mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-27 18:34:22 +03:00
ee36c709c3
perf: 2.75x faster ddt_entry_compare() First 256bits of ddt_key_t is a block checksum, which are expected to be close to random data. Hence, on average, comparison only needs to look at first few bytes of the keys. To reduce number of conditional jump instructions, the result is computed as: sign(memcmp(k1, k2)). Sign of an integer 'a' can be obtained as: `(0 < a) - (a < 0)` := {-1, 0, 1} , which is computed efficiently. Synthetic performance evaluation of original and new algorithm over 1G random keys on 2.6GHz Intel(R) Xeon(R) CPU E5-2660 v3: old 6.85789 s new 2.49089 s perf: 2.8x faster vdev_queue_offset_compare() and vdev_queue_timestamp_compare() Compute the result directly instead of using conditionals perf: zfs_range_compare() Speedup between 1.1x - 2.5x, depending on compiler version and optimization level. perf: spa_error_entry_compare() `bcmp()` is not suitable for comparator use. Use `memcmp()` instead. perf: 2.8x faster metaslab_compare() and metaslab_rangesize_compare() perf: 2.8x faster zil_bp_compare() perf: 2.8x faster mze_compare() perf: faster dbuf_compare() perf: faster compares in spa_misc perf: 2.8x faster layout_hash_compare() perf: 2.8x faster space_reftree_compare() perf: libzfs: faster avl tree comparators perf: guid_compare() perf: dsl_deadlist_compare() perf: perm_set_compare() perf: 2x faster range_tree_seg_compare() perf: faster unique_compare() perf: faster vdev_cache _compare() perf: faster vdev_uberblock_compare() perf: faster fuid _compare() perf: faster zfs_znode_hold_compare() Signed-off-by: Gvozden Neskovic <neskovic@gmail.com> Signed-off-by: Richard Elling <richard.elling@gmail.com> Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #5033
776 lines
19 KiB
C
776 lines
19 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/refcount.h>
|
|
#include <sys/nvpair.h>
|
|
#ifdef _KERNEL
|
|
#include <sys/kidmap.h>
|
|
#include <sys/sid.h>
|
|
#include <sys/zfs_vfsops.h>
|
|
#include <sys/zfs_znode.h>
|
|
#endif
|
|
#include <sys/zfs_fuid.h>
|
|
|
|
/*
|
|
* FUID Domain table(s).
|
|
*
|
|
* The FUID table is stored as a packed nvlist of an array
|
|
* of nvlists which contain an index, domain string and offset
|
|
*
|
|
* During file system initialization the nvlist(s) are read and
|
|
* two AVL trees are created. One tree is keyed by the index number
|
|
* and the other by the domain string. Nodes are never removed from
|
|
* trees, but new entries may be added. If a new entry is added then
|
|
* the zsb->z_fuid_dirty flag is set to true and the caller will then
|
|
* be responsible for calling zfs_fuid_sync() to sync the changes to disk.
|
|
*
|
|
*/
|
|
|
|
#define FUID_IDX "fuid_idx"
|
|
#define FUID_DOMAIN "fuid_domain"
|
|
#define FUID_OFFSET "fuid_offset"
|
|
#define FUID_NVP_ARRAY "fuid_nvlist"
|
|
|
|
typedef struct fuid_domain {
|
|
avl_node_t f_domnode;
|
|
avl_node_t f_idxnode;
|
|
ksiddomain_t *f_ksid;
|
|
uint64_t f_idx;
|
|
} fuid_domain_t;
|
|
|
|
static char *nulldomain = "";
|
|
|
|
/*
|
|
* Compare two indexes.
|
|
*/
|
|
static int
|
|
idx_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
|
|
const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
|
|
|
|
return (AVL_CMP(node1->f_idx, node2->f_idx));
|
|
}
|
|
|
|
/*
|
|
* Compare two domain strings.
|
|
*/
|
|
static int
|
|
domain_compare(const void *arg1, const void *arg2)
|
|
{
|
|
const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
|
|
const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
|
|
int val;
|
|
|
|
val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
|
|
|
|
return (AVL_ISIGN(val));
|
|
}
|
|
|
|
void
|
|
zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
|
|
{
|
|
avl_create(idx_tree, idx_compare,
|
|
sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
|
|
avl_create(domain_tree, domain_compare,
|
|
sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
|
|
}
|
|
|
|
/*
|
|
* load initial fuid domain and idx trees. This function is used by
|
|
* both the kernel and zdb.
