1
0
mirror of https://git.proxmox.com/git/mirror_zfs.git synced 2025-01-18 05:57:11 +03:00
mirror_zfs/module/os/linux/spl/spl-taskq.c
Rich Ercolani 35a6247c5f
Add a delay to tearing down threads.
It's been observed that in certain workloads (zvol-related being a
big one), ZFS will end up spending a large amount of time spinning
up taskqs only to tear them down again almost immediately, then
spin them up again...

I noticed this when I looked at what my mostly-idle system was doing
and wondered how on earth taskq creation/destroy was a bunch of time...

So I added a configurable delay to avoid it tearing down tasks the
first time it notices them idle, and the total number of threads at
steady state went up, but the amount of time being burned just
tearing down/turning up new ones almost vanished.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Rich Ercolani <rincebrain@gmail.com>
Closes 
2023-06-26 13:57:12 -07:00

1467 lines
38 KiB
C

/*
* Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
* Copyright (C) 2007 The Regents of the University of California.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Written by Brian Behlendorf <behlendorf1@llnl.gov>.
* UCRL-CODE-235197
*
* This file is part of the SPL, Solaris Porting Layer.
*
* The SPL is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* The SPL is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with the SPL. If not, see <http://www.gnu.org/licenses/>.
*
* Solaris Porting Layer (SPL) Task Queue Implementation.
*/
#include <sys/timer.h>
#include <sys/taskq.h>
#include <sys/kmem.h>
#include <sys/tsd.h>
#include <sys/trace_spl.h>
#ifdef HAVE_CPU_HOTPLUG
#include <linux/cpuhotplug.h>
#endif
static int spl_taskq_thread_bind = 0;
module_param(spl_taskq_thread_bind, int, 0644);
MODULE_PARM_DESC(spl_taskq_thread_bind, "Bind taskq thread to CPU by default");
static uint_t spl_taskq_thread_timeout_ms = 10000;
/* BEGIN CSTYLED */
module_param(spl_taskq_thread_timeout_ms, uint, 0644);
/* END CSTYLED */
MODULE_PARM_DESC(spl_taskq_thread_timeout_ms,
"Time to require a dynamic thread be idle before it gets cleaned up");
static int spl_taskq_thread_dynamic = 1;
module_param(spl_taskq_thread_dynamic, int, 0444);
MODULE_PARM_DESC(spl_taskq_thread_dynamic, "Allow dynamic taskq threads");
static int spl_taskq_thread_priority = 1;
module_param(spl_taskq_thread_priority, int, 0644);
MODULE_PARM_DESC(spl_taskq_thread_priority,
"Allow non-default priority for taskq threads");
static uint_t spl_taskq_thread_sequential = 4;
/* BEGIN CSTYLED */
module_param(spl_taskq_thread_sequential, uint, 0644);
/* END CSTYLED */
MODULE_PARM_DESC(spl_taskq_thread_sequential,
"Create new taskq threads after N sequential tasks");
/*
* Global system-wide dynamic task queue available for all consumers. This
* taskq is not intended for long-running tasks; instead, a dedicated taskq
* should be created.
*/
taskq_t *system_taskq;
EXPORT_SYMBOL(system_taskq);
/* Global dynamic task queue for long delay */
taskq_t *system_delay_taskq;
EXPORT_SYMBOL(system_delay_taskq);
/* Private dedicated taskq for creating new taskq threads on demand. */
static taskq_t *dynamic_taskq;
static taskq_thread_t *taskq_thread_create(taskq_t *);
#ifdef HAVE_CPU_HOTPLUG
/* Multi-callback id for cpu hotplugging. */
static int spl_taskq_cpuhp_state;
#endif
/* List of all taskqs */
LIST_HEAD(tq_list);
struct rw_semaphore tq_list_sem;
static uint_t taskq_tsd;
static int
task_km_flags(uint_t flags)
{
if (flags & TQ_NOSLEEP)
return (KM_NOSLEEP);
if (flags & TQ_PUSHPAGE)
return (KM_PUSHPAGE);
return (KM_SLEEP);
}
/*
* taskq_find_by_name - Find the largest instance number of a named taskq.
*/
static int
taskq_find_by_name(const char *name)
{
struct list_head *tql = NULL;
taskq_t *tq;
list_for_each_prev(tql, &tq_list) {
tq = list_entry(tql, taskq_t, tq_taskqs);
if (strcmp(name, tq->tq_name) == 0)
return (tq->tq_instance);
}
return (-1);
}
/*
* NOTE: Must be called with tq->tq_lock held, returns a list_t which
* is not attached to the free, work, or pending taskq lists.
*/
static taskq_ent_t *
task_alloc(taskq_t *tq, uint_t flags, unsigned long *irqflags)
{
taskq_ent_t *t;
int count = 0;
ASSERT(tq);
retry:
/* Acquire taskq_ent_t's from free list if available */
if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
ASSERT(!(t->tqent_flags & TQENT_FLAG_CANCEL));
ASSERT(!timer_pending(&t->tqent_timer));
list_del_init(&t->tqent_list);
return (t);
}
/* Free list is empty and memory allocations are prohibited */
if (flags & TQ_NOALLOC)
return (NULL);
/* Hit maximum taskq_ent_t pool size */
if (tq->tq_nalloc >= tq->tq_maxalloc) {
if (flags & TQ_NOSLEEP)
return (NULL);
/*
* Sleep periodically polling the free list for an available
* taskq_ent_t. Dispatching with TQ_SLEEP should always succeed
* but we cannot block forever waiting for an taskq_ent_t to
* show up in the free list, otherwise a deadlock can happen.
*
* Therefore, we need to allocate a new task even if the number
* of allocated tasks is above tq->tq_maxalloc, but we still
* end up delaying the task allocation by one second, thereby
* throttling the task dispatch rate.
