mirror_zfs/include/sys/spa.h
loli10K d47ee5ad1c Fix bp_embedded_type enum definition
With the addition of BP_EMBEDDED_TYPE_REDACTED in 30af21b0 a couple of
codepaths make wrong assumptions and could potentially result in errors.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Chris Dunlop <chris@onthe.net.au>
Reviewed-by: Paul Dagnelie <pcd@delphix.com>
Signed-off-by: loli10K <ezomori.nozomu@gmail.com>
Closes #8951
Conflicts:
	include/sys/spa.h
2020-01-22 13:48:56 -08:00

1198 lines
45 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2011, 2018 by Delphix. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
* Copyright 2013 Saso Kiselkov. All rights reserved.
* Copyright (c) 2014 Integros [integros.com]
* Copyright 2017 Joyent, Inc.
* Copyright (c) 2017 Datto Inc.
* Copyright (c) 2017, Intel Corporation.
*/
#ifndef _SYS_SPA_H
#define _SYS_SPA_H
#include <sys/avl.h>
#include <sys/zfs_context.h>
#include <sys/kstat.h>
#include <sys/nvpair.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <sys/fs/zfs.h>
#include <sys/spa_checksum.h>
#include <sys/dmu.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* Forward references that lots of things need.
*/
typedef struct spa spa_t;
typedef struct vdev vdev_t;
typedef struct metaslab metaslab_t;
typedef struct metaslab_group metaslab_group_t;
typedef struct metaslab_class metaslab_class_t;
typedef struct zio zio_t;
typedef struct zilog zilog_t;
typedef struct spa_aux_vdev spa_aux_vdev_t;
typedef struct ddt ddt_t;
typedef struct ddt_entry ddt_entry_t;
typedef struct zbookmark_phys zbookmark_phys_t;
struct dsl_pool;
struct dsl_dataset;
struct dsl_crypto_params;
/*
* General-purpose 32-bit and 64-bit bitfield encodings.
*/
#define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len))
#define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len))
#define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low))
#define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low))
#define BF32_GET(x, low, len) BF32_DECODE(x, low, len)
#define BF64_GET(x, low, len) BF64_DECODE(x, low, len)
#define BF32_SET(x, low, len, val) do { \
ASSERT3U(val, <, 1U << (len)); \
ASSERT3U(low + len, <=, 32); \
(x) ^= BF32_ENCODE((x >> low) ^ (val), low, len); \
_NOTE(CONSTCOND) } while (0)
#define BF64_SET(x, low, len, val) do { \
ASSERT3U(val, <, 1ULL << (len)); \
ASSERT3U(low + len, <=, 64); \
((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)); \
_NOTE(CONSTCOND) } while (0)
#define BF32_GET_SB(x, low, len, shift, bias) \
((BF32_GET(x, low, len) + (bias)) << (shift))
#define BF64_GET_SB(x, low, len, shift, bias) \
((BF64_GET(x, low, len) + (bias)) << (shift))
#define BF32_SET_SB(x, low, len, shift, bias, val) do { \
ASSERT(IS_P2ALIGNED(val, 1U << shift)); \
ASSERT3S((val) >> (shift), >=, bias); \
BF32_SET(x, low, len, ((val) >> (shift)) - (bias)); \
_NOTE(CONSTCOND) } while (0)
#define BF64_SET_SB(x, low, len, shift, bias, val) do { \
ASSERT(IS_P2ALIGNED(val, 1ULL << shift)); \
ASSERT3S((val) >> (shift), >=, bias); \
BF64_SET(x, low, len, ((val) >> (shift)) - (bias)); \
_NOTE(CONSTCOND) } while (0)
/*
* We currently support block sizes from 512 bytes to 16MB.
* The benefits of larger blocks, and thus larger IO, need to be weighed
* against the cost of COWing a giant block to modify one byte, and the
* large latency of reading or writing a large block.
*
* Note that although blocks up to 16MB are supported, the recordsize
* property can not be set larger than zfs_max_recordsize (default 1MB).
* See the comment near zfs_max_recordsize in dsl_dataset.c for details.
*
* Note that although the LSIZE field of the blkptr_t can store sizes up
* to 32MB, the dnode's dn_datablkszsec can only store sizes up to
* 32MB - 512 bytes. Therefore, we limit SPA_MAXBLOCKSIZE to 16MB.
*/
#define SPA_MINBLOCKSHIFT 9
#define SPA_OLD_MAXBLOCKSHIFT 17
#define SPA_MAXBLOCKSHIFT 24
#define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT)
#define SPA_OLD_MAXBLOCKSIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT)
#define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT)
/*
* Alignment Shift (ashift) is an immutable, internal top-level vdev property
* which can only be set at vdev creation time. Physical writes are always done
* according to it, which makes 2^ashift the smallest possible IO on a vdev.
*
* We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB
* (2^16 = 65,536).
