mirror of
				https://git.proxmox.com/git/mirror_zfs.git
				synced 2025-10-26 18:05:04 +03:00 
			
		
		
		
	 d0249a4bd0
			
		
	
	
		d0249a4bd0
		
			
		
	
	
	
	
		
			
			This change updates the documentation to refer to the project as OpenZFS instead ZFS on Linux. Web links have been updated to refer to https://github.com/openzfs/zfs. The extraneous zfsonlinux.org web links in the ZED and SPL sources have been dropped. Reviewed-by: George Melikov <mail@gmelikov.ru> Reviewed-by: Richard Laager <rlaager@wiktel.com> Reviewed-by: Ryan Moeller <ryan@iXsystems.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #11007
		
			
				
	
	
		
			1469 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1469 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
 | |
|  *  Copyright (C) 2007 The Regents of the University of California.
 | |
|  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
 | |
|  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
 | |
|  *  UCRL-CODE-235197
 | |
|  *
 | |
|  *  This file is part of the SPL, Solaris Porting Layer.
 | |
|  *
 | |
|  *  The SPL is free software; you can redistribute it and/or modify it
 | |
|  *  under the terms of the GNU General Public License as published by the
 | |
|  *  Free Software Foundation; either version 2 of the License, or (at your
 | |
|  *  option) any later version.
 | |
|  *
 | |
|  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
 | |
|  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|  *  for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include <linux/percpu_compat.h>
 | |
| #include <sys/kmem.h>
 | |
| #include <sys/kmem_cache.h>
 | |
| #include <sys/taskq.h>
 | |
| #include <sys/timer.h>
 | |
| #include <sys/vmem.h>
 | |
| #include <sys/wait.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/prefetch.h>
 | |
| 
 | |
| /*
 | |
|  * Within the scope of spl-kmem.c file the kmem_cache_* definitions
 | |
|  * are removed to allow access to the real Linux slab allocator.
 | |
|  */
 | |
| #undef kmem_cache_destroy
 | |
| #undef kmem_cache_create
 | |
| #undef kmem_cache_alloc
 | |
| #undef kmem_cache_free
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
 | |
|  * with smp_mb__{before,after}_atomic() because they were redundant. This is
 | |
|  * only used inside our SLAB allocator, so we implement an internal wrapper
 | |
|  * here to give us smp_mb__{before,after}_atomic() on older kernels.
 | |
|  */
 | |
| #ifndef smp_mb__before_atomic
 | |
| #define	smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_mb__after_atomic
 | |
| #define	smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
 | |
| #endif
 | |
| 
 | |
| /* BEGIN CSTYLED */
 | |
| 
 | |
| /*
 | |
|  * Cache magazines are an optimization designed to minimize the cost of
 | |
|  * allocating memory.  They do this by keeping a per-cpu cache of recently
 | |
|  * freed objects, which can then be reallocated without taking a lock. This
 | |
|  * can improve performance on highly contended caches.  However, because
 | |
|  * objects in magazines will prevent otherwise empty slabs from being
 | |
|  * immediately released this may not be ideal for low memory machines.
 | |
|  *
 | |
|  * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
 | |
|  * magazine size.  When this value is set to 0 the magazine size will be
 | |
|  * automatically determined based on the object size.  Otherwise magazines
 | |
|  * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
 | |
|  * may never be entirely disabled in this implementation.
 | |
|  */
 | |
| unsigned int spl_kmem_cache_magazine_size = 0;
 | |
| module_param(spl_kmem_cache_magazine_size, uint, 0444);
 | |
| MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
 | |
| 	"Default magazine size (2-256), set automatically (0)");
 | |
| 
 | |
| /*
 | |
|  * The default behavior is to report the number of objects remaining in the
 | |
|  * cache.  This allows the Linux VM to repeatedly reclaim objects from the
 | |
|  * cache when memory is low satisfy other memory allocations.  Alternately,
 | |
|  * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
 | |
|  * is reclaimed.  This may increase the likelihood of out of memory events.
 | |
|  */
 | |
| unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
 | |
| module_param(spl_kmem_cache_reclaim, uint, 0644);
 | |
| MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
 | |
| 
 | |
| unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
 | |
| module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
 | |
| MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
 | |
| 
 | |
| unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
 | |
| module_param(spl_kmem_cache_max_size, uint, 0644);
 | |
| MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
 | |
| 
 | |
| /*
 | |
|  * For small objects the Linux slab allocator should be used to make the most
 | |
|  * efficient use of the memory.  However, large objects are not supported by
 | |
|  * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
 | |
|  * of 16K was determined to be optimal for architectures using 4K pages.
 | |
|  */
 | |
| #if PAGE_SIZE == 4096
 | |
| unsigned int spl_kmem_cache_slab_limit = 16384;
 | |
| #else
 | |
| unsigned int spl_kmem_cache_slab_limit = 0;
 | |
| #endif
 | |
| module_param(spl_kmem_cache_slab_limit, uint, 0644);
 | |
| MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
 | |
| 	"Objects less than N bytes use the Linux slab");
 | |
| 
 | |
| /*
 | |
|  * The number of threads available to allocate new slabs for caches.  This
 | |
|  * should not need to be tuned but it is available for performance analysis.
 | |
|  */
 | |
| unsigned int spl_kmem_cache_kmem_threads = 4;
 | |
| module_param(spl_kmem_cache_kmem_threads, uint, 0444);
 | |
| MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
 | |
| 	"Number of spl_kmem_cache threads");
 | |
| /* END CSTYLED */
 | |
| 
 | |
| /*
 | |
|  * Slab allocation interfaces
 | |
|  *
 | |
|  * While the Linux slab implementation was inspired by the Solaris
 | |
|  * implementation I cannot use it to emulate the Solaris APIs.  I
 | |
|  * require two features which are not provided by the Linux slab.
 | |
|  *
 | |
|  * 1) Constructors AND destructors.  Recent versions of the Linux
 | |
|  *    kernel have removed support for destructors.  This is a deal
 | |
|  *    breaker for the SPL which contains particularly expensive
 | |
|  *    initializers for mutex's, condition variables, etc.  We also
 | |
|  *    require a minimal level of cleanup for these data types unlike
 | |
|  *    many Linux data types which do need to be explicitly destroyed.
 | |
|  *
 | |
|  * 2) Virtual address space backed slab.  Callers of the Solaris slab
 | |
|  *    expect it to work well for both small are very large allocations.
 | |
|  *    Because of memory fragmentation the Linux slab which is backed
 | |
|  *    by kmalloc'ed memory performs very badly when confronted with
 | |
|  *    large numbers of large allocations.  Basing the slab on the
 | |
|  *    virtual address space removes the need for contiguous pages
 | |
|  *    and greatly improve performance for large allocations.
 | |
|  *
 | |
|  * For these reasons, the SPL has its own slab implementation with
 | |
|  * the needed features.  It is not as highly optimized as either the
 | |
|  * Solaris or Linux slabs, but it should get me most of what is
 | |
|  * needed until it can be optimized or obsoleted by another approach.
 | |
|  *
 | |
|  * One serious concern I do have about this method is the relatively
 | |
|  * small virtual address space on 32bit arches.  This will seriously
 | |
|  * constrain the size of the slab caches and their performance.