|
|
*/
|
|
uint64_t
|
|
zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
|
|
avl_tree_t *domain_tree)
|
|
{
|
|
dmu_buf_t *db;
|
|
uint64_t fuid_size;
|
|
|
|
ASSERT(fuid_obj != 0);
|
|
VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
|
|
FTAG, &db));
|
|
fuid_size = *(uint64_t *)db->db_data;
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
if (fuid_size) {
|
|
nvlist_t **fuidnvp;
|
|
nvlist_t *nvp = NULL;
|
|
uint_t count;
|
|
char *packed;
|
|
int i;
|
|
|
|
packed = kmem_alloc(fuid_size, KM_SLEEP);
|
|
VERIFY(dmu_read(os, fuid_obj, 0,
|
|
fuid_size, packed, DMU_READ_PREFETCH) == 0);
|
|
VERIFY(nvlist_unpack(packed, fuid_size,
|
|
&nvp, 0) == 0);
|
|
VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
|
|
&fuidnvp, &count) == 0);
|
|
|
|
for (i = 0; i != count; i++) {
|
|
fuid_domain_t *domnode;
|
|
char *domain;
|
|
uint64_t idx;
|
|
|
|
VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
|
|
&domain) == 0);
|
|
VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
|
|
&idx) == 0);
|
|
|
|
domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
|
|
|
|
domnode->f_idx = idx;
|
|
domnode->f_ksid = ksid_lookupdomain(domain);
|
|
avl_add(idx_tree, domnode);
|
|
avl_add(domain_tree, domnode);
|
|
}
|
|
nvlist_free(nvp);
|
|
kmem_free(packed, fuid_size);
|
|
}
|
|
return (fuid_size);
|
|
}
|
|
|
|
void
|
|
zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
|
|
{
|
|
fuid_domain_t *domnode;
|
|
void *cookie;
|
|
|
|
cookie = NULL;
|
|
while ((domnode = avl_destroy_nodes(domain_tree, &cookie)))
|
|
ksiddomain_rele(domnode->f_ksid);
|
|
|
|
avl_destroy(domain_tree);
|
|
cookie = NULL;
|
|
while ((domnode = avl_destroy_nodes(idx_tree, &cookie)))
|
|
kmem_free(domnode, sizeof (fuid_domain_t));
|
|
avl_destroy(idx_tree);
|
|
}
|
|
|
|
char *
|
|
zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
|
|
{
|
|
fuid_domain_t searchnode, *findnode;
|
|
avl_index_t loc;
|
|
|
|
searchnode.f_idx = idx;
|
|
|
|
findnode = avl_find(idx_tree, &searchnode, &loc);
|
|
|
|
return (findnode ? findnode->f_ksid->kd_name : nulldomain);
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
/*
|
|
* Load the fuid table(s) into memory.
|
|
*/
|
|
static void
|
|
zfs_fuid_init(zfs_sb_t *zsb)
|
|
{
|
|
rw_enter(&zsb->z_fuid_lock, RW_WRITER);
|
|
|
|
if (zsb->z_fuid_loaded) {
|
|
rw_exit(&zsb->z_fuid_lock);
|
|
return;
|
|
}
|
|
|
|
zfs_fuid_avl_tree_create(&zsb->z_fuid_idx, &zsb->z_fuid_domain);
|
|
|
|
(void) zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
|
|
ZFS_FUID_TABLES, 8, 1, &zsb->z_fuid_obj);
|
|
if (zsb->z_fuid_obj != 0) {
|
|
zsb->z_fuid_size = zfs_fuid_table_load(zsb->z_os,
|
|
zsb->z_fuid_obj, &zsb->z_fuid_idx,
|
|
&zsb->z_fuid_domain);
|
|
}
|
|
|
|
zsb->z_fuid_loaded = B_TRUE;
|
|
rw_exit(&zsb->z_fuid_lock);
|
|
}
|
|
|
|
/*
|
|
* sync out AVL trees to persistent storage.