*/
#define ASHIFT_MIN 9
#define ASHIFT_MAX 16
/*
* Size of block to hold the configuration data (a packed nvlist)
*/
#define SPA_CONFIG_BLOCKSIZE (1ULL << 14)
/*
* The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
* The ASIZE encoding should be at least 64 times larger (6 more bits)
* to support up to 4-way RAID-Z mirror mode with worst-case gang block
* overhead, three DVAs per bp, plus one more bit in case we do anything
* else that expands the ASIZE.
*/
#define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */
#define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */
#define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */
#define SPA_COMPRESSBITS 7
#define SPA_VDEVBITS 24
/*
* All SPA data is represented by 128-bit data virtual addresses (DVAs).
* The members of the dva_t should be considered opaque outside the SPA.
*/
typedef struct dva {
uint64_t dva_word[2];
} dva_t;
/*
* Some checksums/hashes need a 256-bit initialization salt. This salt is kept
* secret and is suitable for use in MAC algorithms as the key.
*/
typedef struct zio_cksum_salt {
uint8_t zcs_bytes[32];
} zio_cksum_salt_t;
/*
* Each block is described by its DVAs, time of birth, checksum, etc.
* The word-by-word, bit-by-bit layout of the blkptr is as follows:
*
* 64 56 48 40 32 24 16 8 0
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 0 | pad | vdev1 | GRID | ASIZE |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 1 |G| offset1 |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 2 | pad | vdev2 | GRID | ASIZE |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 3 |G| offset2 |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 4 | pad | vdev3 | GRID | ASIZE |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 5 |G| offset3 |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 7 | padding |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 8 | padding |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 9 | physical birth txg |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* a | logical birth txg |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* b | fill count |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* c | checksum[0] |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* d | checksum[1] |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* e | checksum[2] |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* f | checksum[3] |
* +-------+-------+-------+-------+-------+-------+-------+-------+
*
* Legend:
*
* vdev virtual device ID
* offset offset into virtual device
* LSIZE logical size
* PSIZE physical size (after compression)
* ASIZE allocated size (including RAID-Z parity and gang block headers)
* GRID RAID-Z layout information (reserved for future use)
* cksum checksum function
* comp compression function
* G gang block indicator
* B byteorder (endianness)
* D dedup
* X encryption
* E blkptr_t contains embedded data (see below)
* lvl level of indirection
* type DMU object type
* phys birth txg when dva[0] was written; zero if same as logical birth txg
* note that typically all the dva's would be written in this
* txg, but they could be different if they were moved by
* device removal.
* log. birth transaction group in which the block was logically born
* fill count number of non-zero blocks under this bp
* checksum[4] 256-bit checksum of the data this bp describes
*/
/*
* The blkptr_t's of encrypted blocks also need to store the encryption
* parameters so that the block can be decrypted. This layout is as follows:
*
* 64 56 48 40 32 24 16 8 0
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 0 | vdev1 | GRID | ASIZE |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 1 |G| offset1 |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 2 | vdev2 | GRID | ASIZE |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 3 |G| offset2 |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 4 | salt |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 5 | IV1 |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 7 | padding |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 8 | padding |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 9 | physical birth txg |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* a | logical birth txg |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* b | IV2 | fill count |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* c | checksum[0] |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* d | checksum[1] |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* e | MAC[0] |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* f | MAC[1] |
* +-------+-------+-------+-------+-------+-------+-------+-------+
*
* Legend:
*
* salt Salt for generating encryption keys
* IV1 First 64 bits of encryption IV
* X Block requires encryption handling (set to 1)
* E blkptr_t contains embedded data (set to 0, see below)
* fill count number of non-zero blocks under this bp (truncated to 32 bits)
* IV2 Last 32 bits of encryption IV
* checksum[2] 128-bit checksum of the data this bp describes
* MAC[2] 128-bit message authentication code for this data
*
* The X bit being set indicates that this block is one of 3 types. If this is
* a level 0 block with an encrypted object type, the block is encrypted
* (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted
* object type, this block is authenticated with an HMAC (see
* BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC
* words to store a checksum-of-MACs from the level below (see
* BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED()
* refers to both encrypted and authenticated blocks and BP_USES_CRYPT()
* refers to any of these 3 kinds of blocks.
*
* The additional encryption parameters are the salt, IV, and MAC which are
* explained in greater detail in the block comment at the top of zio_crypt.c.
* The MAC occupies half of the checksum space since it serves a very similar
* purpose: to prevent data corruption on disk. The only functional difference
* is that the checksum is used to detect on-disk corruption whether or not the
* encryption key is loaded and the MAC provides additional protection against
* malicious disk tampering. We use the 3rd DVA to store the salt and first
* 64 bits of the IV. As a result encrypted blocks can only have 2 copies
* maximum instead of the normal 3. The last 32 bits of the IV are stored in
* the upper bits of what is usually the fill count. Note that only blocks at
* level 0 or -2 are ever encrypted, which allows us to guarantee that these
* 32 bits are not trampled over by other code (see zio_crypt.c for details).
* The salt and IV are not used for authenticated bps or bps with an indirect
* MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits
* for the fill count.
*/
/*
* "Embedded" blkptr_t's don't actually point to a block, instead they
* have a data payload embedded in the blkptr_t itself. See the comment
* in blkptr.c for more details.
