mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-12 19:20:28 +03:00
ba67d82142
The performance of `zfs receive` can be bottlenecked on the CPU consumed by the `receive_writer` thread, especially when receiving streams with small compressed block sizes. Much of the CPU is spent creating and destroying dbuf's and arc buf's, one for each `WRITE` record in the send stream. This commit introduces the concept of "lightweight writes", which allows `zfs receive` to write to the DMU by providing an ABD, and instantiating only a new type of `dbuf_dirty_record_t`. The dbuf and arc buf for this "dirty leaf block" are not instantiated. Because there is no dbuf with the dirty data, this mechanism doesn't support reading from "lightweight-dirty" blocks (they would see the on-disk state rather than the dirty data). Since the dedup-receive code has been removed, `zfs receive` is write-only, so this works fine. Because there are no arc bufs for the received data, the received data is no longer cached in the ARC. Testing a receive of a stream with average compressed block size of 4KB, this commit improves performance by 50%, while also reducing CPU usage by 50% of a CPU. On a per-block basis, CPU consumed by receive_writer() and dbuf_evict() is now 1/7th (14%) of what it was. Baseline: 450MB/s, CPU in receive_writer() 40% + dbuf_evict() 35% New: 670MB/s, CPU in receive_writer() 17% + dbuf_evict() 0% The code is also restructured in a few ways: Added a `dr_dnode` field to the dbuf_dirty_record_t. This simplifies some existing code that no longer needs `DB_DNODE_ENTER()` and related routines. The new field is needed by the lightweight-type dirty record. To ensure that the `dr_dnode` field remains valid until the dirty record is freed, we have to ensure that the `dnode_move()` doesn't relocate the dnode_t. To do this we keep a hold on the dnode until it's zio's have completed. This is already done by the user-accounting code (`userquota_updates_task()`), this commit extends that so that it always keeps the dnode hold until zio completion (see `dnode_rele_task()`). `dn_dirty_txg` was previously zeroed when the dnode was synced. This was not necessary, since its meaning can be "when was this dnode last dirtied". This change simplifies the new `dnode_rele_task()` code. Removed some dead code related to `DRR_WRITE_BYREF` (dedup receive). Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Paul Dagnelie <pcd@delphix.com> Reviewed-by: George Wilson <gwilson@delphix.com> Signed-off-by: Matthew Ahrens <mahrens@delphix.com> Closes #11105
859 lines
25 KiB
C
859 lines
25 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2012, 2020 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
|
|
* Copyright 2020 Oxide Computer Company
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_recv.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/range_tree.h>
|
|
#include <sys/zfeature.h>
|
|
|
|
static void
|
|
dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx)
|
|
{
|
|
dmu_buf_impl_t *db;
|
|
int txgoff = tx->tx_txg & TXG_MASK;
|
|
int nblkptr = dn->dn_phys->dn_nblkptr;
|
|
int old_toplvl = dn->dn_phys->dn_nlevels - 1;
|
|
int new_level = dn->dn_next_nlevels[txgoff];
|
|
int i;
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
|
|
/* this dnode can't be paged out because it's dirty */
|
|
ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
|
|
ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0);
|
|
|
|
db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG);
|
|
ASSERT(db != NULL);
|
|
|
|
dn->dn_phys->dn_nlevels = new_level;
|
|
dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset,
|
|
dn->dn_object, dn->dn_phys->dn_nlevels);
|
|
|
|
/*
|
|
* Lock ordering requires that we hold the children's db_mutexes (by
|
|
* calling dbuf_find()) before holding the parent's db_rwlock. The lock
|
|
* order is imposed by dbuf_read's steps of "grab the lock to protect
|
|
* db_parent, get db_parent, hold db_parent's db_rwlock".