 | |
|  */
 | |
| 
 | |
| struct list_head spl_kmem_cache_list;   /* List of caches */
 | |
| struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
 | |
| taskq_t *spl_kmem_cache_taskq;		/* Task queue for aging / reclaim */
 | |
| 
 | |
| static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
 | |
| 
 | |
| static void *
 | |
| kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
 | |
| {
 | |
| 	gfp_t lflags = kmem_flags_convert(flags);
 | |
| 	void *ptr;
 | |
| 
 | |
| 	ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
 | |
| 
 | |
| 	/* Resulting allocated memory will be page aligned */
 | |
| 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
 | |
| 
 | |
| 	return (ptr);
 | |
| }
 | |
| 
 | |
| static void
 | |
| kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
 | |
| {
 | |
| 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
 | |
| 
 | |
| 	/*
 | |
| 	 * The Linux direct reclaim path uses this out of band value to
 | |
| 	 * determine if forward progress is being made.  Normally this is
 | |
| 	 * incremented by kmem_freepages() which is part of the various
 | |
| 	 * Linux slab implementations.  However, since we are using none
 | |
| 	 * of that infrastructure we are responsible for incrementing it.
 | |
| 	 */
 | |
| 	if (current->reclaim_state)
 | |
| 		current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
 | |
| 
 | |
| 	vfree(ptr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Required space for each aligned sks.
 | |
|  */
 | |
| static inline uint32_t
 | |
| spl_sks_size(spl_kmem_cache_t *skc)
 | |
| {
 | |
| 	return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
 | |
| 	    skc->skc_obj_align, uint32_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Required space for each aligned object.
 | |
|  */
 | |
| static inline uint32_t
 | |
| spl_obj_size(spl_kmem_cache_t *skc)
 | |
| {
 | |
| 	uint32_t align = skc->skc_obj_align;
 | |
| 
 | |
| 	return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
 | |
| 	    P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
 | |
| }
 | |
| 
 | |
| uint64_t
 | |
| spl_kmem_cache_inuse(kmem_cache_t *cache)
 | |
| {
 | |
| 	return (cache->skc_obj_total);
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_cache_inuse);
 | |
| 
 | |
| uint64_t
 | |
| spl_kmem_cache_entry_size(kmem_cache_t *cache)
 | |
| {
 | |
| 	return (cache->skc_obj_size);
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_cache_entry_size);
 | |
| 
 | |
| /*
 | |
|  * Lookup the spl_kmem_object_t for an object given that object.
 | |
|  */
 | |
| static inline spl_kmem_obj_t *
 | |
| spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
 | |
| {
 | |
| 	return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
 | |
| 	    skc->skc_obj_align, uint32_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * It's important that we pack the spl_kmem_obj_t structure and the
 | |
|  * actual objects in to one large address space to minimize the number
 | |
|  * of calls to the allocator.  It is far better to do a few large
 | |
|  * allocations and then subdivide it ourselves.  Now which allocator
 | |
|  * we use requires balancing a few trade offs.
 | |
|  *
 | |
|  * For small objects we use kmem_alloc() because as long as you are
 | |
|  * only requesting a small number of pages (ideally just one) its cheap.
 | |
|  * However, when you start requesting multiple pages with kmem_alloc()
 | |
|  * it gets increasingly expensive since it requires contiguous pages.
 | |
|  * For this reason we shift to vmem_alloc() for slabs of large objects
 | |
|  * which removes the need for contiguous pages.  We do not use
 | |
|  * vmem_alloc() in all cases because there is significant locking
 | |
|  * overhead in __get_vm_area_node().  This function takes a single
 | |
|  * global lock when acquiring an available virtual address range which
 | |
|  * serializes all vmem_alloc()'s for all slab caches.  Using slightly
 | |
|  * different allocation functions for small and large objects should
 | |
|  * give us the best of both worlds.
 | |
|  *
 | |
|  * +------------------------+
 | |
|  * | spl_kmem_slab_t --+-+  |
 | |
|  * | skc_obj_size    <-+ |  |
 | |
|  * | spl_kmem_obj_t      |  |
 | |
|  * | skc_obj_size    <---+  |
 | |
|  * | spl_kmem_obj_t      |  |
 | |
|  * | ...                 v  |
 | |
|  * +------------------------+
 | |
|  */
 | |
| static spl_kmem_slab_t *
 | |
| spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
 | |
| {
 | |
| 	spl_kmem_slab_t *sks;
 | |
| 	void *base;
 | |
| 	uint32_t obj_size;
 | |
| 
 | |
| 	base = kv_alloc(skc, skc->skc_slab_size, flags);
 | |
| 	if (base == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	sks = (spl_kmem_slab_t *)base;
 | |
| 	sks->sks_magic = SKS_MAGIC;
 | |
| 	sks->sks_objs = skc->skc_slab_objs;
 | |
| 	sks->sks_age = jiffies;
 | |
| 	sks->sks_cache = skc;
 | |
| 	INIT_LIST_HEAD(&sks->sks_list);
 | |
| 	INIT_LIST_HEAD(&sks->sks_free_list);
 | |
| 	sks->sks_ref = 0;
 | |
| 	obj_size = spl_obj_size(skc);
 | |
| 
 | |
| 	for (int i = 0; i < sks->sks_objs; i++) {
 | |
| 		void *obj = base + spl_sks_size(skc) + (i * obj_size);
 | |
| 
 | |
| 		ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
 | |
| 		spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
 | |
| 		sko->sko_addr = obj;
 | |
| 		sko->sko_magic = SKO_MAGIC;
 | |
| 		sko->sko_slab = sks;
 | |
| 		INIT_LIST_HEAD(&sko->sko_list);
 | |
| 		list_add_tail(&sko->sko_list, &sks->sks_free_list);
 | |
| 	}
 | |
| 
 | |
| 	return (sks);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a slab from complete or partial list, it must be called with
 | |
|  * the 'skc->skc_lock' held but the actual free must be performed
 | |
|  * outside the lock to prevent deadlocking on vmem addresses.
 | |
|  */
 | |
| static void
 | |
| spl_slab_free(spl_kmem_slab_t *sks,
 | |
|     struct list_head *sks_list, struct list_head *sko_list)
 | |
| {
 | |
| 	spl_kmem_cache_t *skc;
 | |
| 
 | |
| 	ASSERT(sks->sks_magic == SKS_MAGIC);
 | |
| 	ASSERT(sks->sks_ref == 0);
 | |
| 
 | |
| 	skc = sks->sks_cache;
 | |
| 	ASSERT(skc->skc_magic == SKC_MAGIC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update slab/objects counters in the cache, then remove the
 | |
| 	 * slab from the skc->skc_partial_list.  Finally add the slab
 | |
| 	 * and all its objects in to the private work lists where the
 | |
| 	 * destructors will be called and the memory freed to the system.
 | |
| 	 */
 | |
| 	skc->skc_obj_total -= sks->sks_objs;
 | |
| 	skc->skc_slab_total--;
 | |
| 	list_del(&sks->sks_list);
 | |
| 	list_add(&sks->sks_list, sks_list);
 | |
| 	list_splice_init(&sks->sks_free_list, sko_list);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reclaim empty slabs at the end of the partial list.