|
|
*/
|
|
void
|
|
zfs_fuid_sync(zfs_sb_t *zsb, dmu_tx_t *tx)
|
|
{
|
|
nvlist_t *nvp;
|
|
nvlist_t **fuids;
|
|
size_t nvsize = 0;
|
|
char *packed;
|
|
dmu_buf_t *db;
|
|
fuid_domain_t *domnode;
|
|
int numnodes;
|
|
int i;
|
|
|
|
if (!zsb->z_fuid_dirty) {
|
|
return;
|
|
}
|
|
|
|
rw_enter(&zsb->z_fuid_lock, RW_WRITER);
|
|
|
|
/*
|
|
* First see if table needs to be created?
|
|
*/
|
|
if (zsb->z_fuid_obj == 0) {
|
|
zsb->z_fuid_obj = dmu_object_alloc(zsb->z_os,
|
|
DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
|
|
sizeof (uint64_t), tx);
|
|
VERIFY(zap_add(zsb->z_os, MASTER_NODE_OBJ,
|
|
ZFS_FUID_TABLES, sizeof (uint64_t), 1,
|
|
&zsb->z_fuid_obj, tx) == 0);
|
|
}
|
|
|
|
VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
|
|
numnodes = avl_numnodes(&zsb->z_fuid_idx);
|
|
fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
|
|
for (i = 0, domnode = avl_first(&zsb->z_fuid_domain); domnode; i++,
|
|
domnode = AVL_NEXT(&zsb->z_fuid_domain, domnode)) {
|
|
VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
|
|
VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
|
|
domnode->f_idx) == 0);
|
|
VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
|
|
VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
|
|
domnode->f_ksid->kd_name) == 0);
|
|
}
|
|
VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
|
|
fuids, numnodes) == 0);
|
|
for (i = 0; i != numnodes; i++)
|
|
nvlist_free(fuids[i]);
|
|
kmem_free(fuids, numnodes * sizeof (void *));
|
|
VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
|
|
packed = kmem_alloc(nvsize, KM_SLEEP);
|
|
VERIFY(nvlist_pack(nvp, &packed, &nvsize,
|
|
NV_ENCODE_XDR, KM_SLEEP) == 0);
|
|
nvlist_free(nvp);
|
|
zsb->z_fuid_size = nvsize;
|
|
dmu_write(zsb->z_os, zsb->z_fuid_obj, 0, zsb->z_fuid_size, packed, tx);
|
|
kmem_free(packed, zsb->z_fuid_size);
|
|
VERIFY(0 == dmu_bonus_hold(zsb->z_os, zsb->z_fuid_obj,
|
|
FTAG, &db));
|
|
dmu_buf_will_dirty(db, tx);
|
|
*(uint64_t *)db->db_data = zsb->z_fuid_size;
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
zsb->z_fuid_dirty = B_FALSE;
|
|
rw_exit(&zsb->z_fuid_lock);
|
|
}
|
|
|
|
/*
|
|
* Query domain table for a given domain.
|
|
*
|
|
* If domain isn't found and addok is set, it is added to AVL trees and
|
|
* the zsb->z_fuid_dirty flag will be set to TRUE. It will then be
|
|
* necessary for the caller or another thread to detect the dirty table
|
|
* and sync out the changes.
|
|
*/
|
|
int
|
|
zfs_fuid_find_by_domain(zfs_sb_t *zsb, const char *domain,
|
|
char **retdomain, boolean_t addok)
|
|
{
|
|
fuid_domain_t searchnode, *findnode;
|
|
avl_index_t loc;
|
|
krw_t rw = RW_READER;
|
|
|
|
/*
|
|
* If the dummy "nobody" domain then return an index of 0
|
|
* to cause the created FUID to be a standard POSIX id
|
|
* for the user nobody.