|
|
*/
|
|
dmu_buf_impl_t *children[DN_MAX_NBLKPTR];
|
|
ASSERT3U(nblkptr, <=, DN_MAX_NBLKPTR);
|
|
for (i = 0; i < nblkptr; i++) {
|
|
children[i] =
|
|
dbuf_find(dn->dn_objset, dn->dn_object, old_toplvl, i);
|
|
}
|
|
|
|
/* transfer dnode's block pointers to new indirect block */
|
|
(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT);
|
|
if (dn->dn_dbuf != NULL)
|
|
rw_enter(&dn->dn_dbuf->db_rwlock, RW_WRITER);
|
|
rw_enter(&db->db_rwlock, RW_WRITER);
|
|
ASSERT(db->db.db_data);
|
|
ASSERT(arc_released(db->db_buf));
|
|
ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size);
|
|
bcopy(dn->dn_phys->dn_blkptr, db->db.db_data,
|
|
sizeof (blkptr_t) * nblkptr);
|
|
arc_buf_freeze(db->db_buf);
|
|
|
|
/* set dbuf's parent pointers to new indirect buf */
|
|
for (i = 0; i < nblkptr; i++) {
|
|
dmu_buf_impl_t *child = children[i];
|
|
|
|
if (child == NULL)
|
|
continue;
|
|
#ifdef ZFS_DEBUG
|
|
DB_DNODE_ENTER(child);
|
|
ASSERT3P(DB_DNODE(child), ==, dn);
|
|
DB_DNODE_EXIT(child);
|
|
#endif /* DEBUG */
|
|
if (child->db_parent && child->db_parent != dn->dn_dbuf) {
|
|
ASSERT(child->db_parent->db_level == db->db_level);
|
|
ASSERT(child->db_blkptr !=
|
|
&dn->dn_phys->dn_blkptr[child->db_blkid]);
|
|
mutex_exit(&child->db_mtx);
|
|
continue;
|
|
}
|
|
ASSERT(child->db_parent == NULL ||
|
|
child->db_parent == dn->dn_dbuf);
|
|
|
|
child->db_parent = db;
|
|
dbuf_add_ref(db, child);
|
|
if (db->db.db_data)
|
|
child->db_blkptr = (blkptr_t *)db->db.db_data + i;
|
|
else
|
|
child->db_blkptr = NULL;
|
|
dprintf_dbuf_bp(child, child->db_blkptr,
|
|
"changed db_blkptr to new indirect %s", "");
|
|
|
|
mutex_exit(&child->db_mtx);
|
|
}
|
|
|
|
bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr);
|
|
|
|
rw_exit(&db->db_rwlock);
|
|
if (dn->dn_dbuf != NULL)
|
|
rw_exit(&dn->dn_dbuf->db_rwlock);
|
|
|
|
dbuf_rele(db, FTAG);
|
|
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
}
|
|
|
|
static void
|
|
free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx)
|
|
{
|
|
dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
|
|
uint64_t bytesfreed = 0;
|
|
|
|
dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num);
|
|
|
|
for (int i = 0; i < num; i++, bp++) {
|
|
if (BP_IS_HOLE(bp))
|
|
continue;
|
|
|
|
bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE);
|
|
ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys));
|
|
|
|
/*
|
|
* Save some useful information on the holes being
|
|
* punched, including logical size, type, and indirection
|
|
* level. Retaining birth time enables detection of when
|
|
* holes are punched for reducing the number of free
|
|
* records transmitted during a zfs send.
|
|
*/
|
|
|
|
uint64_t lsize = BP_GET_LSIZE(bp);
|
|
dmu_object_type_t type = BP_GET_TYPE(bp);
|
|
uint64_t lvl = BP_GET_LEVEL(bp);
|
|
|
|
bzero(bp, sizeof (blkptr_t));
|
|
|
|
if (spa_feature_is_active(dn->dn_objset->os_spa,
|
|
SPA_FEATURE_HOLE_BIRTH)) {
|
|
BP_SET_LSIZE(bp, lsize);
|
|
BP_SET_TYPE(bp, type);
|
|
BP_SET_LEVEL(bp, lvl);
|
|
BP_SET_BIRTH(bp, dmu_tx_get_txg(tx), 0);
|
|
}
|
|
}
|
|
dnode_diduse_space(dn, -bytesfreed);
|
|
}
|
|
|
|
#ifdef ZFS_DEBUG
|
|
static void
|
|
free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx)
|
|
{
|
|
int off, num;
|
|
int i, err, epbs;
|
|
uint64_t txg = tx->tx_txg;
|
|
dnode_t *dn;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
off = start - (db->db_blkid * 1<<epbs);
|
|
num = end - start + 1;
|
|
|
|
ASSERT3U(off, >=, 0);
|
|
ASSERT3U(num, >=, 0);
|
|
ASSERT3U(db->db_level, >, 0);
|
|
ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
|
|
ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT);
|
|
ASSERT(db->db_blkptr != NULL);
|
|
|
|
for (i = off; i < off+num; i++) {
|
|
uint64_t *buf;
|
|
dmu_buf_impl_t *child;
|
|
dbuf_dirty_record_t *dr;
|
|
int j;
|
|
|
|
ASSERT(db->db_level == 1);
|
|
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
err = dbuf_hold_impl(dn, db->db_level - 1,
|
|
(db->db_blkid << epbs) + i, TRUE, FALSE, FTAG, &child);
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
if (err == ENOENT)
|
|
continue;
|
|
ASSERT(err == 0);
|
|
ASSERT(child->db_level == 0);
|
|
dr = dbuf_find_dirty_eq(child, txg);
|
|
|
|
/* data_old better be zeroed */
|
|
if (dr) {
|
|
buf = dr->dt.dl.dr_data->b_data;
|
|
for (j = 0; j < child->db.db_size >> 3; j++) {
|
|
if (buf[j] != 0) {
|
|
panic("freed data not zero: "
|
|
"child=%p i=%d off=%d num=%d\n",
|
|
(void *)child, i, off, num);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* db_data better be zeroed unless it's dirty in a
|
|
* future txg.