 | |
|  */
 | |
| static void
 | |
| spl_slab_reclaim(spl_kmem_cache_t *skc)
 | |
| {
 | |
| 	spl_kmem_slab_t *sks = NULL, *m = NULL;
 | |
| 	spl_kmem_obj_t *sko = NULL, *n = NULL;
 | |
| 	LIST_HEAD(sks_list);
 | |
| 	LIST_HEAD(sko_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * Empty slabs and objects must be moved to a private list so they
 | |
| 	 * can be safely freed outside the spin lock.  All empty slabs are
 | |
| 	 * at the end of skc->skc_partial_list, therefore once a non-empty
 | |
| 	 * slab is found we can stop scanning.
 | |
| 	 */
 | |
| 	spin_lock(&skc->skc_lock);
 | |
| 	list_for_each_entry_safe_reverse(sks, m,
 | |
| 	    &skc->skc_partial_list, sks_list) {
 | |
| 
 | |
| 		if (sks->sks_ref > 0)
 | |
| 			break;
 | |
| 
 | |
| 		spl_slab_free(sks, &sks_list, &sko_list);
 | |
| 	}
 | |
| 	spin_unlock(&skc->skc_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * The following two loops ensure all the object destructors are run,
 | |
| 	 * and the slabs themselves are freed.  This is all done outside the
 | |
| 	 * skc->skc_lock since this allows the destructor to sleep, and
 | |
| 	 * allows us to perform a conditional reschedule when a freeing a
 | |
| 	 * large number of objects and slabs back to the system.
 | |
| 	 */
 | |
| 
 | |
| 	list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
 | |
| 		ASSERT(sko->sko_magic == SKO_MAGIC);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
 | |
| 		ASSERT(sks->sks_magic == SKS_MAGIC);
 | |
| 		kv_free(skc, sks, skc->skc_slab_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static spl_kmem_emergency_t *
 | |
| spl_emergency_search(struct rb_root *root, void *obj)
 | |
| {
 | |
| 	struct rb_node *node = root->rb_node;
 | |
| 	spl_kmem_emergency_t *ske;
 | |
| 	unsigned long address = (unsigned long)obj;
 | |
| 
 | |
| 	while (node) {
 | |
| 		ske = container_of(node, spl_kmem_emergency_t, ske_node);
 | |
| 
 | |
| 		if (address < ske->ske_obj)
 | |
| 			node = node->rb_left;
 | |
| 		else if (address > ske->ske_obj)
 | |
| 			node = node->rb_right;
 | |
| 		else
 | |
| 			return (ske);
 | |
| 	}
 | |
| 
 | |
| 	return (NULL);
 | |
| }
 | |
| 
 | |
| static int
 | |
| spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
 | |
| {
 | |
| 	struct rb_node **new = &(root->rb_node), *parent = NULL;
 | |
| 	spl_kmem_emergency_t *ske_tmp;
 | |
| 	unsigned long address = ske->ske_obj;
 | |
| 
 | |
| 	while (*new) {
 | |
| 		ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
 | |
| 
 | |
| 		parent = *new;
 | |
| 		if (address < ske_tmp->ske_obj)
 | |
| 			new = &((*new)->rb_left);
 | |
| 		else if (address > ske_tmp->ske_obj)
 | |
| 			new = &((*new)->rb_right);
 | |
| 		else
 | |
| 			return (0);
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&ske->ske_node, parent, new);
 | |
| 	rb_insert_color(&ske->ske_node, root);
 | |
| 
 | |
| 	return (1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a single emergency object and track it in a red black tree.
 | |
|  */
 | |
| static int
 | |
| spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
 | |
| {
 | |
| 	gfp_t lflags = kmem_flags_convert(flags);
 | |
| 	spl_kmem_emergency_t *ske;
 | |
| 	int order = get_order(skc->skc_obj_size);
 | |
| 	int empty;
 | |
| 
 | |
| 	/* Last chance use a partial slab if one now exists */
 | |
| 	spin_lock(&skc->skc_lock);
 | |
| 	empty = list_empty(&skc->skc_partial_list);
 | |
| 	spin_unlock(&skc->skc_lock);
 | |
| 	if (!empty)
 | |
| 		return (-EEXIST);
 | |
| 
 | |
| 	ske = kmalloc(sizeof (*ske), lflags);
 | |
| 	if (ske == NULL)
 | |
| 		return (-ENOMEM);
 | |
| 
 | |
| 	ske->ske_obj = __get_free_pages(lflags, order);
 | |
| 	if (ske->ske_obj == 0) {
 | |
| 		kfree(ske);
 | |
| 		return (-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&skc->skc_lock);
 | |
| 	empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
 | |
| 	if (likely(empty)) {
 | |
| 		skc->skc_obj_total++;
 | |
| 		skc->skc_obj_emergency++;
 | |
| 		if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
 | |
| 			skc->skc_obj_emergency_max = skc->skc_obj_emergency;
 | |
| 	}
 | |
| 	spin_unlock(&skc->skc_lock);
 | |
| 
 | |
| 	if (unlikely(!empty)) {
 | |
| 		free_pages(ske->ske_obj, order);
 | |
| 		kfree(ske);
 | |
| 		return (-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	*obj = (void *)ske->ske_obj;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Locate the passed object in the red black tree and free it.
 | |
|  */
 | |
| static int
 | |
| spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
 | |
| {
 | |
| 	spl_kmem_emergency_t *ske;
 | |
| 	int order = get_order(skc->skc_obj_size);
 | |
| 
 | |
| 	spin_lock(&skc->skc_lock);
 | |
| 	ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
 | |
| 	if (ske) {
 | |
| 		rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
 | |
| 		skc->skc_obj_emergency--;
 | |
| 		skc->skc_obj_total--;
 | |
| 	}
 | |
| 	spin_unlock(&skc->skc_lock);
 | |
| 
 | |
| 	if (ske == NULL)
 | |
| 		return (-ENOENT);
 | |
| 
 | |
| 	free_pages(ske->ske_obj, order);
 | |
| 	kfree(ske);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release objects from the per-cpu magazine back to their slab.  The flush
 | |
|  * argument contains the max number of entries to remove from the magazine.
 | |
|  */
 | |
| static void
 | |
| spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
 | |
| {
 | |
| 	spin_lock(&skc->skc_lock);
 | |
| 
 | |
| 	ASSERT(skc->skc_magic == SKC_MAGIC);
 | |
| 	ASSERT(skm->skm_magic == SKM_MAGIC);
 | |
| 
 | |
| 	int count = MIN(flush, skm->skm_avail);
 | |
| 	for (int i = 0; i < count; i++)
 | |
| 		spl_cache_shrink(skc, skm->skm_objs[i]);
 | |
| 
 | |
| 	skm->skm_avail -= count;
 | |
| 	memmove(skm->skm_objs, &(skm->skm_objs[count]),
 | |
| 	    sizeof (void *) * skm->skm_avail);
 | |
| 
 | |
| 	spin_unlock(&skc->skc_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
 | |
|  * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
 | |
|  * for very small objects we may end up with more than this so as not
 | |
|  * to waste space in the minimal allocation of a single page.  Also for
 | |
|  * very large objects we may use as few as spl_kmem_cache_obj_per_slab_min,
 | |
|  * lower than this and we will fail.