|
|
*/
|
|
if (domain[0] == '\0') {
|
|
if (retdomain)
|
|
*retdomain = nulldomain;
|
|
return (0);
|
|
}
|
|
|
|
searchnode.f_ksid = ksid_lookupdomain(domain);
|
|
if (retdomain)
|
|
*retdomain = searchnode.f_ksid->kd_name;
|
|
if (!zsb->z_fuid_loaded)
|
|
zfs_fuid_init(zsb);
|
|
|
|
retry:
|
|
rw_enter(&zsb->z_fuid_lock, rw);
|
|
findnode = avl_find(&zsb->z_fuid_domain, &searchnode, &loc);
|
|
|
|
if (findnode) {
|
|
rw_exit(&zsb->z_fuid_lock);
|
|
ksiddomain_rele(searchnode.f_ksid);
|
|
return (findnode->f_idx);
|
|
} else if (addok) {
|
|
fuid_domain_t *domnode;
|
|
uint64_t retidx;
|
|
|
|
if (rw == RW_READER && !rw_tryupgrade(&zsb->z_fuid_lock)) {
|
|
rw_exit(&zsb->z_fuid_lock);
|
|
rw = RW_WRITER;
|
|
goto retry;
|
|
}
|
|
|
|
domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
|
|
domnode->f_ksid = searchnode.f_ksid;
|
|
|
|
retidx = domnode->f_idx = avl_numnodes(&zsb->z_fuid_idx) + 1;
|
|
|
|
avl_add(&zsb->z_fuid_domain, domnode);
|
|
avl_add(&zsb->z_fuid_idx, domnode);
|
|
zsb->z_fuid_dirty = B_TRUE;
|
|
rw_exit(&zsb->z_fuid_lock);
|
|
return (retidx);
|
|
} else {
|
|
rw_exit(&zsb->z_fuid_lock);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Query domain table by index, returning domain string
|
|
*
|
|
* Returns a pointer from an avl node of the domain string.
|
|
*
|
|
*/
|
|
const char *
|
|
zfs_fuid_find_by_idx(zfs_sb_t *zsb, uint32_t idx)
|
|
{
|
|
char *domain;
|
|
|
|
if (idx == 0 || !zsb->z_use_fuids)
|
|
return (NULL);
|
|
|
|
if (!zsb->z_fuid_loaded)
|
|
zfs_fuid_init(zsb);
|
|
|
|
rw_enter(&zsb->z_fuid_lock, RW_READER);
|
|
|
|
if (zsb->z_fuid_obj || zsb->z_fuid_dirty)
|
|
domain = zfs_fuid_idx_domain(&zsb->z_fuid_idx, idx);
|
|
else
|
|
domain = nulldomain;
|
|
rw_exit(&zsb->z_fuid_lock);
|
|
|
|
ASSERT(domain);
|
|
return (domain);
|
|
}
|
|
|
|
void
|
|
zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
|
|
{
|
|
*uidp = zfs_fuid_map_id(ZTOZSB(zp), KUID_TO_SUID(ZTOI(zp)->i_uid),
|
|
cr, ZFS_OWNER);
|
|
*gidp = zfs_fuid_map_id(ZTOZSB(zp), KGID_TO_SGID(ZTOI(zp)->i_gid),
|
|
cr, ZFS_GROUP);
|
|
}
|
|
|
|
uid_t
|
|
zfs_fuid_map_id(zfs_sb_t *zsb, uint64_t fuid,
|
|
cred_t *cr, zfs_fuid_type_t type)
|
|
{
|
|
#ifdef HAVE_KSID
|
|
uint32_t index = FUID_INDEX(fuid);
|
|
const char *domain;
|
|
uid_t id;
|
|
|
|
if (index == 0)
|
|
return (fuid);
|
|
|
|
domain = zfs_fuid_find_by_idx(zsb, index);
|
|
ASSERT(domain != NULL);
|
|
|
|
if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
|
|
(void) kidmap_getuidbysid(crgetzone(cr), domain,
|
|
FUID_RID(fuid), &id);
|
|
} else {
|
|
(void) kidmap_getgidbysid(crgetzone(cr), domain,
|
|
FUID_RID(fuid), &id);
|
|
}
|
|
return (id);
|
|
#else
|
|
/*
|
|
* The Linux port only supports POSIX IDs, use the passed id.