|
|
*/
|
|
mutex_enter(&child->db_mtx);
|
|
buf = child->db.db_data;
|
|
if (buf != NULL && child->db_state != DB_FILL &&
|
|
list_is_empty(&child->db_dirty_records)) {
|
|
for (j = 0; j < child->db.db_size >> 3; j++) {
|
|
if (buf[j] != 0) {
|
|
panic("freed data not zero: "
|
|
"child=%p i=%d off=%d num=%d\n",
|
|
(void *)child, i, off, num);
|
|
}
|
|
}
|
|
}
|
|
mutex_exit(&child->db_mtx);
|
|
|
|
dbuf_rele(child, FTAG);
|
|
}
|
|
DB_DNODE_EXIT(db);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* We don't usually free the indirect blocks here. If in one txg we have a
|
|
* free_range and a write to the same indirect block, it's important that we
|
|
* preserve the hole's birth times. Therefore, we don't free any any indirect
|
|
* blocks in free_children(). If an indirect block happens to turn into all
|
|
* holes, it will be freed by dbuf_write_children_ready, which happens at a
|
|
* point in the syncing process where we know for certain the contents of the
|
|
* indirect block.
|
|
*
|
|
* However, if we're freeing a dnode, its space accounting must go to zero
|
|
* before we actually try to free the dnode, or we will trip an assertion. In
|
|
* addition, we know the case described above cannot occur, because the dnode is
|
|
* being freed. Therefore, we free the indirect blocks immediately in that
|
|
* case.
|
|
*/
|
|
static void
|
|
free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks,
|
|
boolean_t free_indirects, dmu_tx_t *tx)
|
|
{
|
|
dnode_t *dn;
|
|
blkptr_t *bp;
|
|
dmu_buf_impl_t *subdb;
|
|
uint64_t start, end, dbstart, dbend;
|
|
unsigned int epbs, shift, i;
|
|
|
|
/*
|
|
* There is a small possibility that this block will not be cached:
|
|
* 1 - if level > 1 and there are no children with level <= 1
|
|
* 2 - if this block was evicted since we read it from
|
|
* dmu_tx_hold_free().
|
|
*/
|
|
if (db->db_state != DB_CACHED)
|
|
(void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
|
|
|
|
/*
|
|
* If we modify this indirect block, and we are not freeing the
|
|
* dnode (!free_indirects), then this indirect block needs to get
|
|
* written to disk by dbuf_write(). If it is dirty, we know it will
|
|
* be written (otherwise, we would have incorrect on-disk state
|
|
* because the space would be freed but still referenced by the BP
|
|
* in this indirect block). Therefore we VERIFY that it is
|
|
* dirty.
|
|
*
|
|
* Our VERIFY covers some cases that do not actually have to be
|
|
* dirty, but the open-context code happens to dirty. E.g. if the
|
|
* blocks we are freeing are all holes, because in that case, we
|
|
* are only freeing part of this indirect block, so it is an
|
|
* ancestor of the first or last block to be freed. The first and
|
|
* last L1 indirect blocks are always dirtied by dnode_free_range().