 | |
|  */
 | |
| static int
 | |
| spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
 | |
| {
 | |
| 	uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
 | |
| 
 | |
| 	sks_size = spl_sks_size(skc);
 | |
| 	obj_size = spl_obj_size(skc);
 | |
| 	max_size = (spl_kmem_cache_max_size * 1024 * 1024);
 | |
| 	tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
 | |
| 
 | |
| 	if (tgt_size <= max_size) {
 | |
| 		tgt_objs = (tgt_size - sks_size) / obj_size;
 | |
| 	} else {
 | |
| 		tgt_objs = (max_size - sks_size) / obj_size;
 | |
| 		tgt_size = (tgt_objs * obj_size) + sks_size;
 | |
| 	}
 | |
| 
 | |
| 	if (tgt_objs == 0)
 | |
| 		return (-ENOSPC);
 | |
| 
 | |
| 	*objs = tgt_objs;
 | |
| 	*size = tgt_size;
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make a guess at reasonable per-cpu magazine size based on the size of
 | |
|  * each object and the cost of caching N of them in each magazine.  Long
 | |
|  * term this should really adapt based on an observed usage heuristic.
 | |
|  */
 | |
| static int
 | |
| spl_magazine_size(spl_kmem_cache_t *skc)
 | |
| {
 | |
| 	uint32_t obj_size = spl_obj_size(skc);
 | |
| 	int size;
 | |
| 
 | |
| 	if (spl_kmem_cache_magazine_size > 0)
 | |
| 		return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
 | |
| 
 | |
| 	/* Per-magazine sizes below assume a 4Kib page size */
 | |
| 	if (obj_size > (PAGE_SIZE * 256))
 | |
| 		size = 4;  /* Minimum 4Mib per-magazine */
 | |
| 	else if (obj_size > (PAGE_SIZE * 32))
 | |
| 		size = 16; /* Minimum 2Mib per-magazine */
 | |
| 	else if (obj_size > (PAGE_SIZE))
 | |
| 		size = 64; /* Minimum 256Kib per-magazine */
 | |
| 	else if (obj_size > (PAGE_SIZE / 4))
 | |
| 		size = 128; /* Minimum 128Kib per-magazine */
 | |
| 	else
 | |
| 		size = 256;
 | |
| 
 | |
| 	return (size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a per-cpu magazine to associate with a specific core.
 | |
|  */
 | |
| static spl_kmem_magazine_t *
 | |
| spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
 | |
| {
 | |
| 	spl_kmem_magazine_t *skm;
 | |
| 	int size = sizeof (spl_kmem_magazine_t) +
 | |
| 	    sizeof (void *) * skc->skc_mag_size;
 | |
| 
 | |
| 	skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
 | |
| 	if (skm) {
 | |
| 		skm->skm_magic = SKM_MAGIC;
 | |
| 		skm->skm_avail = 0;
 | |
| 		skm->skm_size = skc->skc_mag_size;
 | |
| 		skm->skm_refill = skc->skc_mag_refill;
 | |
| 		skm->skm_cache = skc;
 | |
| 		skm->skm_cpu = cpu;
 | |
| 	}
 | |
| 
 | |
| 	return (skm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free a per-cpu magazine associated with a specific core.
 | |
|  */
 | |
| static void
 | |
| spl_magazine_free(spl_kmem_magazine_t *skm)
 | |
| {
 | |
| 	ASSERT(skm->skm_magic == SKM_MAGIC);
 | |
| 	ASSERT(skm->skm_avail == 0);
 | |
| 	kfree(skm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create all pre-cpu magazines of reasonable sizes.
 | |
|  */
 | |
| static int
 | |
| spl_magazine_create(spl_kmem_cache_t *skc)
 | |
| {
 | |
| 	int i = 0;
 | |
| 
 | |
| 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
 | |
| 
 | |
| 	skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
 | |
| 	    num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
 | |
| 	skc->skc_mag_size = spl_magazine_size(skc);
 | |
| 	skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		skc->skc_mag[i] = spl_magazine_alloc(skc, i);
 | |
| 		if (!skc->skc_mag[i]) {
 | |
| 			for (i--; i >= 0; i--)
 | |
| 				spl_magazine_free(skc->skc_mag[i]);
 | |
| 
 | |
| 			kfree(skc->skc_mag);
 | |
| 			return (-ENOMEM);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Destroy all pre-cpu magazines.
 | |
|  */
 | |
| static void
 | |
| spl_magazine_destroy(spl_kmem_cache_t *skc)
 | |
| {
 | |
| 	spl_kmem_magazine_t *skm;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		skm = skc->skc_mag[i];
 | |
| 		spl_cache_flush(skc, skm, skm->skm_avail);
 | |
| 		spl_magazine_free(skm);
 | |
| 	}
 | |
| 
 | |
| 	kfree(skc->skc_mag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create a object cache based on the following arguments:
 | |
|  * name		cache name
 | |
|  * size		cache object size
 | |
|  * align	cache object alignment
 | |
|  * ctor		cache object constructor
 | |
|  * dtor		cache object destructor
 | |
|  * reclaim	cache object reclaim
 | |
|  * priv		cache private data for ctor/dtor/reclaim
 | |
|  * vmp		unused must be NULL
 | |
|  * flags
 | |
|  *	KMC_KVMEM       Force kvmem backed SPL cache
 | |
|  *	KMC_SLAB        Force Linux slab backed cache
 | |
|  *	KMC_NODEBUG	Disable debugging (unsupported)
 | |
|  */
 | |
| spl_kmem_cache_t *
 | |
| spl_kmem_cache_create(char *name, size_t size, size_t align,
 | |
|     spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
 | |
|     void *priv, void *vmp, int flags)
 | |
| {
 | |
| 	gfp_t lflags = kmem_flags_convert(KM_SLEEP);
 | |
| 	spl_kmem_cache_t *skc;
 | |
| 	int rc;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unsupported flags
 | |
| 	 */
 | |
| 	ASSERT(vmp == NULL);
 | |
| 	ASSERT(reclaim == NULL);
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	skc = kzalloc(sizeof (*skc), lflags);
 | |
| 	if (skc == NULL)
 | |
| 		return (NULL);
 | |
| 
 | |
| 	skc->skc_magic = SKC_MAGIC;
 | |
| 	skc->skc_name_size = strlen(name) + 1;
 | |
| 	skc->skc_name = (char *)kmalloc(skc->skc_name_size, lflags);
 | |
| 	if (skc->skc_name == NULL) {
 | |
| 		kfree(skc);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 	strncpy(skc->skc_name, name, skc->skc_name_size);
 | |
| 
 | |
| 	skc->skc_ctor = ctor;
 | |
| 	skc->skc_dtor = dtor;
 | |
| 	skc->skc_private = priv;
 | |
| 	skc->skc_vmp = vmp;
 | |
| 	skc->skc_linux_cache = NULL;
 | |
| 	skc->skc_flags = flags;
 | |
| 	skc->skc_obj_size = size;
 | |
| 	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
 | |
| 	atomic_set(&skc->skc_ref, 0);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&skc->skc_list);
 | |
| 	INIT_LIST_HEAD(&skc->skc_complete_list);
 | |
| 	INIT_LIST_HEAD(&skc->skc_partial_list);
 | |
| 	skc->skc_emergency_tree = RB_ROOT;
 | |
| 	spin_lock_init(&skc->skc_lock);
 | |
| 	init_waitqueue_head(&skc->skc_waitq);
 | |
| 	skc->skc_slab_fail = 0;
 | |
| 	skc->skc_slab_create = 0;
 | |
| 	skc->skc_slab_destroy = 0;
 | |
| 	skc->skc_slab_total = 0;
 | |
| 	skc->skc_slab_alloc = 0;
 | |
| 	skc->skc_slab_max = 0;
 | |
| 	skc->skc_obj_total = 0;
 | |
| 	skc->skc_obj_alloc = 0;
 | |
| 	skc->skc_obj_max = 0;
 | |
| 	skc->skc_obj_deadlock = 0;
 | |
| 	skc->skc_obj_emergency = 0;
 | |
| 	skc->skc_obj_emergency_max = 0;
 | |
| 
 | |
| 	rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
 | |
| 	    GFP_KERNEL);
 | |
| 	if (rc != 0) {
 | |
| 		kfree(skc);
 | |
| 		return (NULL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify the requested alignment restriction is sane.