*/
spin_unlock_irqrestore(&tq->tq_lock, *irqflags);
schedule_timeout(HZ / 100);
spin_lock_irqsave_nested(&tq->tq_lock, *irqflags,
tq->tq_lock_class);
if (count < 100) {
count++;
goto retry;
}
}
spin_unlock_irqrestore(&tq->tq_lock, *irqflags);
t = kmem_alloc(sizeof (taskq_ent_t), task_km_flags(flags));
spin_lock_irqsave_nested(&tq->tq_lock, *irqflags, tq->tq_lock_class);
if (t) {
taskq_init_ent(t);
tq->tq_nalloc++;
}
return (t);
}
/*
* NOTE: Must be called with tq->tq_lock held, expects the taskq_ent_t
* to already be removed from the free, work, or pending taskq lists.
*/
static void
task_free(taskq_t *tq, taskq_ent_t *t)
{
ASSERT(tq);
ASSERT(t);
ASSERT(list_empty(&t->tqent_list));
ASSERT(!timer_pending(&t->tqent_timer));
kmem_free(t, sizeof (taskq_ent_t));
tq->tq_nalloc--;
}
/*
* NOTE: Must be called with tq->tq_lock held, either destroys the
* taskq_ent_t if too many exist or moves it to the free list for later use.
*/
static void
task_done(taskq_t *tq, taskq_ent_t *t)
{
ASSERT(tq);
ASSERT(t);
/* Wake tasks blocked in taskq_wait_id() */
wake_up_all(&t->tqent_waitq);
list_del_init(&t->tqent_list);
if (tq->tq_nalloc <= tq->tq_minalloc) {
t->tqent_id = TASKQID_INVALID;
t->tqent_func = NULL;
t->tqent_arg = NULL;
t->tqent_flags = 0;
list_add_tail(&t->tqent_list, &tq->tq_free_list);
} else {
task_free(tq, t);
}
}
/*
* When a delayed task timer expires remove it from the delay list and
* add it to the priority list in order for immediate processing.
*/
static void
task_expire_impl(taskq_ent_t *t)
{
taskq_ent_t *w;
taskq_t *tq = t->tqent_taskq;
struct list_head *l = NULL;
unsigned long flags;
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
if (t->tqent_flags & TQENT_FLAG_CANCEL) {
ASSERT(list_empty(&t->tqent_list));
spin_unlock_irqrestore(&tq->tq_lock, flags);
return;
}
t->tqent_birth = jiffies;
DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
/*
* The priority list must be maintained in strict task id order
* from lowest to highest for lowest_id to be easily calculable.
*/
list_del(&t->tqent_list);
list_for_each_prev(l, &tq->tq_prio_list) {
w = list_entry(l, taskq_ent_t, tqent_list);
if (w->tqent_id < t->tqent_id) {
list_add(&t->tqent_list, l);
break;
}
}
if (l == &tq->tq_prio_list)
list_add(&t->tqent_list, &tq->tq_prio_list);
spin_unlock_irqrestore(&tq->tq_lock, flags);
wake_up(&tq->tq_work_waitq);
}
static void
task_expire(spl_timer_list_t tl)
{
struct timer_list *tmr = (struct timer_list *)tl;
taskq_ent_t *t = from_timer(t, tmr, tqent_timer);
task_expire_impl(t);
}
/*
* Returns the lowest incomplete taskqid_t. The taskqid_t may
* be queued on the pending list, on the priority list, on the
* delay list, or on the work list currently being handled, but
* it is not 100% complete yet.
*/
static taskqid_t
taskq_lowest_id(taskq_t *tq)
{
taskqid_t lowest_id = tq->tq_next_id;
taskq_ent_t *t;
taskq_thread_t *tqt;
if (!list_empty(&tq->tq_pend_list)) {
t = list_entry(tq->tq_pend_list.next, taskq_ent_t, tqent_list);
lowest_id = MIN(lowest_id, t->tqent_id);
}
if (!list_empty(&tq->tq_prio_list)) {
t = list_entry(tq->tq_prio_list.next, taskq_ent_t, tqent_list);
lowest_id = MIN(lowest_id, t->tqent_id);
}
if (!list_empty(&tq->tq_delay_list)) {
t = list_entry(tq->tq_delay_list.next, taskq_ent_t, tqent_list);
lowest_id = MIN(lowest_id, t->tqent_id);
}
if (!list_empty(&tq->tq_active_list)) {
tqt = list_entry(tq->tq_active_list.next, taskq_thread_t,
tqt_active_list);
ASSERT(tqt->tqt_id != TASKQID_INVALID);
lowest_id = MIN(lowest_id, tqt->tqt_id);
}
return (lowest_id);
}
/*
* Insert a task into a list keeping the list sorted by increasing taskqid.
*/
static void
taskq_insert_in_order(taskq_t *tq, taskq_thread_t *tqt)
{
taskq_thread_t *w;
struct list_head *l = NULL;
ASSERT(tq);
ASSERT(tqt);
list_for_each_prev(l, &tq->tq_active_list) {
w = list_entry(l, taskq_thread_t, tqt_active_list);
if (w->tqt_id < tqt->tqt_id) {
list_add(&tqt->tqt_active_list, l);
break;
}
}
if (l == &tq->tq_active_list)
list_add(&tqt->tqt_active_list, &tq->tq_active_list);
}
/*
* Find and return a task from the given list if it exists. The list
* must be in lowest to highest task id order.
*/
static taskq_ent_t *
taskq_find_list(taskq_t *tq, struct list_head *lh, taskqid_t id)
{
struct list_head *l = NULL;
taskq_ent_t *t;
list_for_each(l, lh) {
t = list_entry(l, taskq_ent_t, tqent_list);
if (t->tqent_id == id)
return (t);
if (t->tqent_id > id)
break;
}
return (NULL);
}
/*
* Find an already dispatched task given the task id regardless of what
* state it is in. If a task is still pending it will be returned.
