mirror_zfs/module/os/linux/zfs/vdev_disk.c
Rob N cfb96c772b
vdev_disk: clean up spa/bdev mode conversion
43e8f6e37 introduced a subtle API misuse, in that it passed the output
from vdev_bdev_mode() back into itself. Fortunately, the
SPA_MODE_(READ|WRITE) bit values exactly map to the FMODE_(READ|WRITE) &
BLK_OPEN_(READ|WRITE) bit values, so it didn't result in a bug, but it
was hard to read and understand, so I cleaned it up.

In doing so, I noticed that the only call to vdev_bdev_mode() without
the "exclusive" flag set was in that misuse, and actually, we never do a
non-exclusive blkdev_get_by_path(). So I've just made exclusive be
always-on.


Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Reviewed by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Allan Jude <allan@klarasystems.com>
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes #15995
2024-03-29 14:51:33 -07:00

1606 lines
43 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
* LLNL-CODE-403049.
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
* Copyright (c) 2023, 2024, Klara Inc.
*/
#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/vdev_disk.h>
#include <sys/vdev_impl.h>
#include <sys/vdev_trim.h>
#include <sys/abd.h>
#include <sys/fs/zfs.h>
#include <sys/zio.h>
#include <linux/blkpg.h>
#include <linux/msdos_fs.h>
#include <linux/vfs_compat.h>
#ifdef HAVE_LINUX_BLK_CGROUP_HEADER
#include <linux/blk-cgroup.h>
#endif
/*
* Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
* block_device. Since it carries the block_device inside, its convenient to
* just use the handle as a proxy. For pre-6.8, we just emulate this with
* a cast, since we don't need any of the other fields inside the handle.
*/
#ifdef HAVE_BDEV_OPEN_BY_PATH
typedef struct bdev_handle zfs_bdev_handle_t;
#define BDH_BDEV(bdh) ((bdh)->bdev)
#define BDH_IS_ERR(bdh) (IS_ERR(bdh))
#define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
#define BDH_ERR_PTR(err) (ERR_PTR(err))
#else
typedef void zfs_bdev_handle_t;
#define BDH_BDEV(bdh) ((struct block_device *)bdh)
#define BDH_IS_ERR(bdh) (IS_ERR(BDH_BDEV(bdh)))
#define BDH_PTR_ERR(bdh) (PTR_ERR(BDH_BDEV(bdh)))
#define BDH_ERR_PTR(err) (ERR_PTR(err))
#endif
typedef struct vdev_disk {
zfs_bdev_handle_t *vd_bdh;
krwlock_t vd_lock;
} vdev_disk_t;
/*
* Maximum number of segments to add to a bio (min 4). If this is higher than
* the maximum allowed by the device queue or the kernel itself, it will be
* clamped. Setting it to zero will cause the kernel's ideal size to be used.
*/
uint_t zfs_vdev_disk_max_segs = 0;
/*
* Unique identifier for the exclusive vdev holder.
*/
static void *zfs_vdev_holder = VDEV_HOLDER;
/*
* Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
* device is missing. The missing path may be transient since the links
* can be briefly removed and recreated in response to udev events.
*/
static uint_t zfs_vdev_open_timeout_ms = 1000;
/*
* Size of the "reserved" partition, in blocks.
*/
#define EFI_MIN_RESV_SIZE (16 * 1024)
/*
* BIO request failfast mask.
*/
static unsigned int zfs_vdev_failfast_mask = 1;
/*
* Convert SPA mode flags into bdev open mode flags.
*/
#ifdef HAVE_BLK_MODE_T
typedef blk_mode_t vdev_bdev_mode_t;
#define VDEV_BDEV_MODE_READ BLK_OPEN_READ
#define VDEV_BDEV_MODE_WRITE BLK_OPEN_WRITE
#define VDEV_BDEV_MODE_EXCL BLK_OPEN_EXCL
#define VDEV_BDEV_MODE_MASK (BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
#else
typedef fmode_t vdev_bdev_mode_t;
#define VDEV_BDEV_MODE_READ FMODE_READ
#define VDEV_BDEV_MODE_WRITE FMODE_WRITE
#define VDEV_BDEV_MODE_EXCL FMODE_EXCL
#define VDEV_BDEV_MODE_MASK (FMODE_READ|FMODE_WRITE|FMODE_EXCL)
#endif
static vdev_bdev_mode_t
vdev_bdev_mode(spa_mode_t smode)
{
ASSERT3U(smode, !=, SPA_MODE_UNINIT);
ASSERT0(smode & ~(SPA_MODE_READ|SPA_MODE_WRITE));
vdev_bdev_mode_t bmode = VDEV_BDEV_MODE_EXCL;
if (smode & SPA_MODE_READ)
bmode |= VDEV_BDEV_MODE_READ;
if (smode & SPA_MODE_WRITE)
bmode |= VDEV_BDEV_MODE_WRITE;
ASSERT(bmode & VDEV_BDEV_MODE_MASK);
ASSERT0(bmode & ~VDEV_BDEV_MODE_MASK);
return (bmode);
}
/*
* Returns the usable capacity (in bytes) for the partition or disk.
*/
static uint64_t
bdev_capacity(struct block_device *bdev)
{
return (i_size_read(bdev->bd_inode));
}
#if !defined(HAVE_BDEV_WHOLE)
static inline struct block_device *
bdev_whole(struct block_device *bdev)
{
return (bdev->bd_contains);
}
#endif
#if defined(HAVE_BDEVNAME)
#define vdev_bdevname(bdev, name) bdevname(bdev, name)
#else
static inline void
vdev_bdevname(struct block_device *bdev, char *name)
{
snprintf(name, BDEVNAME_SIZE, "%pg", bdev);
}
#endif
/*
* Returns the maximum expansion capacity of the block device (in bytes).
*
* It is possible to expand a vdev when it has been created as a wholedisk
* and the containing block device has increased in capacity. Or when the
* partition containing the pool has been manually increased in size.
*
* This function is only responsible for calculating the potential expansion
* size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
* responsible for verifying the expected partition layout in the wholedisk
* case, and updating the partition table if appropriate. Once the partition
* size has been increased the additional capacity will be visible using
* bdev_capacity().
