mirror_zfs/modules/spl/spl-taskq.c
2008-05-26 04:38:26 +00:00

459 lines
12 KiB
C

/*
* This file is part of the SPL: Solaris Porting Layer.
*
* Copyright (c) 2008 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory
* Written by:
* Brian Behlendorf <behlendorf1@llnl.gov>,
* Herb Wartens <wartens2@llnl.gov>,
* Jim Garlick <garlick@llnl.gov>
* UCRL-CODE-235197
*
* This is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <sys/taskq.h>
#ifdef DEBUG_SUBSYSTEM
#undef DEBUG_SUBSYSTEM
#endif
#define DEBUG_SUBSYSTEM S_TASKQ
/* NOTE: Must be called with tq->tq_lock held, returns a list_t which
* is not attached to the free, work, or pending taskq lists.
*/
static task_t *
task_alloc(taskq_t *tq, uint_t flags)
{
task_t *t;
int count = 0;
ENTRY;
ASSERT(tq);
ASSERT(flags & (TQ_SLEEP | TQ_NOSLEEP)); /* One set */
ASSERT(!((flags & TQ_SLEEP) && (flags & TQ_NOSLEEP))); /* Not both */
ASSERT(spin_is_locked(&tq->tq_lock));
retry:
/* Aquire task_t's from free list if available */
if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
t = list_entry(tq->tq_free_list.next, task_t, t_list);
list_del_init(&t->t_list);
RETURN(t);
}
/* Free list is empty and memory allocs are prohibited */
if (flags & TQ_NOALLOC)
RETURN(NULL);
/* Hit maximum task_t pool size */
if (tq->tq_nalloc >= tq->tq_maxalloc) {
if (flags & TQ_NOSLEEP)
RETURN(NULL);
/* Sleep periodically polling the free list for an available
* task_t. If a full second passes and we have not found
* one gives up and return a NULL to the caller. */
if (flags & TQ_SLEEP) {
spin_unlock_irq(&tq->tq_lock);
schedule_timeout(HZ / 100);
spin_lock_irq(&tq->tq_lock);
if (count < 100)
GOTO(retry, count++);
RETURN(NULL);
}
/* Unreachable, TQ_SLEEP xor TQ_NOSLEEP */
SBUG();
}
spin_unlock_irq(&tq->tq_lock);
t = kmem_alloc(sizeof(task_t), flags & (TQ_SLEEP | TQ_NOSLEEP));
spin_lock_irq(&tq->tq_lock);
if (t) {
spin_lock_init(&t->t_lock);
INIT_LIST_HEAD(&t->t_list);
t->t_id = 0;
t->t_func = NULL;
t->t_arg = NULL;
tq->tq_nalloc++;
}
RETURN(t);
}
/* NOTE: Must be called with tq->tq_lock held, expectes the task_t
* to already be removed from the free, work, or pending taskq lists.
*/
static void
task_free(taskq_t *tq, task_t *t)
{
ENTRY;
ASSERT(tq);
ASSERT(t);
ASSERT(spin_is_locked(&tq->tq_lock));
ASSERT(list_empty(&t->t_list));
kmem_free(t, sizeof(task_t));
tq->tq_nalloc--;
EXIT;
}
/* NOTE: Must be called with tq->tq_lock held, either destroyes the
* task_t if too many exist or moves it to the free list for later use.
*/
static void
task_done(taskq_t *tq, task_t *t)
{
ENTRY;
ASSERT(tq);
ASSERT(t);
ASSERT(spin_is_locked(&tq->tq_lock));
list_del_init(&t->t_list);
if (tq->tq_nalloc <= tq->tq_minalloc) {
t->t_id = 0;
t->t_func = NULL;
t->t_arg = NULL;
list_add_tail(&t->t_list, &tq->tq_free_list);
} else {
task_free(tq, t);
}
EXIT;
}
/* Taskqid's are handed out in a monotonically increasing fashion per
* taskq_t. We don't handle taskqid wrapping yet, but fortuntely it isi
* a 64-bit value so this is probably never going to happen. The lowest
* pending taskqid is stored in the taskq_t to make it easy for any
* taskq_wait()'ers to know if the tasks they're waiting for have
* completed. Unfortunately, tq_task_lowest is kept up to date is
* a pretty brain dead way, something more clever should be done.