* If a task is executing, then -EBUSY will be returned instead.
* If the task has already been run then NULL is returned.
*/
static taskq_ent_t *
taskq_find(taskq_t *tq, taskqid_t id)
{
taskq_thread_t *tqt;
struct list_head *l = NULL;
taskq_ent_t *t;
t = taskq_find_list(tq, &tq->tq_delay_list, id);
if (t)
return (t);
t = taskq_find_list(tq, &tq->tq_prio_list, id);
if (t)
return (t);
t = taskq_find_list(tq, &tq->tq_pend_list, id);
if (t)
return (t);
list_for_each(l, &tq->tq_active_list) {
tqt = list_entry(l, taskq_thread_t, tqt_active_list);
if (tqt->tqt_id == id) {
/*
* Instead of returning tqt_task, we just return a non
* NULL value to prevent misuse, since tqt_task only
* has two valid fields.
*/
return (ERR_PTR(-EBUSY));
}
}
return (NULL);
}
/*
* Theory for the taskq_wait_id(), taskq_wait_outstanding(), and
* taskq_wait() functions below.
*
* Taskq waiting is accomplished by tracking the lowest outstanding task
* id and the next available task id. As tasks are dispatched they are
* added to the tail of the pending, priority, or delay lists. As worker
* threads become available the tasks are removed from the heads of these
* lists and linked to the worker threads. This ensures the lists are
* kept sorted by lowest to highest task id.
*
* Therefore the lowest outstanding task id can be quickly determined by
* checking the head item from all of these lists. This value is stored
* with the taskq as the lowest id. It only needs to be recalculated when
* either the task with the current lowest id completes or is canceled.
*
* By blocking until the lowest task id exceeds the passed task id the
* taskq_wait_outstanding() function can be easily implemented. Similarly,
* by blocking until the lowest task id matches the next task id taskq_wait()
* can be implemented.
*
* Callers should be aware that when there are multiple worked threads it
* is possible for larger task ids to complete before smaller ones. Also
* when the taskq contains delay tasks with small task ids callers may
* block for a considerable length of time waiting for them to expire and
* execute.
*/
static int
taskq_wait_id_check(taskq_t *tq, taskqid_t id)
{
int rc;
unsigned long flags;
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
rc = (taskq_find(tq, id) == NULL);
spin_unlock_irqrestore(&tq->tq_lock, flags);
return (rc);
}
/*
* The taskq_wait_id() function blocks until the passed task id completes.
* This does not guarantee that all lower task ids have completed.
*/
void
taskq_wait_id(taskq_t *tq, taskqid_t id)
{
wait_event(tq->tq_wait_waitq, taskq_wait_id_check(tq, id));
}
EXPORT_SYMBOL(taskq_wait_id);
static int
taskq_wait_outstanding_check(taskq_t *tq, taskqid_t id)
{
int rc;
unsigned long flags;
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
rc = (id < tq->tq_lowest_id);
spin_unlock_irqrestore(&tq->tq_lock, flags);
return (rc);
}
/*
* The taskq_wait_outstanding() function will block until all tasks with a
* lower taskqid than the passed 'id' have been completed. Note that all
* task id's are assigned monotonically at dispatch time. Zero may be
* passed for the id to indicate all tasks dispatch up to this point,
* but not after, should be waited for.
*/
void
taskq_wait_outstanding(taskq_t *tq, taskqid_t id)
{
id = id ? id : tq->tq_next_id - 1;
wait_event(tq->tq_wait_waitq, taskq_wait_outstanding_check(tq, id));
}
EXPORT_SYMBOL(taskq_wait_outstanding);
static int
taskq_wait_check(taskq_t *tq)
{
int rc;
unsigned long flags;
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
rc = (tq->tq_lowest_id == tq->tq_next_id);
spin_unlock_irqrestore(&tq->tq_lock, flags);
return (rc);
}
/*
* The taskq_wait() function will block until the taskq is empty.
* This means that if a taskq re-dispatches work to itself taskq_wait()
* callers will block indefinitely.
*/
void
taskq_wait(taskq_t *tq)
{
wait_event(tq->tq_wait_waitq, taskq_wait_check(tq));
}
EXPORT_SYMBOL(taskq_wait);
int
taskq_member(taskq_t *tq, kthread_t *t)
{
return (tq == (taskq_t *)tsd_get_by_thread(taskq_tsd, t));
}
EXPORT_SYMBOL(taskq_member);
taskq_t *
taskq_of_curthread(void)
{
return (tsd_get(taskq_tsd));
}
EXPORT_SYMBOL(taskq_of_curthread);
/*
* Cancel an already dispatched task given the task id. Still pending tasks
* will be immediately canceled, and if the task is active the function will
* block until it completes. Preallocated tasks which are canceled must be
* freed by the caller.
*/
int
taskq_cancel_id(taskq_t *tq, taskqid_t id)
{
taskq_ent_t *t;
int rc = ENOENT;
unsigned long flags;
ASSERT(tq);
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
t = taskq_find(tq, id);
if (t && t != ERR_PTR(-EBUSY)) {
list_del_init(&t->tqent_list);
t->tqent_flags |= TQENT_FLAG_CANCEL;
/*
* When canceling the lowest outstanding task id we
* must recalculate the new lowest outstanding id.
*/
if (tq->tq_lowest_id == t->tqent_id) {
tq->tq_lowest_id = taskq_lowest_id(tq);
ASSERT3S(tq->tq_lowest_id, >, t->tqent_id);
}
/*
* The task_expire() function takes the tq->tq_lock so drop
* drop the lock before synchronously cancelling the timer.