*
* The blkptr_t is laid out as follows:
*
* 64 56 48 40 32 24 16 8 0
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 0 | payload |
* 1 | payload |
* 2 | payload |
* 3 | payload |
* 4 | payload |
* 5 | payload |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* 7 | payload |
* 8 | payload |
* 9 | payload |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* a | logical birth txg |
* +-------+-------+-------+-------+-------+-------+-------+-------+
* b | payload |
* c | payload |
* d | payload |
* e | payload |
* f | payload |
* +-------+-------+-------+-------+-------+-------+-------+-------+
*
* Legend:
*
* payload contains the embedded data
* B (byteorder) byteorder (endianness)
* D (dedup) padding (set to zero)
* X encryption (set to zero)
* E (embedded) set to one
* lvl indirection level
* type DMU object type
* etype how to interpret embedded data (BP_EMBEDDED_TYPE_*)
* comp compression function of payload
* PSIZE size of payload after compression, in bytes
* LSIZE logical size of payload, in bytes
* note that 25 bits is enough to store the largest
* "normal" BP's LSIZE (2^16 * 2^9) in bytes
* log. birth transaction group in which the block was logically born
*
* Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
* bp's they are stored in units of SPA_MINBLOCKSHIFT.
* Generally, the generic BP_GET_*() macros can be used on embedded BP's.
* The B, D, X, lvl, type, and comp fields are stored the same as with normal
* BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must
* be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before
* other macros, as they assert that they are only used on BP's of the correct
* "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use
* the payload space for encryption parameters (see the comment above on
* how encryption parameters are stored).
*/
#define BPE_GET_ETYPE(bp) \
(ASSERT(BP_IS_EMBEDDED(bp)), \
BF64_GET((bp)->blk_prop, 40, 8))
#define BPE_SET_ETYPE(bp, t) do { \
ASSERT(BP_IS_EMBEDDED(bp)); \
BF64_SET((bp)->blk_prop, 40, 8, t); \
_NOTE(CONSTCOND) } while (0)
#define BPE_GET_LSIZE(bp) \
(ASSERT(BP_IS_EMBEDDED(bp)), \
BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
#define BPE_SET_LSIZE(bp, x) do { \
ASSERT(BP_IS_EMBEDDED(bp)); \
BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
_NOTE(CONSTCOND) } while (0)
#define BPE_GET_PSIZE(bp) \
(ASSERT(BP_IS_EMBEDDED(bp)), \
BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
#define BPE_SET_PSIZE(bp, x) do { \
ASSERT(BP_IS_EMBEDDED(bp)); \
BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
_NOTE(CONSTCOND) } while (0)
typedef enum bp_embedded_type {
BP_EMBEDDED_TYPE_DATA,
BP_EMBEDDED_TYPE_RESERVED, /* Reserved for Delphix byteswap feature. */
NUM_BP_EMBEDDED_TYPES
} bp_embedded_type_t;
#define BPE_NUM_WORDS 14
#define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
#define BPE_IS_PAYLOADWORD(bp, wp) \
((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
#define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */
#define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */
#define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */
/*
* A block is a hole when it has either 1) never been written to, or
* 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads
* without physically allocating disk space. Holes are represented in the
* blkptr_t structure by zeroed blk_dva. Correct checking for holes is
* done through the BP_IS_HOLE macro. For holes, the logical size, level,
* DMU object type, and birth times are all also stored for holes that
* were written to at some point (i.e. were punched after having been filled).
*/
typedef struct blkptr {
dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
uint64_t blk_prop; /* size, compression, type, etc */
uint64_t blk_pad[2]; /* Extra space for the future */
uint64_t blk_phys_birth; /* txg when block was allocated */
uint64_t blk_birth; /* transaction group at birth */
uint64_t blk_fill; /* fill count */
zio_cksum_t blk_cksum; /* 256-bit checksum */
} blkptr_t;
/*
* Macros to get and set fields in a bp or DVA.