*
* The returned maximum expansion capacity is always expected to be larger, or
* at the very least equal, to its usable capacity to prevent overestimating
* the pool expandsize.
*/
static uint64_t
bdev_max_capacity(struct block_device *bdev, uint64_t wholedisk)
{
uint64_t psize;
int64_t available;
if (wholedisk && bdev != bdev_whole(bdev)) {
/*
* When reporting maximum expansion capacity for a wholedisk
* deduct any capacity which is expected to be lost due to
* alignment restrictions. Over reporting this value isn't
* harmful and would only result in slightly less capacity
* than expected post expansion.
* The estimated available space may be slightly smaller than
* bdev_capacity() for devices where the number of sectors is
* not a multiple of the alignment size and the partition layout
* is keeping less than PARTITION_END_ALIGNMENT bytes after the
* "reserved" EFI partition: in such cases return the device
* usable capacity.
*/
available = i_size_read(bdev_whole(bdev)->bd_inode) -
((EFI_MIN_RESV_SIZE + NEW_START_BLOCK +
PARTITION_END_ALIGNMENT) << SECTOR_BITS);
psize = MAX(available, bdev_capacity(bdev));
} else {
psize = bdev_capacity(bdev);
}
return (psize);
}
static void
vdev_disk_error(zio_t *zio)
{
/*
* This function can be called in interrupt context, for instance while
* handling IRQs coming from a misbehaving disk device; use printk()
* which is safe from any context.
*/
printk(KERN_WARNING "zio pool=%s vdev=%s error=%d type=%d "
"offset=%llu size=%llu flags=%llu\n", spa_name(zio->io_spa),
zio->io_vd->vdev_path, zio->io_error, zio->io_type,
(u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
zio->io_flags);
}
static void
vdev_disk_kobj_evt_post(vdev_t *v)
{
vdev_disk_t *vd = v->vdev_tsd;
if (vd && vd->vd_bdh) {
spl_signal_kobj_evt(BDH_BDEV(vd->vd_bdh));
} else {
vdev_dbgmsg(v, "vdev_disk_t is NULL for VDEV:%s\n",
v->vdev_path);
}
}
static zfs_bdev_handle_t *
vdev_blkdev_get_by_path(const char *path, spa_mode_t smode, void *holder)
{
vdev_bdev_mode_t bmode = vdev_bdev_mode(smode);
#if defined(HAVE_BDEV_OPEN_BY_PATH)
return (bdev_open_by_path(path, bmode, holder, NULL));
#elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
return (blkdev_get_by_path(path, bmode, holder, NULL));
#else
return (blkdev_get_by_path(path, bmode, holder));
#endif
}
static void
vdev_blkdev_put(zfs_bdev_handle_t *bdh, spa_mode_t smode, void *holder)
{
#if defined(HAVE_BDEV_RELEASE)
return (bdev_release(bdh));
#elif defined(HAVE_BLKDEV_PUT_HOLDER)
return (blkdev_put(BDH_BDEV(bdh), holder));
#else
return (blkdev_put(BDH_BDEV(bdh), vdev_bdev_mode(smode)));
#endif
}
static int
vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
uint64_t *logical_ashift, uint64_t *physical_ashift)
{
zfs_bdev_handle_t *bdh;
spa_mode_t smode = spa_mode(v->vdev_spa);
hrtime_t timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms);
vdev_disk_t *vd;
/* Must have a pathname and it must be absolute. */
if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
vdev_dbgmsg(v, "invalid vdev_path");
return (SET_ERROR(EINVAL));
}
/*
* Reopen the device if it is currently open. When expanding a
* partition force re-scanning the partition table if userland
* did not take care of this already. We need to do this while closed
* in order to get an accurate updated block device size. Then
* since udev may need to recreate the device links increase the
* open retry timeout before reporting the device as unavailable.
*/
vd = v->vdev_tsd;
if (vd) {
char disk_name[BDEVNAME_SIZE + 6] = "/dev/";
boolean_t reread_part = B_FALSE;
rw_enter(&vd->vd_lock, RW_WRITER);
bdh = vd->vd_bdh;
vd->vd_bdh = NULL;
if (bdh) {
struct block_device *bdev = BDH_BDEV(bdh);
if (v->vdev_expanding && bdev != bdev_whole(bdev)) {
vdev_bdevname(bdev_whole(bdev), disk_name + 5);
/*
* If userland has BLKPG_RESIZE_PARTITION,
* then it should have updated the partition
* table already. We can detect this by
* comparing our current physical size
* with that of the device. If they are
* the same, then we must not have
* BLKPG_RESIZE_PARTITION or it failed to
* update the partition table online. We
* fallback to rescanning the partition
* table from the kernel below. However,
* if the capacity already reflects the
* updated partition, then we skip
* rescanning the partition table here.
*/
if (v->vdev_psize == bdev_capacity(bdev))
reread_part = B_TRUE;
}
vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
}
if (reread_part) {
bdh = vdev_blkdev_get_by_path(disk_name, smode,
zfs_vdev_holder);
if (!BDH_IS_ERR(bdh)) {
int error =
vdev_bdev_reread_part(BDH_BDEV(bdh));
vdev_blkdev_put(bdh, smode, zfs_vdev_holder);
if (error == 0) {
timeout = MSEC2NSEC(
zfs_vdev_open_timeout_ms * 2);
}
}
}
} else {
vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
rw_init(&vd->vd_lock, NULL, RW_DEFAULT, NULL);
rw_enter(&vd->vd_lock, RW_WRITER);
}
/*
* Devices are always opened by the path provided at configuration
* time. This means that if the provided path is a udev by-id path
* then drives may be re-cabled without an issue. If the provided
* path is a udev by-path path, then the physical location information
* will be preserved. This can be critical for more complicated
* configurations where drives are located in specific physical
* locations to maximize the systems tolerance to component failure.
*
* Alternatively, you can provide your own udev rule to flexibly map
* the drives as you see fit. It is not advised that you use the
* /dev/[hd]d devices which may be reordered due to probing order.
* Devices in the wrong locations will be detected by the higher
* level vdev validation.