*/
if (timer_pending(&t->tqent_timer)) {
spin_unlock_irqrestore(&tq->tq_lock, flags);
del_timer_sync(&t->tqent_timer);
spin_lock_irqsave_nested(&tq->tq_lock, flags,
tq->tq_lock_class);
}
if (!(t->tqent_flags & TQENT_FLAG_PREALLOC))
task_done(tq, t);
rc = 0;
}
spin_unlock_irqrestore(&tq->tq_lock, flags);
if (t == ERR_PTR(-EBUSY)) {
taskq_wait_id(tq, id);
rc = EBUSY;
}
return (rc);
}
EXPORT_SYMBOL(taskq_cancel_id);
static int taskq_thread_spawn(taskq_t *tq);
taskqid_t
taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
{
taskq_ent_t *t;
taskqid_t rc = TASKQID_INVALID;
unsigned long irqflags;
ASSERT(tq);
ASSERT(func);
spin_lock_irqsave_nested(&tq->tq_lock, irqflags, tq->tq_lock_class);
/* Taskq being destroyed and all tasks drained */
if (!(tq->tq_flags & TASKQ_ACTIVE))
goto out;
/* Do not queue the task unless there is idle thread for it */
ASSERT(tq->tq_nactive <= tq->tq_nthreads);
if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads)) {
/* Dynamic taskq may be able to spawn another thread */
if (!(tq->tq_flags & TASKQ_DYNAMIC) ||
taskq_thread_spawn(tq) == 0)
goto out;
}
if ((t = task_alloc(tq, flags, &irqflags)) == NULL)
goto out;
spin_lock(&t->tqent_lock);
/* Queue to the front of the list to enforce TQ_NOQUEUE semantics */
if (flags & TQ_NOQUEUE)
list_add(&t->tqent_list, &tq->tq_prio_list);
/* Queue to the priority list instead of the pending list */
else if (flags & TQ_FRONT)
list_add_tail(&t->tqent_list, &tq->tq_prio_list);
else
list_add_tail(&t->tqent_list, &tq->tq_pend_list);
t->tqent_id = rc = tq->tq_next_id;
tq->tq_next_id++;
t->tqent_func = func;
t->tqent_arg = arg;
t->tqent_taskq = tq;
t->tqent_timer.function = NULL;
t->tqent_timer.expires = 0;
t->tqent_birth = jiffies;
DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
spin_unlock(&t->tqent_lock);
wake_up(&tq->tq_work_waitq);
out:
/* Spawn additional taskq threads if required. */
if (!(flags & TQ_NOQUEUE) && tq->tq_nactive == tq->tq_nthreads)
(void) taskq_thread_spawn(tq);
spin_unlock_irqrestore(&tq->tq_lock, irqflags);
return (rc);
}
EXPORT_SYMBOL(taskq_dispatch);
taskqid_t
taskq_dispatch_delay(taskq_t *tq, task_func_t func, void *arg,
uint_t flags, clock_t expire_time)
{
taskqid_t rc = TASKQID_INVALID;
taskq_ent_t *t;
unsigned long irqflags;
ASSERT(tq);
ASSERT(func);
spin_lock_irqsave_nested(&tq->tq_lock, irqflags, tq->tq_lock_class);
/* Taskq being destroyed and all tasks drained */
if (!(tq->tq_flags & TASKQ_ACTIVE))
goto out;
if ((t = task_alloc(tq, flags, &irqflags)) == NULL)
goto out;
spin_lock(&t->tqent_lock);
/* Queue to the delay list for subsequent execution */
list_add_tail(&t->tqent_list, &tq->tq_delay_list);
t->tqent_id = rc = tq->tq_next_id;
tq->tq_next_id++;
t->tqent_func = func;
t->tqent_arg = arg;
t->tqent_taskq = tq;
t->tqent_timer.function = task_expire;
t->tqent_timer.expires = (unsigned long)expire_time;
add_timer(&t->tqent_timer);
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
spin_unlock(&t->tqent_lock);
out:
/* Spawn additional taskq threads if required. */
if (tq->tq_nactive == tq->tq_nthreads)
(void) taskq_thread_spawn(tq);
spin_unlock_irqrestore(&tq->tq_lock, irqflags);
return (rc);
}
EXPORT_SYMBOL(taskq_dispatch_delay);
void
taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
taskq_ent_t *t)
{
unsigned long irqflags;
ASSERT(tq);
ASSERT(func);
spin_lock_irqsave_nested(&tq->tq_lock, irqflags,
tq->tq_lock_class);
/* Taskq being destroyed and all tasks drained */
if (!(tq->tq_flags & TASKQ_ACTIVE)) {
t->tqent_id = TASKQID_INVALID;
goto out;
}
if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads)) {
/* Dynamic taskq may be able to spawn another thread */
if (!(tq->tq_flags & TASKQ_DYNAMIC) ||
taskq_thread_spawn(tq) == 0)
goto out2;
flags |= TQ_FRONT;
}
spin_lock(&t->tqent_lock);
/*
* Make sure the entry is not on some other taskq; it is important to
* ASSERT() under lock
*/
ASSERT(taskq_empty_ent(t));
/*
* Mark it as a prealloc'd task. This is important
* to ensure that we don't free it later.