*/
#define DVA_GET_ASIZE(dva) \
BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
#define DVA_SET_ASIZE(dva, x) \
BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
SPA_MINBLOCKSHIFT, 0, x)
#define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8)
#define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x)
#define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS)
#define DVA_SET_VDEV(dva, x) \
BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x)
#define DVA_GET_OFFSET(dva) \
BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
#define DVA_SET_OFFSET(dva, x) \
BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
#define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
#define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)
#define BP_GET_LSIZE(bp) \
(BP_IS_EMBEDDED(bp) ? \
(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
#define BP_SET_LSIZE(bp, x) do { \
ASSERT(!BP_IS_EMBEDDED(bp)); \
BF64_SET_SB((bp)->blk_prop, \
0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
_NOTE(CONSTCOND) } while (0)
#define BP_GET_PSIZE(bp) \
(BP_IS_EMBEDDED(bp) ? 0 : \
BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
#define BP_SET_PSIZE(bp, x) do { \
ASSERT(!BP_IS_EMBEDDED(bp)); \
BF64_SET_SB((bp)->blk_prop, \
16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
_NOTE(CONSTCOND) } while (0)
#define BP_GET_COMPRESS(bp) \
BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS)
#define BP_SET_COMPRESS(bp, x) \
BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x)
#define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1)
#define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x)
#define BP_GET_CHECKSUM(bp) \
(BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
BF64_GET((bp)->blk_prop, 40, 8))
#define BP_SET_CHECKSUM(bp, x) do { \
ASSERT(!BP_IS_EMBEDDED(bp)); \
BF64_SET((bp)->blk_prop, 40, 8, x); \
_NOTE(CONSTCOND) } while (0)
#define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
#define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)
#define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
#define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)
/* encrypted, authenticated, and MAC cksum bps use the same bit */
#define BP_USES_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1)
#define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x)
#define BP_IS_ENCRYPTED(bp) \
(BP_USES_CRYPT(bp) && \
BP_GET_LEVEL(bp) <= 0 && \
DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
#define BP_IS_AUTHENTICATED(bp) \
(BP_USES_CRYPT(bp) && \
BP_GET_LEVEL(bp) <= 0 && \
!DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
#define BP_HAS_INDIRECT_MAC_CKSUM(bp) \
(BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0)
#define BP_IS_PROTECTED(bp) \
(BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp))
#define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1)
#define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x)
#define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1)
#define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)
#define BP_PHYSICAL_BIRTH(bp) \
(BP_IS_EMBEDDED(bp) ? 0 : \
(bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
#define BP_SET_BIRTH(bp, logical, physical) \
{ \
ASSERT(!BP_IS_EMBEDDED(bp)); \
(bp)->blk_birth = (logical); \
(bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \
}
#define BP_GET_FILL(bp) \
((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \
((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill))
#define BP_SET_FILL(bp, fill) \
{ \
if (BP_IS_ENCRYPTED(bp)) \
BF64_SET((bp)->blk_fill, 0, 32, fill); \
else \
(bp)->blk_fill = fill; \
}
#define BP_GET_IV2(bp) \
(ASSERT(BP_IS_ENCRYPTED(bp)), \
BF64_GET((bp)->blk_fill, 32, 32))
#define BP_SET_IV2(bp, iv2) \
{ \
ASSERT(BP_IS_ENCRYPTED(bp)); \
BF64_SET((bp)->blk_fill, 32, 32, iv2); \
}
#define BP_IS_METADATA(bp) \
(BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
#define BP_GET_ASIZE(bp) \
(BP_IS_EMBEDDED(bp) ? 0 : \
DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
(DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
#define BP_GET_UCSIZE(bp) \
(BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))
#define BP_GET_NDVAS(bp) \
(BP_IS_EMBEDDED(bp) ? 0 : \
!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
(!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
#define BP_COUNT_GANG(bp) \
(BP_IS_EMBEDDED(bp) ? 0 : \
(DVA_GET_GANG(&(bp)->blk_dva[0]) + \
DVA_GET_GANG(&(bp)->blk_dva[1]) + \
(DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))))
#define DVA_EQUAL(dva1, dva2) \
((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
(dva1)->dva_word[0] == (dva2)->dva_word[0])
#define BP_EQUAL(bp1, bp2) \
(BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \
(bp1)->blk_birth == (bp2)->blk_birth && \
DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \
DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \
DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
#define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)
#define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
#define BP_IS_GANG(bp) \
(BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
#define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \
(dva)->dva_word[1] == 0ULL)
#define BP_IS_HOLE(bp) \
(!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))
/* BP_IS_RAIDZ(bp) assumes no block compression */
#define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
BP_GET_PSIZE(bp))
#define BP_ZERO(bp) \
{ \
(bp)->blk_dva[0].dva_word[0] = 0; \
(bp)->blk_dva[0].dva_word[1] = 0; \
(bp)->blk_dva[1].dva_word[0] = 0; \
(bp)->blk_dva[1].dva_word[1] = 0; \
(bp)->blk_dva[2].dva_word[0] = 0; \
(bp)->blk_dva[2].dva_word[1] = 0; \
(bp)->blk_prop = 0; \
(bp)->blk_pad[0] = 0; \
(bp)->blk_pad[1] = 0; \
(bp)->blk_phys_birth = 0; \
(bp)->blk_birth = 0; \
(bp)->blk_fill = 0; \
ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
}
#ifdef _BIG_ENDIAN
#define ZFS_HOST_BYTEORDER (0ULL)
#else
#define ZFS_HOST_BYTEORDER (1ULL)
#endif
#define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
#define BP_SPRINTF_LEN 400
/*
* This macro allows code sharing between zfs, libzpool, and mdb.
* 'func' is either snprintf() or mdb_snprintf().
* 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line.
