mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-13 19:50:25 +03:00
3dfb57a35e
OpenZFS 7090 - zfs should throttle allocations Authored by: George Wilson <george.wilson@delphix.com> Reviewed by: Alex Reece <alex@delphix.com> Reviewed by: Christopher Siden <christopher.siden@delphix.com> Reviewed by: Dan Kimmel <dan.kimmel@delphix.com> Reviewed by: Matthew Ahrens <mahrens@delphix.com> Reviewed by: Paul Dagnelie <paul.dagnelie@delphix.com> Reviewed by: Prakash Surya <prakash.surya@delphix.com> Reviewed by: Sebastien Roy <sebastien.roy@delphix.com> Approved by: Matthew Ahrens <mahrens@delphix.com> Ported-by: Don Brady <don.brady@intel.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> When write I/Os are issued, they are issued in block order but the ZIO pipeline will drive them asynchronously through the allocation stage which can result in blocks being allocated out-of-order. It would be nice to preserve as much of the logical order as possible. In addition, the allocations are equally scattered across all top-level VDEVs but not all top-level VDEVs are created equally. The pipeline should be able to detect devices that are more capable of handling allocations and should allocate more blocks to those devices. This allows for dynamic allocation distribution when devices are imbalanced as fuller devices will tend to be slower than empty devices. The change includes a new pool-wide allocation queue which would throttle and order allocations in the ZIO pipeline. The queue would be ordered by issued time and offset and would provide an initial amount of allocation of work to each top-level vdev. The allocation logic utilizes a reservation system to reserve allocations that will be performed by the allocator. Once an allocation is successfully completed it's scheduled on a given top-level vdev. Each top-level vdev maintains a maximum number of allocations that it can handle (mg_alloc_queue_depth). The pool-wide reserved allocations (top-levels * mg_alloc_queue_depth) are distributed across the top-level vdevs metaslab groups and round robin across all eligible metaslab groups to distribute the work. As top-levels complete their work, they receive additional work from the pool-wide allocation queue until the allocation queue is emptied. OpenZFS-issue: https://www.illumos.org/issues/7090 OpenZFS-commit: https://github.com/openzfs/openzfs/commit/4756c3d7 Closes #5258 Porting Notes: - Maintained minimal stack in zio_done - Preserve linux-specific io sizes in zio_write_compress - Added module params and documentation - Updated to use optimize AVL cmp macros
437 lines
12 KiB
C
437 lines
12 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
/*
|
|
* Copyright (c) 2013, 2015 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/kstat.h>
|
|
|
|
/*
|
|
* Virtual device read-ahead caching.
|
|
*
|
|
* This file implements a simple LRU read-ahead cache. When the DMU reads
|
|
* a given block, it will often want other, nearby blocks soon thereafter.
|
|
* We take advantage of this by reading a larger disk region and caching
|
|
* the result. In the best case, this can turn 128 back-to-back 512-byte
|
|
* reads into a single 64k read followed by 127 cache hits; this reduces
|
|
* latency dramatically. In the worst case, it can turn an isolated 512-byte
|
|
* read into a 64k read, which doesn't affect latency all that much but is
|
|
* terribly wasteful of bandwidth. A more intelligent version of the cache
|
|
* could keep track of access patterns and not do read-ahead unless it sees
|
|
* at least two temporally close I/Os to the same region. Currently, only
|
|
* metadata I/O is inflated. A futher enhancement could take advantage of
|
|
* more semantic information about the I/O. And it could use something
|
|
* faster than an AVL tree; that was chosen solely for convenience.
|
|
*
|
|
* There are five cache operations: allocate, fill, read, write, evict.
|
|
*
|
|
* (1) Allocate. This reserves a cache entry for the specified region.
|
|
* We separate the allocate and fill operations so that multiple threads
|
|
* don't generate I/O for the same cache miss.
|
|
*
|
|
* (2) Fill. When the I/O for a cache miss completes, the fill routine
|
|
* places the data in the previously allocated cache entry.
|
|
*
|
|
* (3) Read. Read data from the cache.
|
|
*
|
|
* (4) Write. Update cache contents after write completion.
|
|
*
|
|
* (5) Evict. When allocating a new entry, we evict the oldest (LRU) entry
|
|
* if the total cache size exceeds zfs_vdev_cache_size.
|
|
*/
|
|
|
|
/*
|
|
* These tunables are for performance analysis.
