mirror_zfs/module/zfs/zfs_vnops.c
Brian Behlendorf 99c564bc48 Use correct ASSERT3* variant
ASSERT3P should be used instead of ASSERT3U when comparing
pointers.  Using ASSERT3U with the cast causes a compiler
warning for 32-bit builds which is fatal with --enable-debug.
2011-02-23 15:03:30 -08:00

4382 lines
101 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/* Portions Copyright 2007 Jeremy Teo */
/* Portions Copyright 2010 Robert Milkowski */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/resource.h>
#include <sys/vfs.h>
#include <sys/vfs_opreg.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/taskq.h>
#include <sys/uio.h>
#include <sys/vmsystm.h>
#include <sys/atomic.h>
#include <vm/pvn.h>
#include <sys/pathname.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/unistd.h>
#include <sys/zfs_dir.h>
#include <sys/zfs_acl.h>
#include <sys/zfs_ioctl.h>
#include <sys/fs/zfs.h>
#include <sys/dmu.h>
#include <sys/dmu_objset.h>
#include <sys/spa.h>
#include <sys/txg.h>
#include <sys/dbuf.h>
#include <sys/zap.h>
#include <sys/sa.h>
#include <sys/dirent.h>
#include <sys/policy.h>
#include <sys/sunddi.h>
#include <sys/sid.h>
#include <sys/mode.h>
#include "fs/fs_subr.h"
#include <sys/zfs_fuid.h>
#include <sys/zfs_sa.h>
#include <sys/zfs_vnops.h>
#include <sys/dnlc.h>
#include <sys/zfs_rlock.h>
#include <sys/extdirent.h>
#include <sys/kidmap.h>
#include <sys/cred.h>
#include <sys/attr.h>
/*
* Programming rules.
*
* Each vnode op performs some logical unit of work. To do this, the ZPL must
* properly lock its in-core state, create a DMU transaction, do the work,
* record this work in the intent log (ZIL), commit the DMU transaction,
* and wait for the intent log to commit if it is a synchronous operation.
* Moreover, the vnode ops must work in both normal and log replay context.
* The ordering of events is important to avoid deadlocks and references
* to freed memory. The example below illustrates the following Big Rules:
*
* (1) A check must be made in each zfs thread for a mounted file system.
* This is done avoiding races using ZFS_ENTER(zsb).
* A ZFS_EXIT(zsb) is needed before all returns. Any znodes
* must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
* can return EIO from the calling function.
*
* (2) iput() should always be the last thing except for zil_commit()
* (if necessary) and ZFS_EXIT(). This is for 3 reasons:
* First, if it's the last reference, the vnode/znode
* can be freed, so the zp may point to freed memory. Second, the last
* reference will call zfs_zinactive(), which may induce a lot of work --
* pushing cached pages (which acquires range locks) and syncing out
* cached atime changes. Third, zfs_zinactive() may require a new tx,
* which could deadlock the system if you were already holding one.
* If you must call iput() within a tx then use iput_ASYNC().
*
* (3) All range locks must be grabbed before calling dmu_tx_assign(),
* as they can span dmu_tx_assign() calls.
*
* (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
* This is critical because we don't want to block while holding locks.
* Note, in particular, that if a lock is sometimes acquired before
* the tx assigns, and sometimes after (e.g. z_lock), then failing to
* use a non-blocking assign can deadlock the system. The scenario:
*
* Thread A has grabbed a lock before calling dmu_tx_assign().
* Thread B is in an already-assigned tx, and blocks for this lock.
* Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
* forever, because the previous txg can't quiesce until B's tx commits.
*
* If dmu_tx_assign() returns ERESTART and zsb->z_assign is TXG_NOWAIT,
* then drop all locks, call dmu_tx_wait(), and try again.
*
* (5) If the operation succeeded, generate the intent log entry for it
* before dropping locks. This ensures that the ordering of events
* in the intent log matches the order in which they actually occurred.
* During ZIL replay the zfs_log_* functions will update the sequence
* number to indicate the zil transaction has replayed.
*
* (6) At the end of each vnode op, the DMU tx must always commit,
* regardless of whether there were any errors.
*
* (7) After dropping all locks, invoke zil_commit(zilog, foid)
* to ensure that synchronous semantics are provided when necessary.
*
* In general, this is how things should be ordered in each vnode op:
*
* ZFS_ENTER(zsb); // exit if unmounted
* top:
* zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
* rw_enter(...); // grab any other locks you need
* tx = dmu_tx_create(...); // get DMU tx
* dmu_tx_hold_*(); // hold each object you might modify
* error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign
* if (error) {
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
* iput(...); // release held vnodes
* if (error == ERESTART) {
* dmu_tx_wait(tx);
* dmu_tx_abort(tx);
* goto top;
* }
* dmu_tx_abort(tx); // abort DMU tx
* ZFS_EXIT(zsb); // finished in zfs
* return (error); // really out of space
* }
* error = do_real_work(); // do whatever this VOP does
* if (error == 0)
* zfs_log_*(...); // on success, make ZIL entry
* dmu_tx_commit(tx); // commit DMU tx -- error or not
* rw_exit(...); // drop locks
* zfs_dirent_unlock(dl); // unlock directory entry
* iput(...); // release held vnodes
* zil_commit(zilog, foid); // synchronous when necessary
* ZFS_EXIT(zsb); // finished in zfs
* return (error); // done, report error
*/
#if defined(_KERNEL)
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Write: If we find a memory mapped page, we write to *both*
* the page and the dmu buffer.
*/
static void
update_pages(struct inode *ip, int64_t start, int len,
objset_t *os, uint64_t oid)
{
struct address_space *mp = ip->i_mapping;
struct page *pp;
uint64_t nbytes;
int64_t off;
void *pb;
off = start & (PAGE_CACHE_SIZE-1);
for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) {
nbytes = MIN(PAGE_CACHE_SIZE - off, len);
pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT);
if (pp) {
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
pb = kmap(pp);
(void) dmu_read(os, oid, start+off, nbytes, pb+off,
DMU_READ_PREFETCH);
kunmap(pp);
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
mark_page_accessed(pp);
SetPageUptodate(pp);
ClearPageError(pp);
unlock_page(pp);
page_cache_release(pp);
}
len -= nbytes;
off = 0;
}
}
/*
* When a file is memory mapped, we must keep the IO data synchronized
* between the DMU cache and the memory mapped pages. What this means:
*
* On Read: We "read" preferentially from memory mapped pages,
* else we default from the dmu buffer.
*
* NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
* the file is memory mapped.
*/
static int
mappedread(struct inode *ip, int nbytes, uio_t *uio)
{
struct address_space *mp = ip->i_mapping;
struct page *pp;
znode_t *zp = ITOZ(ip);
objset_t *os = ITOZSB(ip)->z_os;
int64_t start, off;
uint64_t bytes;
int len = nbytes;
int error = 0;
void *pb;
start = uio->uio_loffset;
off = start & (PAGE_CACHE_SIZE-1);
for (start &= PAGE_CACHE_MASK; len > 0; start += PAGE_CACHE_SIZE) {
bytes = MIN(PAGE_CACHE_SIZE - off, len);
pp = find_lock_page(mp, start >> PAGE_CACHE_SHIFT);
if (pp) {
ASSERT(PageUptodate(pp));
pb = kmap(pp);
error = uiomove(pb + off, bytes, UIO_READ, uio);
kunmap(pp);
if (mapping_writably_mapped(mp))
flush_dcache_page(pp);
mark_page_accessed(pp);
unlock_page(pp);
page_cache_release(pp);
} else {
error = dmu_read_uio(os, zp->z_id, uio, bytes);
}
len -= bytes;
off = 0;
if (error)
break;
}
return (error);
}
#endif /* _KERNEL */
offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
/*
* Read bytes from specified file into supplied buffer.
*
* IN: ip - inode of file to be read from.
* uio - structure supplying read location, range info,
* and return buffer.
* ioflag - FSYNC flags; used to provide FRSYNC semantics.
* O_DIRECT flag; used to bypass page cache.
* cr - credentials of caller.
*
* OUT: uio - updated offset and range, buffer filled.
*
* RETURN: 0 if success
* error code if failure
*
* Side Effects:
* inode - atime updated if byte count > 0
*/
/* ARGSUSED */
int
zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
objset_t *os;
ssize_t n, nbytes;
int error = 0;
rl_t *rl;
#ifdef HAVE_UIO_ZEROCOPY
xuio_t *xuio = NULL;
#endif /* HAVE_UIO_ZEROCOPY */
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
os = zsb->z_os;
if (zp->z_pflags & ZFS_AV_QUARANTINED) {
ZFS_EXIT(zsb);
return (EACCES);
}
/*
* Validate file offset
*/
if (uio->uio_loffset < (offset_t)0) {
ZFS_EXIT(zsb);
return (EINVAL);
}
/*
* Fasttrack empty reads
*/
if (uio->uio_resid == 0) {
ZFS_EXIT(zsb);
return (0);
}
#ifdef HAVE_MANDLOCKS
/*
* Check for mandatory locks
*/
if (MANDMODE(zp->z_mode)) {
if (error = chklock(ip, FREAD,
uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
ZFS_EXIT(zsb);
return (error);
}
}
#endif /* HAVE_MANDLOCK */
/*
* If we're in FRSYNC mode, sync out this znode before reading it.
*/
if (ioflag & FRSYNC || zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zsb->z_log, zp->z_id);
/*
* Lock the range against changes.
*/
rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
/*
* If we are reading past end-of-file we can skip
* to the end; but we might still need to set atime.
*/
if (uio->uio_loffset >= zp->z_size) {
error = 0;
goto out;
}
ASSERT(uio->uio_loffset < zp->z_size);
n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
#ifdef HAVE_UIO_ZEROCOPY
if ((uio->uio_extflg == UIO_XUIO) &&
(((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
int nblk;
int blksz = zp->z_blksz;
uint64_t offset = uio->uio_loffset;
xuio = (xuio_t *)uio;
if ((ISP2(blksz))) {
nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
blksz)) / blksz;
} else {
ASSERT(offset + n <= blksz);
nblk = 1;
}
(void) dmu_xuio_init(xuio, nblk);
if (vn_has_cached_data(ip)) {
/*
* For simplicity, we always allocate a full buffer
* even if we only expect to read a portion of a block.
*/
while (--nblk >= 0) {
(void) dmu_xuio_add(xuio,
dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
blksz), 0, blksz);
}
}
}
#endif /* HAVE_UIO_ZEROCOPY */
while (n > 0) {
nbytes = MIN(n, zfs_read_chunk_size -
P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
if (zp->z_is_mapped && !(ioflag & O_DIRECT))
error = mappedread(ip, nbytes, uio);
else
error = dmu_read_uio(os, zp->z_id, uio, nbytes);
if (error) {
/* convert checksum errors into IO errors */
if (error == ECKSUM)
error = EIO;
break;
}
n -= nbytes;
}
out:
zfs_range_unlock(rl);
ZFS_ACCESSTIME_STAMP(zsb, zp);
zfs_inode_update(zp);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_read);
/*
* Write the bytes to a file.
*
* IN: ip - inode of file to be written to.
* uio - structure supplying write location, range info,
* and data buffer.
* ioflag - FAPPEND flag set if in append mode.
* O_DIRECT flag; used to bypass page cache.
* cr - credentials of caller.
*
* OUT: uio - updated offset and range.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* ip - ctime|mtime updated if byte count > 0
*/
/* ARGSUSED */
int
zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
rlim64_t limit = uio->uio_limit;
ssize_t start_resid = uio->uio_resid;
ssize_t tx_bytes;
uint64_t end_size;
dmu_tx_t *tx;
zfs_sb_t *zsb = ZTOZSB(zp);
zilog_t *zilog;
offset_t woff;
ssize_t n, nbytes;
rl_t *rl;
int max_blksz = zsb->z_max_blksz;
int error = 0;
arc_buf_t *abuf;
iovec_t *aiov = NULL;
xuio_t *xuio = NULL;
int i_iov = 0;
iovec_t *iovp = uio->uio_iov;
int write_eof;
int count = 0;
sa_bulk_attr_t bulk[4];
uint64_t mtime[2], ctime[2];
ASSERTV(int iovcnt = uio->uio_iovcnt);
/*
* Fasttrack empty write
*/
n = start_resid;
if (n == 0)
return (0);
if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
limit = MAXOFFSET_T;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zsb), NULL, &zp->z_size, 8);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
&zp->z_pflags, 8);
/*
* If immutable or not appending then return EPERM
*/
if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
(uio->uio_loffset < zp->z_size))) {
ZFS_EXIT(zsb);
return (EPERM);
}
zilog = zsb->z_log;
/*
* Validate file offset
*/
woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
if (woff < 0) {
ZFS_EXIT(zsb);
return (EINVAL);
}
#ifdef HAVE_MANDLOCKS
/*
* Check for mandatory locks before calling zfs_range_lock()
* in order to prevent a deadlock with locks set via fcntl().