*/
#define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
{ \
static const char *copyname[] = \
{ "zero", "single", "double", "triple" }; \
int len = 0; \
int copies = 0; \
const char *crypt_type; \
if (bp != NULL) { \
if (BP_IS_ENCRYPTED(bp)) { \
crypt_type = "encrypted"; \
/* LINTED E_SUSPICIOUS_COMPARISON */ \
} else if (BP_IS_AUTHENTICATED(bp)) { \
crypt_type = "authenticated"; \
} else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { \
crypt_type = "indirect-MAC"; \
} else { \
crypt_type = "unencrypted"; \
} \
} \
if (bp == NULL) { \
len += func(buf + len, size - len, "<NULL>"); \
} else if (BP_IS_HOLE(bp)) { \
len += func(buf + len, size - len, \
"HOLE [L%llu %s] " \
"size=%llxL birth=%lluL", \
(u_longlong_t)BP_GET_LEVEL(bp), \
type, \
(u_longlong_t)BP_GET_LSIZE(bp), \
(u_longlong_t)bp->blk_birth); \
} else if (BP_IS_EMBEDDED(bp)) { \
len = func(buf + len, size - len, \
"EMBEDDED [L%llu %s] et=%u %s " \
"size=%llxL/%llxP birth=%lluL", \
(u_longlong_t)BP_GET_LEVEL(bp), \
type, \
(int)BPE_GET_ETYPE(bp), \
compress, \
(u_longlong_t)BPE_GET_LSIZE(bp), \
(u_longlong_t)BPE_GET_PSIZE(bp), \
(u_longlong_t)bp->blk_birth); \
} else { \
for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \
const dva_t *dva = &bp->blk_dva[d]; \
if (DVA_IS_VALID(dva)) \
copies++; \
len += func(buf + len, size - len, \
"DVA[%d]=<%llu:%llx:%llx>%c", d, \
(u_longlong_t)DVA_GET_VDEV(dva), \
(u_longlong_t)DVA_GET_OFFSET(dva), \
(u_longlong_t)DVA_GET_ASIZE(dva), \
ws); \
} \
if (BP_IS_ENCRYPTED(bp)) { \
len += func(buf + len, size - len, \
"salt=%llx iv=%llx:%llx%c", \
(u_longlong_t)bp->blk_dva[2].dva_word[0], \
(u_longlong_t)bp->blk_dva[2].dva_word[1], \
(u_longlong_t)BP_GET_IV2(bp), \
ws); \
} \
if (BP_IS_GANG(bp) && \
DVA_GET_ASIZE(&bp->blk_dva[2]) <= \
DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \
copies--; \
len += func(buf + len, size - len, \
"[L%llu %s] %s %s %s %s %s %s %s%c" \
"size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \
"cksum=%llx:%llx:%llx:%llx", \
(u_longlong_t)BP_GET_LEVEL(bp), \
type, \
checksum, \
compress, \
crypt_type, \
BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \
BP_IS_GANG(bp) ? "gang" : "contiguous", \
BP_GET_DEDUP(bp) ? "dedup" : "unique", \
copyname[copies], \
ws, \
(u_longlong_t)BP_GET_LSIZE(bp), \
(u_longlong_t)BP_GET_PSIZE(bp), \
(u_longlong_t)bp->blk_birth, \
(u_longlong_t)BP_PHYSICAL_BIRTH(bp), \
(u_longlong_t)BP_GET_FILL(bp), \
ws, \
(u_longlong_t)bp->blk_cksum.zc_word[0], \
(u_longlong_t)bp->blk_cksum.zc_word[1], \
(u_longlong_t)bp->blk_cksum.zc_word[2], \
(u_longlong_t)bp->blk_cksum.zc_word[3]); \
} \
ASSERT(len < size); \
}
#define BP_GET_BUFC_TYPE(bp) \
(BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA)
typedef enum spa_import_type {
SPA_IMPORT_EXISTING,
SPA_IMPORT_ASSEMBLE
} spa_import_type_t;
/*
* Send TRIM commands in-line during normal pool operation while deleting.
* OFF: no
* ON: yes
*/
typedef enum {
SPA_AUTOTRIM_OFF = 0, /* default */
SPA_AUTOTRIM_ON
} spa_autotrim_t;
/*
* Reason TRIM command was issued, used internally for accounting purposes.
*/
typedef enum trim_type {
TRIM_TYPE_MANUAL = 0,
TRIM_TYPE_AUTO = 1,
} trim_type_t;
/* state manipulation functions */
extern int spa_open(const char *pool, spa_t **, void *tag);
extern int spa_open_rewind(const char *pool, spa_t **, void *tag,
nvlist_t *policy, nvlist_t **config);
extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
size_t buflen);
extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
nvlist_t *zplprops, struct dsl_crypto_params *dcp);
extern int spa_import(char *pool, nvlist_t *config, nvlist_t *props,
uint64_t flags);
extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
extern int spa_destroy(char *pool);
extern int spa_checkpoint(const char *pool);
extern int spa_checkpoint_discard(const char *pool);
extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
boolean_t hardforce);
extern int spa_reset(char *pool);
extern void spa_async_request(spa_t *spa, int flag);
extern void spa_async_unrequest(spa_t *spa, int flag);
extern void spa_async_suspend(spa_t *spa);
extern void spa_async_resume(spa_t *spa);
extern spa_t *spa_inject_addref(char *pool);
extern void spa_inject_delref(spa_t *spa);
extern void spa_scan_stat_init(spa_t *spa);
extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);
#define SPA_ASYNC_CONFIG_UPDATE 0x01
#define SPA_ASYNC_REMOVE 0x02
#define SPA_ASYNC_PROBE 0x04
#define SPA_ASYNC_RESILVER_DONE 0x08
#define SPA_ASYNC_RESILVER 0x10
#define SPA_ASYNC_AUTOEXPAND 0x20
#define SPA_ASYNC_REMOVE_DONE 0x40
#define SPA_ASYNC_REMOVE_STOP 0x80
#define SPA_ASYNC_INITIALIZE_RESTART 0x100
#define SPA_ASYNC_TRIM_RESTART 0x200
#define SPA_ASYNC_AUTOTRIM_RESTART 0x400
/*
* Controls the behavior of spa_vdev_remove().