|
|
*/
|
|
db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
|
|
VERIFY(BP_GET_FILL(db->db_blkptr) == 0 || db->db_dirtycnt > 0);
|
|
dmu_buf_unlock_parent(db, dblt, FTAG);
|
|
|
|
dbuf_release_bp(db);
|
|
bp = db->db.db_data;
|
|
|
|
DB_DNODE_ENTER(db);
|
|
dn = DB_DNODE(db);
|
|
epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
|
|
ASSERT3U(epbs, <, 31);
|
|
shift = (db->db_level - 1) * epbs;
|
|
dbstart = db->db_blkid << epbs;
|
|
start = blkid >> shift;
|
|
if (dbstart < start) {
|
|
bp += start - dbstart;
|
|
} else {
|
|
start = dbstart;
|
|
}
|
|
dbend = ((db->db_blkid + 1) << epbs) - 1;
|
|
end = (blkid + nblks - 1) >> shift;
|
|
if (dbend <= end)
|
|
end = dbend;
|
|
|
|
ASSERT3U(start, <=, end);
|
|
|
|
if (db->db_level == 1) {
|
|
FREE_VERIFY(db, start, end, tx);
|
|
rw_enter(&db->db_rwlock, RW_WRITER);
|
|
free_blocks(dn, bp, end - start + 1, tx);
|
|
rw_exit(&db->db_rwlock);
|
|
} else {
|
|
for (uint64_t id = start; id <= end; id++, bp++) {
|
|
if (BP_IS_HOLE(bp))
|
|
continue;
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
VERIFY0(dbuf_hold_impl(dn, db->db_level - 1,
|
|
id, TRUE, FALSE, FTAG, &subdb));
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
ASSERT3P(bp, ==, subdb->db_blkptr);
|
|
|
|
free_children(subdb, blkid, nblks, free_indirects, tx);
|
|
dbuf_rele(subdb, FTAG);
|
|
}
|
|
}
|
|
|
|
if (free_indirects) {
|
|
rw_enter(&db->db_rwlock, RW_WRITER);
|
|
for (i = 0, bp = db->db.db_data; i < 1 << epbs; i++, bp++)
|
|
ASSERT(BP_IS_HOLE(bp));
|
|
bzero(db->db.db_data, db->db.db_size);
|
|
free_blocks(dn, db->db_blkptr, 1, tx);
|
|
rw_exit(&db->db_rwlock);
|
|
}
|
|
|
|
DB_DNODE_EXIT(db);
|
|
arc_buf_freeze(db->db_buf);
|
|
}
|
|
|
|
/*
|
|
* Traverse the indicated range of the provided file
|
|
* and "free" all the blocks contained there.
|
|
*/
|
|
static void
|
|
dnode_sync_free_range_impl(dnode_t *dn, uint64_t blkid, uint64_t nblks,
|
|
boolean_t free_indirects, dmu_tx_t *tx)
|
|
{
|
|
blkptr_t *bp = dn->dn_phys->dn_blkptr;
|
|
int dnlevel = dn->dn_phys->dn_nlevels;
|
|
boolean_t trunc = B_FALSE;
|
|
|
|
if (blkid > dn->dn_phys->dn_maxblkid)
|
|
return;
|
|
|
|
ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX);
|
|
if (blkid + nblks > dn->dn_phys->dn_maxblkid) {
|
|
nblks = dn->dn_phys->dn_maxblkid - blkid + 1;
|
|
trunc = B_TRUE;
|
|
}
|
|
|
|
/* There are no indirect blocks in the object */
|
|
if (dnlevel == 1) {
|
|
if (blkid >= dn->dn_phys->dn_nblkptr) {
|
|
/* this range was never made persistent */
|
|
return;
|
|
}
|
|
ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr);
|
|
free_blocks(dn, bp + blkid, nblks, tx);
|
|
} else {
|
|
int shift = (dnlevel - 1) *
|
|
(dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT);
|
|
int start = blkid >> shift;
|
|
int end = (blkid + nblks - 1) >> shift;
|
|
dmu_buf_impl_t *db;
|
|
|
|
ASSERT(start < dn->dn_phys->dn_nblkptr);
|
|
bp += start;
|
|
for (int i = start; i <= end; i++, bp++) {
|
|
if (BP_IS_HOLE(bp))
|
|
continue;
|
|
rw_enter(&dn->dn_struct_rwlock, RW_READER);
|
|
VERIFY0(dbuf_hold_impl(dn, dnlevel - 1, i,
|
|
TRUE, FALSE, FTAG, &db));
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
free_children(db, blkid, nblks, free_indirects, tx);
|
|
dbuf_rele(db, FTAG);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do not truncate the maxblkid if we are performing a raw
|
|
* receive. The raw receive sets the maxblkid manually and
|
|
* must not be overridden. Usually, the last DRR_FREE record
|
|
* will be at the maxblkid, because the source system sets
|
|
* the maxblkid when truncating. However, if the last block
|
|
* was freed by overwriting with zeros and being compressed
|
|
* away to a hole, the source system will generate a DRR_FREE
|
|
* record while leaving the maxblkid after the end of that
|
|
* record. In this case we need to leave the maxblkid as
|
|
* indicated in the DRR_OBJECT record, so that it matches the
|
|
* source system, ensuring that the cryptographic hashes will
|
|
* match.