*/
t->tqent_flags |= TQENT_FLAG_PREALLOC;
/* Queue to the priority list instead of the pending list */
if (flags & TQ_FRONT)
list_add_tail(&t->tqent_list, &tq->tq_prio_list);
else
list_add_tail(&t->tqent_list, &tq->tq_pend_list);
t->tqent_id = tq->tq_next_id;
tq->tq_next_id++;
t->tqent_func = func;
t->tqent_arg = arg;
t->tqent_taskq = tq;
t->tqent_birth = jiffies;
DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
spin_unlock(&t->tqent_lock);
wake_up(&tq->tq_work_waitq);
out:
/* Spawn additional taskq threads if required. */
if (tq->tq_nactive == tq->tq_nthreads)
(void) taskq_thread_spawn(tq);
out2:
spin_unlock_irqrestore(&tq->tq_lock, irqflags);
}
EXPORT_SYMBOL(taskq_dispatch_ent);
int
taskq_empty_ent(taskq_ent_t *t)
{
return (list_empty(&t->tqent_list));
}
EXPORT_SYMBOL(taskq_empty_ent);
void
taskq_init_ent(taskq_ent_t *t)
{
spin_lock_init(&t->tqent_lock);
init_waitqueue_head(&t->tqent_waitq);
timer_setup(&t->tqent_timer, NULL, 0);
INIT_LIST_HEAD(&t->tqent_list);
t->tqent_id = 0;
t->tqent_func = NULL;
t->tqent_arg = NULL;
t->tqent_flags = 0;
t->tqent_taskq = NULL;
}
EXPORT_SYMBOL(taskq_init_ent);
/*
* Return the next pending task, preference is given to tasks on the
* priority list which were dispatched with TQ_FRONT.
*/
static taskq_ent_t *
taskq_next_ent(taskq_t *tq)
{
struct list_head *list;
if (!list_empty(&tq->tq_prio_list))
list = &tq->tq_prio_list;
else if (!list_empty(&tq->tq_pend_list))
list = &tq->tq_pend_list;
else
return (NULL);
return (list_entry(list->next, taskq_ent_t, tqent_list));
}
/*
* Spawns a new thread for the specified taskq.
*/
static void
taskq_thread_spawn_task(void *arg)
{
taskq_t *tq = (taskq_t *)arg;
unsigned long flags;
if (taskq_thread_create(tq) == NULL) {
/* restore spawning count if failed */
spin_lock_irqsave_nested(&tq->tq_lock, flags,
tq->tq_lock_class);
tq->tq_nspawn--;
spin_unlock_irqrestore(&tq->tq_lock, flags);
}
}
/*
* Spawn addition threads for dynamic taskqs (TASKQ_DYNAMIC) the current
* number of threads is insufficient to handle the pending tasks. These
* new threads must be created by the dedicated dynamic_taskq to avoid
* deadlocks between thread creation and memory reclaim. The system_taskq
* which is also a dynamic taskq cannot be safely used for this.
*/
static int
taskq_thread_spawn(taskq_t *tq)
{
int spawning = 0;
if (!(tq->tq_flags & TASKQ_DYNAMIC))
return (0);
if ((tq->tq_nthreads + tq->tq_nspawn < tq->tq_maxthreads) &&
(tq->tq_flags & TASKQ_ACTIVE)) {
spawning = (++tq->tq_nspawn);
taskq_dispatch(dynamic_taskq, taskq_thread_spawn_task,
tq, TQ_NOSLEEP);
}
return (spawning);
}
/*
* Threads in a dynamic taskq should only exit once it has been completely
* drained and no other threads are actively servicing tasks. This prevents
* threads from being created and destroyed more than is required.
*
* The first thread is the thread list is treated as the primary thread.
* There is nothing special about the primary thread but in order to avoid
* all the taskq pids from changing we opt to make it long running.
*/
static int
taskq_thread_should_stop(taskq_t *tq, taskq_thread_t *tqt)
{
if (!(tq->tq_flags & TASKQ_DYNAMIC))
return (0);
if (list_first_entry(&(tq->tq_thread_list), taskq_thread_t,
tqt_thread_list) == tqt)
return (0);
int no_work =
((tq->tq_nspawn == 0) && /* No threads are being spawned */
(tq->tq_nactive == 0) && /* No threads are handling tasks */
(tq->tq_nthreads > 1) && /* More than 1 thread is running */
(!taskq_next_ent(tq)) && /* There are no pending tasks */
(spl_taskq_thread_dynamic)); /* Dynamic taskqs are allowed */
/*
* If we would have said stop before, let's instead wait a bit, maybe
* we'll see more work come our way soon...
*/
if (no_work) {
/* if it's 0, we want the old behavior. */
/* if the taskq is being torn down, we also want to go away. */
if (spl_taskq_thread_timeout_ms == 0 ||
!(tq->tq_flags & TASKQ_ACTIVE))
return (1);
unsigned long lasttime = tq->lastshouldstop;
if (lasttime > 0) {
if (time_after(jiffies, lasttime +
msecs_to_jiffies(spl_taskq_thread_timeout_ms)))
return (1);
else
return (0);
} else {
tq->lastshouldstop = jiffies;
}
} else {
tq->lastshouldstop = 0;
}
return (0);
}
static int
taskq_thread(void *args)
{
DECLARE_WAITQUEUE(wait, current);
sigset_t blocked;
taskq_thread_t *tqt = args;
taskq_t *tq;
taskq_ent_t *t;
int seq_tasks = 0;
unsigned long flags;
taskq_ent_t dup_task = {};
ASSERT(tqt);
ASSERT(tqt->tqt_tq);
tq = tqt->tqt_tq;
current->flags |= PF_NOFREEZE;
(void) spl_fstrans_mark();
sigfillset(&blocked);
sigprocmask(SIG_BLOCK, &blocked, NULL);
flush_signals(current);
tsd_set(taskq_tsd, tq);
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
/*
* If we are dynamically spawned, decrease spawning count. Note that
* we could be created during taskq_create, in which case we shouldn't
* do the decrement. But it's fine because taskq_create will reset
* tq_nspawn later.