*
* The specified paths may be briefly removed and recreated in
* response to udev events. This should be exceptionally unlikely
* because the zpool command makes every effort to verify these paths
* have already settled prior to reaching this point. Therefore,
* a ENOENT failure at this point is highly likely to be transient
* and it is reasonable to sleep and retry before giving up. In
* practice delays have been observed to be on the order of 100ms.
*
* When ERESTARTSYS is returned it indicates the block device is
* a zvol which could not be opened due to the deadlock detection
* logic in zvol_open(). Extend the timeout and retry the open
* subsequent attempts are expected to eventually succeed.
*/
hrtime_t start = gethrtime();
bdh = BDH_ERR_PTR(-ENXIO);
while (BDH_IS_ERR(bdh) && ((gethrtime() - start) < timeout)) {
bdh = vdev_blkdev_get_by_path(v->vdev_path, smode,
zfs_vdev_holder);
if (unlikely(BDH_PTR_ERR(bdh) == -ENOENT)) {
/*
* There is no point of waiting since device is removed
* explicitly
*/
if (v->vdev_removed)
break;
schedule_timeout(MSEC_TO_TICK(10));
} else if (unlikely(BDH_PTR_ERR(bdh) == -ERESTARTSYS)) {
timeout = MSEC2NSEC(zfs_vdev_open_timeout_ms * 10);
continue;
} else if (BDH_IS_ERR(bdh)) {
break;
}
}
if (BDH_IS_ERR(bdh)) {
int error = -BDH_PTR_ERR(bdh);
vdev_dbgmsg(v, "open error=%d timeout=%llu/%llu", error,
(u_longlong_t)(gethrtime() - start),
(u_longlong_t)timeout);
vd->vd_bdh = NULL;
v->vdev_tsd = vd;
rw_exit(&vd->vd_lock);
return (SET_ERROR(error));
} else {
vd->vd_bdh = bdh;
v->vdev_tsd = vd;
rw_exit(&vd->vd_lock);
}
struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
/* Determine the physical block size */
int physical_block_size = bdev_physical_block_size(bdev);
/* Determine the logical block size */
int logical_block_size = bdev_logical_block_size(bdev);
/* Clear the nowritecache bit, causes vdev_reopen() to try again. */
v->vdev_nowritecache = B_FALSE;
/* Set when device reports it supports TRIM. */
v->vdev_has_trim = bdev_discard_supported(bdev);
/* Set when device reports it supports secure TRIM. */
v->vdev_has_securetrim = bdev_secure_discard_supported(bdev);
/* Inform the ZIO pipeline that we are non-rotational */
v->vdev_nonrot = blk_queue_nonrot(bdev_get_queue(bdev));
/* Physical volume size in bytes for the partition */
*psize = bdev_capacity(bdev);
/* Physical volume size in bytes including possible expansion space */
*max_psize = bdev_max_capacity(bdev, v->vdev_wholedisk);
/* Based on the minimum sector size set the block size */
*physical_ashift = highbit64(MAX(physical_block_size,
SPA_MINBLOCKSIZE)) - 1;
*logical_ashift = highbit64(MAX(logical_block_size,
SPA_MINBLOCKSIZE)) - 1;
return (0);
}
static void
vdev_disk_close(vdev_t *v)
{
vdev_disk_t *vd = v->vdev_tsd;
if (v->vdev_reopening || vd == NULL)
return;
if (vd->vd_bdh != NULL)
vdev_blkdev_put(vd->vd_bdh, spa_mode(v->vdev_spa),
zfs_vdev_holder);
rw_destroy(&vd->vd_lock);
kmem_free(vd, sizeof (vdev_disk_t));
v->vdev_tsd = NULL;
}
static inline void
vdev_submit_bio_impl(struct bio *bio)
{
#ifdef HAVE_1ARG_SUBMIT_BIO
(void) submit_bio(bio);
#else
(void) submit_bio(bio_data_dir(bio), bio);
#endif
}
/*
* preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
* replace it with preempt_schedule under the following condition:
*/
#if defined(CONFIG_ARM64) && \
defined(CONFIG_PREEMPTION) && \
defined(CONFIG_BLK_CGROUP)
#define preempt_schedule_notrace(x) preempt_schedule(x)
#endif
/*
* As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
* as an argument removing the need to set it with bio_set_dev(). This
* removes the need for all of the following compatibility code.
*/
#if !defined(HAVE_BIO_ALLOC_4ARG)
#ifdef HAVE_BIO_SET_DEV
#if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
/*
* The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
* blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
* As a side effect the function was converted to GPL-only. Define our
* own version when needed which uses rcu_read_lock_sched().
*
* The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
* part, moving blkg_tryget into the private one. Define our own version.
*/
#if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
static inline bool
vdev_blkg_tryget(struct blkcg_gq *blkg)
{
struct percpu_ref *ref = &blkg->refcnt;
unsigned long __percpu *count;
bool rc;
rcu_read_lock_sched();
if (__ref_is_percpu(ref, &count)) {
this_cpu_inc(*count);
rc = true;
} else {
#ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
rc = atomic_long_inc_not_zero(&ref->data->count);
#else
rc = atomic_long_inc_not_zero(&ref->count);
#endif
}
rcu_read_unlock_sched();
return (rc);
}
#else
#define vdev_blkg_tryget(bg) blkg_tryget(bg)
#endif
#ifdef HAVE_BIO_SET_DEV_MACRO
/*
* The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
* GPL-only bio_associate_blkg() symbol thus inadvertently converting
* the entire macro. Provide a minimal version which always assigns the
* request queue's root_blkg to the bio.
*/
static inline void
vdev_bio_associate_blkg(struct bio *bio)
{
#if defined(HAVE_BIO_BDEV_DISK)
struct request_queue *q = bio->bi_bdev->bd_disk->queue;
#else
struct request_queue *q = bio->bi_disk->queue;
#endif
ASSERT3P(q, !=, NULL);
ASSERT3P(bio->bi_blkg, ==, NULL);
if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
bio->bi_blkg = q->root_blkg;
}
#define bio_associate_blkg vdev_bio_associate_blkg
#else
static inline void
vdev_bio_set_dev(struct bio *bio, struct block_device *bdev)
{
#if defined(HAVE_BIO_BDEV_DISK)
struct request_queue *q = bdev->bd_disk->queue;
#else
struct request_queue *q = bio->bi_disk->queue;
#endif
bio_clear_flag(bio, BIO_REMAPPED);
if (bio->bi_bdev != bdev)
bio_clear_flag(bio, BIO_THROTTLED);
bio->bi_bdev = bdev;
ASSERT3P(q, !=, NULL);
ASSERT3P(bio->bi_blkg, ==, NULL);
if (q->root_blkg && vdev_blkg_tryget(q->root_blkg))
bio->bi_blkg = q->root_blkg;
}
#define bio_set_dev vdev_bio_set_dev
#endif
#endif
#else
/*
* Provide a bio_set_dev() helper macro for pre-Linux 4.14 kernels.