*/
#define SPA_REMOVE_UNSPARE 0x01
#define SPA_REMOVE_DONE 0x02
/* device manipulation */
extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);
extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
int replacing);
extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
int replace_done);
extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare);
extern boolean_t spa_vdev_remove_active(spa_t *spa);
extern int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
nvlist_t *vdev_errlist);
extern int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist);
extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
nvlist_t *props, boolean_t exp);
/* spare state (which is global across all pools) */
extern void spa_spare_add(vdev_t *vd);
extern void spa_spare_remove(vdev_t *vd);
extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
extern void spa_spare_activate(vdev_t *vd);
/* L2ARC state (which is global across all pools) */
extern void spa_l2cache_add(vdev_t *vd);
extern void spa_l2cache_remove(vdev_t *vd);
extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
extern void spa_l2cache_activate(vdev_t *vd);
extern void spa_l2cache_drop(spa_t *spa);
/* scanning */
extern int spa_scan(spa_t *spa, pool_scan_func_t func);
extern int spa_scan_stop(spa_t *spa);
extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag);
/* spa syncing */
extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
extern void spa_sync_allpools(void);
extern int zfs_sync_pass_deferred_free;
/* spa namespace global mutex */
extern kmutex_t spa_namespace_lock;
/*
* SPA configuration functions in spa_config.c
*/
#define SPA_CONFIG_UPDATE_POOL 0
#define SPA_CONFIG_UPDATE_VDEVS 1
extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t);
extern void spa_config_load(void);
extern nvlist_t *spa_all_configs(uint64_t *);
extern void spa_config_set(spa_t *spa, nvlist_t *config);
extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
int getstats);
extern void spa_config_update(spa_t *spa, int what);
/*
* Miscellaneous SPA routines in spa_misc.c
*/
/* Namespace manipulation */
extern spa_t *spa_lookup(const char *name);
extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
extern void spa_remove(spa_t *spa);
extern spa_t *spa_next(spa_t *prev);
/* Refcount functions */
extern void spa_open_ref(spa_t *spa, void *tag);
extern void spa_close(spa_t *spa, void *tag);
extern void spa_async_close(spa_t *spa, void *tag);
extern boolean_t spa_refcount_zero(spa_t *spa);
#define SCL_NONE 0x00
#define SCL_CONFIG 0x01
#define SCL_STATE 0x02
#define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
#define SCL_ALLOC 0x08
#define SCL_ZIO 0x10
#define SCL_FREE 0x20
#define SCL_VDEV 0x40
#define SCL_LOCKS 7
#define SCL_ALL ((1 << SCL_LOCKS) - 1)
#define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO)
/* Historical pool statistics */
typedef struct spa_history_kstat {
kmutex_t lock;
uint64_t count;
uint64_t size;
kstat_t *kstat;
void *private;
list_t list;
} spa_history_kstat_t;
typedef struct spa_history_list {
uint64_t size;
procfs_list_t procfs_list;
} spa_history_list_t;
typedef struct spa_stats {
spa_history_list_t read_history;
spa_history_list_t txg_history;
spa_history_kstat_t tx_assign_histogram;
spa_history_kstat_t io_history;
spa_history_list_t mmp_history;
spa_history_kstat_t state; /* pool state */
spa_history_kstat_t iostats;
} spa_stats_t;
typedef enum txg_state {
TXG_STATE_BIRTH = 0,
TXG_STATE_OPEN = 1,
TXG_STATE_QUIESCED = 2,
TXG_STATE_WAIT_FOR_SYNC = 3,
TXG_STATE_SYNCED = 4,
TXG_STATE_COMMITTED = 5,
} txg_state_t;
typedef struct txg_stat {
vdev_stat_t vs1;
vdev_stat_t vs2;
uint64_t txg;
uint64_t ndirty;
} txg_stat_t;
/* Assorted pool IO kstats */
typedef struct spa_iostats {
kstat_named_t trim_extents_written;
kstat_named_t trim_bytes_written;
kstat_named_t trim_extents_skipped;
kstat_named_t trim_bytes_skipped;
kstat_named_t trim_extents_failed;
kstat_named_t trim_bytes_failed;
kstat_named_t autotrim_extents_written;
kstat_named_t autotrim_bytes_written;
kstat_named_t autotrim_extents_skipped;
kstat_named_t autotrim_bytes_skipped;
kstat_named_t autotrim_extents_failed;
kstat_named_t autotrim_bytes_failed;
} spa_iostats_t;
extern void spa_stats_init(spa_t *spa);
extern void spa_stats_destroy(spa_t *spa);
extern void spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb,
uint32_t aflags);
extern void spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time);
extern int spa_txg_history_set(spa_t *spa, uint64_t txg,
txg_state_t completed_state, hrtime_t completed_time);
extern txg_stat_t *spa_txg_history_init_io(spa_t *, uint64_t,
struct dsl_pool *);