*/
if (tq->tq_flags & TASKQ_DYNAMIC)
tq->tq_nspawn--;
/* Immediately exit if more threads than allowed were created. */
if (tq->tq_nthreads >= tq->tq_maxthreads)
goto error;
tq->tq_nthreads++;
list_add_tail(&tqt->tqt_thread_list, &tq->tq_thread_list);
wake_up(&tq->tq_wait_waitq);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
if (list_empty(&tq->tq_pend_list) &&
list_empty(&tq->tq_prio_list)) {
if (taskq_thread_should_stop(tq, tqt)) {
wake_up_all(&tq->tq_wait_waitq);
break;
}
add_wait_queue_exclusive(&tq->tq_work_waitq, &wait);
spin_unlock_irqrestore(&tq->tq_lock, flags);
schedule();
seq_tasks = 0;
spin_lock_irqsave_nested(&tq->tq_lock, flags,
tq->tq_lock_class);
remove_wait_queue(&tq->tq_work_waitq, &wait);
} else {
__set_current_state(TASK_RUNNING);
}
if ((t = taskq_next_ent(tq)) != NULL) {
list_del_init(&t->tqent_list);
/*
* A TQENT_FLAG_PREALLOC task may be reused or freed
* during the task function call. Store tqent_id and
* tqent_flags here.
*
* Also use an on stack taskq_ent_t for tqt_task
* assignment in this case; we want to make sure
* to duplicate all fields, so the values are
* correct when it's accessed via DTRACE_PROBE*.
*/
tqt->tqt_id = t->tqent_id;
tqt->tqt_flags = t->tqent_flags;
if (t->tqent_flags & TQENT_FLAG_PREALLOC) {
dup_task = *t;
t = &dup_task;
}
tqt->tqt_task = t;
taskq_insert_in_order(tq, tqt);
tq->tq_nactive++;
spin_unlock_irqrestore(&tq->tq_lock, flags);
DTRACE_PROBE1(taskq_ent__start, taskq_ent_t *, t);
/* Perform the requested task */
t->tqent_func(t->tqent_arg);
DTRACE_PROBE1(taskq_ent__finish, taskq_ent_t *, t);
spin_lock_irqsave_nested(&tq->tq_lock, flags,
tq->tq_lock_class);
tq->tq_nactive--;
list_del_init(&tqt->tqt_active_list);
tqt->tqt_task = NULL;
/* For prealloc'd tasks, we don't free anything. */
if (!(tqt->tqt_flags & TQENT_FLAG_PREALLOC))
task_done(tq, t);
/*
* When the current lowest outstanding taskqid is
* done calculate the new lowest outstanding id
*/
if (tq->tq_lowest_id == tqt->tqt_id) {
tq->tq_lowest_id = taskq_lowest_id(tq);
ASSERT3S(tq->tq_lowest_id, >, tqt->tqt_id);
}
/* Spawn additional taskq threads if required. */
if ((++seq_tasks) > spl_taskq_thread_sequential &&
taskq_thread_spawn(tq))
seq_tasks = 0;
tqt->tqt_id = TASKQID_INVALID;
tqt->tqt_flags = 0;
wake_up_all(&tq->tq_wait_waitq);
} else {
if (taskq_thread_should_stop(tq, tqt))
break;
}
set_current_state(TASK_INTERRUPTIBLE);
}
__set_current_state(TASK_RUNNING);
tq->tq_nthreads--;
list_del_init(&tqt->tqt_thread_list);
error:
kmem_free(tqt, sizeof (taskq_thread_t));
spin_unlock_irqrestore(&tq->tq_lock, flags);
tsd_set(taskq_tsd, NULL);
thread_exit();
return (0);
}
static taskq_thread_t *
taskq_thread_create(taskq_t *tq)
{
static int last_used_cpu = 0;
taskq_thread_t *tqt;
tqt = kmem_alloc(sizeof (*tqt), KM_PUSHPAGE);
INIT_LIST_HEAD(&tqt->tqt_thread_list);
INIT_LIST_HEAD(&tqt->tqt_active_list);
tqt->tqt_tq = tq;
tqt->tqt_id = TASKQID_INVALID;
tqt->tqt_thread = spl_kthread_create(taskq_thread, tqt,
"%s", tq->tq_name);
if (tqt->tqt_thread == NULL) {
kmem_free(tqt, sizeof (taskq_thread_t));
return (NULL);
}
if (spl_taskq_thread_bind) {
last_used_cpu = (last_used_cpu + 1) % num_online_cpus();
kthread_bind(tqt->tqt_thread, last_used_cpu);
}
if (spl_taskq_thread_priority)
set_user_nice(tqt->tqt_thread, PRIO_TO_NICE(tq->tq_pri));
wake_up_process(tqt->tqt_thread);
return (tqt);
}
taskq_t *
taskq_create(const char *name, int threads_arg, pri_t pri,
int minalloc, int maxalloc, uint_t flags)
{
taskq_t *tq;
taskq_thread_t *tqt;
int count = 0, rc = 0, i;
unsigned long irqflags;
int nthreads = threads_arg;
ASSERT(name != NULL);
ASSERT(minalloc >= 0);
ASSERT(!(flags & (TASKQ_CPR_SAFE))); /* Unsupported */
/* Scale the number of threads using nthreads as a percentage */
if (flags & TASKQ_THREADS_CPU_PCT) {
ASSERT(nthreads <= 100);
ASSERT(nthreads >= 0);
nthreads = MIN(threads_arg, 100);
nthreads = MAX(nthreads, 0);
nthreads = MAX((num_online_cpus() * nthreads) /100, 1);
}
tq = kmem_alloc(sizeof (*tq), KM_PUSHPAGE);
if (tq == NULL)
return (NULL);
tq->tq_hp_support = B_FALSE;
#ifdef HAVE_CPU_HOTPLUG
if (flags & TASKQ_THREADS_CPU_PCT) {
tq->tq_hp_support = B_TRUE;
if (cpuhp_state_add_instance_nocalls(spl_taskq_cpuhp_state,
&tq->tq_hp_cb_node) != 0) {
