd_advance_abd_iter(cabds[i], c_cabds[i],
|
|
&caiters[i], len);
|
|
}
|
|
|
|
if (dsize > 0) {
|
|
abd_iter_unmap(&daiter);
|
|
c_dabd =
|
|
abd_advance_abd_iter(dabd, c_dabd, &daiter,
|
|
dlen);
|
|
dsize -= dlen;
|
|
}
|
|
|
|
csize -= len;
|
|
}
|
|
abd_exit_critical(flags);
|
|
}
|
|
|
|
/*
|
|
* Iterate over code ABDs and data reconstruction target ABDs and call
|
|
* @func_raidz_rec. Function maps at most 6 pages atomically.
|
|
*
|
|
* @cabds parity ABDs, must have equal size
|
|
* @tabds rec target ABDs, at most 3
|
|
* @tsize size of data target columns
|
|
* @func_raidz_rec expects syndrome data in target columns. Function
|
|
* reconstructs data and overwrites target columns.
|
|
*/
|
|
void
|
|
abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
|
|
size_t tsize, const unsigned parity,
|
|
void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
|
|
const unsigned *mul),
|
|
const unsigned *mul)
|
|
{
|
|
int i;
|
|
size_t len;
|
|
struct abd_iter citers[3];
|
|
struct abd_iter xiters[3];
|
|
void *caddrs[3], *xaddrs[3];
|
|
unsigned long flags __maybe_unused = 0;
|
|
abd_t *c_cabds[3];
|
|
abd_t *c_tabds[3];
|
|
|
|
ASSERT3U(parity, <=, 3);
|
|
|
|
for (i = 0; i < parity; i++) {
|
|
abd_verify(cabds[i]);
|
|
abd_verify(tabds[i]);
|
|
ASSERT3U(tsize, <=, cabds[i]->abd_size);
|
|
ASSERT3U(tsize, <=, tabds[i]->abd_size);
|
|
c_cabds[i] =
|
|
abd_init_abd_iter(cabds[i], &citers[i], 0);
|
|
c_tabds[i] =
|
|
abd_init_abd_iter(tabds[i], &xiters[i], 0);
|
|
}
|
|
|
|
abd_enter_critical(flags);
|
|
while (tsize > 0) {
|
|
len = tsize;
|
|
for (i = 0; i < parity; i++) {
|
|
IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL);
|
|
IMPLY(abd_is_gang(tabds[i]), c_tabds[i] != NULL);
|
|
abd_iter_map(&citers[i]);
|
|
abd_iter_map(&xiters[i]);
|
|
caddrs[i] = citers[i].iter_mapaddr;
|
|
xaddrs[i] = xiters[i].iter_mapaddr;
|
|
len = MIN(citers[i].iter_mapsize, len);
|
|
len = MIN(xiters[i].iter_mapsize, len);
|
|
}
|
|
|
|
/* must be progressive */
|
|
ASSERT3S(len, >, 0);
|
|
/*
|
|
* The iterated function likely will not do well if each
|
|
* segment except the last one is not multiple of 512 (raidz).
|
|
*/
|
|
ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
|
|
|
|
func_raidz_rec(xaddrs, len, caddrs, mul);
|
|
|
|
for (i = parity-1; i >= 0; i--) {
|
|
abd_iter_unmap(&xiters[i]);
|
|
abd_iter_unmap(&citers[i]);
|
|
c_tabds[i] =
|
|
abd_advance_abd_iter(tabds[i], c_tabds[i],
|
|
&xiters[i], len);
|
|
c_cabds[i] =
|
|
abd_advance_abd_iter(cabds[i], c_cabds[i],
|
|
&citers[i], len);
|
|
}
|
|
|
|
tsize -= len;
|
|
ASSERT3S(tsize, >=, 0);
|
|
}
|
|
abd_exit_critical(flags);
|
|
}
|