*/
if (MANDMODE((mode_t)zp->z_mode) &&
(error = chklock(ip, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
ZFS_EXIT(zsb);
return (error);
}
#endif /* HAVE_MANDLOCKS */
#ifdef HAVE_UIO_ZEROCOPY
/*
* Pre-fault the pages to ensure slow (eg NFS) pages
* don't hold up txg.
* Skip this if uio contains loaned arc_buf.
*/
if ((uio->uio_extflg == UIO_XUIO) &&
(((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
xuio = (xuio_t *)uio;
else
uio_prefaultpages(MIN(n, max_blksz), uio);
#endif /* HAVE_UIO_ZEROCOPY */
/*
* If in append mode, set the io offset pointer to eof.
*/
if (ioflag & FAPPEND) {
/*
* Obtain an appending range lock to guarantee file append
* semantics. We reset the write offset once we have the lock.
*/
rl = zfs_range_lock(zp, 0, n, RL_APPEND);
woff = rl->r_off;
if (rl->r_len == UINT64_MAX) {
/*
* We overlocked the file because this write will cause
* the file block size to increase.
* Note that zp_size cannot change with this lock held.
*/
woff = zp->z_size;
}
uio->uio_loffset = woff;
} else {
/*
* Note that if the file block size will change as a result of
* this write, then this range lock will lock the entire file
* so that we can re-write the block safely.
*/
rl = zfs_range_lock(zp, woff, n, RL_WRITER);
}
if (woff >= limit) {
zfs_range_unlock(rl);
ZFS_EXIT(zsb);
return (EFBIG);
}
if ((woff + n) > limit || woff > (limit - n))
n = limit - woff;
/* Will this write extend the file length? */
write_eof = (woff + n > zp->z_size);
end_size = MAX(zp->z_size, woff + n);
/*
* Write the file in reasonable size chunks. Each chunk is written
* in a separate transaction; this keeps the intent log records small
* and allows us to do more fine-grained space accounting.
*/
while (n > 0) {
abuf = NULL;
woff = uio->uio_loffset;
again:
if (zfs_owner_overquota(zsb, zp, B_FALSE) ||
zfs_owner_overquota(zsb, zp, B_TRUE)) {
if (abuf != NULL)
dmu_return_arcbuf(abuf);
error = EDQUOT;
break;
}
if (xuio && abuf == NULL) {
ASSERT(i_iov < iovcnt);
aiov = &iovp[i_iov];
abuf = dmu_xuio_arcbuf(xuio, i_iov);
dmu_xuio_clear(xuio, i_iov);
ASSERT((aiov->iov_base == abuf->b_data) ||
((char *)aiov->iov_base - (char *)abuf->b_data +
aiov->iov_len == arc_buf_size(abuf)));
i_iov++;
} else if (abuf == NULL && n >= max_blksz &&
woff >= zp->z_size &&
P2PHASE(woff, max_blksz) == 0 &&
zp->z_blksz == max_blksz) {
/*
* This write covers a full block. "Borrow" a buffer
* from the dmu so that we can fill it before we enter
* a transaction. This avoids the possibility of
* holding up the transaction if the data copy hangs
* up on a pagefault (e.g., from an NFS server mapping).
*/
size_t cbytes;
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
max_blksz);
ASSERT(abuf != NULL);
ASSERT(arc_buf_size(abuf) == max_blksz);
if ((error = uiocopy(abuf->b_data, max_blksz,
UIO_WRITE, uio, &cbytes))) {
dmu_return_arcbuf(abuf);
break;
}
ASSERT(cbytes == max_blksz);
}
/*
* Start a transaction.
*/
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto again;
}
dmu_tx_abort(tx);
if (abuf != NULL)
dmu_return_arcbuf(abuf);
break;
}
/*
* If zfs_range_lock() over-locked we grow the blocksize
* and then reduce the lock range. This will only happen
* on the first iteration since zfs_range_reduce() will
* shrink down r_len to the appropriate size.
*/
if (rl->r_len == UINT64_MAX) {
uint64_t new_blksz;
if (zp->z_blksz > max_blksz) {
ASSERT(!ISP2(zp->z_blksz));
new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
} else {
new_blksz = MIN(end_size, max_blksz);
}
zfs_grow_blocksize(zp, new_blksz, tx);
zfs_range_reduce(rl, woff, n);
}
/*
* XXX - should we really limit each write to z_max_blksz?
* Perhaps we should use SPA_MAXBLOCKSIZE chunks?
*/
nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
if (abuf == NULL) {
tx_bytes = uio->uio_resid;
error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
uio, nbytes, tx);
tx_bytes -= uio->uio_resid;
} else {
tx_bytes = nbytes;
ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
/*
* If this is not a full block write, but we are
* extending the file past EOF and this data starts
* block-aligned, use assign_arcbuf(). Otherwise,
* write via dmu_write().
*/
if (tx_bytes < max_blksz && (!write_eof ||
aiov->iov_base != abuf->b_data)) {
ASSERT(xuio);
dmu_write(zsb->z_os, zp->z_id, woff,
aiov->iov_len, aiov->iov_base, tx);
dmu_return_arcbuf(abuf);
xuio_stat_wbuf_copied();
} else {
ASSERT(xuio || tx_bytes == max_blksz);
dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
woff, abuf, tx);
}
ASSERT(tx_bytes <= uio->uio_resid);
uioskip(uio, tx_bytes);
}
if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT))
update_pages(ip, woff, tx_bytes, zsb->z_os, zp->z_id);
/*
* If we made no progress, we're done. If we made even
* partial progress, update the znode and ZIL accordingly.
*/
if (tx_bytes == 0) {
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
(void *)&zp->z_size, sizeof (uint64_t), tx);
dmu_tx_commit(tx);
ASSERT(error != 0);
break;
}
/*
* Clear Set-UID/Set-GID bits on successful write if not
* privileged and at least one of the excute bits is set.
*
* It would be nice to to this after all writes have
* been done, but that would still expose the ISUID/ISGID
* to another app after the partial write is committed.
*
* Note: we don't call zfs_fuid_map_id() here because
* user 0 is not an ephemeral uid.
*/
mutex_enter(&zp->z_acl_lock);
if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
(S_IXUSR >> 6))) != 0 &&
(zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
secpolicy_vnode_setid_retain(cr,
(zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
uint64_t newmode;
zp->z_mode &= ~(S_ISUID | S_ISGID);
newmode = zp->z_mode;
(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zsb),
(void *)&newmode, sizeof (uint64_t), tx);
}
mutex_exit(&zp->z_acl_lock);
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
B_TRUE);
/*
* Update the file size (zp_size) if it has changed;
* account for possible concurrent updates.
*/
while ((end_size = zp->z_size) < uio->uio_loffset) {
(void) atomic_cas_64(&zp->z_size, end_size,
uio->uio_loffset);
ASSERT(error == 0);
}
/*
* If we are replaying and eof is non zero then force
* the file size to the specified eof. Note, there's no
* concurrency during replay.
*/
if (zsb->z_replay && zsb->z_replay_eof != 0)
zp->z_size = zsb->z_replay_eof;
error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
dmu_tx_commit(tx);
if (error != 0)
break;
ASSERT(tx_bytes == nbytes);
n -= nbytes;
if (!xuio && n > 0)
uio_prefaultpages(MIN(n, max_blksz), uio);
}
zfs_range_unlock(rl);
/*
* If we're in replay mode, or we made no progress, return error.
* Otherwise, it's at least a partial write, so it's successful.
*/
if (zsb->z_replay || uio->uio_resid == start_resid) {
ZFS_EXIT(zsb);
return (error);
}
if (ioflag & (FSYNC | FDSYNC) ||
zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, zp->z_id);
zfs_inode_update(zp);
ZFS_EXIT(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_write);
static void
iput_async(struct inode *ip, taskq_t *taskq)
{
ASSERT(atomic_read(&ip->i_count) > 0);
if (atomic_read(&ip->i_count) == 1)
taskq_dispatch(taskq, (task_func_t *)iput, ip, TQ_SLEEP);
else
iput(ip);
}
void
zfs_get_done(zgd_t *zgd, int error)
{
znode_t *zp = zgd->zgd_private;
objset_t *os = ZTOZSB(zp)->z_os;
if (zgd->zgd_db)
dmu_buf_rele(zgd->zgd_db, zgd);
zfs_range_unlock(zgd->zgd_rl);
/*
* Release the vnode asynchronously as we currently have the
* txg stopped from syncing.
*/
iput_async(ZTOI(zp), dsl_pool_iput_taskq(dmu_objset_pool(os)));
if (error == 0 && zgd->zgd_bp)
zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
kmem_free(zgd, sizeof (zgd_t));
}
#ifdef DEBUG
static int zil_fault_io = 0;
#endif
/*
* Get data to generate a TX_WRITE intent log record.
*/
int
zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
{
zfs_sb_t *zsb = arg;
objset_t *os = zsb->z_os;
znode_t *zp;
uint64_t object = lr->lr_foid;
uint64_t offset = lr->lr_offset;
uint64_t size = lr->lr_length;
blkptr_t *bp = &lr->lr_blkptr;
dmu_buf_t *db;
zgd_t *zgd;
int error = 0;
ASSERT(zio != NULL);
ASSERT(size != 0);
/*
* Nothing to do if the file has been removed
*/
if (zfs_zget(zsb, object, &zp) != 0)
return (ENOENT);
if (zp->z_unlinked) {
/*
* Release the vnode asynchronously as we currently have the
* txg stopped from syncing.
*/
iput_async(ZTOI(zp), dsl_pool_iput_taskq(dmu_objset_pool(os)));
return (ENOENT);
}
zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
zgd->zgd_zilog = zsb->z_log;
zgd->zgd_private = zp;
/*
* Write records come in two flavors: immediate and indirect.
* For small writes it's cheaper to store the data with the
* log record (immediate); for large writes it's cheaper to
* sync the data and get a pointer to it (indirect) so that
* we don't have to write the data twice.
*/
if (buf != NULL) { /* immediate write */
zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
/* test for truncation needs to be done while range locked */
if (offset >= zp->z_size) {
error = ENOENT;
} else {
error = dmu_read(os, object, offset, size, buf,
DMU_READ_NO_PREFETCH);
}
ASSERT(error == 0 || error == ENOENT);
} else { /* indirect write */
/*
* Have to lock the whole block to ensure when it's
* written out and it's checksum is being calculated
* that no one can change the data. We need to re-check
* blocksize after we get the lock in case it's changed!
*/
for (;;) {
uint64_t blkoff;
size = zp->z_blksz;
blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
offset -= blkoff;
zgd->zgd_rl = zfs_range_lock(zp, offset, size,
RL_READER);
if (zp->z_blksz == size)
break;
offset += blkoff;
zfs_range_unlock(zgd->zgd_rl);
}
/* test for truncation needs to be done while range locked */
if (lr->lr_offset >= zp->z_size)
error = ENOENT;
#ifdef DEBUG
if (zil_fault_io) {
error = EIO;
zil_fault_io = 0;
}
#endif
if (error == 0)
error = dmu_buf_hold(os, object, offset, zgd, &db,
DMU_READ_NO_PREFETCH);
if (error == 0) {
zgd->zgd_db = db;
zgd->zgd_bp = bp;
ASSERT(db->db_offset == offset);
ASSERT(db->db_size == size);
error = dmu_sync(zio, lr->lr_common.lrc_txg,
zfs_get_done, zgd);
ASSERT(error || lr->lr_length <= zp->z_blksz);
/*
* On success, we need to wait for the write I/O
* initiated by dmu_sync() to complete before we can
* release this dbuf. We will finish everything up
* in the zfs_get_done() callback.