 | |
| 	 */
 | |
| 	if (align) {
 | |
| 		VERIFY(ISP2(align));
 | |
| 		VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
 | |
| 		VERIFY3U(align, <=, PAGE_SIZE);
 | |
| 		skc->skc_obj_align = align;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When no specific type of slab is requested (kmem, vmem, or
 | |
| 	 * linuxslab) then select a cache type based on the object size
 | |
| 	 * and default tunables.
 | |
| 	 */
 | |
| 	if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
 | |
| 		if (spl_kmem_cache_slab_limit &&
 | |
| 		    size <= (size_t)spl_kmem_cache_slab_limit) {
 | |
| 			/*
 | |
| 			 * Objects smaller than spl_kmem_cache_slab_limit can
 | |
| 			 * use the Linux slab for better space-efficiency.
 | |
| 			 */
 | |
| 			skc->skc_flags |= KMC_SLAB;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * All other objects are considered large and are
 | |
| 			 * placed on kvmem backed slabs.
 | |
| 			 */
 | |
| 			skc->skc_flags |= KMC_KVMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Given the type of slab allocate the required resources.
 | |
| 	 */
 | |
| 	if (skc->skc_flags & KMC_KVMEM) {
 | |
| 		rc = spl_slab_size(skc,
 | |
| 		    &skc->skc_slab_objs, &skc->skc_slab_size);
 | |
| 		if (rc)
 | |
| 			goto out;
 | |
| 
 | |
| 		rc = spl_magazine_create(skc);
 | |
| 		if (rc)
 | |
| 			goto out;
 | |
| 	} else {
 | |
| 		unsigned long slabflags = 0;
 | |
| 
 | |
| 		if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) {
 | |
| 			rc = EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| #if defined(SLAB_USERCOPY)
 | |
| 		/*
 | |
| 		 * Required for PAX-enabled kernels if the slab is to be
 | |
| 		 * used for copying between user and kernel space.
 | |
| 		 */
 | |
| 		slabflags |= SLAB_USERCOPY;
 | |
| #endif
 | |
| 
 | |
| #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
 | |
| 		/*
 | |
| 		 * Newer grsec patchset uses kmem_cache_create_usercopy()
 | |
| 		 * instead of SLAB_USERCOPY flag
 | |
| 		 */
 | |
| 		skc->skc_linux_cache = kmem_cache_create_usercopy(
 | |
| 		    skc->skc_name, size, align, slabflags, 0, size, NULL);
 | |
| #else
 | |
| 		skc->skc_linux_cache = kmem_cache_create(
 | |
| 		    skc->skc_name, size, align, slabflags, NULL);
 | |
| #endif
 | |
| 		if (skc->skc_linux_cache == NULL) {
 | |
| 			rc = ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	down_write(&spl_kmem_cache_sem);
 | |
| 	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
 | |
| 	up_write(&spl_kmem_cache_sem);
 | |
| 
 | |
| 	return (skc);
 | |
| out:
 | |
| 	kfree(skc->skc_name);
 | |
| 	percpu_counter_destroy(&skc->skc_linux_alloc);
 | |
| 	kfree(skc);
 | |
| 	return (NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_cache_create);
 | |
| 
 | |
| /*
 | |
|  * Register a move callback for cache defragmentation.
 | |
|  * XXX: Unimplemented but harmless to stub out for now.
 | |
|  */
 | |
| void
 | |
| spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
 | |
|     kmem_cbrc_t (move)(void *, void *, size_t, void *))
 | |
| {
 | |
| 	ASSERT(move != NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_cache_set_move);
 | |
| 
 | |
| /*
 | |
|  * Destroy a cache and all objects associated with the cache.
 | |
|  */
 | |
| void
 | |
| spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
 | |
| {
 | |
| 	DECLARE_WAIT_QUEUE_HEAD(wq);
 | |
| 	taskqid_t id;
 | |
| 
 | |
| 	ASSERT(skc->skc_magic == SKC_MAGIC);
 | |
| 	ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
 | |
| 
 | |
| 	down_write(&spl_kmem_cache_sem);
 | |
| 	list_del_init(&skc->skc_list);
 | |
| 	up_write(&spl_kmem_cache_sem);
 | |
| 
 | |
| 	/* Cancel any and wait for any pending delayed tasks */
 | |
| 	VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
 | |
| 
 | |
| 	spin_lock(&skc->skc_lock);
 | |
| 	id = skc->skc_taskqid;
 | |
| 	spin_unlock(&skc->skc_lock);
 | |
| 
 | |
| 	taskq_cancel_id(spl_kmem_cache_taskq, id);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until all current callers complete, this is mainly
 | |
| 	 * to catch the case where a low memory situation triggers a
 | |
| 	 * cache reaping action which races with this destroy.
 | |
| 	 */
 | |
| 	wait_event(wq, atomic_read(&skc->skc_ref) == 0);
 | |
| 
 | |
| 	if (skc->skc_flags & KMC_KVMEM) {
 | |
| 		spl_magazine_destroy(skc);
 | |
| 		spl_slab_reclaim(skc);
 | |
| 	} else {
 | |
| 		ASSERT(skc->skc_flags & KMC_SLAB);
 | |
| 		kmem_cache_destroy(skc->skc_linux_cache);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&skc->skc_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate there are no objects in use and free all the
 | |
| 	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
 | |
| 	 */
 | |
| 	ASSERT3U(skc->skc_slab_alloc, ==, 0);
 | |
| 	ASSERT3U(skc->skc_obj_alloc, ==, 0);
 | |
| 	ASSERT3U(skc->skc_slab_total, ==, 0);
 | |
| 	ASSERT3U(skc->skc_obj_total, ==, 0);
 | |
| 	ASSERT3U(skc->skc_obj_emergency, ==, 0);
 | |
| 	ASSERT(list_empty(&skc->skc_complete_list));
 | |
| 
 | |
| 	ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
 | |
| 	percpu_counter_destroy(&skc->skc_linux_alloc);
 | |
| 
 | |
| 	spin_unlock(&skc->skc_lock);
 | |
| 
 | |
| 	kfree(skc->skc_name);
 | |
| 	kfree(skc);
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_cache_destroy);
 | |
| 
 | |
| /*
 | |
|  * Allocate an object from a slab attached to the cache.  This is used to
 | |
|  * repopulate the per-cpu magazine caches in batches when they run low.