|
|
*/
|
|
/*
|
|
* All i/os smaller than zfs_vdev_cache_max will be turned into
|
|
* 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
|
|
* track buffer). At most zfs_vdev_cache_size bytes will be kept in each
|
|
* vdev's vdev_cache.
|
|
*
|
|
* TODO: Note that with the current ZFS code, it turns out that the
|
|
* vdev cache is not helpful, and in some cases actually harmful. It
|
|
* is better if we disable this. Once some time has passed, we should
|
|
* actually remove this to simplify the code. For now we just disable
|
|
* it by setting the zfs_vdev_cache_size to zero. Note that Solaris 11
|
|
* has made these same changes.
|
|
*/
|
|
int zfs_vdev_cache_max = 1<<14; /* 16KB */
|
|
int zfs_vdev_cache_size = 0;
|
|
int zfs_vdev_cache_bshift = 16;
|
|
|
|
#define VCBS (1 << zfs_vdev_cache_bshift) /* 64KB */
|
|
|
|
kstat_t *vdc_ksp = NULL;
|
|
|
|
typedef struct vdc_stats {
|
|
kstat_named_t vdc_stat_delegations;
|
|
kstat_named_t vdc_stat_hits;
|
|
kstat_named_t vdc_stat_misses;
|
|
} vdc_stats_t;
|
|
|
|
static vdc_stats_t vdc_stats = {
|
|
{ "delegations", KSTAT_DATA_UINT64 },
|
|
{ "hits", KSTAT_DATA_UINT64 },
|
|
{ "misses", KSTAT_DATA_UINT64 }
|
|
};
|
|
|
|
#define VDCSTAT_BUMP(stat) atomic_inc_64(&vdc_stats.stat.value.ui64);
|
|
|
|
static inline int
|
|
vdev_cache_offset_compare(const void *a1, const void *a2)
|
|
{
|
|
const vdev_cache_entry_t *ve1 = (const vdev_cache_entry_t *)a1;
|
|
const vdev_cache_entry_t *ve2 = (const vdev_cache_entry_t *)a2;
|
|
|
|
return (AVL_CMP(ve1->ve_offset, ve2->ve_offset));
|
|
}
|
|
|
|
static int
|
|
vdev_cache_lastused_compare(const void *a1, const void *a2)
|
|
{
|
|
const vdev_cache_entry_t *ve1 = (const vdev_cache_entry_t *)a1;
|
|
const vdev_cache_entry_t *ve2 = (const vdev_cache_entry_t *)a2;
|
|
|
|
int cmp = AVL_CMP(ve1->ve_lastused, ve2->ve_lastused);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
/*
|
|
* Among equally old entries, sort by offset to ensure uniqueness.
|
|
*/
|
|
return (vdev_cache_offset_compare(a1, a2));
|
|
}
|
|
|
|
/*
|
|
* Evict the specified entry from the cache.
|
|
*/
|
|
static void
|
|
vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vc->vc_lock));
|
|
ASSERT(ve->ve_fill_io == NULL);
|
|
ASSERT(ve->ve_data != NULL);
|
|
|
|
avl_remove(&vc->vc_lastused_tree, ve);
|
|
avl_remove(&vc->vc_offset_tree, ve);
|
|
zio_buf_free(ve->ve_data, VCBS);
|
|
kmem_free(ve, sizeof (vdev_cache_entry_t));
|
|
}
|
|
|
|
/*
|
|
* Allocate an entry in the cache. At the point we don't have the data,
|
|
* we're just creating a placeholder so that multiple threads don't all
|
|
* go off and read the same blocks.
|
|
*/
|
|
static vdev_cache_entry_t *
|
|
vdev_cache_allocate(zio_t *zio)
|
|
{
|
|
vdev_cache_t *vc = &zio->io_vd->vdev_cache;
|
|
uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
|
|
vdev_cache_entry_t *ve;
|
|
|
|
ASSERT(MUTEX_HELD(&vc->vc_lock));
|
|
|
|
if (zfs_vdev_cache_size == 0)
|
|
return (NULL);
|
|
|
|
/*
|
|
* If adding a new entry would exceed the cache size,
|
|
* evict the oldest entry (LRU).