|
|
*/
|
|
if (trunc && !dn->dn_objset->os_raw_receive) {
|
|
uint64_t off __maybe_unused;
|
|
dn->dn_phys->dn_maxblkid = blkid == 0 ? 0 : blkid - 1;
|
|
|
|
off = (dn->dn_phys->dn_maxblkid + 1) *
|
|
(dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT);
|
|
ASSERT(off < dn->dn_phys->dn_maxblkid ||
|
|
dn->dn_phys->dn_maxblkid == 0 ||
|
|
dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0);
|
|
}
|
|
}
|
|
|
|
typedef struct dnode_sync_free_range_arg {
|
|
dnode_t *dsfra_dnode;
|
|
dmu_tx_t *dsfra_tx;
|
|
boolean_t dsfra_free_indirects;
|
|
} dnode_sync_free_range_arg_t;
|
|
|
|
static void
|
|
dnode_sync_free_range(void *arg, uint64_t blkid, uint64_t nblks)
|
|
{
|
|
dnode_sync_free_range_arg_t *dsfra = arg;
|
|
dnode_t *dn = dsfra->dsfra_dnode;
|
|
|
|
mutex_exit(&dn->dn_mtx);
|
|
dnode_sync_free_range_impl(dn, blkid, nblks,
|
|
dsfra->dsfra_free_indirects, dsfra->dsfra_tx);
|
|
mutex_enter(&dn->dn_mtx);
|
|
}
|
|
|
|
/*
|
|
* Try to kick all the dnode's dbufs out of the cache...
|
|
*/
|
|
void
|
|
dnode_evict_dbufs(dnode_t *dn)
|
|
{
|
|
dmu_buf_impl_t *db_marker;
|
|
dmu_buf_impl_t *db, *db_next;
|
|
|
|
db_marker = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
|
|
|
|
mutex_enter(&dn->dn_dbufs_mtx);
|
|
for (db = avl_first(&dn->dn_dbufs); db != NULL; db = db_next) {
|
|
|
|
#ifdef ZFS_DEBUG
|
|
DB_DNODE_ENTER(db);
|
|
ASSERT3P(DB_DNODE(db), ==, dn);
|
|
DB_DNODE_EXIT(db);
|
|
#endif /* DEBUG */
|
|
|
|
mutex_enter(&db->db_mtx);
|
|
if (db->db_state != DB_EVICTING &&
|
|
zfs_refcount_is_zero(&db->db_holds)) {
|
|
db_marker->db_level = db->db_level;
|
|
db_marker->db_blkid = db->db_blkid;
|
|
db_marker->db_state = DB_SEARCH;
|
|
avl_insert_here(&dn->dn_dbufs, db_marker, db,
|
|
AVL_BEFORE);
|
|
|
|
/*
|
|
* We need to use the "marker" dbuf rather than
|
|
* simply getting the next dbuf, because
|
|
* dbuf_destroy() may actually remove multiple dbufs.
|
|
* It can call itself recursively on the parent dbuf,
|
|
* which may also be removed from dn_dbufs. The code
|
|
* flow would look like:
|
|
*
|
|
* dbuf_destroy():
|
|
* dnode_rele_and_unlock(parent_dbuf, evicting=TRUE):
|
|
* if (!cacheable || pending_evict)
|
|
* dbuf_destroy()
|
|
*/
|
|
dbuf_destroy(db);
|
|
|
|
db_next = AVL_NEXT(&dn->dn_dbufs, db_marker);
|
|
avl_remove(&dn->dn_dbufs, db_marker);
|
|
} else {
|
|
db->db_pending_evict = TRUE;
|
|
mutex_exit(&db->db_mtx);
|
|
db_next = AVL_NEXT(&dn->dn_dbufs, db);
|
|
}
|
|
}
|
|
mutex_exit(&dn->dn_dbufs_mtx);
|
|
|
|
kmem_free(db_marker, sizeof (dmu_buf_impl_t));
|
|
|
|
dnode_evict_bonus(dn);
|
|
}
|
|
|
|
void
|
|
dnode_evict_bonus(dnode_t *dn)
|
|
{
|
|
rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
|
|
if (dn->dn_bonus != NULL) {
|
|
if (zfs_refcount_is_zero(&dn->dn_bonus->db_holds)) {
|
|
mutex_enter(&dn->dn_bonus->db_mtx);
|
|
dbuf_destroy(dn->dn_bonus);
|
|
dn->dn_bonus = NULL;
|
|
} else {
|
|
dn->dn_bonus->db_pending_evict = TRUE;
|
|
}
|
|
}
|
|
rw_exit(&dn->dn_struct_rwlock);
|
|
}
|
|
|
|
static void
|
|
dnode_undirty_dbufs(list_t *list)
|
|
{
|
|
dbuf_dirty_record_t *dr;
|
|
|
|
while ((dr = list_head(list))) {
|
|
dmu_buf_impl_t *db = dr->dr_dbuf;
|
|
uint64_t txg = dr->dr_txg;
|
|
|
|
if (db->db_level != 0)
|
|
dnode_undirty_dbufs(&dr->dt.di.dr_children);
|
|
|
|
mutex_enter(&db->db_mtx);
|
|
/* XXX - use dbuf_undirty()? */
|
|
list_remove(list, dr);
|
|
ASSERT(list_head(&db->db_dirty_records) == dr);
|
|
list_remove_head(&db->db_dirty_records);
|
|
ASSERT(list_is_empty(&db->db_dirty_records));
|
|
db->db_dirtycnt -= 1;
|
|
if (db->db_level == 0) {
|
|
ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
|
|
dr->dt.dl.dr_data == db->db_buf);
|
|
dbuf_unoverride(dr);
|
|
} else {
|
|
mutex_destroy(&dr->dt.di.dr_mtx);
|
|
list_destroy(&dr->dt.di.dr_children);
|
|
}
|
|
kmem_free(dr, sizeof (dbuf_dirty_record_t));
|
|
dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
dnode_sync_free(dnode_t *dn, dmu_tx_t *tx)
|
|
{
|
|
int txgoff = tx->tx_txg & TXG_MASK;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
|
|
/*
|
|
* Our contents should have been freed in dnode_sync() by the
|
|
* free range record inserted by the caller of dnode_free().