*/
if (error == 0)
return (0);
if (error == EALREADY) {
lr->lr_common.lrc_txtype = TX_WRITE2;
error = 0;
}
}
}
zfs_get_done(zgd, error);
return (error);
}
/*ARGSUSED*/
int
zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
int error;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
if (flag & V_ACE_MASK)
error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
else
error = zfs_zaccess_rwx(zp, mode, flag, cr);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_access);
/*
* Lookup an entry in a directory, or an extended attribute directory.
* If it exists, return a held inode reference for it.
*
* IN: dip - inode of directory to search.
* nm - name of entry to lookup.
* flags - LOOKUP_XATTR set if looking for an attribute.
* cr - credentials of caller.
* direntflags - directory lookup flags
* realpnp - returned pathname.
*
* OUT: ipp - inode of located entry, NULL if not found.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* NA
*/
/* ARGSUSED */
int
zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
cred_t *cr, int *direntflags, pathname_t *realpnp)
{
znode_t *zdp = ITOZ(dip);
zfs_sb_t *zsb = ITOZSB(dip);
int error = 0;
/* fast path */
if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
if (!S_ISDIR(dip->i_mode)) {
return (ENOTDIR);
} else if (zdp->z_sa_hdl == NULL) {
return (EIO);
}
if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
error = zfs_fastaccesschk_execute(zdp, cr);
if (!error) {
*ipp = dip;
igrab(*ipp);
return (0);
}
return (error);
#ifdef HAVE_DNLC
} else {
vnode_t *tvp = dnlc_lookup(dvp, nm);
if (tvp) {
error = zfs_fastaccesschk_execute(zdp, cr);
if (error) {
iput(tvp);
return (error);
}
if (tvp == DNLC_NO_VNODE) {
iput(tvp);
return (ENOENT);
} else {
*vpp = tvp;
return (specvp_check(vpp, cr));
}
}
#endif /* HAVE_DNLC */
}
}
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zdp);
*ipp = NULL;
if (flags & LOOKUP_XATTR) {
/*
* If the xattr property is off, refuse the lookup request.
*/
if (!(zsb->z_flags & ZSB_XATTR_USER)) {
ZFS_EXIT(zsb);
return (EINVAL);
}
/*
* We don't allow recursive attributes..
* Maybe someday we will.
*/
if (zdp->z_pflags & ZFS_XATTR) {
ZFS_EXIT(zsb);
return (EINVAL);
}
if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
ZFS_EXIT(zsb);
return (error);
}
/*
* Do we have permission to get into attribute directory?
*/
if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
B_FALSE, cr))) {
iput(*ipp);
*ipp = NULL;
}
ZFS_EXIT(zsb);
return (error);
}
if (!S_ISDIR(dip->i_mode)) {
ZFS_EXIT(zsb);
return (ENOTDIR);
}
/*
* Check accessibility of directory.
*/
if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
ZFS_EXIT(zsb);
return (error);
}
if (zsb->z_utf8 && u8_validate(nm, strlen(nm),
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zsb);
return (EILSEQ);
}
error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
if ((error == 0) && (*ipp))
zfs_inode_update(ITOZ(*ipp));
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_lookup);
/*
* Attempt to create a new entry in a directory. If the entry
* already exists, truncate the file if permissible, else return
* an error. Return the ip of the created or trunc'd file.
*
* IN: dip - inode of directory to put new file entry in.
* name - name of new file entry.
* vap - attributes of new file.
* excl - flag indicating exclusive or non-exclusive mode.
* mode - mode to open file with.
* cr - credentials of caller.
* flag - large file flag [UNUSED].
* vsecp - ACL to be set
*
* OUT: ipp - inode of created or trunc'd entry.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dip - ctime|mtime updated if new entry created
* ip - ctime|mtime always, atime if new
*/
/* ARGSUSED */
int
zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
{
znode_t *zp, *dzp = ITOZ(dip);
zfs_sb_t *zsb = ITOZSB(dip);
zilog_t *zilog;
objset_t *os;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
uid_t uid;
gid_t gid;
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
boolean_t have_acl = B_FALSE;
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
gid = crgetgid(cr);
uid = crgetuid(cr);
if (zsb->z_use_fuids == B_FALSE &&
(vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (EINVAL);
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(dzp);
os = zsb->z_os;
zilog = zsb->z_log;
if (zsb->z_utf8 && u8_validate(name, strlen(name),
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zsb);
return (EILSEQ);
}
#ifdef HAVE_XVATTR
if (vap->va_mask & AT_XVATTR) {
if ((error = secpolicy_xvattr((xvattr_t *)vap,
crgetuid(cr), cr, vap->va_mode)) != 0) {
ZFS_EXIT(zsb);
return (error);
}
}
#endif /* HAVE_XVATTR */
top:
*ipp = NULL;
if (*name == '\0') {
/*
* Null component name refers to the directory itself.
*/
igrab(dip);
zp = dzp;
dl = NULL;
error = 0;
} else {
/* possible igrab(zp) */
int zflg = 0;
if (flag & FIGNORECASE)
zflg |= ZCILOOK;
error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, NULL);
if (error) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
if (strcmp(name, "..") == 0)
error = EISDIR;
ZFS_EXIT(zsb);
return (error);
}
}
if (zp == NULL) {
uint64_t txtype;
/*
* Create a new file object and update the directory
* to reference it.
*/
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
goto out;
}
/*
* We only support the creation of regular files in
* extended attribute directories.
*/
if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
if (have_acl)
zfs_acl_ids_free(&acl_ids);
error = EINVAL;
goto out;
}
if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
cr, vsecp, &acl_ids)) != 0)
goto out;
have_acl = B_TRUE;
if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
zfs_acl_ids_free(&acl_ids);
error = EDQUOT;
goto out;
}
tx = dmu_tx_create(os);
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
fuid_dirtied = zsb->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zsb, tx);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
if (!zsb->z_use_sa &&
acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, acl_ids.z_aclp->z_acl_bytes);
}
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
ZFS_EXIT(zsb);
return (error);
}
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
if (fuid_dirtied)
zfs_fuid_sync(zsb, tx);
(void) zfs_link_create(dl, zp, tx, ZNEW);
txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
if (flag & FIGNORECASE)
txtype |= TX_CI;
zfs_log_create(zilog, tx, txtype, dzp, zp, name,
vsecp, acl_ids.z_fuidp, vap);
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
} else {
int aflags = (flag & FAPPEND) ? V_APPEND : 0;
if (have_acl)
zfs_acl_ids_free(&acl_ids);
have_acl = B_FALSE;
/*
* A directory entry already exists for this name.
*/
/*
* Can't truncate an existing file if in exclusive mode.
*/
if (excl) {
error = EEXIST;
goto out;
}
/*
* Can't open a directory for writing.
*/
if (S_ISDIR(ZTOI(zp)->i_mode)) {
error = EISDIR;
goto out;
}
/*
* Verify requested access to file.
*/
if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
goto out;
}
mutex_enter(&dzp->z_lock);
dzp->z_seq++;
mutex_exit(&dzp->z_lock);
/*
* Truncate regular files if requested.
*/
if (S_ISREG(ZTOI(zp)->i_mode) &&
(vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
/* we can't hold any locks when calling zfs_freesp() */
zfs_dirent_unlock(dl);
dl = NULL;
error = zfs_freesp(zp, 0, 0, mode, TRUE);
}
}
out:
if (dl)
zfs_dirent_unlock(dl);
if (error) {
if (zp)
iput(ZTOI(zp));
} else {
zfs_inode_update(dzp);
zfs_inode_update(zp);
*ipp = ZTOI(zp);
}
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_create);
/*
* Remove an entry from a directory.
*
* IN: dip - inode of directory to remove entry from.
* name - name of entry to remove.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dip - ctime|mtime
* ip - ctime (if nlink > 0)
*/
uint64_t null_xattr = 0;
/*ARGSUSED*/
int
zfs_remove(struct inode *dip, char *name, cred_t *cr)
{
znode_t *zp, *dzp = ITOZ(dip);
znode_t *xzp;
struct inode *ip;
zfs_sb_t *zsb = ITOZSB(dip);
zilog_t *zilog;
uint64_t xattr_obj;
uint64_t xattr_obj_unlinked = 0;
uint64_t obj = 0;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
boolean_t unlinked;
uint64_t txtype;
pathname_t *realnmp = NULL;
#ifdef HAVE_PN_UTILS
pathname_t realnm;
#endif /* HAVE_PN_UTILS */
int error;
int zflg = ZEXISTS;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(dzp);
zilog = zsb->z_log;
#ifdef HAVE_PN_UTILS
if (flags & FIGNORECASE) {
zflg |= ZCILOOK;
pn_alloc(&realnm);
realnmp = &realnm;
}
#endif /* HAVE_PN_UTILS */
top:
xattr_obj = 0;
xzp = NULL;
/*
* Attempt to lock directory; fail if entry doesn't exist.
*/
if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, realnmp))) {
#ifdef HAVE_PN_UTILS
if (realnmp)
pn_free(realnmp);
#endif /* HAVE_PN_UTILS */
ZFS_EXIT(zsb);
return (error);
}
ip = ZTOI(zp);
if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
goto out;
}
/*
* Need to use rmdir for removing directories.
*/
if (S_ISDIR(ip->i_mode)) {
error = EPERM;
goto out;
}
#ifdef HAVE_DNLC
if (realnmp)
dnlc_remove(dvp, realnmp->pn_buf);
else
dnlc_remove(dvp, name);
#endif /* HAVE_DNLC */
/*
* We never delete the znode and always place it in the unlinked
* set. The dentry cache will always hold the last reference and
* is responsible for safely freeing the znode.
*/
obj = zp->z_id;
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
zfs_sa_upgrade_txholds(tx, dzp);
/* are there any extended attributes? */
error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
&xattr_obj, sizeof (xattr_obj));
if (error == 0 && xattr_obj) {
error = zfs_zget(zsb, xattr_obj, &xzp);
ASSERT3U(error, ==, 0);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
}
/* charge as an update -- would be nice not to charge at all */
dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
iput(ip);
if (xzp)
iput(ZTOI(xzp));
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
#ifdef HAVE_PN_UTILS
if (realnmp)
pn_free(realnmp);
#endif /* HAVE_PN_UTILS */
dmu_tx_abort(tx);
ZFS_EXIT(zsb);
return (error);
}
/*
* Remove the directory entry.
*/
error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
if (error) {
dmu_tx_commit(tx);
goto out;
}
if (unlinked) {
/*
* Hold z_lock so that we can make sure that the ACL obj
* hasn't changed. Could have been deleted due to
* zfs_sa_upgrade().
*/
mutex_enter(&zp->z_lock);
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
&xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
mutex_exit(&zp->z_lock);
zfs_unlinked_add(zp, tx);
}
txtype = TX_REMOVE;
#ifdef HAVE_PN_UTILS
if (flags & FIGNORECASE)
txtype |= TX_CI;
#endif /* HAVE_PN_UTILS */
zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
dmu_tx_commit(tx);
out:
#ifdef HAVE_PN_UTILS
if (realnmp)
pn_free(realnmp);
#endif /* HAVE_PN_UTILS */
zfs_dirent_unlock(dl);
zfs_inode_update(dzp);
zfs_inode_update(zp);
if (xzp)
zfs_inode_update(xzp);
iput(ip);
if (xzp)
iput(ZTOI(xzp));
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_remove);
/*
* Create a new directory and insert it into dip using the name
* provided. Return a pointer to the inserted directory.
*
* IN: dip - inode of directory to add subdir to.
* dirname - name of new directory.
* vap - attributes of new directory.
* cr - credentials of caller.