|
|
*/
|
|
if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
|
|
zfs_vdev_cache_size) {
|
|
ve = avl_first(&vc->vc_lastused_tree);
|
|
if (ve->ve_fill_io != NULL)
|
|
return (NULL);
|
|
ASSERT(ve->ve_hits != 0);
|
|
vdev_cache_evict(vc, ve);
|
|
}
|
|
|
|
ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
|
|
ve->ve_offset = offset;
|
|
ve->ve_lastused = ddi_get_lbolt();
|
|
ve->ve_data = zio_buf_alloc(VCBS);
|
|
|
|
avl_add(&vc->vc_offset_tree, ve);
|
|
avl_add(&vc->vc_lastused_tree, ve);
|
|
|
|
return (ve);
|
|
}
|
|
|
|
static void
|
|
vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
|
|
{
|
|
uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
|
|
|
|
ASSERT(MUTEX_HELD(&vc->vc_lock));
|
|
ASSERT(ve->ve_fill_io == NULL);
|
|
|
|
if (ve->ve_lastused != ddi_get_lbolt()) {
|
|
avl_remove(&vc->vc_lastused_tree, ve);
|
|
ve->ve_lastused = ddi_get_lbolt();
|
|
avl_add(&vc->vc_lastused_tree, ve);
|
|
}
|
|
|
|
ve->ve_hits++;
|
|
bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
|
|
}
|
|
|
|
/*
|
|
* Fill a previously allocated cache entry with data.
|
|
*/
|
|
static void
|
|
vdev_cache_fill(zio_t *fio)
|
|
{
|
|
vdev_t *vd = fio->io_vd;
|
|
vdev_cache_t *vc = &vd->vdev_cache;
|
|
vdev_cache_entry_t *ve = fio->io_private;
|
|
zio_t *pio;
|
|
zio_link_t *zl;
|
|
|
|
ASSERT(fio->io_size == VCBS);
|
|
|
|
/*
|
|
* Add data to the cache.
|
|
*/
|
|
mutex_enter(&vc->vc_lock);
|
|
|
|
ASSERT(ve->ve_fill_io == fio);
|
|
ASSERT(ve->ve_offset == fio->io_offset);
|
|
ASSERT(ve->ve_data == fio->io_data);
|
|
|
|
ve->ve_fill_io = NULL;
|
|
|
|
/*
|
|
* Even if this cache line was invalidated by a missed write update,
|
|
* any reads that were queued up before the missed update are still
|
|
* valid, so we can satisfy them from this line before we evict it.
|
|
*/
|
|
zl = NULL;
|
|
while ((pio = zio_walk_parents(fio, &zl)) != NULL)
|
|
vdev_cache_hit(vc, ve, pio);
|
|
|
|
if (fio->io_error || ve->ve_missed_update)
|
|
vdev_cache_evict(vc, ve);
|
|
|
|
mutex_exit(&vc->vc_lock);
|
|
}
|
|
|
|
/*
|
|
* Read data from the cache. Returns B_TRUE cache hit, B_FALSE on miss.
|
|
*/
|
|
boolean_t
|
|
vdev_cache_read(zio_t *zio)
|
|
{
|
|
vdev_cache_t *vc = &zio->io_vd->vdev_cache;
|
|
vdev_cache_entry_t *ve, *ve_search;
|
|
uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
|
|
zio_t *fio;
|
|
ASSERTV(uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS));
|
|
|
|
ASSERT(zio->io_type == ZIO_TYPE_READ);
|
|
|
|
if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
|
|
return (B_FALSE);
|
|
|
|
if (zio->io_size > zfs_vdev_cache_max)
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* If the I/O straddles two or more cache blocks, don't cache it.
|
|
*/
|
|
if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
|
|
return (B_FALSE);
|
|
|
|
ASSERT(cache_phase + zio->io_size <= VCBS);
|
|
|
|
mutex_enter(&vc->vc_lock);
|
|
|
|
ve_search = kmem_alloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
|
|
ve_search->ve_offset = cache_offset;
|
|
ve = avl_find(&vc->vc_offset_tree, ve_search, NULL);
|
|
kmem_free(ve_search, sizeof (vdev_cache_entry_t));
|
|
|
|
if (ve != NULL) {
|
|
if (ve->ve_missed_update) {
|
|
mutex_exit(&vc->vc_lock);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
if ((fio = ve->ve_fill_io) != NULL) {
|
|
zio_vdev_io_bypass(zio);
|
|
zio_add_child(zio, fio);
|
|
mutex_exit(&vc->vc_lock);
|
|
VDCSTAT_BUMP(vdc_stat_delegations);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
vdev_cache_hit(vc, ve, zio);
|
|
zio_vdev_io_bypass(zio);
|
|
|
|
mutex_exit(&vc->vc_lock);
|
|
VDCSTAT_BUMP(vdc_stat_hits);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
ve = vdev_cache_allocate(zio);
|
|
|
|
if (ve == NULL) {
|
|
mutex_exit(&vc->vc_lock);
|
|
return (B_FALSE);
|
|
}
|
|
|
|
fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
|
|
ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_NOW,
|
|
ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
|
|
|
|
ve->ve_fill_io = fio;
|
|
zio_vdev_io_bypass(zio);
|
|
zio_add_child(zio, fio);
|
|
|
|
mutex_exit(&vc->vc_lock);
|
|
zio_nowait(fio);
|
|
VDCSTAT_BUMP(vdc_stat_misses);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Update cache contents upon write completion.