*/
static int
taskq_wait_check(taskq_t *tq, taskqid_t id)
{
RETURN(tq->tq_lowest_id >= id);
}
/* Expected to wait for all previously scheduled tasks to complete. We do
* not need to wait for tasked scheduled after this call to complete. In
* otherwords we do not need to drain the entire taskq. */
void
__taskq_wait_id(taskq_t *tq, taskqid_t id)
{
ENTRY;
ASSERT(tq);
wait_event(tq->tq_wait_waitq, taskq_wait_check(tq, id));
EXIT;
}
EXPORT_SYMBOL(__taskq_wait_id);
void
__taskq_wait(taskq_t *tq)
{
taskqid_t id;
ENTRY;
ASSERT(tq);
spin_lock_irq(&tq->tq_lock);
id = tq->tq_next_id;
spin_unlock_irq(&tq->tq_lock);
__taskq_wait_id(tq, id);
EXIT;
}
EXPORT_SYMBOL(__taskq_wait);
int
__taskq_member(taskq_t *tq, void *t)
{
int i;
ENTRY;
ASSERT(tq);
ASSERT(t);
for (i = 0; i < tq->tq_nthreads; i++)
if (tq->tq_threads[i] == (struct task_struct *)t)
RETURN(1);
RETURN(0);
}
EXPORT_SYMBOL(__taskq_member);
taskqid_t
__taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
{
task_t *t;
taskqid_t rc = 0;
ENTRY;
ASSERT(tq);
ASSERT(func);
if (unlikely(in_atomic() && (flags & TQ_SLEEP))) {
CERROR("May schedule while atomic: %s/0x%08x/%d\n",
current->comm, preempt_count(), current->pid);
SBUG();
}
spin_lock_irq(&tq->tq_lock);
/* Taskq being destroyed and all tasks drained */
if (!(tq->tq_flags & TQ_ACTIVE))
GOTO(out, rc = 0);
/* Do not queue the task unless there is idle thread for it */
ASSERT(tq->tq_nactive <= tq->tq_nthreads);
if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads))
GOTO(out, rc = 0);
if ((t = task_alloc(tq, flags)) == NULL)
GOTO(out, rc = 0);
spin_lock(&t->t_lock);
list_add_tail(&t->t_list, &tq->tq_pend_list);
t->t_id = rc = tq->tq_next_id;
tq->tq_next_id++;
t->t_func = func;
t->t_arg = arg;
spin_unlock(&t->t_lock);
wake_up(&tq->tq_work_waitq);
out:
spin_unlock_irq(&tq->tq_lock);
RETURN(rc);
}
EXPORT_SYMBOL(__taskq_dispatch);
/* NOTE: Must be called with tq->tq_lock held */
static taskqid_t
taskq_lowest_id(taskq_t *tq)
{
taskqid_t lowest_id = ~0;
task_t *t;
ENTRY;
ASSERT(tq);
ASSERT(spin_is_locked(&tq->tq_lock));
list_for_each_entry(t, &tq->tq_pend_list, t_list)
if (t->t_id < lowest_id)
lowest_id = t->t_id;
list_for_each_entry(t, &tq->tq_work_list, t_list)
if (t->t_id < lowest_id)
lowest_id = t->t_id;
RETURN(lowest_id);
}
static int
taskq_thread(void *args)
{
DECLARE_WAITQUEUE(wait, current);
sigset_t blocked;
taskqid_t id;
taskq_t *tq = args;
task_t *t;
ENTRY;
ASSERT(tq);
current->flags |= PF_NOFREEZE;
sigfillset(&blocked);
sigprocmask(SIG_BLOCK, &blocked, NULL);
flush_signals(current);
spin_lock_irq(&tq->tq_lock);
tq->tq_nthreads++;
wake_up(&tq->tq_wait_waitq);
set_current_state(TASK_INTERRUPTIBLE);
while (!kthread_should_stop()) {
add_wait_queue(&tq->tq_work_waitq, &wait);
if (list_empty(&tq->tq_pend_list)) {
spin_unlock_irq(&tq->tq_lock);
schedule();
spin_lock_irq(&tq->tq_lock);
} else {
__set_current_state(TASK_RUNNING);
}
remove_wait_queue(&tq->tq_work_waitq, &wait);
if (!list_empty(&tq->tq_pend_list)) {
t = list_entry(tq->tq_pend_list.next, task_t, t_list);
list_del_init(&t->t_list);