*/
static inline void
bio_set_dev(struct bio *bio, struct block_device *bdev)
{
bio->bi_bdev = bdev;
}
#endif /* HAVE_BIO_SET_DEV */
#endif /* !HAVE_BIO_ALLOC_4ARG */
static inline void
vdev_submit_bio(struct bio *bio)
{
struct bio_list *bio_list = current->bio_list;
current->bio_list = NULL;
vdev_submit_bio_impl(bio);
current->bio_list = bio_list;
}
static inline struct bio *
vdev_bio_alloc(struct block_device *bdev, gfp_t gfp_mask,
unsigned short nr_vecs)
{
struct bio *bio;
#ifdef HAVE_BIO_ALLOC_4ARG
bio = bio_alloc(bdev, nr_vecs, 0, gfp_mask);
#else
bio = bio_alloc(gfp_mask, nr_vecs);
if (likely(bio != NULL))
bio_set_dev(bio, bdev);
#endif
return (bio);
}
static inline uint_t
vdev_bio_max_segs(struct block_device *bdev)
{
/*
* Smallest of the device max segs and the tuneable max segs. Minimum
* 4, so there's room to finish split pages if they come up.
*/
const uint_t dev_max_segs = queue_max_segments(bdev_get_queue(bdev));
const uint_t tune_max_segs = (zfs_vdev_disk_max_segs > 0) ?
MAX(4, zfs_vdev_disk_max_segs) : dev_max_segs;
const uint_t max_segs = MIN(tune_max_segs, dev_max_segs);
#ifdef HAVE_BIO_MAX_SEGS
return (bio_max_segs(max_segs));
#else
return (MIN(max_segs, BIO_MAX_PAGES));
#endif
}
static inline uint_t
vdev_bio_max_bytes(struct block_device *bdev)
{
return (queue_max_sectors(bdev_get_queue(bdev)) << 9);
}
/*
* Virtual block IO object (VBIO)
*
* Linux block IO (BIO) objects have a limit on how many data segments (pages)
* they can hold. Depending on how they're allocated and structured, a large
* ZIO can require more than one BIO to be submitted to the kernel, which then
* all have to complete before we can return the completed ZIO back to ZFS.
*
* A VBIO is a wrapper around multiple BIOs, carrying everything needed to
* translate a ZIO down into the kernel block layer and back again.
*
* Note that these are only used for data ZIOs (read/write). Meta-operations
* (flush/trim) don't need multiple BIOs and so can just make the call
* directly.
*/
typedef struct {
zio_t *vbio_zio; /* parent zio */
struct block_device *vbio_bdev; /* blockdev to submit bios to */
abd_t *vbio_abd; /* abd carrying borrowed linear buf */
uint_t vbio_max_segs; /* max segs per bio */
uint_t vbio_max_bytes; /* max bytes per bio */
uint_t vbio_lbs_mask; /* logical block size mask */
uint64_t vbio_offset; /* start offset of next bio */
struct bio *vbio_bio; /* pointer to the current bio */
int vbio_flags; /* bio flags */
} vbio_t;
static vbio_t *
vbio_alloc(zio_t *zio, struct block_device *bdev, int flags)
{
vbio_t *vbio = kmem_zalloc(sizeof (vbio_t), KM_SLEEP);
vbio->vbio_zio = zio;
vbio->vbio_bdev = bdev;
vbio->vbio_abd = NULL;
vbio->vbio_max_segs = vdev_bio_max_segs(bdev);
vbio->vbio_max_bytes = vdev_bio_max_bytes(bdev);
vbio->vbio_lbs_mask = ~(bdev_logical_block_size(bdev)-1);
vbio->vbio_offset = zio->io_offset;
vbio->vbio_bio = NULL;
vbio->vbio_flags = flags;
return (vbio);
}
BIO_END_IO_PROTO(vbio_completion, bio, error);
static int
vbio_add_page(vbio_t *vbio, struct page *page, uint_t size, uint_t offset)
{
struct bio *bio = vbio->vbio_bio;
uint_t ssize;
while (size > 0) {
if (bio == NULL) {
/* New BIO, allocate and set up */
bio = vdev_bio_alloc(vbio->vbio_bdev, GFP_NOIO,
vbio->vbio_max_segs);
VERIFY(bio);
BIO_BI_SECTOR(bio) = vbio->vbio_offset >> 9;
bio_set_op_attrs(bio,
vbio->vbio_zio->io_type == ZIO_TYPE_WRITE ?
WRITE : READ, vbio->vbio_flags);
if (vbio->vbio_bio) {
bio_chain(vbio->vbio_bio, bio);
vdev_submit_bio(vbio->vbio_bio);
}
vbio->vbio_bio = bio;
}
/*
* Only load as much of the current page data as will fit in
* the space left in the BIO, respecting lbs alignment. Older
* kernels will error if we try to overfill the BIO, while
* newer ones will accept it and split the BIO. This ensures
* everything works on older kernels, and avoids an additional
* overhead on the new.