* vsecp - ACL to be set
*
* OUT: ipp - inode of created directory.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dip - ctime|mtime updated
* ipp - ctime|mtime|atime updated
*/
/*ARGSUSED*/
int
zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
cred_t *cr, int flags, vsecattr_t *vsecp)
{
znode_t *zp, *dzp = ITOZ(dip);
zfs_sb_t *zsb = ITOZSB(dip);
zilog_t *zilog;
zfs_dirlock_t *dl;
uint64_t txtype;
dmu_tx_t *tx;
int error;
int zf = ZNEW;
uid_t uid;
gid_t gid = crgetgid(cr);
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
ASSERT(S_ISDIR(vap->va_mode));
/*
* If we have an ephemeral id, ACL, or XVATTR then
* make sure file system is at proper version
*/
uid = crgetuid(cr);
if (zsb->z_use_fuids == B_FALSE &&
(vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
return (EINVAL);
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(dzp);
zilog = zsb->z_log;
if (dzp->z_pflags & ZFS_XATTR) {
ZFS_EXIT(zsb);
return (EINVAL);
}
if (zsb->z_utf8 && u8_validate(dirname,
strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zsb);
return (EILSEQ);
}
if (flags & FIGNORECASE)
zf |= ZCILOOK;
#ifdef HAVE_XVATTR
if (vap->va_mask & AT_XVATTR) {
if ((error = secpolicy_xvattr((xvattr_t *)vap,
crgetuid(cr), cr, vap->va_mode)) != 0) {
ZFS_EXIT(zsb);
return (error);
}
}
#endif /* HAVE_XVATTR */
if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
vsecp, &acl_ids)) != 0) {
ZFS_EXIT(zsb);
return (error);
}
/*
* First make sure the new directory doesn't exist.
*
* Existence is checked first to make sure we don't return
* EACCES instead of EEXIST which can cause some applications
* to fail.
*/
top:
*ipp = NULL;
if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
NULL, NULL))) {
zfs_acl_ids_free(&acl_ids);
ZFS_EXIT(zsb);
return (error);
}
if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
ZFS_EXIT(zsb);
return (error);
}
if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
ZFS_EXIT(zsb);
return (EDQUOT);
}
/*
* Add a new entry to the directory.
*/
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
fuid_dirtied = zsb->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zsb, tx);
if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
acl_ids.z_aclp->z_acl_bytes);
}
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
ZFS_EXIT(zsb);
return (error);
}
/*
* Create new node.
*/
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
if (fuid_dirtied)
zfs_fuid_sync(zsb, tx);
/*
* Now put new name in parent dir.
*/
(void) zfs_link_create(dl, zp, tx, ZNEW);
*ipp = ZTOI(zp);
txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
acl_ids.z_fuidp, vap);
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
zfs_inode_update(dzp);
zfs_inode_update(zp);
ZFS_EXIT(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_mkdir);
/*
* Remove a directory subdir entry. If the current working
* directory is the same as the subdir to be removed, the
* remove will fail.
*
* IN: dip - inode of directory to remove from.
* name - name of directory to be removed.
* cwd - inode of current working directory.
* cr - credentials of caller.
* flags - case flags
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dip - ctime|mtime updated
*/
/*ARGSUSED*/
int
zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
int flags)
{
znode_t *dzp = ITOZ(dip);
znode_t *zp;
struct inode *ip;
zfs_sb_t *zsb = ITOZSB(dip);
zilog_t *zilog;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
int zflg = ZEXISTS;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(dzp);
zilog = zsb->z_log;
if (flags & FIGNORECASE)
zflg |= ZCILOOK;
top:
zp = NULL;
/*
* Attempt to lock directory; fail if entry doesn't exist.
*/
if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
NULL, NULL))) {
ZFS_EXIT(zsb);
return (error);
}
ip = ZTOI(zp);
if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
goto out;
}
if (!S_ISDIR(ip->i_mode)) {
error = ENOTDIR;
goto out;
}
if (ip == cwd) {
error = EINVAL;
goto out;
}
/*
* Grab a lock on the directory to make sure that noone is
* trying to add (or lookup) entries while we are removing it.
*/
rw_enter(&zp->z_name_lock, RW_WRITER);
/*
* Grab a lock on the parent pointer to make sure we play well
* with the treewalk and directory rename code.
*/
rw_enter(&zp->z_parent_lock, RW_WRITER);
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
zfs_sa_upgrade_txholds(tx, zp);
zfs_sa_upgrade_txholds(tx, dzp);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
rw_exit(&zp->z_parent_lock);
rw_exit(&zp->z_name_lock);
zfs_dirent_unlock(dl);
iput(ip);
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
ZFS_EXIT(zsb);
return (error);
}
error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
if (error == 0) {
uint64_t txtype = TX_RMDIR;
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
}
dmu_tx_commit(tx);
rw_exit(&zp->z_parent_lock);
rw_exit(&zp->z_name_lock);
out:
zfs_dirent_unlock(dl);
iput(ip);
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
zfs_inode_update(dzp);
zfs_inode_update(zp);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_rmdir);
/*
* Read as many directory entries as will fit into the provided
* dirent buffer from the given directory cursor position.
*
* IN: ip - inode of directory to read.
* dirent - buffer for directory entries.
*
* OUT: dirent - filler buffer of directory entries.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* ip - atime updated
*
* Note that the low 4 bits of the cookie returned by zap is always zero.
* This allows us to use the low range for "special" directory entries:
* We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
* we use the offset 2 for the '.zfs' directory.
*/
/* ARGSUSED */
int
zfs_readdir(struct inode *ip, void *dirent, filldir_t filldir,
loff_t *pos, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
objset_t *os;
zap_cursor_t zc;
zap_attribute_t zap;
int outcount;
int error;
uint8_t prefetch;
int done = 0;
uint64_t parent;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zsb),
&parent, sizeof (parent))) != 0)
goto out;
/*
* Quit if directory has been removed (posix)
*/
error = 0;
if (zp->z_unlinked)
goto out;
os = zsb->z_os;
prefetch = zp->z_zn_prefetch;
/*
* Initialize the iterator cursor.
*/
if (*pos <= 3) {
/*
* Start iteration from the beginning of the directory.
*/
zap_cursor_init(&zc, os, zp->z_id);
} else {
/*
* The offset is a serialized cursor.
*/
zap_cursor_init_serialized(&zc, os, zp->z_id, *pos);
}
/*
* Transform to file-system independent format
*/
outcount = 0;
while (!done) {
uint64_t objnum;
/*
* Special case `.', `..', and `.zfs'.
*/
if (*pos == 0) {
(void) strcpy(zap.za_name, ".");
zap.za_normalization_conflict = 0;
objnum = zp->z_id;
} else if (*pos == 1) {
(void) strcpy(zap.za_name, "..");
zap.za_normalization_conflict = 0;
objnum = parent;
} else if (*pos == 2 && zfs_show_ctldir(zp)) {
(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
zap.za_normalization_conflict = 0;
objnum = ZFSCTL_INO_ROOT;
} else {
/*
* Grab next entry.
*/
if ((error = zap_cursor_retrieve(&zc, &zap))) {
if (error == ENOENT)
break;
else
goto update;
}
if (zap.za_integer_length != 8 ||
zap.za_num_integers != 1) {
cmn_err(CE_WARN, "zap_readdir: bad directory "
"entry, obj = %lld, offset = %lld\n",
(u_longlong_t)zp->z_id,
(u_longlong_t)*pos);
error = ENXIO;
goto update;
}
objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
}
done = filldir(dirent, zap.za_name, strlen(zap.za_name),
zap_cursor_serialize(&zc), objnum, 0);
if (done) {
break;
}
/* Prefetch znode */
if (prefetch) {
dmu_prefetch(os, objnum, 0, 0);
}
if (*pos >= 2) {
zap_cursor_advance(&zc);
*pos = zap_cursor_serialize(&zc);
} else {
(*pos)++;
}
}
zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
update:
zap_cursor_fini(&zc);
if (error == ENOENT)
error = 0;
ZFS_ACCESSTIME_STAMP(zsb, zp);
zfs_inode_update(zp);
out:
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_readdir);
ulong_t zfs_fsync_sync_cnt = 4;
int
zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
if (zsb->z_os->os_sync != ZFS_SYNC_DISABLED) {
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
zil_commit(zsb->z_log, zp->z_id);
ZFS_EXIT(zsb);
}
return (0);
}
EXPORT_SYMBOL(zfs_fsync);
/*
* Get the requested file attributes and place them in the provided
* vattr structure.
*
* IN: ip - inode of file.
* stat - kstat structure to fill in.
* flags - ATTR_NOACLCHECK (CIFS server context)
* cr - credentials of caller.
*
* OUT: stat - filled in kstat values.
*/
/* ARGSUSED */
int
zfs_getattr(struct inode *ip, struct kstat *stat, int flags, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
int error = 0;
uint64_t links;
uint64_t mtime[2], ctime[2];
uint32_t blksz;
boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
sa_bulk_attr_t bulk[2];
int count = 0;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
zfs_fuid_map_ids(zp, cr, &stat->uid, &stat->gid);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL, &mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL, &ctime, 16);
if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
ZFS_EXIT(zsb);
return (error);
}
/*
* If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
* Also, if we are the owner don't bother, since owner should
* always be allowed to read basic attributes of file.
*/
if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
(stat->uid != crgetuid(cr))) {
if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
skipaclchk, cr))) {
ZFS_EXIT(zsb);
return (error);
}
}
/*
* Return all attributes. It's cheaper to provide the answer
* than to determine whether we were asked the question.
*/
mutex_enter(&zp->z_lock);
stat->ino = ip->i_ino;
stat->mode = zp->z_mode;
stat->uid = zp->z_uid;
stat->gid = zp->z_gid;
if ((zp->z_id == zsb->z_root) && zfs_show_ctldir(zp))
links = zp->z_links + 1;
else
links = zp->z_links;
stat->nlink = MIN(links, ZFS_LINK_MAX);
stat->size = i_size_read(ip);
stat->rdev = ip->i_rdev;
stat->dev = ip->i_rdev;
ZFS_TIME_DECODE(&stat->atime, zp->z_atime);
ZFS_TIME_DECODE(&stat->mtime, mtime);
ZFS_TIME_DECODE(&stat->ctime, ctime);
mutex_exit(&zp->z_lock);
sa_object_size(zp->z_sa_hdl, &blksz, &stat->blocks);
stat->blksize = (1 << ip->i_blkbits);
if (zp->z_blksz == 0) {
/*
* Block size hasn't been set; suggest maximal I/O transfers.
*/
stat->blksize = zsb->z_max_blksz;
}
ZFS_EXIT(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_getattr);
/*
* Set the file attributes to the values contained in the
* vattr structure.
*
* IN: ip - inode of file to be modified.
* vap - new attribute values.
* If AT_XVATTR set, then optional attrs are being set
* flags - ATTR_UTIME set if non-default time values provided.
* - ATTR_NOACLCHECK (CIFS context only).
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* ip - ctime updated, mtime updated if size changed.
*/
/* ARGSUSED */
int
zfs_setattr(struct inode *ip, struct iattr *attr, int flags, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
zilog_t *zilog;
dmu_tx_t *tx;
vattr_t oldva;
uint_t mask = attr->ia_valid;
uint_t saved_mask;
int trim_mask = 0;
uint64_t new_mode;
uint64_t new_uid, new_gid;
uint64_t xattr_obj;
uint64_t mtime[2], ctime[2];
znode_t *attrzp;
int need_policy = FALSE;
int err, err2;
zfs_fuid_info_t *fuidp = NULL;
boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
zfs_acl_t *aclp = NULL;
boolean_t fuid_dirtied = B_FALSE;
sa_bulk_attr_t bulk[7], xattr_bulk[7];
int count = 0, xattr_count = 0;
if (mask == 0)
return (0);
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
zilog = zsb->z_log;
/*
* Make sure that if we have ephemeral uid/gid or xvattr specified
* that file system is at proper version level
*/
if (zsb->z_use_fuids == B_FALSE &&
(((mask & ATTR_UID) && IS_EPHEMERAL(attr->ia_uid)) ||
((mask & ATTR_GID) && IS_EPHEMERAL(attr->ia_gid)))) {
ZFS_EXIT(zsb);
return (EINVAL);
}
if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
ZFS_EXIT(zsb);
return (EISDIR);
}
if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
ZFS_EXIT(zsb);
return (EINVAL);
}
if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
ZFS_EXIT(zsb);
return (EPERM);
}
top:
attrzp = NULL;
aclp = NULL;
/* Can this be moved to before the top label? */
if (zsb->z_vfs->mnt_flags & MNT_READONLY) {
ZFS_EXIT(zsb);
return (EROFS);
}
/*
* First validate permissions
*/
if (mask & ATTR_SIZE) {
err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
if (err) {
ZFS_EXIT(zsb);
return (err);
}
/*
* XXX - Note, we are not providing any open
* mode flags here (like FNDELAY), so we may
* block if there are locks present... this
* should be addressed in openat().