|
|
*/
|
|
ASSERT0(DN_USED_BYTES(dn->dn_phys));
|
|
ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr));
|
|
|
|
dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]);
|
|
dnode_evict_dbufs(dn);
|
|
|
|
/*
|
|
* XXX - It would be nice to assert this, but we may still
|
|
* have residual holds from async evictions from the arc...
|
|
*
|
|
* zfs_obj_to_path() also depends on this being
|
|
* commented out.
|
|
*
|
|
* ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 1);
|
|
*/
|
|
|
|
/* Undirty next bits */
|
|
dn->dn_next_nlevels[txgoff] = 0;
|
|
dn->dn_next_indblkshift[txgoff] = 0;
|
|
dn->dn_next_blksz[txgoff] = 0;
|
|
dn->dn_next_maxblkid[txgoff] = 0;
|
|
|
|
/* ASSERT(blkptrs are zero); */
|
|
ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE);
|
|
ASSERT(dn->dn_type != DMU_OT_NONE);
|
|
|
|
ASSERT(dn->dn_free_txg > 0);
|
|
if (dn->dn_allocated_txg != dn->dn_free_txg)
|
|
dmu_buf_will_dirty(&dn->dn_dbuf->db, tx);
|
|
bzero(dn->dn_phys, sizeof (dnode_phys_t) * dn->dn_num_slots);
|
|
dnode_free_interior_slots(dn);
|
|
|
|
mutex_enter(&dn->dn_mtx);
|
|
dn->dn_type = DMU_OT_NONE;
|
|
dn->dn_maxblkid = 0;
|
|
dn->dn_allocated_txg = 0;
|
|
dn->dn_free_txg = 0;
|
|
dn->dn_have_spill = B_FALSE;
|
|
dn->dn_num_slots = 1;
|
|
mutex_exit(&dn->dn_mtx);
|
|
|
|
ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
|
|
|
|
dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
|
|
/*
|
|
* Now that we've released our hold, the dnode may
|
|
* be evicted, so we mustn't access it.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Write out the dnode's dirty buffers.
|
|
*/
|
|
void
|
|
dnode_sync(dnode_t *dn, dmu_tx_t *tx)
|
|
{
|
|
objset_t *os = dn->dn_objset;
|
|
dnode_phys_t *dnp = dn->dn_phys;
|
|
int txgoff = tx->tx_txg & TXG_MASK;
|
|
list_t *list = &dn->dn_dirty_records[txgoff];
|
|
static const dnode_phys_t zerodn __maybe_unused = { 0 };
|
|
boolean_t kill_spill = B_FALSE;
|
|
|
|
ASSERT(dmu_tx_is_syncing(tx));
|
|
ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg);
|
|
ASSERT(dnp->dn_type != DMU_OT_NONE ||
|
|
bcmp(dnp, &zerodn, DNODE_MIN_SIZE) == 0);
|
|
DNODE_VERIFY(dn);
|
|
|
|
ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf));
|
|
|
|
/*
|
|
* Do user accounting if it is enabled and this is not
|
|
* an encrypted receive.