*/
ssize = MIN(size, (vbio->vbio_max_bytes - BIO_BI_SIZE(bio)) &
vbio->vbio_lbs_mask);
if (ssize > 0 &&
bio_add_page(bio, page, ssize, offset) == ssize) {
/* Accepted, adjust and load any remaining. */
size -= ssize;
offset += ssize;
continue;
}
/* No room, set up for a new BIO and loop */
vbio->vbio_offset += BIO_BI_SIZE(bio);
/* Signal new BIO allocation wanted */
bio = NULL;
}
return (0);
}
/* Iterator callback to submit ABD pages to the vbio. */
static int
vbio_fill_cb(struct page *page, size_t off, size_t len, void *priv)
{
vbio_t *vbio = priv;
return (vbio_add_page(vbio, page, len, off));
}
/* Create some BIOs, fill them with data and submit them */
static void
vbio_submit(vbio_t *vbio, abd_t *abd, uint64_t size)
{
ASSERT(vbio->vbio_bdev);
/*
* We plug so we can submit the BIOs as we go and only unplug them when
* they are fully created and submitted. This is important; if we don't
* plug, then the kernel may start executing earlier BIOs while we're
* still creating and executing later ones, and if the device goes
* away while that's happening, older kernels can get confused and
* trample memory.
*/
struct blk_plug plug;
blk_start_plug(&plug);
(void) abd_iterate_page_func(abd, 0, size, vbio_fill_cb, vbio);
ASSERT(vbio->vbio_bio);
vbio->vbio_bio->bi_end_io = vbio_completion;
vbio->vbio_bio->bi_private = vbio;
vdev_submit_bio(vbio->vbio_bio);
blk_finish_plug(&plug);
vbio->vbio_bio = NULL;
vbio->vbio_bdev = NULL;
}
/* IO completion callback */
BIO_END_IO_PROTO(vbio_completion, bio, error)
{
vbio_t *vbio = bio->bi_private;
zio_t *zio = vbio->vbio_zio;
ASSERT(zio);
/* Capture and log any errors */
#ifdef HAVE_1ARG_BIO_END_IO_T
zio->io_error = BIO_END_IO_ERROR(bio);
#else
zio->io_error = 0;
if (error)
zio->io_error = -(error);
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
zio->io_error = EIO;
#endif
ASSERT3U(zio->io_error, >=, 0);
if (zio->io_error)
vdev_disk_error(zio);
/* Return the BIO to the kernel */
bio_put(bio);
/*
* If we copied the ABD before issuing it, clean up and return the copy
* to the ADB, with changes if appropriate.
*/
if (vbio->vbio_abd != NULL) {
void *buf = abd_to_buf(vbio->vbio_abd);
abd_free(vbio->vbio_abd);
vbio->vbio_abd = NULL;
if (zio->io_type == ZIO_TYPE_READ)
abd_return_buf_copy(zio->io_abd, buf, zio->io_size);
else
abd_return_buf(zio->io_abd, buf, zio->io_size);
}
/* Final cleanup */
kmem_free(vbio, sizeof (vbio_t));
/* All done, submit for processing */
zio_delay_interrupt(zio);
}
/*
* Iterator callback to count ABD pages and check their size & alignment.
*
* On Linux, each BIO segment can take a page pointer, and an offset+length of
* the data within that page. A page can be arbitrarily large ("compound"
* pages) but we still have to ensure the data portion is correctly sized and
* aligned to the logical block size, to ensure that if the kernel wants to
* split the BIO, the two halves will still be properly aligned.
*/
typedef struct {
uint_t bmask;
uint_t npages;
uint_t end;
} vdev_disk_check_pages_t;
static int
vdev_disk_check_pages_cb(struct page *page, size_t off, size_t len, void *priv)
{
vdev_disk_check_pages_t *s = priv;
/*
* If we didn't finish on a block size boundary last time, then there
* would be a gap if we tried to use this ABD as-is, so abort.
*/
if (s->end != 0)
return (1);
/*
* Note if we're taking less than a full block, so we can check it
* above on the next call.
*/
s->end = len & s->bmask;
/* All blocks after the first must start on a block size boundary. */
if (s->npages != 0 && (off & s->bmask) != 0)
return (1);
s->npages++;
return (0);
}
/*
* Check if we can submit the pages in this ABD to the kernel as-is. Returns
* the number of pages, or 0 if it can't be submitted like this.
*/
static boolean_t
vdev_disk_check_pages(abd_t *abd, uint64_t size, struct block_device *bdev)
{
vdev_disk_check_pages_t s = {
.bmask = bdev_logical_block_size(bdev)-1,
.npages = 0,
.end = 0,
};
if (abd_iterate_page_func(abd, 0, size, vdev_disk_check_pages_cb, &s))
return (B_FALSE);
return (B_TRUE);
}
static int
vdev_disk_io_rw(zio_t *zio)
{
vdev_t *v = zio->io_vd;
vdev_disk_t *vd = v->vdev_tsd;
struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
int flags = 0;
/*
* Accessing outside the block device is never allowed.
*/
if (zio->io_offset + zio->io_size > bdev->bd_inode->i_size) {
vdev_dbgmsg(zio->io_vd,
"Illegal access %llu size %llu, device size %llu",
(u_longlong_t)zio->io_offset,
(u_longlong_t)zio->io_size,
(u_longlong_t)i_size_read(bdev->bd_inode));
return (SET_ERROR(EIO));
}
if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
v->vdev_failfast == B_TRUE) {
bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
}
/*
* Check alignment of the incoming ABD. If any part of it would require
* submitting a page that is not aligned to the logical block size,
* then we take a copy into a linear buffer and submit that instead.
* This should be impossible on a 512b LBS, and fairly rare on 4K,
* usually requiring abnormally-small data blocks (eg gang blocks)
* mixed into the same ABD as larger ones (eg aggregated).
*/
abd_t *abd = zio->io_abd;
if (!vdev_disk_check_pages(abd, zio->io_size, bdev)) {
void *buf;
if (zio->io_type == ZIO_TYPE_READ)
buf = abd_borrow_buf(zio->io_abd, zio->io_size);
else
buf = abd_borrow_buf_copy(zio->io_abd, zio->io_size);
/*
* Wrap the copy in an abd_t, so we can use the same iterators
* to count and fill the vbio later.
*/
abd = abd_get_from_buf(buf, zio->io_size);
/*
* False here would mean the borrowed copy has an invalid
* alignment too, which would mean we've somehow been passed a
* linear ABD with an interior page that has a non-zero offset
* or a size not a multiple of PAGE_SIZE. This is not possible.
* It would mean either zio_buf_alloc() or its underlying
* allocators have done something extremely strange, or our
* math in vdev_disk_check_pages() is wrong. In either case,
* something in seriously wrong and its not safe to continue.