*/
/* XXX - would it be OK to generate a log record here? */
err = zfs_freesp(zp, attr->ia_size, 0, 0, FALSE);
if (err) {
ZFS_EXIT(zsb);
return (err);
}
/* Careful negative Linux return code here */
err = -vmtruncate(ip, attr->ia_size);
if (err) {
ZFS_EXIT(zsb);
return (err);
}
}
if (mask & (ATTR_UID|ATTR_GID)) {
int idmask = (mask & (ATTR_UID|ATTR_GID));
int take_owner;
int take_group;
/*
* NOTE: even if a new mode is being set,
* we may clear S_ISUID/S_ISGID bits.
*/
if (!(mask & ATTR_MODE))
attr->ia_mode = zp->z_mode;
/*
* Take ownership or chgrp to group we are a member of
*/
take_owner = (mask & ATTR_UID) &&
(attr->ia_uid == crgetuid(cr));
take_group = (mask & ATTR_GID) &&
zfs_groupmember(zsb, attr->ia_gid, cr);
/*
* If both AT_UID and AT_GID are set then take_owner and
* take_group must both be set in order to allow taking
* ownership.
*
* Otherwise, send the check through secpolicy_vnode_setattr()
*
*/
if (((idmask == (ATTR_UID|ATTR_GID)) &&
take_owner && take_group) ||
((idmask == ATTR_UID) && take_owner) ||
((idmask == ATTR_GID) && take_group)) {
if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
skipaclchk, cr) == 0) {
/*
* Remove setuid/setgid for non-privileged users
*/
(void) secpolicy_setid_clear(attr, cr);
trim_mask = (mask & (ATTR_UID|ATTR_GID));
} else {
need_policy = TRUE;
}
} else {
need_policy = TRUE;
}
}
mutex_enter(&zp->z_lock);
oldva.va_mode = zp->z_mode;
zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
mutex_exit(&zp->z_lock);
if (mask & ATTR_MODE) {
if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
err = secpolicy_setid_setsticky_clear(ip, attr,
&oldva, cr);
if (err) {
ZFS_EXIT(zsb);
return (err);
}
trim_mask |= ATTR_MODE;
} else {
need_policy = TRUE;
}
}
if (need_policy) {
/*
* If trim_mask is set then take ownership
* has been granted or write_acl is present and user
* has the ability to modify mode. In that case remove
* UID|GID and or MODE from mask so that
* secpolicy_vnode_setattr() doesn't revoke it.
*/
if (trim_mask) {
saved_mask = attr->ia_valid;
attr->ia_valid &= ~trim_mask;
}
err = secpolicy_vnode_setattr(cr, ip, attr, &oldva, flags,
(int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
if (err) {
ZFS_EXIT(zsb);
return (err);
}
if (trim_mask)
attr->ia_valid |= saved_mask;
}
/*
* secpolicy_vnode_setattr, or take ownership may have
* changed va_mask
*/
mask = attr->ia_valid;
if ((mask & (ATTR_UID | ATTR_GID))) {
err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zsb),
&xattr_obj, sizeof (xattr_obj));
if (err == 0 && xattr_obj) {
err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
if (err)
goto out2;
}
if (mask & ATTR_UID) {
new_uid = zfs_fuid_create(zsb,
(uint64_t)attr->ia_uid, cr, ZFS_OWNER, &fuidp);
if (new_uid != zp->z_uid &&
zfs_fuid_overquota(zsb, B_FALSE, new_uid)) {
if (attrzp)
iput(ZTOI(attrzp));
err = EDQUOT;
goto out2;
}
}
if (mask & ATTR_GID) {
new_gid = zfs_fuid_create(zsb, (uint64_t)attr->ia_gid,
cr, ZFS_GROUP, &fuidp);
if (new_gid != zp->z_gid &&
zfs_fuid_overquota(zsb, B_TRUE, new_gid)) {
if (attrzp)
iput(ZTOI(attrzp));
err = EDQUOT;
goto out2;
}
}
}
tx = dmu_tx_create(zsb->z_os);
if (mask & ATTR_MODE) {
uint64_t pmode = zp->z_mode;
uint64_t acl_obj;
new_mode = (pmode & S_IFMT) | (attr->ia_mode & ~S_IFMT);
zfs_acl_chmod_setattr(zp, &aclp, new_mode);
mutex_enter(&zp->z_lock);
if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
/*
* Are we upgrading ACL from old V0 format
* to V1 format?
*/
if (zsb->z_version >= ZPL_VERSION_FUID &&
zfs_znode_acl_version(zp) ==
ZFS_ACL_VERSION_INITIAL) {
dmu_tx_hold_free(tx, acl_obj, 0,
DMU_OBJECT_END);
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, aclp->z_acl_bytes);
} else {
dmu_tx_hold_write(tx, acl_obj, 0,
aclp->z_acl_bytes);
}
} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
0, aclp->z_acl_bytes);
}
mutex_exit(&zp->z_lock);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
} else {
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
}
if (attrzp) {
dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
}
fuid_dirtied = zsb->z_fuid_dirty;
if (fuid_dirtied)
zfs_fuid_txhold(zsb, tx);
zfs_sa_upgrade_txholds(tx, zp);
err = dmu_tx_assign(tx, TXG_NOWAIT);
if (err) {
if (err == ERESTART)
dmu_tx_wait(tx);
goto out;
}
count = 0;
/*
* Set each attribute requested.
* We group settings according to the locks they need to acquire.
*
* Note: you cannot set ctime directly, although it will be
* updated as a side-effect of calling this function.
*/
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_enter(&zp->z_acl_lock);
mutex_enter(&zp->z_lock);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zsb), NULL,
&zp->z_pflags, sizeof (zp->z_pflags));
if (attrzp) {
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_enter(&attrzp->z_acl_lock);
mutex_enter(&attrzp->z_lock);
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_FLAGS(zsb), NULL, &attrzp->z_pflags,
sizeof (attrzp->z_pflags));
}
if (mask & (ATTR_UID|ATTR_GID)) {
if (mask & ATTR_UID) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zsb), NULL,
&new_uid, sizeof (new_uid));
zp->z_uid = new_uid;
if (attrzp) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_UID(zsb), NULL, &new_uid,
sizeof (new_uid));
attrzp->z_uid = new_uid;
}
}
if (mask & ATTR_GID) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zsb),
NULL, &new_gid, sizeof (new_gid));
zp->z_gid = new_gid;
if (attrzp) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_GID(zsb), NULL, &new_gid,
sizeof (new_gid));
attrzp->z_gid = new_gid;
}
}
if (!(mask & ATTR_MODE)) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb),
NULL, &new_mode, sizeof (new_mode));
new_mode = zp->z_mode;
}
err = zfs_acl_chown_setattr(zp);
ASSERT(err == 0);
if (attrzp) {
err = zfs_acl_chown_setattr(attrzp);
ASSERT(err == 0);
}
}
if (mask & ATTR_MODE) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zsb), NULL,
&new_mode, sizeof (new_mode));
zp->z_mode = new_mode;
ASSERT3P(aclp, !=, NULL);
err = zfs_aclset_common(zp, aclp, cr, tx);
ASSERT3U(err, ==, 0);
if (zp->z_acl_cached)
zfs_acl_free(zp->z_acl_cached);
zp->z_acl_cached = aclp;
aclp = NULL;
}
if (mask & ATTR_ATIME) {
ZFS_TIME_ENCODE(&attr->ia_atime, zp->z_atime);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zsb), NULL,
&zp->z_atime, sizeof (zp->z_atime));
}
if (mask & ATTR_MTIME) {
ZFS_TIME_ENCODE(&attr->ia_mtime, mtime);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb), NULL,
mtime, sizeof (mtime));
}
/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
if (mask & ATTR_SIZE && !(mask & ATTR_MTIME)) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zsb),
NULL, mtime, sizeof (mtime));
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL,
&ctime, sizeof (ctime));
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
B_TRUE);
} else if (mask != 0) {
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zsb), NULL,
&ctime, sizeof (ctime));
zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
B_TRUE);
if (attrzp) {
SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
SA_ZPL_CTIME(zsb), NULL,
&ctime, sizeof (ctime));
zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
mtime, ctime, B_TRUE);
}
}
/*
* Do this after setting timestamps to prevent timestamp
* update from toggling bit
*/
if (fuid_dirtied)
zfs_fuid_sync(zsb, tx);
if (mask != 0)
zfs_log_setattr(zilog, tx, TX_SETATTR, zp, attr, mask, fuidp);
mutex_exit(&zp->z_lock);
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_exit(&zp->z_acl_lock);
if (attrzp) {
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
mutex_exit(&attrzp->z_acl_lock);
mutex_exit(&attrzp->z_lock);
}
out:
if (err == 0 && attrzp) {
err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
xattr_count, tx);
ASSERT(err2 == 0);
}
if (attrzp)
iput(ZTOI(attrzp));
if (aclp)
zfs_acl_free(aclp);
if (fuidp) {
zfs_fuid_info_free(fuidp);
fuidp = NULL;
}
if (err) {
dmu_tx_abort(tx);
if (err == ERESTART)
goto top;
} else {
err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
dmu_tx_commit(tx);
zfs_inode_update(zp);
}
out2:
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zsb);
return (err);
}
EXPORT_SYMBOL(zfs_setattr);
typedef struct zfs_zlock {
krwlock_t *zl_rwlock; /* lock we acquired */
znode_t *zl_znode; /* znode we held */
struct zfs_zlock *zl_next; /* next in list */
} zfs_zlock_t;
/*
* Drop locks and release vnodes that were held by zfs_rename_lock().
*/
static void
zfs_rename_unlock(zfs_zlock_t **zlpp)
{
zfs_zlock_t *zl;
while ((zl = *zlpp) != NULL) {
if (zl->zl_znode != NULL)
iput(ZTOI(zl->zl_znode));
rw_exit(zl->zl_rwlock);
*zlpp = zl->zl_next;
kmem_free(zl, sizeof (*zl));
}
}
/*
* Search back through the directory tree, using the ".." entries.
* Lock each directory in the chain to prevent concurrent renames.
* Fail any attempt to move a directory into one of its own descendants.
* XXX - z_parent_lock can overlap with map or grow locks
*/
static int
zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
{
zfs_zlock_t *zl;
znode_t *zp = tdzp;
uint64_t rootid = ZTOZSB(zp)->z_root;
uint64_t oidp = zp->z_id;
krwlock_t *rwlp = &szp->z_parent_lock;
krw_t rw = RW_WRITER;
/*
* First pass write-locks szp and compares to zp->z_id.
* Later passes read-lock zp and compare to zp->z_parent.
*/
do {
if (!rw_tryenter(rwlp, rw)) {
/*
* Another thread is renaming in this path.
* Note that if we are a WRITER, we don't have any
* parent_locks held yet.
*/
if (rw == RW_READER && zp->z_id > szp->z_id) {
/*
* Drop our locks and restart
*/
zfs_rename_unlock(&zl);
*zlpp = NULL;
zp = tdzp;
oidp = zp->z_id;
rwlp = &szp->z_parent_lock;
rw = RW_WRITER;
continue;
} else {
/*
* Wait for other thread to drop its locks
*/
rw_enter(rwlp, rw);
}
}
zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
zl->zl_rwlock = rwlp;
zl->zl_znode = NULL;
zl->zl_next = *zlpp;
*zlpp = zl;
if (oidp == szp->z_id) /* We're a descendant of szp */
return (EINVAL);
if (oidp == rootid) /* We've hit the top */
return (0);
if (rw == RW_READER) { /* i.e. not the first pass */
int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
if (error)
return (error);
zl->zl_znode = zp;
}
(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
&oidp, sizeof (oidp));
rwlp = &zp->z_parent_lock;
rw = RW_READER;
} while (zp->z_id != sdzp->z_id);
return (0);
}
/*
* Move an entry from the provided source directory to the target
* directory. Change the entry name as indicated.