|
|
*/
|
|
if (dmu_objset_userused_enabled(os) &&
|
|
!DMU_OBJECT_IS_SPECIAL(dn->dn_object) &&
|
|
(!os->os_encrypted || !dmu_objset_is_receiving(os))) {
|
|
mutex_enter(&dn->dn_mtx);
|
|
dn->dn_oldused = DN_USED_BYTES(dn->dn_phys);
|
|
dn->dn_oldflags = dn->dn_phys->dn_flags;
|
|
dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED;
|
|
if (dmu_objset_userobjused_enabled(dn->dn_objset))
|
|
dn->dn_phys->dn_flags |=
|
|
DNODE_FLAG_USEROBJUSED_ACCOUNTED;
|
|
mutex_exit(&dn->dn_mtx);
|
|
dmu_objset_userquota_get_ids(dn, B_FALSE, tx);
|
|
} else {
|
|
/* Once we account for it, we should always account for it */
|
|
ASSERT(!(dn->dn_phys->dn_flags &
|
|
DNODE_FLAG_USERUSED_ACCOUNTED));
|
|
ASSERT(!(dn->dn_phys->dn_flags &
|
|
DNODE_FLAG_USEROBJUSED_ACCOUNTED));
|
|
}
|
|
|
|
mutex_enter(&dn->dn_mtx);
|
|
if (dn->dn_allocated_txg == tx->tx_txg) {
|
|
/* The dnode is newly allocated or reallocated */
|
|
if (dnp->dn_type == DMU_OT_NONE) {
|
|
/* this is a first alloc, not a realloc */
|
|
dnp->dn_nlevels = 1;
|
|
dnp->dn_nblkptr = dn->dn_nblkptr;
|
|
}
|
|
|
|
dnp->dn_type = dn->dn_type;
|
|
dnp->dn_bonustype = dn->dn_bonustype;
|
|
dnp->dn_bonuslen = dn->dn_bonuslen;
|
|
}
|
|
|
|
dnp->dn_extra_slots = dn->dn_num_slots - 1;
|
|
|
|
ASSERT(dnp->dn_nlevels > 1 ||
|
|
BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
|
|
BP_IS_EMBEDDED(&dnp->dn_blkptr[0]) ||
|
|
BP_GET_LSIZE(&dnp->dn_blkptr[0]) ==
|
|
dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
|
|
ASSERT(dnp->dn_nlevels < 2 ||
|
|
BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
|
|
BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 1 << dnp->dn_indblkshift);
|
|
|
|
if (dn->dn_next_type[txgoff] != 0) {
|
|
dnp->dn_type = dn->dn_type;
|
|
dn->dn_next_type[txgoff] = 0;
|
|
}
|
|
|
|
if (dn->dn_next_blksz[txgoff] != 0) {
|
|
ASSERT(P2PHASE(dn->dn_next_blksz[txgoff],
|
|
SPA_MINBLOCKSIZE) == 0);
|
|
ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) ||
|
|
dn->dn_maxblkid == 0 || list_head(list) != NULL ||
|
|
dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT ==
|
|
dnp->dn_datablkszsec ||
|
|
!range_tree_is_empty(dn->dn_free_ranges[txgoff]));
|
|
dnp->dn_datablkszsec =
|
|
dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT;
|
|
dn->dn_next_blksz[txgoff] = 0;
|
|
}
|
|
|
|
if (dn->dn_next_bonuslen[txgoff] != 0) {
|
|
if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN)
|
|
dnp->dn_bonuslen = 0;
|
|
else
|
|
dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff];
|
|
ASSERT(dnp->dn_bonuslen <=
|
|
DN_SLOTS_TO_BONUSLEN(dnp->dn_extra_slots + 1));
|
|
dn->dn_next_bonuslen[txgoff] = 0;
|
|
}
|
|
|
|
if (dn->dn_next_bonustype[txgoff] != 0) {
|
|
ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff]));
|
|
dnp->dn_bonustype = dn->dn_next_bonustype[txgoff];
|
|
dn->dn_next_bonustype[txgoff] = 0;
|
|
}
|
|
|
|
boolean_t freeing_dnode = dn->dn_free_txg > 0 &&
|
|
dn->dn_free_txg <= tx->tx_txg;
|
|
|
|
/*
|
|
* Remove the spill block if we have been explicitly asked to
|
|
* remove it, or if the object is being removed.
|
|
*/
|
|
if (dn->dn_rm_spillblk[txgoff] || freeing_dnode) {
|
|
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
|
|
kill_spill = B_TRUE;
|
|
dn->dn_rm_spillblk[txgoff] = 0;
|
|
}
|
|
|
|
if (dn->dn_next_indblkshift[txgoff] != 0) {
|
|
ASSERT(dnp->dn_nlevels == 1);
|
|
dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff];
|
|
dn->dn_next_indblkshift[txgoff] = 0;
|
|
}
|
|
|
|
/*
|
|
* Just take the live (open-context) values for checksum and compress.
|
|
* Strictly speaking it's a future leak, but nothing bad happens if we
|
|
* start using the new checksum or compress algorithm a little early.