|
|
*/
|
|
void
|
|
vdev_cache_write(zio_t *zio)
|
|
{
|
|
vdev_cache_t *vc = &zio->io_vd->vdev_cache;
|
|
vdev_cache_entry_t *ve, ve_search;
|
|
uint64_t io_start = zio->io_offset;
|
|
uint64_t io_end = io_start + zio->io_size;
|
|
uint64_t min_offset = P2ALIGN(io_start, VCBS);
|
|
uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
|
|
avl_index_t where;
|
|
|
|
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
|
|
|
|
mutex_enter(&vc->vc_lock);
|
|
|
|
ve_search.ve_offset = min_offset;
|
|
ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
|
|
|
|
if (ve == NULL)
|
|
ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
|
|
|
|
while (ve != NULL && ve->ve_offset < max_offset) {
|
|
uint64_t start = MAX(ve->ve_offset, io_start);
|
|
uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
|
|
|
|
if (ve->ve_fill_io != NULL) {
|
|
ve->ve_missed_update = 1;
|
|
} else {
|
|
bcopy((char *)zio->io_data + start - io_start,
|
|
ve->ve_data + start - ve->ve_offset, end - start);
|
|
}
|
|
ve = AVL_NEXT(&vc->vc_offset_tree, ve);
|
|
}
|
|
mutex_exit(&vc->vc_lock);
|
|
}
|
|
|
|
void
|
|
vdev_cache_purge(vdev_t *vd)
|
|
{
|
|
vdev_cache_t *vc = &vd->vdev_cache;
|
|
vdev_cache_entry_t *ve;
|
|
|
|
mutex_enter(&vc->vc_lock);
|
|
while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
|
|
vdev_cache_evict(vc, ve);
|
|
mutex_exit(&vc->vc_lock);
|
|
}
|
|
|
|
void
|
|
vdev_cache_init(vdev_t *vd)
|
|
{
|
|
vdev_cache_t *vc = &vd->vdev_cache;
|
|
|
|
mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
|
|
sizeof (vdev_cache_entry_t),
|
|
offsetof(struct vdev_cache_entry, ve_offset_node));
|
|
|
|
avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
|
|
sizeof (vdev_cache_entry_t),
|
|
offsetof(struct vdev_cache_entry, ve_lastused_node));
|
|
}
|
|
|
|
void
|
|
vdev_cache_fini(vdev_t *vd)
|
|
{
|
|
vdev_cache_t *vc = &vd->vdev_cache;
|
|
|
|
vdev_cache_purge(vd);
|
|
|
|
avl_destroy(&vc->vc_offset_tree);
|
|
avl_destroy(&vc->vc_lastused_tree);
|
|
|
|
mutex_destroy(&vc->vc_lock);
|
|
}
|
|
|
|
void
|
|
vdev_cache_stat_init(void)
|
|
{
|
|
vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
|
|
KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
|
|
KSTAT_FLAG_VIRTUAL);
|
|
if (vdc_ksp != NULL) {
|
|
vdc_ksp->ks_data = &vdc_stats;
|
|
kstat_install(vdc_ksp);
|
|
}
|
|
}
|
|
|
|
void
|
|
vdev_cache_stat_fini(void)
|
|
{
|
|
if (vdc_ksp != NULL) {
|
|
kstat_delete(vdc_ksp);
|
|
vdc_ksp = NULL;
|
|
}
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
module_param(zfs_vdev_cache_max, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_cache_max, "Inflate reads small than max");
|
|
|
|
module_param(zfs_vdev_cache_size, int, 0444);
|
|
MODULE_PARM_DESC(zfs_vdev_cache_size, "Total size of the per-disk cache");
|
|
|
|
module_param(zfs_vdev_cache_bshift, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_cache_bshift, "Shift size to inflate reads too");
|
|
#endif
|