*
* IN: sdip - Source directory containing the "old entry".
* snm - Old entry name.
* tdip - Target directory to contain the "new entry".
* tnm - New entry name.
* cr - credentials of caller.
* flags - case flags
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* sdip,tdip - ctime|mtime updated
*/
/*ARGSUSED*/
int
zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
cred_t *cr, int flags)
{
znode_t *tdzp, *szp, *tzp;
znode_t *sdzp = ITOZ(sdip);
zfs_sb_t *zsb = ITOZSB(sdip);
zilog_t *zilog;
zfs_dirlock_t *sdl, *tdl;
dmu_tx_t *tx;
zfs_zlock_t *zl;
int cmp, serr, terr;
int error = 0;
int zflg = 0;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(sdzp);
zilog = zsb->z_log;
if (tdip->i_sb != sdip->i_sb) {
ZFS_EXIT(zsb);
return (EXDEV);
}
tdzp = ITOZ(tdip);
ZFS_VERIFY_ZP(tdzp);
if (zsb->z_utf8 && u8_validate(tnm,
strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zsb);
return (EILSEQ);
}
if (flags & FIGNORECASE)
zflg |= ZCILOOK;
top:
szp = NULL;
tzp = NULL;
zl = NULL;
/*
* This is to prevent the creation of links into attribute space
* by renaming a linked file into/outof an attribute directory.
* See the comment in zfs_link() for why this is considered bad.
*/
if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
ZFS_EXIT(zsb);
return (EINVAL);
}
/*
* Lock source and target directory entries. To prevent deadlock,
* a lock ordering must be defined. We lock the directory with
* the smallest object id first, or if it's a tie, the one with
* the lexically first name.
*/
if (sdzp->z_id < tdzp->z_id) {
cmp = -1;
} else if (sdzp->z_id > tdzp->z_id) {
cmp = 1;
} else {
/*
* First compare the two name arguments without
* considering any case folding.
*/
int nofold = (zsb->z_norm & ~U8_TEXTPREP_TOUPPER);
cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
ASSERT(error == 0 || !zsb->z_utf8);
if (cmp == 0) {
/*
* POSIX: "If the old argument and the new argument
* both refer to links to the same existing file,
* the rename() function shall return successfully
* and perform no other action."
*/
ZFS_EXIT(zsb);
return (0);
}
/*
* If the file system is case-folding, then we may
* have some more checking to do. A case-folding file
* system is either supporting mixed case sensitivity
* access or is completely case-insensitive. Note
* that the file system is always case preserving.
*
* In mixed sensitivity mode case sensitive behavior
* is the default. FIGNORECASE must be used to
* explicitly request case insensitive behavior.
*
* If the source and target names provided differ only
* by case (e.g., a request to rename 'tim' to 'Tim'),
* we will treat this as a special case in the
* case-insensitive mode: as long as the source name
* is an exact match, we will allow this to proceed as
* a name-change request.
*/
if ((zsb->z_case == ZFS_CASE_INSENSITIVE ||
(zsb->z_case == ZFS_CASE_MIXED &&
flags & FIGNORECASE)) &&
u8_strcmp(snm, tnm, 0, zsb->z_norm, U8_UNICODE_LATEST,
&error) == 0) {
/*
* case preserving rename request, require exact
* name matches
*/
zflg |= ZCIEXACT;
zflg &= ~ZCILOOK;
}
}
/*
* If the source and destination directories are the same, we should
* grab the z_name_lock of that directory only once.
*/
if (sdzp == tdzp) {
zflg |= ZHAVELOCK;
rw_enter(&sdzp->z_name_lock, RW_READER);
}
if (cmp < 0) {
serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
ZEXISTS | zflg, NULL, NULL);
terr = zfs_dirent_lock(&tdl,
tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
} else {
terr = zfs_dirent_lock(&tdl,
tdzp, tnm, &tzp, zflg, NULL, NULL);
serr = zfs_dirent_lock(&sdl,
sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
NULL, NULL);
}
if (serr) {
/*
* Source entry invalid or not there.
*/
if (!terr) {
zfs_dirent_unlock(tdl);
if (tzp)
iput(ZTOI(tzp));
}
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
if (strcmp(snm, "..") == 0)
serr = EINVAL;
ZFS_EXIT(zsb);
return (serr);
}
if (terr) {
zfs_dirent_unlock(sdl);
iput(ZTOI(szp));
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
if (strcmp(tnm, "..") == 0)
terr = EINVAL;
ZFS_EXIT(zsb);
return (terr);
}
/*
* Must have write access at the source to remove the old entry
* and write access at the target to create the new entry.
* Note that if target and source are the same, this can be
* done in a single check.
*/
if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
goto out;
if (S_ISDIR(ZTOI(szp)->i_mode)) {
/*
* Check to make sure rename is valid.
* Can't do a move like this: /usr/a/b to /usr/a/b/c/d
*/
if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
goto out;
}
/*
* Does target exist?
*/
if (tzp) {
/*
* Source and target must be the same type.
*/
if (S_ISDIR(ZTOI(szp)->i_mode)) {
if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
error = ENOTDIR;
goto out;
}
} else {
if (S_ISDIR(ZTOI(tzp)->i_mode)) {
error = EISDIR;
goto out;
}
}
/*
* POSIX dictates that when the source and target
* entries refer to the same file object, rename
* must do nothing and exit without error.
*/
if (szp->z_id == tzp->z_id) {
error = 0;
goto out;
}
}
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
if (sdzp != tdzp) {
dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, tdzp);
}
if (tzp) {
dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, tzp);
}
zfs_sa_upgrade_txholds(tx, szp);
dmu_tx_hold_zap(tx, zsb->z_unlinkedobj, FALSE, NULL);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
if (zl != NULL)
zfs_rename_unlock(&zl);
zfs_dirent_unlock(sdl);
zfs_dirent_unlock(tdl);
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
iput(ZTOI(szp));
if (tzp)
iput(ZTOI(tzp));
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
ZFS_EXIT(zsb);
return (error);
}
if (tzp) /* Attempt to remove the existing target */
error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
if (error == 0) {
error = zfs_link_create(tdl, szp, tx, ZRENAMING);
if (error == 0) {
szp->z_pflags |= ZFS_AV_MODIFIED;
error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zsb),
(void *)&szp->z_pflags, sizeof (uint64_t), tx);
ASSERT3U(error, ==, 0);
error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
if (error == 0) {
zfs_log_rename(zilog, tx, TX_RENAME |
(flags & FIGNORECASE ? TX_CI : 0), sdzp,
sdl->dl_name, tdzp, tdl->dl_name, szp);
} else {
/*
* At this point, we have successfully created
* the target name, but have failed to remove
* the source name. Since the create was done
* with the ZRENAMING flag, there are
* complications; for one, the link count is
* wrong. The easiest way to deal with this
* is to remove the newly created target, and
* return the original error. This must
* succeed; fortunately, it is very unlikely to
* fail, since we just created it.
*/
VERIFY3U(zfs_link_destroy(tdl, szp, tx,
ZRENAMING, NULL), ==, 0);
}
}
}
dmu_tx_commit(tx);
out:
if (zl != NULL)
zfs_rename_unlock(&zl);
zfs_dirent_unlock(sdl);
zfs_dirent_unlock(tdl);
zfs_inode_update(sdzp);
if (sdzp == tdzp)
rw_exit(&sdzp->z_name_lock);
if (sdzp != tdzp)
zfs_inode_update(tdzp);
zfs_inode_update(szp);
iput(ZTOI(szp));
if (tzp) {
zfs_inode_update(tzp);
iput(ZTOI(tzp));
}
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_rename);
/*
* Insert the indicated symbolic reference entry into the directory.
*
* IN: dip - Directory to contain new symbolic link.
* link - Name for new symlink entry.
* vap - Attributes of new entry.
* target - Target path of new symlink.
*
* cr - credentials of caller.
* flags - case flags
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* dip - ctime|mtime updated
*/
/*ARGSUSED*/
int
zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
struct inode **ipp, cred_t *cr, int flags)
{
znode_t *zp, *dzp = ITOZ(dip);
zfs_dirlock_t *dl;
dmu_tx_t *tx;
zfs_sb_t *zsb = ITOZSB(dip);
zilog_t *zilog;
uint64_t len = strlen(link);
int error;
int zflg = ZNEW;
zfs_acl_ids_t acl_ids;
boolean_t fuid_dirtied;
uint64_t txtype = TX_SYMLINK;
ASSERT(S_ISLNK(vap->va_mode));
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(dzp);
zilog = zsb->z_log;
if (zsb->z_utf8 && u8_validate(name, strlen(name),
NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zsb);
return (EILSEQ);
}
if (flags & FIGNORECASE)
zflg |= ZCILOOK;
if (len > MAXPATHLEN) {
ZFS_EXIT(zsb);
return (ENAMETOOLONG);
}
if ((error = zfs_acl_ids_create(dzp, 0,
vap, cr, NULL, &acl_ids)) != 0) {
ZFS_EXIT(zsb);
return (error);
}
top:
*ipp = NULL;
/*
* Attempt to lock directory; fail if entry already exists.
*/
error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
if (error) {
zfs_acl_ids_free(&acl_ids);
ZFS_EXIT(zsb);
return (error);
}
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
ZFS_EXIT(zsb);
return (error);
}
if (zfs_acl_ids_overquota(zsb, &acl_ids)) {
zfs_acl_ids_free(&acl_ids);
zfs_dirent_unlock(dl);
ZFS_EXIT(zsb);
return (EDQUOT);
}
tx = dmu_tx_create(zsb->z_os);
fuid_dirtied = zsb->z_fuid_dirty;
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
ZFS_SA_BASE_ATTR_SIZE + len);
dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
if (!zsb->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
acl_ids.z_aclp->z_acl_bytes);
}
if (fuid_dirtied)
zfs_fuid_txhold(zsb, tx);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
zfs_acl_ids_free(&acl_ids);
dmu_tx_abort(tx);
ZFS_EXIT(zsb);
return (error);
}
/*
* Create a new object for the symlink.
* for version 4 ZPL datsets the symlink will be an SA attribute
*/
zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
if (fuid_dirtied)
zfs_fuid_sync(zsb, tx);
mutex_enter(&zp->z_lock);
if (zp->z_is_sa)
error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zsb),
link, len, tx);
else
zfs_sa_symlink(zp, link, len, tx);
mutex_exit(&zp->z_lock);
zp->z_size = len;
(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zsb),
&zp->z_size, sizeof (zp->z_size), tx);
/*
* Insert the new object into the directory.
*/
(void) zfs_link_create(dl, zp, tx, ZNEW);
if (flags & FIGNORECASE)
txtype |= TX_CI;
zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
zfs_inode_update(dzp);
zfs_inode_update(zp);
zfs_acl_ids_free(&acl_ids);
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
*ipp = ZTOI(zp);
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_symlink);
/*
* Return, in the buffer contained in the provided uio structure,
* the symbolic path referred to by ip.
*
* IN: ip - inode of symbolic link
* uio - structure to contain the link path.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* ip - atime updated
*/
/* ARGSUSED */
int
zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
int error;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
mutex_enter(&zp->z_lock);
if (zp->z_is_sa)
error = sa_lookup_uio(zp->z_sa_hdl,
SA_ZPL_SYMLINK(zsb), uio);
else
error = zfs_sa_readlink(zp, uio);
mutex_exit(&zp->z_lock);
ZFS_ACCESSTIME_STAMP(zsb, zp);
zfs_inode_update(zp);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_readlink);
/*
* Insert a new entry into directory tdip referencing sip.
*
* IN: tdip - Directory to contain new entry.
* sip - inode of new entry.
* name - name of new entry.