kmem_free(tq, sizeof (*tq));
return (NULL);
}
}
#endif
spin_lock_init(&tq->tq_lock);
INIT_LIST_HEAD(&tq->tq_thread_list);
INIT_LIST_HEAD(&tq->tq_active_list);
tq->tq_name = kmem_strdup(name);
tq->tq_nactive = 0;
tq->tq_nthreads = 0;
tq->tq_nspawn = 0;
tq->tq_maxthreads = nthreads;
tq->tq_cpu_pct = threads_arg;
tq->tq_pri = pri;
tq->tq_minalloc = minalloc;
tq->tq_maxalloc = maxalloc;
tq->tq_nalloc = 0;
tq->tq_flags = (flags | TASKQ_ACTIVE);
tq->tq_next_id = TASKQID_INITIAL;
tq->tq_lowest_id = TASKQID_INITIAL;
tq->lastshouldstop = 0;
INIT_LIST_HEAD(&tq->tq_free_list);
INIT_LIST_HEAD(&tq->tq_pend_list);
INIT_LIST_HEAD(&tq->tq_prio_list);
INIT_LIST_HEAD(&tq->tq_delay_list);
init_waitqueue_head(&tq->tq_work_waitq);
init_waitqueue_head(&tq->tq_wait_waitq);
tq->tq_lock_class = TQ_LOCK_GENERAL;
INIT_LIST_HEAD(&tq->tq_taskqs);
if (flags & TASKQ_PREPOPULATE) {
spin_lock_irqsave_nested(&tq->tq_lock, irqflags,
tq->tq_lock_class);
for (i = 0; i < minalloc; i++)
task_done(tq, task_alloc(tq, TQ_PUSHPAGE | TQ_NEW,
&irqflags));
spin_unlock_irqrestore(&tq->tq_lock, irqflags);
}
if ((flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic)
nthreads = 1;
for (i = 0; i < nthreads; i++) {
tqt = taskq_thread_create(tq);
if (tqt == NULL)
rc = 1;
else
count++;
}
/* Wait for all threads to be started before potential destroy */
wait_event(tq->tq_wait_waitq, tq->tq_nthreads == count);
/*
* taskq_thread might have touched nspawn, but we don't want them to
* because they're not dynamically spawned. So we reset it to 0
*/
tq->tq_nspawn = 0;
if (rc) {
taskq_destroy(tq);
tq = NULL;
} else {
down_write(&tq_list_sem);
tq->tq_instance = taskq_find_by_name(name) + 1;
list_add_tail(&tq->tq_taskqs, &tq_list);
up_write(&tq_list_sem);
}
return (tq);
}
EXPORT_SYMBOL(taskq_create);
void
taskq_destroy(taskq_t *tq)
{
struct task_struct *thread;
taskq_thread_t *tqt;
taskq_ent_t *t;
unsigned long flags;
ASSERT(tq);
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
tq->tq_flags &= ~TASKQ_ACTIVE;
spin_unlock_irqrestore(&tq->tq_lock, flags);
#ifdef HAVE_CPU_HOTPLUG
if (tq->tq_hp_support) {
VERIFY0(cpuhp_state_remove_instance_nocalls(
spl_taskq_cpuhp_state, &tq->tq_hp_cb_node));
}
#endif
/*
* When TASKQ_ACTIVE is clear new tasks may not be added nor may
* new worker threads be spawned for dynamic taskq.
*/
if (dynamic_taskq != NULL)
taskq_wait_outstanding(dynamic_taskq, 0);
taskq_wait(tq);
/* remove taskq from global list used by the kstats */
down_write(&tq_list_sem);
list_del(&tq->tq_taskqs);
up_write(&tq_list_sem);
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
/* wait for spawning threads to insert themselves to the list */
while (tq->tq_nspawn) {
spin_unlock_irqrestore(&tq->tq_lock, flags);
schedule_timeout_interruptible(1);
spin_lock_irqsave_nested(&tq->tq_lock, flags,
tq->tq_lock_class);
}
/*
* Signal each thread to exit and block until it does. Each thread
* is responsible for removing itself from the list and freeing its
* taskq_thread_t. This allows for idle threads to opt to remove
* themselves from the taskq. They can be recreated as needed.
*/
while (!list_empty(&tq->tq_thread_list)) {
tqt = list_entry(tq->tq_thread_list.next,
taskq_thread_t, tqt_thread_list);
thread = tqt->tqt_thread;
spin_unlock_irqrestore(&tq->tq_lock, flags);
kthread_stop(thread);
spin_lock_irqsave_nested(&tq->tq_lock, flags,
tq->tq_lock_class);
}
while (!list_empty(&tq->tq_free_list)) {
t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
list_del_init(&t->tqent_list);
task_free(tq, t);
}
ASSERT0(tq->tq_nthreads);
ASSERT0(tq->tq_nalloc);
ASSERT0(tq->tq_nspawn);
ASSERT(list_empty(&tq->tq_thread_list));
ASSERT(list_empty(&tq->tq_active_list));
ASSERT(list_empty(&tq->tq_free_list));
ASSERT(list_empty(&tq->tq_pend_list));
ASSERT(list_empty(&tq->tq_prio_list));
ASSERT(list_empty(&tq->tq_delay_list));
spin_unlock_irqrestore(&tq->tq_lock, flags);
kmem_strfree(tq->tq_name);
kmem_free(tq, sizeof (taskq_t));
}
EXPORT_SYMBOL(taskq_destroy);
static unsigned int spl_taskq_kick = 0;
/*
* 2.6.36 API Change
* module_param_cb is introduced to take kernel_param_ops and
* module_param_call is marked as obsolete. Also set and get operations
* were changed to take a 'const struct kernel_param *'.