extern void spa_txg_history_fini_io(spa_t *, txg_stat_t *);
extern void spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs);
extern int spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_kstat_id);
extern int spa_mmp_history_set(spa_t *spa, uint64_t mmp_kstat_id, int io_error,
hrtime_t duration);
extern void spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_kstat_id,
int error);
extern void spa_iostats_trim_add(spa_t *spa, trim_type_t type,
uint64_t extents_written, uint64_t bytes_written,
uint64_t extents_skipped, uint64_t bytes_skipped,
uint64_t extents_failed, uint64_t bytes_failed);
extern void spa_import_progress_add(spa_t *spa);
extern void spa_import_progress_remove(uint64_t spa_guid);
extern int spa_import_progress_set_mmp_check(uint64_t pool_guid,
uint64_t mmp_sec_remaining);
extern int spa_import_progress_set_max_txg(uint64_t pool_guid,
uint64_t max_txg);
extern int spa_import_progress_set_state(uint64_t pool_guid,
spa_load_state_t spa_load_state);
/* Pool configuration locks */
extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw);
extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw);
extern void spa_config_exit(spa_t *spa, int locks, void *tag);
extern int spa_config_held(spa_t *spa, int locks, krw_t rw);
/* Pool vdev add/remove lock */
extern uint64_t spa_vdev_enter(spa_t *spa);
extern uint64_t spa_vdev_config_enter(spa_t *spa);
extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
int error, char *tag);
extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
/* Pool vdev state change lock */
extern void spa_vdev_state_enter(spa_t *spa, int oplock);
extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);
/* Log state */
typedef enum spa_log_state {
SPA_LOG_UNKNOWN = 0, /* unknown log state */
SPA_LOG_MISSING, /* missing log(s) */
SPA_LOG_CLEAR, /* clear the log(s) */
SPA_LOG_GOOD, /* log(s) are good */
} spa_log_state_t;
extern spa_log_state_t spa_get_log_state(spa_t *spa);
extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
extern int spa_reset_logs(spa_t *spa);
/* Log claim callback */
extern void spa_claim_notify(zio_t *zio);
extern void spa_deadman(void *);
/* Accessor functions */
extern boolean_t spa_shutting_down(spa_t *spa);
extern struct dsl_pool *spa_get_dsl(spa_t *spa);
extern boolean_t spa_is_initializing(spa_t *spa);
extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa);
extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
extern void spa_altroot(spa_t *, char *, size_t);
extern int spa_sync_pass(spa_t *spa);
extern char *spa_name(spa_t *spa);
extern uint64_t spa_guid(spa_t *spa);
extern uint64_t spa_load_guid(spa_t *spa);
extern uint64_t spa_last_synced_txg(spa_t *spa);
extern uint64_t spa_first_txg(spa_t *spa);
extern uint64_t spa_syncing_txg(spa_t *spa);
extern uint64_t spa_final_dirty_txg(spa_t *spa);
extern uint64_t spa_version(spa_t *spa);
extern pool_state_t spa_state(spa_t *spa);
extern spa_load_state_t spa_load_state(spa_t *spa);
extern uint64_t spa_freeze_txg(spa_t *spa);
extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize);
extern uint64_t spa_get_dspace(spa_t *spa);
extern uint64_t spa_get_checkpoint_space(spa_t *spa);
extern uint64_t spa_get_slop_space(spa_t *spa);
extern void spa_update_dspace(spa_t *spa);
extern uint64_t spa_version(spa_t *spa);
extern boolean_t spa_deflate(spa_t *spa);
extern metaslab_class_t *spa_normal_class(spa_t *spa);
extern metaslab_class_t *spa_log_class(spa_t *spa);
extern metaslab_class_t *spa_special_class(spa_t *spa);
extern metaslab_class_t *spa_dedup_class(spa_t *spa);
extern metaslab_class_t *spa_preferred_class(spa_t *spa, uint64_t size,
dmu_object_type_t objtype, uint_t level, uint_t special_smallblk);
extern void spa_evicting_os_register(spa_t *, objset_t *os);
extern void spa_evicting_os_deregister(spa_t *, objset_t *os);
extern void spa_evicting_os_wait(spa_t *spa);
extern int spa_max_replication(spa_t *spa);
extern int spa_prev_software_version(spa_t *spa);
extern uint64_t spa_get_failmode(spa_t *spa);
extern uint64_t spa_get_deadman_failmode(spa_t *spa);
extern void spa_set_deadman_failmode(spa_t *spa, const char *failmode);
extern boolean_t spa_suspended(spa_t *spa);
extern uint64_t spa_bootfs(spa_t *spa);
extern uint64_t spa_delegation(spa_t *spa);
extern objset_t *spa_meta_objset(spa_t *spa);
extern uint64_t spa_deadman_synctime(spa_t *spa);
extern uint64_t spa_deadman_ziotime(spa_t *spa);
extern uint64_t spa_dirty_data(spa_t *spa);
extern spa_autotrim_t spa_get_autotrim(spa_t *spa);
/* Miscellaneous support routines */
extern void spa_load_failed(spa_t *spa, const char *fmt, ...);
extern void spa_load_note(spa_t *spa, const char *fmt, ...);
extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
dmu_tx_t *tx);
extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
extern char *spa_strdup(const char *);
extern void spa_strfree(char *);
extern uint64_t spa_get_random(uint64_t range);
extern uint64_t spa_generate_guid(spa_t *spa);
extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
extern void spa_freeze(spa_t *spa);
extern int spa_change_guid(spa_t *spa);
extern void spa_upgrade(spa_t *spa, uint64_t version);
extern void spa_evict_all(void);
extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
boolean_t l2cache);
extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
extern boolean_t spa_has_slogs(spa_t *spa);
extern boolean_t spa_is_root(spa_t *spa);
extern boolean_t spa_writeable(spa_t *spa);
extern boolean_t spa_has_pending_synctask(spa_t *spa);
extern int spa_maxblocksize(spa_t *spa);
extern int spa_maxdnodesize(spa_t *spa);
extern boolean_t spa_has_checkpoint(spa_t *spa);
extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa);
extern boolean_t spa_suspend_async_destroy(spa_t *spa);
extern uint64_t spa_min_claim_txg(spa_t *spa);
extern void zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp);
extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva,
const blkptr_t *bp);
typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size,
void *arg);
extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp,
spa_remap_cb_t callback, void *arg);
extern uint64_t spa_get_last_removal_txg(spa_t *spa);
extern boolean_t spa_trust_config(spa_t *spa);
extern uint64_t spa_missing_tvds_allowed(spa_t *spa);
extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing);
extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa);
extern boolean_t spa_multihost(spa_t *spa);
extern uint32_t spa_get_hostid(spa_t *spa);
extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *);
extern int spa_mode(spa_t *spa);
extern uint64_t zfs_strtonum(const char *str, char **nptr);
extern char *spa_his_ievent_table[];
extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
char *his_buf);
extern int spa_history_log(spa_t *spa, const char *his_buf);
extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
extern void spa_history_log_version(spa_t *spa, const char *operation,
dmu_tx_t *tx);
extern void spa_history_log_internal(spa_t *spa, const char *operation,
dmu_tx_t *tx, const char *fmt, ...);
extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
dmu_tx_t *tx, const char *fmt, ...);
extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
dmu_tx_t *tx, const char *fmt, ...);
extern const char *spa_state_to_name(spa_t *spa);
/* error handling */
struct zbookmark_phys;
extern void spa_log_error(spa_t *spa, const zbookmark_phys_t *zb);
extern int zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd,
const zbookmark_phys_t *zb, zio_t *zio, uint64_t stateoroffset,
uint64_t length);
extern boolean_t zfs_ereport_is_valid(const char *class, spa_t *spa, vdev_t *vd,
zio_t *zio);
extern nvlist_t *zfs_event_create(spa_t *spa, vdev_t *vd, const char *type,
const char *name, nvlist_t *aux);
extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
extern void zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate);
extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
extern uint64_t spa_get_errlog_size(spa_t *spa);
extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);
extern void spa_errlog_rotate(spa_t *spa);
extern void spa_errlog_drain(spa_t *spa);
extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
/* vdev cache */
extern void vdev_cache_stat_init(void);
extern void vdev_cache_stat_fini(void);
/* vdev mirror */
extern void vdev_mirror_stat_init(void);
extern void vdev_mirror_stat_fini(void);
/* Initialization and termination */
extern void spa_init(int flags);
extern void spa_fini(void);
extern void spa_boot_init(void);
/* properties */
extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);
/* asynchronous event notification */
extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl,
const char *name);
#ifdef ZFS_DEBUG
#define dprintf_bp(bp, fmt, ...) do { \
if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \
dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
kmem_free(__blkbuf, BP_SPRINTF_LEN); \
} \
_NOTE(CONSTCOND) } while (0)
#else
#define dprintf_bp(bp, fmt, ...)
#endif
extern int spa_mode_global; /* mode, e.g. FREAD | FWRITE */
extern int zfs_deadman_enabled;
extern unsigned long zfs_deadman_synctime_ms;
extern unsigned long zfs_deadman_ziotime_ms;
extern unsigned long zfs_deadman_checktime_ms;
#ifdef __cplusplus
}
#endif
#endif /* _SYS_SPA_H */