|
|
*/
|
|
return (fuid);
|
|
#endif /* HAVE_KSID */
|
|
}
|
|
|
|
/*
|
|
* Add a FUID node to the list of fuid's being created for this
|
|
* ACL
|
|
*
|
|
* If ACL has multiple domains, then keep only one copy of each unique
|
|
* domain.
|
|
*/
|
|
void
|
|
zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
|
|
uint64_t idx, uint64_t id, zfs_fuid_type_t type)
|
|
{
|
|
zfs_fuid_t *fuid;
|
|
zfs_fuid_domain_t *fuid_domain;
|
|
zfs_fuid_info_t *fuidp;
|
|
uint64_t fuididx;
|
|
boolean_t found = B_FALSE;
|
|
|
|
if (*fuidpp == NULL)
|
|
*fuidpp = zfs_fuid_info_alloc();
|
|
|
|
fuidp = *fuidpp;
|
|
/*
|
|
* First find fuid domain index in linked list
|
|
*
|
|
* If one isn't found then create an entry.
|
|
*/
|
|
|
|
for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
|
|
fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
|
|
fuid_domain), fuididx++) {
|
|
if (idx == fuid_domain->z_domidx) {
|
|
found = B_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
|
|
fuid_domain->z_domain = domain;
|
|
fuid_domain->z_domidx = idx;
|
|
list_insert_tail(&fuidp->z_domains, fuid_domain);
|
|
fuidp->z_domain_str_sz += strlen(domain) + 1;
|
|
fuidp->z_domain_cnt++;
|
|
}
|
|
|
|
if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
|
|
|
|
/*
|
|
* Now allocate fuid entry and add it on the end of the list
|
|
*/
|
|
|
|
fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
|
|
fuid->z_id = id;
|
|
fuid->z_domidx = idx;
|
|
fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
|
|
|
|
list_insert_tail(&fuidp->z_fuids, fuid);
|
|
fuidp->z_fuid_cnt++;
|
|
} else {
|
|
if (type == ZFS_OWNER)
|
|
fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
|
|
else
|
|
fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_KSID
|
|
/*
|
|
* Create a file system FUID, based on information in the users cred
|
|
*
|
|
* If cred contains KSID_OWNER then it should be used to determine
|
|
* the uid otherwise cred's uid will be used. By default cred's gid
|
|
* is used unless it's an ephemeral ID in which case KSID_GROUP will
|
|
* be used if it exists.
|
|
*/
|
|
uint64_t
|
|
zfs_fuid_create_cred(zfs_sb_t *zsb, zfs_fuid_type_t type,
|
|
cred_t *cr, zfs_fuid_info_t **fuidp)
|
|
{
|
|
uint64_t idx;
|
|
ksid_t *ksid;
|
|
uint32_t rid;
|
|
char *kdomain;
|
|
const char *domain;
|
|
uid_t id;
|
|
|
|
VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
|
|
|
|
ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
|
|
|
|
if (!zsb->z_use_fuids || (ksid == NULL)) {
|
|
id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
|
|
|
|
if (IS_EPHEMERAL(id))
|
|
return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
|
|
|
|
return ((uint64_t)id);
|
|
}
|
|
|
|
/*
|
|
* ksid is present and FUID is supported
|
|
*/
|
|
id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
|
|
|
|
if (!IS_EPHEMERAL(id))
|
|
return ((uint64_t)id);
|
|
|
|
if (type == ZFS_GROUP)
|
|
id = ksid_getid(ksid);
|
|
|
|
rid = ksid_getrid(ksid);
|
|
domain = ksid_getdomain(ksid);
|
|
|
|
idx = zfs_fuid_find_by_domain(zsb, domain, &kdomain, B_TRUE);
|
|
|
|
zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
|
|
|
|
return (FUID_ENCODE(idx, rid));
|
|
}
|
|
#endif /* HAVE_KSID */
|
|
|
|
/*
|
|
* Create a file system FUID for an ACL ace
|
|
* or a chown/chgrp of the file.
|
|
* This is similar to zfs_fuid_create_cred, except that
|
|
* we can't find the domain + rid information in the
|
|
* cred. Instead we have to query Winchester for the
|
|
* domain and rid.