* cr - credentials of caller.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* tdip - ctime|mtime updated
* sip - ctime updated
*/
/* ARGSUSED */
int
zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr)
{
znode_t *dzp = ITOZ(tdip);
znode_t *tzp, *szp;
zfs_sb_t *zsb = ITOZSB(tdip);
zilog_t *zilog;
zfs_dirlock_t *dl;
dmu_tx_t *tx;
int error;
int zf = ZNEW;
uint64_t parent;
uid_t owner;
ASSERT(S_ISDIR(tdip->i_mode));
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(dzp);
zilog = zsb->z_log;
/*
* POSIX dictates that we return EPERM here.
* Better choices include ENOTSUP or EISDIR.
*/
if (S_ISDIR(sip->i_mode)) {
ZFS_EXIT(zsb);
return (EPERM);
}
if (sip->i_sb != tdip->i_sb) {
ZFS_EXIT(zsb);
return (EXDEV);
}
szp = ITOZ(sip);
ZFS_VERIFY_ZP(szp);
/* Prevent links to .zfs/shares files */
if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zsb),
&parent, sizeof (uint64_t))) != 0) {
ZFS_EXIT(zsb);
return (error);
}
if (parent == zsb->z_shares_dir) {
ZFS_EXIT(zsb);
return (EPERM);
}
if (zsb->z_utf8 && u8_validate(name,
strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
ZFS_EXIT(zsb);
return (EILSEQ);
}
#ifdef HAVE_PN_UTILS
if (flags & FIGNORECASE)
zf |= ZCILOOK;
#endif /* HAVE_PN_UTILS */
/*
* We do not support links between attributes and non-attributes
* because of the potential security risk of creating links
* into "normal" file space in order to circumvent restrictions
* imposed in attribute space.
*/
if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
ZFS_EXIT(zsb);
return (EINVAL);
}
owner = zfs_fuid_map_id(zsb, szp->z_uid, cr, ZFS_OWNER);
if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
ZFS_EXIT(zsb);
return (EPERM);
}
if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
ZFS_EXIT(zsb);
return (error);
}
top:
/*
* Attempt to lock directory; fail if entry already exists.
*/
error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
if (error) {
ZFS_EXIT(zsb);
return (error);
}
tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
zfs_sa_upgrade_txholds(tx, szp);
zfs_sa_upgrade_txholds(tx, dzp);
error = dmu_tx_assign(tx, TXG_NOWAIT);
if (error) {
zfs_dirent_unlock(dl);
if (error == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
ZFS_EXIT(zsb);
return (error);
}
error = zfs_link_create(dl, szp, tx, 0);
if (error == 0) {
uint64_t txtype = TX_LINK;
#ifdef HAVE_PN_UTILS
if (flags & FIGNORECASE)
txtype |= TX_CI;
#endif /* HAVE_PN_UTILS */
zfs_log_link(zilog, tx, txtype, dzp, szp, name);
}
dmu_tx_commit(tx);
zfs_dirent_unlock(dl);
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
zfs_inode_update(dzp);
zfs_inode_update(szp);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_link);
#ifdef HAVE_MMAP
/*
* zfs_null_putapage() is used when the file system has been force
* unmounted. It just drops the pages.
*/
/* ARGSUSED */
static int
zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
size_t *lenp, int flags, cred_t *cr)
{
pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
return (0);
}
/*
* Push a page out to disk, klustering if possible.
*
* IN: vp - file to push page to.
* pp - page to push.
* flags - additional flags.
* cr - credentials of caller.
*
* OUT: offp - start of range pushed.
* lenp - len of range pushed.
*
* RETURN: 0 if success
* error code if failure
*
* NOTE: callers must have locked the page to be pushed. On
* exit, the page (and all other pages in the kluster) must be
* unlocked.
*/
/* ARGSUSED */
static int
zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
size_t *lenp, int flags, cred_t *cr)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
dmu_tx_t *tx;
u_offset_t off, koff;
size_t len, klen;
int err;
off = pp->p_offset;
len = PAGESIZE;
/*
* If our blocksize is bigger than the page size, try to kluster
* multiple pages so that we write a full block (thus avoiding
* a read-modify-write).
*/
if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
ASSERT(koff <= zp->z_size);
if (koff + klen > zp->z_size)
klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
}
ASSERT3U(btop(len), ==, btopr(len));
/*
* Can't push pages past end-of-file.
*/
if (off >= zp->z_size) {
/* ignore all pages */
err = 0;
goto out;
} else if (off + len > zp->z_size) {
int npages = btopr(zp->z_size - off);
page_t *trunc;
page_list_break(&pp, &trunc, npages);
/* ignore pages past end of file */
if (trunc)
pvn_write_done(trunc, flags);
len = zp->z_size - off;
}
if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
err = EDQUOT;
goto out;
}
top:
tx = dmu_tx_create(zfsvfs->z_os);
dmu_tx_hold_write(tx, zp->z_id, off, len);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
err = dmu_tx_assign(tx, TXG_NOWAIT);
if (err != 0) {
if (err == ERESTART) {
dmu_tx_wait(tx);
dmu_tx_abort(tx);
goto top;
}
dmu_tx_abort(tx);
goto out;
}
if (zp->z_blksz <= PAGESIZE) {
caddr_t va = zfs_map_page(pp, S_READ);
ASSERT3U(len, <=, PAGESIZE);
dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
zfs_unmap_page(pp, va);
} else {
err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
}
if (err == 0) {
uint64_t mtime[2], ctime[2];
sa_bulk_attr_t bulk[3];
int count = 0;
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
&mtime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
&ctime, 16);
SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
&zp->z_pflags, 8);
zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
B_TRUE);
zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
}
dmu_tx_commit(tx);
out:
pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
if (offp)
*offp = off;
if (lenp)
*lenp = len;
return (err);
}
/*
* Copy the portion of the file indicated from pages into the file.
* The pages are stored in a page list attached to the files vnode.
*
* IN: vp - vnode of file to push page data to.
* off - position in file to put data.
* len - amount of data to write.
* flags - flags to control the operation.
* cr - credentials of caller.
* ct - caller context.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* vp - ctime|mtime updated
*/
/*ARGSUSED*/
static int
zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
page_t *pp;
size_t io_len;
u_offset_t io_off;
uint_t blksz;
rl_t *rl;
int error = 0;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
/*
* Align this request to the file block size in case we kluster.
* XXX - this can result in pretty aggresive locking, which can
* impact simultanious read/write access. One option might be
* to break up long requests (len == 0) into block-by-block
* operations to get narrower locking.
*/
blksz = zp->z_blksz;
if (ISP2(blksz))
io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
else
io_off = 0;
if (len > 0 && ISP2(blksz))
io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
else
io_len = 0;
if (io_len == 0) {
/*
* Search the entire vp list for pages >= io_off.
*/
rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
goto out;
}
rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
if (off > zp->z_size) {
/* past end of file */
zfs_range_unlock(rl);
ZFS_EXIT(zfsvfs);
return (0);
}
len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
for (off = io_off; io_off < off + len; io_off += io_len) {
if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
pp = page_lookup(vp, io_off,
(flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
} else {
pp = page_lookup_nowait(vp, io_off,
(flags & B_FREE) ? SE_EXCL : SE_SHARED);
}
if (pp != NULL && pvn_getdirty(pp, flags)) {
int err;
/*
* Found a dirty page to push
*/
err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
if (err)
error = err;
} else {
io_len = PAGESIZE;
}
}
out:
zfs_range_unlock(rl);
if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zfsvfs->z_log, zp->z_id);
ZFS_EXIT(zfsvfs);
return (error);
}
#endif /* HAVE_MMAP */
/*ARGSUSED*/
void
zfs_inactive(struct inode *ip)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
int error;
#ifdef HAVE_SNAPSHOT
/* Early return for snapshot inode? */
#endif /* HAVE_SNAPSHOT */
rw_enter(&zsb->z_teardown_inactive_lock, RW_READER);
if (zp->z_sa_hdl == NULL) {
rw_exit(&zsb->z_teardown_inactive_lock);
return;
}
if (zp->z_atime_dirty && zp->z_unlinked == 0) {
dmu_tx_t *tx = dmu_tx_create(zsb->z_os);
dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
zfs_sa_upgrade_txholds(tx, zp);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
} else {
mutex_enter(&zp->z_lock);
(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zsb),
(void *)&zp->z_atime, sizeof (zp->z_atime), tx);
zp->z_atime_dirty = 0;
mutex_exit(&zp->z_lock);
dmu_tx_commit(tx);
}
}
zfs_zinactive(zp);
rw_exit(&zsb->z_teardown_inactive_lock);
}
EXPORT_SYMBOL(zfs_inactive);
/*
* Bounds-check the seek operation.
*
* IN: ip - inode seeking within
* ooff - old file offset
* noffp - pointer to new file offset
* ct - caller context
*
* RETURN: 0 if success
* EINVAL if new offset invalid
*/
/* ARGSUSED */
int
zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp,
caller_context_t *ct)
{
if (S_ISDIR(ip->i_mode))
return (0);
return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
}
EXPORT_SYMBOL(zfs_seek);
#ifdef HAVE_MMAP
/*
* Pre-filter the generic locking function to trap attempts to place
* a mandatory lock on a memory mapped file.
*/
static int
zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
/*
* We are following the UFS semantics with respect to mapcnt
* here: If we see that the file is mapped already, then we will
* return an error, but we don't worry about races between this
* function and zfs_map().
*/
if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
ZFS_EXIT(zfsvfs);
return (EAGAIN);
}
ZFS_EXIT(zfsvfs);
return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
}
/*
* If we can't find a page in the cache, we will create a new page
* and fill it with file data. For efficiency, we may try to fill
* multiple pages at once (klustering) to fill up the supplied page
* list. Note that the pages to be filled are held with an exclusive
* lock to prevent access by other threads while they are being filled.
*/
static int
zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
{
znode_t *zp = VTOZ(vp);
page_t *pp, *cur_pp;
objset_t *os = zp->z_zfsvfs->z_os;
u_offset_t io_off, total;
size_t io_len;
int err;
if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
/*
* We only have a single page, don't bother klustering
*/
io_off = off;
io_len = PAGESIZE;
pp = page_create_va(vp, io_off, io_len,
PG_EXCL | PG_WAIT, seg, addr);
} else {
/*
* Try to find enough pages to fill the page list
*/
pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
&io_len, off, plsz, 0);
}
if (pp == NULL) {
/*
* The page already exists, nothing to do here.
*/
*pl = NULL;
return (0);
}
/*
* Fill the pages in the kluster.
*/
cur_pp = pp;
for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
caddr_t va;
ASSERT3U(io_off, ==, cur_pp->p_offset);
va = zfs_map_page(cur_pp, S_WRITE);
err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
DMU_READ_PREFETCH);
zfs_unmap_page(cur_pp, va);
if (err) {
/* On error, toss the entire kluster */
pvn_read_done(pp, B_ERROR);
/* convert checksum errors into IO errors */
if (err == ECKSUM)
err = EIO;
return (err);
}
cur_pp = cur_pp->p_next;
}
/*
* Fill in the page list array from the kluster starting
* from the desired offset `off'.
* NOTE: the page list will always be null terminated.
*/
pvn_plist_init(pp, pl, plsz, off, io_len, rw);
ASSERT(pl == NULL || (*pl)->p_offset == off);
return (0);
}
/*
* Return pointers to the pages for the file region [off, off + len]
* in the pl array. If plsz is greater than len, this function may
* also return page pointers from after the specified region
* (i.e. the region [off, off + plsz]). These additional pages are
* only returned if they are already in the cache, or were created as
* part of a klustered read.
*
* IN: vp - vnode of file to get data from.
* off - position in file to get data from.
* len - amount of data to retrieve.
* plsz - length of provided page list.
* seg - segment to obtain pages for.
* addr - virtual address of fault.
* rw - mode of created pages.
* cr - credentials of caller.
* ct - caller context.
*
* OUT: protp - protection mode of created pages.
* pl - list of pages created.
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* vp - atime updated
*/
/* ARGSUSED */
static int
zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
enum seg_rw rw, cred_t *cr, caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
page_t **pl0 = pl;
int err = 0;
/* we do our own caching, faultahead is unnecessary */
if (pl == NULL)
return (0);
else if (len > plsz)
len = plsz;
else
len = P2ROUNDUP(len, PAGESIZE);
ASSERT(plsz >= len);
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if (protp)
*protp = PROT_ALL;
/*
* Loop through the requested range [off, off + len) looking
* for pages. If we don't find a page, we will need to create
* a new page and fill it with data from the file.