 | |
|  */
 | |
| static void *
 | |
| spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
 | |
| {
 | |
| 	spl_kmem_obj_t *sko;
 | |
| 
 | |
| 	ASSERT(skc->skc_magic == SKC_MAGIC);
 | |
| 	ASSERT(sks->sks_magic == SKS_MAGIC);
 | |
| 
 | |
| 	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
 | |
| 	ASSERT(sko->sko_magic == SKO_MAGIC);
 | |
| 	ASSERT(sko->sko_addr != NULL);
 | |
| 
 | |
| 	/* Remove from sks_free_list */
 | |
| 	list_del_init(&sko->sko_list);
 | |
| 
 | |
| 	sks->sks_age = jiffies;
 | |
| 	sks->sks_ref++;
 | |
| 	skc->skc_obj_alloc++;
 | |
| 
 | |
| 	/* Track max obj usage statistics */
 | |
| 	if (skc->skc_obj_alloc > skc->skc_obj_max)
 | |
| 		skc->skc_obj_max = skc->skc_obj_alloc;
 | |
| 
 | |
| 	/* Track max slab usage statistics */
 | |
| 	if (sks->sks_ref == 1) {
 | |
| 		skc->skc_slab_alloc++;
 | |
| 
 | |
| 		if (skc->skc_slab_alloc > skc->skc_slab_max)
 | |
| 			skc->skc_slab_max = skc->skc_slab_alloc;
 | |
| 	}
 | |
| 
 | |
| 	return (sko->sko_addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Generic slab allocation function to run by the global work queues.
 | |
|  * It is responsible for allocating a new slab, linking it in to the list
 | |
|  * of partial slabs, and then waking any waiters.
 | |
|  */
 | |
| static int
 | |
| __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
 | |
| {
 | |
| 	spl_kmem_slab_t *sks;
 | |
| 
 | |
| 	fstrans_cookie_t cookie = spl_fstrans_mark();
 | |
| 	sks = spl_slab_alloc(skc, flags);
 | |
| 	spl_fstrans_unmark(cookie);
 | |
| 
 | |
| 	spin_lock(&skc->skc_lock);
 | |
| 	if (sks) {
 | |
| 		skc->skc_slab_total++;
 | |
| 		skc->skc_obj_total += sks->sks_objs;
 | |
| 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
 | |
| 
 | |
| 		smp_mb__before_atomic();
 | |
| 		clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
 | |
| 		smp_mb__after_atomic();
 | |
| 	}
 | |
| 	spin_unlock(&skc->skc_lock);
 | |
| 
 | |
| 	return (sks == NULL ? -ENOMEM : 0);
 | |
| }
 | |
| 
 | |
| static void
 | |
| spl_cache_grow_work(void *data)
 | |
| {
 | |
| 	spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
 | |
| 	spl_kmem_cache_t *skc = ska->ska_cache;
 | |
| 
 | |
| 	int error = __spl_cache_grow(skc, ska->ska_flags);
 | |
| 
 | |
| 	atomic_dec(&skc->skc_ref);
 | |
| 	smp_mb__before_atomic();
 | |
| 	clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
 | |
| 	smp_mb__after_atomic();
 | |
| 	if (error == 0)
 | |
| 		wake_up_all(&skc->skc_waitq);
 | |
| 
 | |
| 	kfree(ska);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns non-zero when a new slab should be available.
 | |
|  */
 | |
| static int
 | |
| spl_cache_grow_wait(spl_kmem_cache_t *skc)
 | |
| {
 | |
| 	return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * No available objects on any slabs, create a new slab.  Note that this
 | |
|  * functionality is disabled for KMC_SLAB caches which are backed by the
 | |
|  * Linux slab.
 | |
|  */
 | |
| static int
 | |
| spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
 | |
| {
 | |
| 	int remaining, rc = 0;
 | |
| 
 | |
| 	ASSERT0(flags & ~KM_PUBLIC_MASK);
 | |
| 	ASSERT(skc->skc_magic == SKC_MAGIC);
 | |
| 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
 | |
| 	might_sleep();
 | |
| 	*obj = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Before allocating a new slab wait for any reaping to complete and
 | |
| 	 * then return so the local magazine can be rechecked for new objects.
 | |
| 	 */
 | |
| 	if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
 | |
| 		rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
 | |
| 		    TASK_UNINTERRUPTIBLE);
 | |
| 		return (rc ? rc : -EAGAIN);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: It would be nice to reduce the overhead of context switch
 | |
| 	 * and improve NUMA locality, by trying to allocate a new slab in the
 | |
| 	 * current process context with KM_NOSLEEP flag.
 | |
| 	 *
 | |
| 	 * However, this can't be applied to vmem/kvmem due to a bug that
 | |
| 	 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * This is handled by dispatching a work request to the global work
 | |
| 	 * queue.  This allows us to asynchronously allocate a new slab while
 | |
| 	 * retaining the ability to safely fall back to a smaller synchronous
 | |
| 	 * allocations to ensure forward progress is always maintained.
 | |
| 	 */
 | |
| 	if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
 | |
| 		spl_kmem_alloc_t *ska;
 | |
| 
 | |
| 		ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
 | |
| 		if (ska == NULL) {
 | |
| 			clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
 | |
| 			smp_mb__after_atomic();
 | |
| 			wake_up_all(&skc->skc_waitq);
 | |
| 			return (-ENOMEM);
 | |
| 		}
 | |
| 
 | |
| 		atomic_inc(&skc->skc_ref);
 | |
| 		ska->ska_cache = skc;
 | |
| 		ska->ska_flags = flags;
 | |
| 		taskq_init_ent(&ska->ska_tqe);
 | |
| 		taskq_dispatch_ent(spl_kmem_cache_taskq,
 | |
| 		    spl_cache_grow_work, ska, 0, &ska->ska_tqe);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The goal here is to only detect the rare case where a virtual slab
 | |
| 	 * allocation has deadlocked.  We must be careful to minimize the use
 | |
| 	 * of emergency objects which are more expensive to track.  Therefore,
 | |
| 	 * we set a very long timeout for the asynchronous allocation and if
 | |
| 	 * the timeout is reached the cache is flagged as deadlocked.  From
 | |
| 	 * this point only new emergency objects will be allocated until the
 | |
| 	 * asynchronous allocation completes and clears the deadlocked flag.
 | |
| 	 */
 | |
| 	if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
 | |
| 		rc = spl_emergency_alloc(skc, flags, obj);
 | |
| 	} else {
 | |
| 		remaining = wait_event_timeout(skc->skc_waitq,
 | |
| 		    spl_cache_grow_wait(skc), HZ / 10);
 | |
| 
 | |
| 		if (!remaining) {
 | |
| 			spin_lock(&skc->skc_lock);
 | |
| 			if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
 | |
| 				set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
 | |
| 				skc->skc_obj_deadlock++;
 | |
| 			}
 | |
| 			spin_unlock(&skc->skc_lock);
 | |
| 		}
 | |
| 
 | |
| 		rc = -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return (rc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Refill a per-cpu magazine with objects from the slabs for this cache.