*/
VERIFY(vdev_disk_check_pages(abd, zio->io_size, bdev));
}
/* Allocate vbio, with a pointer to the borrowed ABD if necessary */
vbio_t *vbio = vbio_alloc(zio, bdev, flags);
if (abd != zio->io_abd)
vbio->vbio_abd = abd;
/* Fill it with data pages and submit it to the kernel */
vbio_submit(vbio, abd, zio->io_size);
return (0);
}
/* ========== */
/*
* This is the classic, battle-tested BIO submission code. Until we're totally
* sure that the new code is safe and correct in all cases, this will remain
* available and can be enabled by setting zfs_vdev_disk_classic=1 at module
* load time.
*
* These functions have been renamed to vdev_classic_* to make it clear what
* they belong to, but their implementations are unchanged.
*/
/*
* Virtual device vector for disks.
*/
typedef struct dio_request {
zio_t *dr_zio; /* Parent ZIO */
atomic_t dr_ref; /* References */
int dr_error; /* Bio error */
int dr_bio_count; /* Count of bio's */
struct bio *dr_bio[]; /* Attached bio's */
} dio_request_t;
static dio_request_t *
vdev_classic_dio_alloc(int bio_count)
{
dio_request_t *dr = kmem_zalloc(sizeof (dio_request_t) +
sizeof (struct bio *) * bio_count, KM_SLEEP);
atomic_set(&dr->dr_ref, 0);
dr->dr_bio_count = bio_count;
dr->dr_error = 0;
for (int i = 0; i < dr->dr_bio_count; i++)
dr->dr_bio[i] = NULL;
return (dr);
}
static void
vdev_classic_dio_free(dio_request_t *dr)
{
int i;
for (i = 0; i < dr->dr_bio_count; i++)
if (dr->dr_bio[i])
bio_put(dr->dr_bio[i]);
kmem_free(dr, sizeof (dio_request_t) +
sizeof (struct bio *) * dr->dr_bio_count);
}
static void
vdev_classic_dio_get(dio_request_t *dr)
{
atomic_inc(&dr->dr_ref);
}
static void
vdev_classic_dio_put(dio_request_t *dr)
{
int rc = atomic_dec_return(&dr->dr_ref);
/*
* Free the dio_request when the last reference is dropped and
* ensure zio_interpret is called only once with the correct zio
*/
if (rc == 0) {
zio_t *zio = dr->dr_zio;
int error = dr->dr_error;
vdev_classic_dio_free(dr);
if (zio) {
zio->io_error = error;
ASSERT3S(zio->io_error, >=, 0);
if (zio->io_error)
vdev_disk_error(zio);
zio_delay_interrupt(zio);
}
}
}
BIO_END_IO_PROTO(vdev_classic_physio_completion, bio, error)
{
dio_request_t *dr = bio->bi_private;
if (dr->dr_error == 0) {
#ifdef HAVE_1ARG_BIO_END_IO_T
dr->dr_error = BIO_END_IO_ERROR(bio);
#else
if (error)
dr->dr_error = -(error);
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
dr->dr_error = EIO;
#endif
}
/* Drop reference acquired by vdev_classic_physio */
vdev_classic_dio_put(dr);
}
static inline unsigned int
vdev_classic_bio_max_segs(zio_t *zio, int bio_size, uint64_t abd_offset)
{
unsigned long nr_segs = abd_nr_pages_off(zio->io_abd,
bio_size, abd_offset);
#ifdef HAVE_BIO_MAX_SEGS
return (bio_max_segs(nr_segs));
#else
return (MIN(nr_segs, BIO_MAX_PAGES));
#endif
}
static int
vdev_classic_physio(zio_t *zio)
{
vdev_t *v = zio->io_vd;
vdev_disk_t *vd = v->vdev_tsd;
struct block_device *bdev = BDH_BDEV(vd->vd_bdh);
size_t io_size = zio->io_size;
uint64_t io_offset = zio->io_offset;
int rw = zio->io_type == ZIO_TYPE_READ ? READ : WRITE;
int flags = 0;
dio_request_t *dr;
uint64_t abd_offset;
uint64_t bio_offset;
int bio_size;
int bio_count = 16;
int error = 0;
struct blk_plug plug;
unsigned short nr_vecs;
/*
* Accessing outside the block device is never allowed.
*/
if (io_offset + io_size > bdev->bd_inode->i_size) {
vdev_dbgmsg(zio->io_vd,
"Illegal access %llu size %llu, device size %llu",
(u_longlong_t)io_offset,
(u_longlong_t)io_size,
(u_longlong_t)i_size_read(bdev->bd_inode));
return (SET_ERROR(EIO));
}
retry:
dr = vdev_classic_dio_alloc(bio_count);
if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)) &&
zio->io_vd->vdev_failfast == B_TRUE) {
bio_set_flags_failfast(bdev, &flags, zfs_vdev_failfast_mask & 1,
zfs_vdev_failfast_mask & 2, zfs_vdev_failfast_mask & 4);
}
dr->dr_zio = zio;
/*
* Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
* is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
* can cover at least 128KB and at most 1MB. When the required number
* of iovec's exceeds this, we are forced to break the IO in multiple
* bio's and wait for them all to complete. This is likely if the
* recordsize property is increased beyond 1MB. The default
* bio_count=16 should typically accommodate the maximum-size zio of
* 16MB.
*/
abd_offset = 0;
bio_offset = io_offset;
bio_size = io_size;
for (int i = 0; i <= dr->dr_bio_count; i++) {
/* Finished constructing bio's for given buffer */
if (bio_size <= 0)
break;
/*
* If additional bio's are required, we have to retry, but
* this should be rare - see the comment above.