*/
while (len > 0) {
if (*pl = page_lookup(vp, off, SE_SHARED))
*(pl+1) = NULL;
else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
goto out;
while (*pl) {
ASSERT3U((*pl)->p_offset, ==, off);
off += PAGESIZE;
addr += PAGESIZE;
if (len > 0) {
ASSERT3U(len, >=, PAGESIZE);
len -= PAGESIZE;
}
ASSERT3U(plsz, >=, PAGESIZE);
plsz -= PAGESIZE;
pl++;
}
}
/*
* Fill out the page array with any pages already in the cache.
*/
while (plsz > 0 &&
(*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
off += PAGESIZE;
plsz -= PAGESIZE;
}
out:
if (err) {
/*
* Release any pages we have previously locked.
*/
while (pl > pl0)
page_unlock(*--pl);
} else {
ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
}
*pl = NULL;
ZFS_EXIT(zfsvfs);
return (err);
}
/*
* Request a memory map for a section of a file. This code interacts
* with common code and the VM system as follows:
*
* common code calls mmap(), which ends up in smmap_common()
*
* this calls VOP_MAP(), which takes you into (say) zfs
*
* zfs_map() calls as_map(), passing segvn_create() as the callback
*
* segvn_create() creates the new segment and calls VOP_ADDMAP()
*
* zfs_addmap() updates z_mapcnt
*/
/*ARGSUSED*/
static int
zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
caller_context_t *ct)
{
znode_t *zp = VTOZ(vp);
zfsvfs_t *zfsvfs = zp->z_zfsvfs;
segvn_crargs_t vn_a;
int error;
ZFS_ENTER(zfsvfs);
ZFS_VERIFY_ZP(zp);
if ((prot & PROT_WRITE) && (zp->z_pflags &
(ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
ZFS_EXIT(zfsvfs);
return (EPERM);
}
if ((prot & (PROT_READ | PROT_EXEC)) &&
(zp->z_pflags & ZFS_AV_QUARANTINED)) {
ZFS_EXIT(zfsvfs);
return (EACCES);
}
if (vp->v_flag & VNOMAP) {
ZFS_EXIT(zfsvfs);
return (ENOSYS);
}
if (off < 0 || len > MAXOFFSET_T - off) {
ZFS_EXIT(zfsvfs);
return (ENXIO);
}
if (vp->v_type != VREG) {
ZFS_EXIT(zfsvfs);
return (ENODEV);
}
/*
* If file is locked, disallow mapping.
*/
if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
ZFS_EXIT(zfsvfs);
return (EAGAIN);
}
as_rangelock(as);
error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
if (error != 0) {
as_rangeunlock(as);
ZFS_EXIT(zfsvfs);
return (error);
}
vn_a.vp = vp;
vn_a.offset = (u_offset_t)off;
vn_a.type = flags & MAP_TYPE;
vn_a.prot = prot;
vn_a.maxprot = maxprot;
vn_a.cred = cr;
vn_a.amp = NULL;
vn_a.flags = flags & ~MAP_TYPE;
vn_a.szc = 0;
vn_a.lgrp_mem_policy_flags = 0;
error = as_map(as, *addrp, len, segvn_create, &vn_a);
as_rangeunlock(as);
ZFS_EXIT(zfsvfs);
return (error);
}
/* ARGSUSED */
static int
zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
caller_context_t *ct)
{
uint64_t pages = btopr(len);
atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
return (0);
}
/*
* The reason we push dirty pages as part of zfs_delmap() is so that we get a
* more accurate mtime for the associated file. Since we don't have a way of
* detecting when the data was actually modified, we have to resort to
* heuristics. If an explicit msync() is done, then we mark the mtime when the
* last page is pushed. The problem occurs when the msync() call is omitted,
* which by far the most common case:
*
* open()
* mmap()
* <modify memory>
* munmap()
* close()
* <time lapse>
* putpage() via fsflush
*
* If we wait until fsflush to come along, we can have a modification time that
* is some arbitrary point in the future. In order to prevent this in the
* common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
* torn down.
*/
/* ARGSUSED */
static int
zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
caller_context_t *ct)
{
uint64_t pages = btopr(len);
ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
vn_has_cached_data(vp))
(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
return (0);
}
#endif /* HAVE_MMAP */
/*
* convoff - converts the given data (start, whence) to the
* given whence.
*/
int
convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
{
struct kstat stat;
int error;
if ((lckdat->l_whence == 2) || (whence == 2)) {
if ((error = zfs_getattr(ip, &stat, 0, CRED()) != 0))
return (error);
}
switch (lckdat->l_whence) {
case 1:
lckdat->l_start += offset;
break;
case 2:
lckdat->l_start += stat.size;
/* FALLTHRU */
case 0:
break;
default:
return (EINVAL);
}
if (lckdat->l_start < 0)
return (EINVAL);
switch (whence) {
case 1:
lckdat->l_start -= offset;
break;
case 2:
lckdat->l_start -= stat.size;
/* FALLTHRU */
case 0:
break;
default:
return (EINVAL);
}
lckdat->l_whence = (short)whence;
return (0);
}
/*
* Free or allocate space in a file. Currently, this function only
* supports the `F_FREESP' command. However, this command is somewhat
* misnamed, as its functionality includes the ability to allocate as
* well as free space.
*
* IN: ip - inode of file to free data in.
* cmd - action to take (only F_FREESP supported).
* bfp - section of file to free/alloc.
* flag - current file open mode flags.
* offset - current file offset.
* cr - credentials of caller [UNUSED].
*
* RETURN: 0 if success
* error code if failure
*
* Timestamps:
* ip - ctime|mtime updated
*/
/* ARGSUSED */
int
zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
offset_t offset, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
uint64_t off, len;
int error;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
if (cmd != F_FREESP) {
ZFS_EXIT(zsb);
return (EINVAL);
}
if ((error = convoff(ip, bfp, 0, offset))) {
ZFS_EXIT(zsb);
return (error);
}
if (bfp->l_len < 0) {
ZFS_EXIT(zsb);
return (EINVAL);
}
off = bfp->l_start;
len = bfp->l_len; /* 0 means from off to end of file */
error = zfs_freesp(zp, off, len, flag, TRUE);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_space);
/*ARGSUSED*/
int
zfs_fid(struct inode *ip, fid_t *fidp)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
uint32_t gen;
uint64_t gen64;
uint64_t object = zp->z_id;
zfid_short_t *zfid;
int size, i, error;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb),
&gen64, sizeof (uint64_t))) != 0) {
ZFS_EXIT(zsb);
return (error);
}
gen = (uint32_t)gen64;
size = (zsb->z_parent != zsb) ? LONG_FID_LEN : SHORT_FID_LEN;
if (fidp->fid_len < size) {
fidp->fid_len = size;
ZFS_EXIT(zsb);
return (ENOSPC);
}
zfid = (zfid_short_t *)fidp;
zfid->zf_len = size;
for (i = 0; i < sizeof (zfid->zf_object); i++)
zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
/* Must have a non-zero generation number to distinguish from .zfs */
if (gen == 0)
gen = 1;
for (i = 0; i < sizeof (zfid->zf_gen); i++)
zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
if (size == LONG_FID_LEN) {
uint64_t objsetid = dmu_objset_id(zsb->z_os);
zfid_long_t *zlfid;
zlfid = (zfid_long_t *)fidp;
for (i = 0; i < sizeof (zlfid->zf_setid); i++)
zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
/* XXX - this should be the generation number for the objset */
for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
zlfid->zf_setgen[i] = 0;
}
ZFS_EXIT(zsb);
return (0);
}
EXPORT_SYMBOL(zfs_fid);
/*ARGSUSED*/
int
zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
int error;
boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
error = zfs_getacl(zp, vsecp, skipaclchk, cr);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_getsecattr);
/*ARGSUSED*/
int
zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
int error;
boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
zilog_t *zilog = zsb->z_log;
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
error = zfs_setacl(zp, vsecp, skipaclchk, cr);
if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
zil_commit(zilog, 0);
ZFS_EXIT(zsb);
return (error);
}
EXPORT_SYMBOL(zfs_setsecattr);
#ifdef HAVE_UIO_ZEROCOPY
/*
* Tunable, both must be a power of 2.
*
* zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
* zcr_blksz_max: if set to less than the file block size, allow loaning out of
* an arcbuf for a partial block read
*/
int zcr_blksz_min = (1 << 10); /* 1K */
int zcr_blksz_max = (1 << 17); /* 128K */
/*ARGSUSED*/
static int
zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
{
znode_t *zp = ITOZ(ip);
zfs_sb_t *zsb = ITOZSB(ip);
int max_blksz = zsb->z_max_blksz;
uio_t *uio = &xuio->xu_uio;
ssize_t size = uio->uio_resid;
offset_t offset = uio->uio_loffset;
int blksz;
int fullblk, i;
arc_buf_t *abuf;
ssize_t maxsize;
int preamble, postamble;
if (xuio->xu_type != UIOTYPE_ZEROCOPY)
return (EINVAL);
ZFS_ENTER(zsb);
ZFS_VERIFY_ZP(zp);
switch (ioflag) {
case UIO_WRITE:
/*
* Loan out an arc_buf for write if write size is bigger than
* max_blksz, and the file's block size is also max_blksz.
*/
blksz = max_blksz;
if (size < blksz || zp->z_blksz != blksz) {
ZFS_EXIT(zsb);
return (EINVAL);
}
/*
* Caller requests buffers for write before knowing where the
* write offset might be (e.g. NFS TCP write).
*/
if (offset == -1) {
preamble = 0;
} else {
preamble = P2PHASE(offset, blksz);
if (preamble) {
preamble = blksz - preamble;
size -= preamble;
}
}
postamble = P2PHASE(size, blksz);
size -= postamble;
fullblk = size / blksz;
(void) dmu_xuio_init(xuio,
(preamble != 0) + fullblk + (postamble != 0));
/*
* Have to fix iov base/len for partial buffers. They
* currently represent full arc_buf's.
*/
if (preamble) {
/* data begins in the middle of the arc_buf */
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
blksz);
ASSERT(abuf);
(void) dmu_xuio_add(xuio, abuf,
blksz - preamble, preamble);
}
for (i = 0; i < fullblk; i++) {
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
blksz);
ASSERT(abuf);
(void) dmu_xuio_add(xuio, abuf, 0, blksz);
}
if (postamble) {
/* data ends in the middle of the arc_buf */
abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
blksz);
ASSERT(abuf);
(void) dmu_xuio_add(xuio, abuf, 0, postamble);
}
break;
case UIO_READ:
/*
* Loan out an arc_buf for read if the read size is larger than
* the current file block size. Block alignment is not
* considered. Partial arc_buf will be loaned out for read.
*/
blksz = zp->z_blksz;
if (blksz < zcr_blksz_min)
blksz = zcr_blksz_min;
if (blksz > zcr_blksz_max)
blksz = zcr_blksz_max;
/* avoid potential complexity of dealing with it */
if (blksz > max_blksz) {
ZFS_EXIT(zsb);
return (EINVAL);
}
maxsize = zp->z_size - uio->uio_loffset;
if (size > maxsize)
size = maxsize;
if (size < blksz) {
ZFS_EXIT(zsb);
return (EINVAL);
}
break;
default:
ZFS_EXIT(zsb);
return (EINVAL);
}
uio->uio_extflg = UIO_XUIO;
XUIO_XUZC_RW(xuio) = ioflag;
ZFS_EXIT(zsb);
return (0);
}
/*ARGSUSED*/
static int
zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
{
int i;
arc_buf_t *abuf;
int ioflag = XUIO_XUZC_RW(xuio);
ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
i = dmu_xuio_cnt(xuio);
while (i-- > 0) {
abuf = dmu_xuio_arcbuf(xuio, i);
/*
* if abuf == NULL, it must be a write buffer
* that has been returned in zfs_write().
*/
if (abuf)
dmu_return_arcbuf(abuf);
ASSERT(abuf || ioflag == UIO_WRITE);
}
dmu_xuio_fini(xuio);
return (0);
}
#endif /* HAVE_UIO_ZEROCOPY */