 | |
|  * Ideally the magazine can be repopulated using existing objects which have
 | |
|  * been released, however if we are unable to locate enough free objects new
 | |
|  * slabs of objects will be created.  On success NULL is returned, otherwise
 | |
|  * the address of a single emergency object is returned for use by the caller.
 | |
|  */
 | |
| static void *
 | |
| spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
 | |
| {
 | |
| 	spl_kmem_slab_t *sks;
 | |
| 	int count = 0, rc, refill;
 | |
| 	void *obj = NULL;
 | |
| 
 | |
| 	ASSERT(skc->skc_magic == SKC_MAGIC);
 | |
| 	ASSERT(skm->skm_magic == SKM_MAGIC);
 | |
| 
 | |
| 	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
 | |
| 	spin_lock(&skc->skc_lock);
 | |
| 
 | |
| 	while (refill > 0) {
 | |
| 		/* No slabs available we may need to grow the cache */
 | |
| 		if (list_empty(&skc->skc_partial_list)) {
 | |
| 			spin_unlock(&skc->skc_lock);
 | |
| 
 | |
| 			local_irq_enable();
 | |
| 			rc = spl_cache_grow(skc, flags, &obj);
 | |
| 			local_irq_disable();
 | |
| 
 | |
| 			/* Emergency object for immediate use by caller */
 | |
| 			if (rc == 0 && obj != NULL)
 | |
| 				return (obj);
 | |
| 
 | |
| 			if (rc)
 | |
| 				goto out;
 | |
| 
 | |
| 			/* Rescheduled to different CPU skm is not local */
 | |
| 			if (skm != skc->skc_mag[smp_processor_id()])
 | |
| 				goto out;
 | |
| 
 | |
| 			/*
 | |
| 			 * Potentially rescheduled to the same CPU but
 | |
| 			 * allocations may have occurred from this CPU while
 | |
| 			 * we were sleeping so recalculate max refill.
 | |
| 			 */
 | |
| 			refill = MIN(refill, skm->skm_size - skm->skm_avail);
 | |
| 
 | |
| 			spin_lock(&skc->skc_lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Grab the next available slab */
 | |
| 		sks = list_entry((&skc->skc_partial_list)->next,
 | |
| 		    spl_kmem_slab_t, sks_list);
 | |
| 		ASSERT(sks->sks_magic == SKS_MAGIC);
 | |
| 		ASSERT(sks->sks_ref < sks->sks_objs);
 | |
| 		ASSERT(!list_empty(&sks->sks_free_list));
 | |
| 
 | |
| 		/*
 | |
| 		 * Consume as many objects as needed to refill the requested
 | |
| 		 * cache.  We must also be careful not to overfill it.
 | |
| 		 */
 | |
| 		while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
 | |
| 		    ++count) {
 | |
| 			ASSERT(skm->skm_avail < skm->skm_size);
 | |
| 			ASSERT(count < skm->skm_size);
 | |
| 			skm->skm_objs[skm->skm_avail++] =
 | |
| 			    spl_cache_obj(skc, sks);
 | |
| 		}
 | |
| 
 | |
| 		/* Move slab to skc_complete_list when full */
 | |
| 		if (sks->sks_ref == sks->sks_objs) {
 | |
| 			list_del(&sks->sks_list);
 | |
| 			list_add(&sks->sks_list, &skc->skc_complete_list);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&skc->skc_lock);
 | |
| out:
 | |
| 	return (NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release an object back to the slab from which it came.
 | |
|  */
 | |
| static void
 | |
| spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
 | |
| {
 | |
| 	spl_kmem_slab_t *sks = NULL;
 | |
| 	spl_kmem_obj_t *sko = NULL;
 | |
| 
 | |
| 	ASSERT(skc->skc_magic == SKC_MAGIC);
 | |
| 
 | |
| 	sko = spl_sko_from_obj(skc, obj);
 | |
| 	ASSERT(sko->sko_magic == SKO_MAGIC);
 | |
| 	sks = sko->sko_slab;
 | |
| 	ASSERT(sks->sks_magic == SKS_MAGIC);
 | |
| 	ASSERT(sks->sks_cache == skc);
 | |
| 	list_add(&sko->sko_list, &sks->sks_free_list);
 | |
| 
 | |
| 	sks->sks_age = jiffies;
 | |
| 	sks->sks_ref--;
 | |
| 	skc->skc_obj_alloc--;
 | |
| 
 | |
| 	/*
 | |
| 	 * Move slab to skc_partial_list when no longer full.  Slabs
 | |
| 	 * are added to the head to keep the partial list is quasi-full
 | |
| 	 * sorted order.  Fuller at the head, emptier at the tail.
 | |
| 	 */
 | |
| 	if (sks->sks_ref == (sks->sks_objs - 1)) {
 | |
| 		list_del(&sks->sks_list);
 | |
| 		list_add(&sks->sks_list, &skc->skc_partial_list);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Move empty slabs to the end of the partial list so
 | |
| 	 * they can be easily found and freed during reclamation.
 | |
| 	 */
 | |
| 	if (sks->sks_ref == 0) {
 | |
| 		list_del(&sks->sks_list);
 | |
| 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
 | |
| 		skc->skc_slab_alloc--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an object from the per-cpu magazine, or if the magazine
 | |
|  * is empty directly allocate from a slab and repopulate the magazine.
 | |
|  */
 | |
| void *
 | |
| spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
 | |
| {
 | |
| 	spl_kmem_magazine_t *skm;
 | |
| 	void *obj = NULL;
 | |
| 
 | |
| 	ASSERT0(flags & ~KM_PUBLIC_MASK);
 | |
| 	ASSERT(skc->skc_magic == SKC_MAGIC);
 | |
| 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate directly from a Linux slab.  All optimizations are left
 | |
| 	 * to the underlying cache we only need to guarantee that KM_SLEEP
 | |
| 	 * callers will never fail.
 | |
| 	 */
 | |
| 	if (skc->skc_flags & KMC_SLAB) {
 | |
| 		struct kmem_cache *slc = skc->skc_linux_cache;
 | |
| 		do {
 | |
| 			obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
 | |
| 		} while ((obj == NULL) && !(flags & KM_NOSLEEP));
 | |
| 
 | |
| 		if (obj != NULL) {
 | |
| 			/*
 | |
| 			 * Even though we leave everything up to the
 | |
| 			 * underlying cache we still keep track of
 | |
| 			 * how many objects we've allocated in it for
 | |
| 			 * better debuggability.
 | |
| 			 */
 | |
| 			percpu_counter_inc(&skc->skc_linux_alloc);
 | |
| 		}
 | |
| 		goto ret;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| restart:
 | |
| 	/*
 | |
| 	 * Safe to update per-cpu structure without lock, but
 | |
| 	 * in the restart case we must be careful to reacquire
 | |
| 	 * the local magazine since this may have changed
 | |
| 	 * when we need to grow the cache.