|
|
*/
|
|
dnp->dn_checksum = dn->dn_checksum;
|
|
dnp->dn_compress = dn->dn_compress;
|
|
|
|
mutex_exit(&dn->dn_mtx);
|
|
|
|
if (kill_spill) {
|
|
free_blocks(dn, DN_SPILL_BLKPTR(dn->dn_phys), 1, tx);
|
|
mutex_enter(&dn->dn_mtx);
|
|
dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR;
|
|
mutex_exit(&dn->dn_mtx);
|
|
}
|
|
|
|
/* process all the "freed" ranges in the file */
|
|
if (dn->dn_free_ranges[txgoff] != NULL) {
|
|
dnode_sync_free_range_arg_t dsfra;
|
|
dsfra.dsfra_dnode = dn;
|
|
dsfra.dsfra_tx = tx;
|
|
dsfra.dsfra_free_indirects = freeing_dnode;
|
|
mutex_enter(&dn->dn_mtx);
|
|
if (freeing_dnode) {
|
|
ASSERT(range_tree_contains(dn->dn_free_ranges[txgoff],
|
|
0, dn->dn_maxblkid + 1));
|
|
}
|
|
/*
|
|
* Because dnode_sync_free_range() must drop dn_mtx during its
|
|
* processing, using it as a callback to range_tree_vacate() is
|
|
* not safe. No other operations (besides destroy) are allowed
|
|
* once range_tree_vacate() has begun, and dropping dn_mtx
|
|
* would leave a window open for another thread to observe that
|
|
* invalid (and unsafe) state.
|
|
*/
|
|
range_tree_walk(dn->dn_free_ranges[txgoff],
|
|
dnode_sync_free_range, &dsfra);
|
|
range_tree_vacate(dn->dn_free_ranges[txgoff], NULL, NULL);
|
|
range_tree_destroy(dn->dn_free_ranges[txgoff]);
|
|
dn->dn_free_ranges[txgoff] = NULL;
|
|
mutex_exit(&dn->dn_mtx);
|
|
}
|
|
|
|
if (freeing_dnode) {
|
|
dn->dn_objset->os_freed_dnodes++;
|
|
dnode_sync_free(dn, tx);
|
|
return;
|
|
}
|
|
|
|
if (dn->dn_num_slots > DNODE_MIN_SLOTS) {
|
|
dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
|
|
mutex_enter(&ds->ds_lock);
|
|
ds->ds_feature_activation[SPA_FEATURE_LARGE_DNODE] =
|
|
(void *)B_TRUE;
|
|
mutex_exit(&ds->ds_lock);
|
|
}
|
|
|
|
if (dn->dn_next_nlevels[txgoff]) {
|
|
dnode_increase_indirection(dn, tx);
|
|
dn->dn_next_nlevels[txgoff] = 0;
|
|
}
|
|
|
|
/*
|
|
* This must be done after dnode_sync_free_range()
|
|
* and dnode_increase_indirection(). See dnode_new_blkid()
|
|
* for an explanation of the high bit being set.
|
|
*/
|
|
if (dn->dn_next_maxblkid[txgoff]) {
|
|
mutex_enter(&dn->dn_mtx);
|
|
dnp->dn_maxblkid =
|
|
dn->dn_next_maxblkid[txgoff] & ~DMU_NEXT_MAXBLKID_SET;
|
|
dn->dn_next_maxblkid[txgoff] = 0;
|
|
mutex_exit(&dn->dn_mtx);
|
|
}
|
|
|
|
if (dn->dn_next_nblkptr[txgoff]) {
|
|
/* this should only happen on a realloc */
|
|
ASSERT(dn->dn_allocated_txg == tx->tx_txg);
|
|
if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) {
|
|
/* zero the new blkptrs we are gaining */
|
|
bzero(dnp->dn_blkptr + dnp->dn_nblkptr,
|
|
sizeof (blkptr_t) *
|
|
(dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr));
|
|
#ifdef ZFS_DEBUG
|
|
} else {
|
|
int i;
|
|
ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr);
|
|
/* the blkptrs we are losing better be unallocated */
|
|
for (i = 0; i < dnp->dn_nblkptr; i++) {
|
|
if (i >= dn->dn_next_nblkptr[txgoff])
|
|
ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i]));
|
|
}
|
|
#endif
|
|
}
|
|
mutex_enter(&dn->dn_mtx);
|
|
dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff];
|
|
dn->dn_next_nblkptr[txgoff] = 0;
|
|
mutex_exit(&dn->dn_mtx);
|
|
}
|
|
|
|
dbuf_sync_list(list, dn->dn_phys->dn_nlevels - 1, tx);
|
|
|
|
if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
|
|
ASSERT3P(list_head(list), ==, NULL);
|
|
dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg);
|
|
}
|
|
|
|
/*
|
|
* Although we have dropped our reference to the dnode, it
|
|
* can't be evicted until its written, and we haven't yet
|
|
* initiated the IO for the dnode's dbuf. Additionally, the caller
|
|
* has already added a reference to the dnode because it's on the
|
|
* os_synced_dnodes list.
|
|
*/
|
|
}
|