*/
if (dr->dr_bio_count == i) {
vdev_classic_dio_free(dr);
bio_count *= 2;
goto retry;
}
nr_vecs = vdev_classic_bio_max_segs(zio, bio_size, abd_offset);
dr->dr_bio[i] = vdev_bio_alloc(bdev, GFP_NOIO, nr_vecs);
if (unlikely(dr->dr_bio[i] == NULL)) {
vdev_classic_dio_free(dr);
return (SET_ERROR(ENOMEM));
}
/* Matching put called by vdev_classic_physio_completion */
vdev_classic_dio_get(dr);
BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
dr->dr_bio[i]->bi_end_io = vdev_classic_physio_completion;
dr->dr_bio[i]->bi_private = dr;
bio_set_op_attrs(dr->dr_bio[i], rw, flags);
/* Remaining size is returned to become the new size */
bio_size = abd_bio_map_off(dr->dr_bio[i], zio->io_abd,
bio_size, abd_offset);
/* Advance in buffer and construct another bio if needed */
abd_offset += BIO_BI_SIZE(dr->dr_bio[i]);
bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
}
/* Extra reference to protect dio_request during vdev_submit_bio */
vdev_classic_dio_get(dr);
if (dr->dr_bio_count > 1)
blk_start_plug(&plug);
/* Submit all bio's associated with this dio */
for (int i = 0; i < dr->dr_bio_count; i++) {
if (dr->dr_bio[i])
vdev_submit_bio(dr->dr_bio[i]);
}
if (dr->dr_bio_count > 1)
blk_finish_plug(&plug);
vdev_classic_dio_put(dr);
return (error);
}
/* ========== */
BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, error)
{
zio_t *zio = bio->bi_private;
#ifdef HAVE_1ARG_BIO_END_IO_T
zio->io_error = BIO_END_IO_ERROR(bio);
#else
zio->io_error = -error;
#endif
if (zio->io_error && (zio->io_error == EOPNOTSUPP))
zio->io_vd->vdev_nowritecache = B_TRUE;
bio_put(bio);
ASSERT3S(zio->io_error, >=, 0);
if (zio->io_error)
vdev_disk_error(zio);
zio_interrupt(zio);
}
static int
vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
{
struct request_queue *q;
struct bio *bio;
q = bdev_get_queue(bdev);
if (!q)
return (SET_ERROR(ENXIO));
bio = vdev_bio_alloc(bdev, GFP_NOIO, 0);
if (unlikely(bio == NULL))
return (SET_ERROR(ENOMEM));
bio->bi_end_io = vdev_disk_io_flush_completion;
bio->bi_private = zio;
bio_set_flush(bio);
vdev_submit_bio(bio);
invalidate_bdev(bdev);
return (0);
}
#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE) || \
defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC)
BIO_END_IO_PROTO(vdev_disk_discard_end_io, bio, error)
{
zio_t *zio = bio->bi_private;
#ifdef HAVE_1ARG_BIO_END_IO_T
zio->io_error = BIO_END_IO_ERROR(bio);
#else
zio->io_error = -error;
#endif
bio_put(bio);
if (zio->io_error)
vdev_disk_error(zio);
zio_interrupt(zio);
}
static int
vdev_issue_discard_trim(zio_t *zio, unsigned long flags)
{
int ret;
struct bio *bio = NULL;
#if defined(BLKDEV_DISCARD_SECURE)
ret = - __blkdev_issue_discard(
BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, flags, &bio);
#else
(void) flags;
ret = - __blkdev_issue_discard(
BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, &bio);
#endif
if (!ret && bio) {
bio->bi_private = zio;
bio->bi_end_io = vdev_disk_discard_end_io;
vdev_submit_bio(bio);
}
return (ret);
}
#endif
static int
vdev_disk_io_trim(zio_t *zio)
{
unsigned long trim_flags = 0;
if (zio->io_trim_flags & ZIO_TRIM_SECURE) {
#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
return (-blkdev_issue_secure_erase(
BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS));
#elif defined(BLKDEV_DISCARD_SECURE)
trim_flags |= BLKDEV_DISCARD_SECURE;
#endif
}
#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE) || \
defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC)
return (vdev_issue_discard_trim(zio, trim_flags));
#elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
return (-blkdev_issue_discard(
BDH_BDEV(((vdev_disk_t *)zio->io_vd->vdev_tsd)->vd_bdh),
zio->io_offset >> 9, zio->io_size >> 9, GFP_NOFS, trim_flags));
#else
#error "Unsupported kernel"
#endif
}
int (*vdev_disk_io_rw_fn)(zio_t *zio) = NULL;
static void
vdev_disk_io_start(zio_t *zio)
{
vdev_t *v = zio->io_vd;
vdev_disk_t *vd = v->vdev_tsd;
int error;
/*
* If the vdev is closed, it's likely in the REMOVED or FAULTED state.
* Nothing to be done here but return failure.
*/
if (vd == NULL) {
zio->io_error = ENXIO;
zio_interrupt(zio);
return;
}
rw_enter(&vd->vd_lock, RW_READER);
/*
* If the vdev is closed, it's likely due to a failed reopen and is
* in the UNAVAIL state. Nothing to be done here but return failure.
*/
if (vd->vd_bdh == NULL) {
rw_exit(&vd->vd_lock);
zio->io_error = ENXIO;
zio_interrupt(zio);
return;
}
switch (zio->io_type) {
case ZIO_TYPE_IOCTL:
if (!vdev_readable(v)) {
rw_exit(&vd->vd_lock);
zio->io_error = SET_ERROR(ENXIO);
zio_interrupt(zio);
return;
}
switch (zio->io_cmd) {
case DKIOCFLUSHWRITECACHE:
if (zfs_nocacheflush)
break;
if (v->vdev_nowritecache) {
zio->io_error = SET_ERROR(ENOTSUP);
break;
}
error = vdev_disk_io_flush(BDH_BDEV(vd->vd_bdh), zio);
if (error == 0) {
rw_exit(&vd->vd_lock);
return;
}
zio->io_error = error;
break;
default:
zio->io_error = SET_ERROR(ENOTSUP);
}
rw_exit(&vd->vd_lock);
zio_execute(zio);
return;
case ZIO_TYPE_TRIM:
zio->io_error = vdev_disk_io_trim(zio);
rw_exit(&vd->vd_lock);
#if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
if (zio->io_trim_flags & ZIO_TRIM_SECURE)
zio_interrupt(zio);
#elif defined(HAVE_BLKDEV_ISSUE_DISCARD)
zio_interrupt(zio);
#endif
return;
case ZIO_TYPE_READ:
case ZIO_TYPE_WRITE:
zio->io_target_timestamp = zio_handle_io_delay(zio);
error = vdev_disk_io_rw_fn(zio);
rw_exit(&vd->vd_lock);
if (error) {
zio->io_error = error;
zio_interrupt(zio);
}
return;
default:
/*
* Getting here means our parent vdev has made a very strange
* request of us, and shouldn't happen. Assert here to force a
* crash in dev builds, but in production return the IO
* unhandled. The pool will likely suspend anyway but that's
* nicer than crashing the kernel.