list_add_tail(&t->t_list, &tq->tq_work_list);
tq->tq_nactive++;
spin_unlock_irq(&tq->tq_lock);
/* Perform the requested task */
t->t_func(t->t_arg);
spin_lock_irq(&tq->tq_lock);
tq->tq_nactive--;
id = t->t_id;
task_done(tq, t);
/* Update the lowest remaining taskqid yet to run */
if (tq->tq_lowest_id == id) {
tq->tq_lowest_id = taskq_lowest_id(tq);
ASSERT(tq->tq_lowest_id > id);
}
wake_up_all(&tq->tq_wait_waitq);
}
set_current_state(TASK_INTERRUPTIBLE);
}
__set_current_state(TASK_RUNNING);
tq->tq_nthreads--;
spin_unlock_irq(&tq->tq_lock);
RETURN(0);
}
taskq_t *
__taskq_create(const char *name, int nthreads, pri_t pri,
int minalloc, int maxalloc, uint_t flags)
{
taskq_t *tq;
struct task_struct *t;
int rc = 0, i, j = 0;
ENTRY;
ASSERT(name != NULL);
ASSERT(pri <= maxclsyspri);
ASSERT(minalloc >= 0);
ASSERT(maxalloc <= INT_MAX);
ASSERT(!(flags & (TASKQ_CPR_SAFE | TASKQ_DYNAMIC))); /* Unsupported */
tq = kmem_alloc(sizeof(*tq), KM_SLEEP);
if (tq == NULL)
RETURN(NULL);
tq->tq_threads = kmem_alloc(nthreads * sizeof(t), KM_SLEEP);
if (tq->tq_threads == NULL) {
kmem_free(tq, sizeof(*tq));
RETURN(NULL);
}
spin_lock_init(&tq->tq_lock);
spin_lock_irq(&tq->tq_lock);
tq->tq_name = name;
tq->tq_nactive = 0;
tq->tq_nthreads = 0;
tq->tq_pri = pri;
tq->tq_minalloc = minalloc;
tq->tq_maxalloc = maxalloc;
tq->tq_nalloc = 0;
tq->tq_flags = (flags | TQ_ACTIVE);
tq->tq_next_id = 1;
tq->tq_lowest_id = 1;
INIT_LIST_HEAD(&tq->tq_free_list);
INIT_LIST_HEAD(&tq->tq_work_list);
INIT_LIST_HEAD(&tq->tq_pend_list);
init_waitqueue_head(&tq->tq_work_waitq);
init_waitqueue_head(&tq->tq_wait_waitq);
if (flags & TASKQ_PREPOPULATE)
for (i = 0; i < minalloc; i++)
task_done(tq, task_alloc(tq, TQ_SLEEP | TQ_NEW));
spin_unlock_irq(&tq->tq_lock);
for (i = 0; i < nthreads; i++) {
t = kthread_create(taskq_thread, tq, "%s/%d", name, i);
if (t) {
tq->tq_threads[i] = t;
kthread_bind(t, i % num_online_cpus());
set_user_nice(t, PRIO_TO_NICE(pri));
wake_up_process(t);
j++;
} else {
tq->tq_threads[i] = NULL;
rc = 1;
}
}
/* Wait for all threads to be started before potential destroy */
wait_event(tq->tq_wait_waitq, tq->tq_nthreads == j);
if (rc) {
__taskq_destroy(tq);
tq = NULL;
}
RETURN(tq);
}
EXPORT_SYMBOL(__taskq_create);
void
__taskq_destroy(taskq_t *tq)
{
task_t *t;
int i, nthreads;
ENTRY;
ASSERT(tq);
spin_lock_irq(&tq->tq_lock);
tq->tq_flags &= ~TQ_ACTIVE;
spin_unlock_irq(&tq->tq_lock);
/* TQ_ACTIVE cleared prevents new tasks being added to pending */
__taskq_wait(tq);
nthreads = tq->tq_nthreads;
for (i = 0; i < nthreads; i++)
if (tq->tq_threads[i])
kthread_stop(tq->tq_threads[i]);
spin_lock_irq(&tq->tq_lock);
while (!list_empty(&tq->tq_free_list)) {
t = list_entry(tq->tq_free_list.next, task_t, t_list);
list_del_init(&t->t_list);
task_free(tq, t);
}
ASSERT(tq->tq_nthreads == 0);
ASSERT(tq->tq_nalloc == 0);
ASSERT(list_empty(&tq->tq_free_list));
ASSERT(list_empty(&tq->tq_work_list));
ASSERT(list_empty(&tq->tq_pend_list));
spin_unlock_irq(&tq->tq_lock);
kmem_free(tq->tq_threads, nthreads * sizeof(task_t *));
kmem_free(tq, sizeof(taskq_t));
EXIT;
}
EXPORT_SYMBOL(__taskq_destroy);