*/
static int
#ifdef module_param_cb
param_set_taskq_kick(const char *val, const struct kernel_param *kp)
#else
param_set_taskq_kick(const char *val, struct kernel_param *kp)
#endif
{
int ret;
taskq_t *tq = NULL;
taskq_ent_t *t;
unsigned long flags;
ret = param_set_uint(val, kp);
if (ret < 0 || !spl_taskq_kick)
return (ret);
/* reset value */
spl_taskq_kick = 0;
down_read(&tq_list_sem);
list_for_each_entry(tq, &tq_list, tq_taskqs) {
spin_lock_irqsave_nested(&tq->tq_lock, flags,
tq->tq_lock_class);
/* Check if the first pending is older than 5 seconds */
t = taskq_next_ent(tq);
if (t && time_after(jiffies, t->tqent_birth + 5*HZ)) {
(void) taskq_thread_spawn(tq);
printk(KERN_INFO "spl: Kicked taskq %s/%d\n",
tq->tq_name, tq->tq_instance);
}
spin_unlock_irqrestore(&tq->tq_lock, flags);
}
up_read(&tq_list_sem);
return (ret);
}
#ifdef module_param_cb
static const struct kernel_param_ops param_ops_taskq_kick = {
.set = param_set_taskq_kick,
.get = param_get_uint,
};
module_param_cb(spl_taskq_kick, &param_ops_taskq_kick, &spl_taskq_kick, 0644);
#else
module_param_call(spl_taskq_kick, param_set_taskq_kick, param_get_uint,
&spl_taskq_kick, 0644);
#endif
MODULE_PARM_DESC(spl_taskq_kick,
"Write nonzero to kick stuck taskqs to spawn more threads");
#ifdef HAVE_CPU_HOTPLUG
/*
* This callback will be called exactly once for each core that comes online,
* for each dynamic taskq. We attempt to expand taskqs that have
* TASKQ_THREADS_CPU_PCT set. We need to redo the percentage calculation every
* time, to correctly determine whether or not to add a thread.
*/
static int
spl_taskq_expand(unsigned int cpu, struct hlist_node *node)
{
taskq_t *tq = list_entry(node, taskq_t, tq_hp_cb_node);
unsigned long flags;
int err = 0;
ASSERT(tq);
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
if (!(tq->tq_flags & TASKQ_ACTIVE)) {
spin_unlock_irqrestore(&tq->tq_lock, flags);
return (err);
}
ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
int nthreads = MIN(tq->tq_cpu_pct, 100);
nthreads = MAX(((num_online_cpus() + 1) * nthreads) / 100, 1);
tq->tq_maxthreads = nthreads;
if (!((tq->tq_flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic) &&
tq->tq_maxthreads > tq->tq_nthreads) {
spin_unlock_irqrestore(&tq->tq_lock, flags);
taskq_thread_t *tqt = taskq_thread_create(tq);
if (tqt == NULL)
err = -1;
return (err);
}
spin_unlock_irqrestore(&tq->tq_lock, flags);
return (err);
}
/*
* While we don't support offlining CPUs, it is possible that CPUs will fail
* to online successfully. We do need to be able to handle this case
* gracefully.
*/
static int
spl_taskq_prepare_down(unsigned int cpu, struct hlist_node *node)
{
taskq_t *tq = list_entry(node, taskq_t, tq_hp_cb_node);
unsigned long flags;
ASSERT(tq);
spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
if (!(tq->tq_flags & TASKQ_ACTIVE))
goto out;
ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
int nthreads = MIN(tq->tq_cpu_pct, 100);
nthreads = MAX(((num_online_cpus()) * nthreads) / 100, 1);
tq->tq_maxthreads = nthreads;
if (!((tq->tq_flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic) &&
tq->tq_maxthreads < tq->tq_nthreads) {
ASSERT3U(tq->tq_maxthreads, ==, tq->tq_nthreads - 1);
taskq_thread_t *tqt = list_entry(tq->tq_thread_list.next,
taskq_thread_t, tqt_thread_list);
struct task_struct *thread = tqt->tqt_thread;
spin_unlock_irqrestore(&tq->tq_lock, flags);
kthread_stop(thread);
return (0);
}
out:
spin_unlock_irqrestore(&tq->tq_lock, flags);
return (0);
}
#endif
int
spl_taskq_init(void)
{
init_rwsem(&tq_list_sem);
tsd_create(&taskq_tsd, NULL);
#ifdef HAVE_CPU_HOTPLUG
spl_taskq_cpuhp_state = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
"fs/spl_taskq:online", spl_taskq_expand, spl_taskq_prepare_down);
#endif
system_taskq = taskq_create("spl_system_taskq", MAX(boot_ncpus, 64),
maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE|TASKQ_DYNAMIC);
if (system_taskq == NULL)
return (-ENOMEM);
system_delay_taskq = taskq_create("spl_delay_taskq", MAX(boot_ncpus, 4),
maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE|TASKQ_DYNAMIC);
if (system_delay_taskq == NULL) {
#ifdef HAVE_CPU_HOTPLUG
cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
#endif
taskq_destroy(system_taskq);
return (-ENOMEM);
}
dynamic_taskq = taskq_create("spl_dynamic_taskq", 1,
maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE);
if (dynamic_taskq == NULL) {
#ifdef HAVE_CPU_HOTPLUG
cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
#endif
taskq_destroy(system_taskq);
taskq_destroy(system_delay_taskq);
return (-ENOMEM);
}
/*
* This is used to annotate tq_lock, so
* taskq_dispatch -> taskq_thread_spawn -> taskq_dispatch
* does not trigger a lockdep warning re: possible recursive locking
*/
dynamic_taskq->tq_lock_class = TQ_LOCK_DYNAMIC;
return (0);
}
void
spl_taskq_fini(void)
{
taskq_destroy(dynamic_taskq);
dynamic_taskq = NULL;
taskq_destroy(system_delay_taskq);
system_delay_taskq = NULL;
taskq_destroy(system_taskq);
system_taskq = NULL;
tsd_destroy(&taskq_tsd);
#ifdef HAVE_CPU_HOTPLUG
cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
spl_taskq_cpuhp_state = 0;
#endif
}