|
|
*
|
|
* During replay operations the domain+rid information is
|
|
* found in the zfs_fuid_info_t that the replay code has
|
|
* attached to the zsb of the file system.
|
|
*/
|
|
uint64_t
|
|
zfs_fuid_create(zfs_sb_t *zsb, uint64_t id, cred_t *cr,
|
|
zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
|
|
{
|
|
#ifdef HAVE_KSID
|
|
const char *domain;
|
|
char *kdomain;
|
|
uint32_t fuid_idx = FUID_INDEX(id);
|
|
uint32_t rid;
|
|
idmap_stat status;
|
|
uint64_t idx = 0;
|
|
zfs_fuid_t *zfuid = NULL;
|
|
zfs_fuid_info_t *fuidp = NULL;
|
|
|
|
/*
|
|
* If POSIX ID, or entry is already a FUID then
|
|
* just return the id
|
|
*
|
|
* We may also be handed an already FUID'ized id via
|
|
* chmod.
|
|
*/
|
|
|
|
if (!zsb->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
|
|
return (id);
|
|
|
|
if (zsb->z_replay) {
|
|
fuidp = zsb->z_fuid_replay;
|
|
|
|
/*
|
|
* If we are passed an ephemeral id, but no
|
|
* fuid_info was logged then return NOBODY.
|
|
* This is most likely a result of idmap service
|
|
* not being available.
|
|
*/
|
|
if (fuidp == NULL)
|
|
return (UID_NOBODY);
|
|
|
|
VERIFY3U(type, >=, ZFS_OWNER);
|
|
VERIFY3U(type, <=, ZFS_ACE_GROUP);
|
|
|
|
switch (type) {
|
|
case ZFS_ACE_USER:
|
|
case ZFS_ACE_GROUP:
|
|
zfuid = list_head(&fuidp->z_fuids);
|
|
rid = FUID_RID(zfuid->z_logfuid);
|
|
idx = FUID_INDEX(zfuid->z_logfuid);
|
|
break;
|
|
case ZFS_OWNER:
|
|
rid = FUID_RID(fuidp->z_fuid_owner);
|
|
idx = FUID_INDEX(fuidp->z_fuid_owner);
|
|
break;
|
|
case ZFS_GROUP:
|
|
rid = FUID_RID(fuidp->z_fuid_group);
|
|
idx = FUID_INDEX(fuidp->z_fuid_group);
|
|
break;
|
|
};
|
|
domain = fuidp->z_domain_table[idx - 1];
|
|
} else {
|
|
if (type == ZFS_OWNER || type == ZFS_ACE_USER)
|
|
status = kidmap_getsidbyuid(crgetzone(cr), id,
|
|
&domain, &rid);
|
|
else
|
|
status = kidmap_getsidbygid(crgetzone(cr), id,
|
|
&domain, &rid);
|
|
|
|
if (status != 0) {
|
|
/*
|
|
* When returning nobody we will need to
|
|
* make a dummy fuid table entry for logging
|
|
* purposes.
|
|
*/
|
|
rid = UID_NOBODY;
|
|
domain = nulldomain;
|
|
}
|
|
}
|
|
|
|
idx = zfs_fuid_find_by_domain(zsb, domain, &kdomain, B_TRUE);
|
|
|
|
if (!zsb->z_replay)
|
|
zfs_fuid_node_add(fuidpp, kdomain,
|
|
rid, idx, id, type);
|
|
else if (zfuid != NULL) {
|
|
list_remove(&fuidp->z_fuids, zfuid);
|
|
kmem_free(zfuid, sizeof (zfs_fuid_t));
|
|
}
|
|
return (FUID_ENCODE(idx, rid));
|
|
#else
|
|
/*
|
|
* The Linux port only supports POSIX IDs, use the passed id.