 | |
| 	 */
 | |
| 	skm = skc->skc_mag[smp_processor_id()];
 | |
| 	ASSERT(skm->skm_magic == SKM_MAGIC);
 | |
| 
 | |
| 	if (likely(skm->skm_avail)) {
 | |
| 		/* Object available in CPU cache, use it */
 | |
| 		obj = skm->skm_objs[--skm->skm_avail];
 | |
| 	} else {
 | |
| 		obj = spl_cache_refill(skc, skm, flags);
 | |
| 		if ((obj == NULL) && !(flags & KM_NOSLEEP))
 | |
| 			goto restart;
 | |
| 
 | |
| 		local_irq_enable();
 | |
| 		goto ret;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 	ASSERT(obj);
 | |
| 	ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
 | |
| 
 | |
| ret:
 | |
| 	/* Pre-emptively migrate object to CPU L1 cache */
 | |
| 	if (obj) {
 | |
| 		if (obj && skc->skc_ctor)
 | |
| 			skc->skc_ctor(obj, skc->skc_private, flags);
 | |
| 		else
 | |
| 			prefetchw(obj);
 | |
| 	}
 | |
| 
 | |
| 	return (obj);
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_cache_alloc);
 | |
| 
 | |
| /*
 | |
|  * Free an object back to the local per-cpu magazine, there is no
 | |
|  * guarantee that this is the same magazine the object was originally
 | |
|  * allocated from.  We may need to flush entire from the magazine
 | |
|  * back to the slabs to make space.
 | |
|  */
 | |
| void
 | |
| spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
 | |
| {
 | |
| 	spl_kmem_magazine_t *skm;
 | |
| 	unsigned long flags;
 | |
| 	int do_reclaim = 0;
 | |
| 	int do_emergency = 0;
 | |
| 
 | |
| 	ASSERT(skc->skc_magic == SKC_MAGIC);
 | |
| 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
 | |
| 
 | |
| 	/*
 | |
| 	 * Run the destructor
 | |
| 	 */
 | |
| 	if (skc->skc_dtor)
 | |
| 		skc->skc_dtor(obj, skc->skc_private);
 | |
| 
 | |
| 	/*
 | |
| 	 * Free the object from the Linux underlying Linux slab.
 | |
| 	 */
 | |
| 	if (skc->skc_flags & KMC_SLAB) {
 | |
| 		kmem_cache_free(skc->skc_linux_cache, obj);
 | |
| 		percpu_counter_dec(&skc->skc_linux_alloc);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * While a cache has outstanding emergency objects all freed objects
 | |
| 	 * must be checked.  However, since emergency objects will never use
 | |
| 	 * a virtual address these objects can be safely excluded as an
 | |
| 	 * optimization.
 | |
| 	 */
 | |
| 	if (!is_vmalloc_addr(obj)) {
 | |
| 		spin_lock(&skc->skc_lock);
 | |
| 		do_emergency = (skc->skc_obj_emergency > 0);
 | |
| 		spin_unlock(&skc->skc_lock);
 | |
| 
 | |
| 		if (do_emergency && (spl_emergency_free(skc, obj) == 0))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Safe to update per-cpu structure without lock, but
 | |
| 	 * no remote memory allocation tracking is being performed
 | |
| 	 * it is entirely possible to allocate an object from one
 | |
| 	 * CPU cache and return it to another.
 | |
| 	 */
 | |
| 	skm = skc->skc_mag[smp_processor_id()];
 | |
| 	ASSERT(skm->skm_magic == SKM_MAGIC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Per-CPU cache full, flush it to make space for this object,
 | |
| 	 * this may result in an empty slab which can be reclaimed once
 | |
| 	 * interrupts are re-enabled.
 | |
| 	 */
 | |
| 	if (unlikely(skm->skm_avail >= skm->skm_size)) {
 | |
| 		spl_cache_flush(skc, skm, skm->skm_refill);
 | |
| 		do_reclaim = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Available space in cache, use it */
 | |
| 	skm->skm_objs[skm->skm_avail++] = obj;
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	if (do_reclaim)
 | |
| 		spl_slab_reclaim(skc);
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_cache_free);
 | |
| 
 | |
| /*
 | |
|  * Depending on how many and which objects are released it may simply
 | |
|  * repopulate the local magazine which will then need to age-out.  Objects
 | |
|  * which cannot fit in the magazine will be released back to their slabs
 | |
|  * which will also need to age out before being released.  This is all just
 | |
|  * best effort and we do not want to thrash creating and destroying slabs.
 | |
|  */
 | |
| void
 | |
| spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
 | |
| {
 | |
| 	ASSERT(skc->skc_magic == SKC_MAGIC);
 | |
| 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
 | |
| 
 | |
| 	if (skc->skc_flags & KMC_SLAB)
 | |
| 		return;
 | |
| 
 | |
| 	atomic_inc(&skc->skc_ref);
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent concurrent cache reaping when contended.
 | |
| 	 */
 | |
| 	if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Reclaim from the magazine and free all now empty slabs. */
 | |
| 	unsigned long irq_flags;
 | |
| 	local_irq_save(irq_flags);
 | |
| 	spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
 | |
| 	spl_cache_flush(skc, skm, skm->skm_avail);
 | |
| 	local_irq_restore(irq_flags);
 | |
| 
 | |
| 	spl_slab_reclaim(skc);
 | |
| 	clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
 | |
| 	smp_mb__after_atomic();
 | |
| 	wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
 | |
| out:
 | |
| 	atomic_dec(&skc->skc_ref);
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_cache_reap_now);
 | |
| 
 | |
| /*
 | |
|  * This is stubbed out for code consistency with other platforms.  There
 | |
|  * is existing logic to prevent concurrent reaping so while this is ugly
 | |
|  * it should do no harm.
 | |
|  */
 | |
| int
 | |
| spl_kmem_cache_reap_active()
 | |
| {
 | |
| 	return (0);
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_cache_reap_active);
 | |
| 
 | |
| /*
 | |
|  * Reap all free slabs from all registered caches.
 | |
|  */
 | |
| void
 | |
| spl_kmem_reap(void)
 | |
| {
 | |
| 	spl_kmem_cache_t *skc = NULL;
 | |
| 
 | |
| 	down_read(&spl_kmem_cache_sem);
 | |
| 	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
 | |
| 		spl_kmem_cache_reap_now(skc);
 | |
| 	}
 | |
| 	up_read(&spl_kmem_cache_sem);
 | |
| }
 | |
| EXPORT_SYMBOL(spl_kmem_reap);
 | |
| 
 | |
| int
 | |
| spl_kmem_cache_init(void)
 | |
| {
 | |
| 	init_rwsem(&spl_kmem_cache_sem);
 | |
| 	INIT_LIST_HEAD(&spl_kmem_cache_list);
 | |
| 	spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
 | |
| 	    spl_kmem_cache_kmem_threads, maxclsyspri,
 | |
| 	    spl_kmem_cache_kmem_threads * 8, INT_MAX,
 | |
| 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
 | |
| 
 | |
| 	return (0);
 | |
| }
 | |
| 
 | |
| void
 | |
| spl_kmem_cache_fini(void)
 | |
| {
 | |
| 	taskq_destroy(spl_kmem_cache_taskq);
 | |
| }
 |