*/
ASSERT3S(zio->io_type, ==, -1);
rw_exit(&vd->vd_lock);
zio->io_error = SET_ERROR(ENOTSUP);
zio_interrupt(zio);
return;
}
__builtin_unreachable();
}
static void
vdev_disk_io_done(zio_t *zio)
{
/*
* If the device returned EIO, we revalidate the media. If it is
* determined the media has changed this triggers the asynchronous
* removal of the device from the configuration.
*/
if (zio->io_error == EIO) {
vdev_t *v = zio->io_vd;
vdev_disk_t *vd = v->vdev_tsd;
if (!zfs_check_disk_status(BDH_BDEV(vd->vd_bdh))) {
invalidate_bdev(BDH_BDEV(vd->vd_bdh));
v->vdev_remove_wanted = B_TRUE;
spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
}
}
}
static void
vdev_disk_hold(vdev_t *vd)
{
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
/* We must have a pathname, and it must be absolute. */
if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
return;
/*
* Only prefetch path and devid info if the device has
* never been opened.
*/
if (vd->vdev_tsd != NULL)
return;
}
static void
vdev_disk_rele(vdev_t *vd)
{
ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
/* XXX: Implement me as a vnode rele for the device */
}
/*
* BIO submission method. See comment above about vdev_classic.
* Set zfs_vdev_disk_classic=0 for new, =1 for classic
*/
static uint_t zfs_vdev_disk_classic = 0; /* default new */
/* Set submission function from module parameter */
static int
vdev_disk_param_set_classic(const char *buf, zfs_kernel_param_t *kp)
{
int err = param_set_uint(buf, kp);
if (err < 0)
return (SET_ERROR(err));
vdev_disk_io_rw_fn =
zfs_vdev_disk_classic ? vdev_classic_physio : vdev_disk_io_rw;
printk(KERN_INFO "ZFS: forcing %s BIO submission\n",
zfs_vdev_disk_classic ? "classic" : "new");
return (0);
}
/*
* At first use vdev use, set the submission function from the default value if
* it hasn't been set already.
*/
static int
vdev_disk_init(spa_t *spa, nvlist_t *nv, void **tsd)
{
(void) spa;
(void) nv;
(void) tsd;
if (vdev_disk_io_rw_fn == NULL)
vdev_disk_io_rw_fn = zfs_vdev_disk_classic ?
vdev_classic_physio : vdev_disk_io_rw;
return (0);
}
vdev_ops_t vdev_disk_ops = {
.vdev_op_init = vdev_disk_init,
.vdev_op_fini = NULL,
.vdev_op_open = vdev_disk_open,
.vdev_op_close = vdev_disk_close,
.vdev_op_asize = vdev_default_asize,
.vdev_op_min_asize = vdev_default_min_asize,
.vdev_op_min_alloc = NULL,
.vdev_op_io_start = vdev_disk_io_start,
.vdev_op_io_done = vdev_disk_io_done,
.vdev_op_state_change = NULL,
.vdev_op_need_resilver = NULL,
.vdev_op_hold = vdev_disk_hold,
.vdev_op_rele = vdev_disk_rele,
.vdev_op_remap = NULL,
.vdev_op_xlate = vdev_default_xlate,
.vdev_op_rebuild_asize = NULL,
.vdev_op_metaslab_init = NULL,
.vdev_op_config_generate = NULL,
.vdev_op_nparity = NULL,
.vdev_op_ndisks = NULL,
.vdev_op_type = VDEV_TYPE_DISK, /* name of this vdev type */
.vdev_op_leaf = B_TRUE, /* leaf vdev */
.vdev_op_kobj_evt_post = vdev_disk_kobj_evt_post
};
/*
* The zfs_vdev_scheduler module option has been deprecated. Setting this
* value no longer has any effect. It has not yet been entirely removed
* to allow the module to be loaded if this option is specified in the
* /etc/modprobe.d/zfs.conf file. The following warning will be logged.
*/
static int
param_set_vdev_scheduler(const char *val, zfs_kernel_param_t *kp)
{
int error = param_set_charp(val, kp);
if (error == 0) {
printk(KERN_INFO "The 'zfs_vdev_scheduler' module option "
"is not supported.\n");
}
return (error);
}
static const char *zfs_vdev_scheduler = "unused";
module_param_call(zfs_vdev_scheduler, param_set_vdev_scheduler,
param_get_charp, &zfs_vdev_scheduler, 0644);
MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");
int
param_set_min_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
{
uint_t val;
int error;
error = kstrtouint(buf, 0, &val);
if (error < 0)
return (SET_ERROR(error));
if (val < ASHIFT_MIN || val > zfs_vdev_max_auto_ashift)
return (SET_ERROR(-EINVAL));
error = param_set_uint(buf, kp);
if (error < 0)
return (SET_ERROR(error));
return (0);
}
int
param_set_max_auto_ashift(const char *buf, zfs_kernel_param_t *kp)
{
uint_t val;
int error;
error = kstrtouint(buf, 0, &val);
if (error < 0)
return (SET_ERROR(error));
if (val > ASHIFT_MAX || val < zfs_vdev_min_auto_ashift)
return (SET_ERROR(-EINVAL));
error = param_set_uint(buf, kp);
if (error < 0)
return (SET_ERROR(error));
return (0);
}
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, open_timeout_ms, UINT, ZMOD_RW,
"Timeout before determining that a device is missing");
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, failfast_mask, UINT, ZMOD_RW,
"Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
ZFS_MODULE_PARAM(zfs_vdev_disk, zfs_vdev_disk_, max_segs, UINT, ZMOD_RW,
"Maximum number of data segments to add to an IO request (min 4)");
ZFS_MODULE_PARAM_CALL(zfs_vdev_disk, zfs_vdev_disk_, classic,
vdev_disk_param_set_classic, param_get_uint, ZMOD_RD,
"Use classic BIO submission method");