|
|
*/
|
|
return (id);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
zfs_fuid_destroy(zfs_sb_t *zsb)
|
|
{
|
|
rw_enter(&zsb->z_fuid_lock, RW_WRITER);
|
|
if (!zsb->z_fuid_loaded) {
|
|
rw_exit(&zsb->z_fuid_lock);
|
|
return;
|
|
}
|
|
zfs_fuid_table_destroy(&zsb->z_fuid_idx, &zsb->z_fuid_domain);
|
|
rw_exit(&zsb->z_fuid_lock);
|
|
}
|
|
|
|
/*
|
|
* Allocate zfs_fuid_info for tracking FUIDs created during
|
|
* zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
|
|
*/
|
|
zfs_fuid_info_t *
|
|
zfs_fuid_info_alloc(void)
|
|
{
|
|
zfs_fuid_info_t *fuidp;
|
|
|
|
fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
|
|
list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
|
|
offsetof(zfs_fuid_domain_t, z_next));
|
|
list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
|
|
offsetof(zfs_fuid_t, z_next));
|
|
return (fuidp);
|
|
}
|
|
|
|
/*
|
|
* Release all memory associated with zfs_fuid_info_t
|
|
*/
|
|
void
|
|
zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
|
|
{
|
|
zfs_fuid_t *zfuid;
|
|
zfs_fuid_domain_t *zdomain;
|
|
|
|
while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
|
|
list_remove(&fuidp->z_fuids, zfuid);
|
|
kmem_free(zfuid, sizeof (zfs_fuid_t));
|
|
}
|
|
|
|
if (fuidp->z_domain_table != NULL)
|
|
kmem_free(fuidp->z_domain_table,
|
|
(sizeof (char **)) * fuidp->z_domain_cnt);
|
|
|
|
while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
|
|
list_remove(&fuidp->z_domains, zdomain);
|
|
kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
|
|
}
|
|
|
|
kmem_free(fuidp, sizeof (zfs_fuid_info_t));
|
|
}
|
|
|
|
/*
|
|
* Check to see if id is a groupmember. If cred
|
|
* has ksid info then sidlist is checked first
|
|
* and if still not found then POSIX groups are checked
|
|
*
|
|
* Will use a straight FUID compare when possible.
|
|
*/
|
|
boolean_t
|
|
zfs_groupmember(zfs_sb_t *zsb, uint64_t id, cred_t *cr)
|
|
{
|
|
#ifdef HAVE_KSID
|
|
ksid_t *ksid = crgetsid(cr, KSID_GROUP);
|
|
ksidlist_t *ksidlist = crgetsidlist(cr);
|
|
uid_t gid;
|
|
|
|
if (ksid && ksidlist) {
|
|
int i;
|
|
ksid_t *ksid_groups;
|
|
uint32_t idx = FUID_INDEX(id);
|
|
uint32_t rid = FUID_RID(id);
|
|
|
|
ksid_groups = ksidlist->ksl_sids;
|
|
|
|
for (i = 0; i != ksidlist->ksl_nsid; i++) {
|
|
if (idx == 0) {
|
|
if (id != IDMAP_WK_CREATOR_GROUP_GID &&
|
|
id == ksid_groups[i].ks_id) {
|
|
return (B_TRUE);
|
|
}
|
|
} else {
|
|
const char *domain;
|
|
|
|
domain = zfs_fuid_find_by_idx(zsb, idx);
|
|
ASSERT(domain != NULL);
|
|
|
|
if (strcmp(domain,
|
|
IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
|
|
return (B_FALSE);
|
|
|
|
if ((strcmp(domain,
|
|
ksid_groups[i].ks_domain->kd_name) == 0) &&
|
|
rid == ksid_groups[i].ks_rid)
|
|
return (B_TRUE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Not found in ksidlist, check posix groups
|
|
*/
|
|
gid = zfs_fuid_map_id(zsb, id, cr, ZFS_GROUP);
|
|
return (groupmember(gid, cr));
|
|
#else
|
|
return (B_TRUE);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
zfs_fuid_txhold(zfs_sb_t *zsb, dmu_tx_t *tx)
|
|
{
|
|
if (zsb->z_fuid_obj == 0) {
|
|
dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
|
|
dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
|
|
FUID_SIZE_ESTIMATE(zsb));
|
|
dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
|
|
} else {
|
|
dmu_tx_hold_bonus(tx, zsb->z_fuid_obj);
|
|
dmu_tx_hold_write(tx, zsb->z_fuid_obj, 0,
|
|
FUID_SIZE_ESTIMATE(zsb));
|
|
}
|
|
}
|
|
#endif
|