mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-24 17:06:34 +03:00
800d59d577
- Add old eviction for special and dedup metaslab classes. Those vdevs may be potentially big and fragmented with large metaslabs, while their asynchronous write pattern is not really different from normal class. It seems an omission to not evict old metaslabs from them. - If we have metaslab preload enabled, which means we are not too low on memory, do not evict active metaslabs even if they are not used for some time. Eviction of active metaslabs means we won't be able to write anything until we load them, that may take some time, that is straight opposite to metaslab preload goals. For small systems the memory saving should be less important after recent reduction in number of allocators and so open metaslabs. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored by: iXsystems, Inc. Closes #16214
6288 lines
193 KiB
C
6288 lines
193 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or https://opensource.org/licenses/CDDL-1.0.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright (c) 2011, 2019 by Delphix. All rights reserved.
|
|
* Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
|
|
* Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2017, Intel Corporation.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/space_map.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/vdev_draid.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/vdev_indirect_mapping.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/btree.h>
|
|
|
|
#define GANG_ALLOCATION(flags) \
|
|
((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
|
|
|
|
/*
|
|
* Metaslab granularity, in bytes. This is roughly similar to what would be
|
|
* referred to as the "stripe size" in traditional RAID arrays. In normal
|
|
* operation, we will try to write this amount of data to each disk before
|
|
* moving on to the next top-level vdev.
|
|
*/
|
|
static uint64_t metaslab_aliquot = 1024 * 1024;
|
|
|
|
/*
|
|
* For testing, make some blocks above a certain size be gang blocks.
|
|
*/
|
|
uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
|
|
|
|
/*
|
|
* Of blocks of size >= metaslab_force_ganging, actually gang them this often.
|
|
*/
|
|
uint_t metaslab_force_ganging_pct = 3;
|
|
|
|
/*
|
|
* In pools where the log space map feature is not enabled we touch
|
|
* multiple metaslabs (and their respective space maps) with each
|
|
* transaction group. Thus, we benefit from having a small space map
|
|
* block size since it allows us to issue more I/O operations scattered
|
|
* around the disk. So a sane default for the space map block size
|
|
* is 8~16K.
|
|
*/
|
|
int zfs_metaslab_sm_blksz_no_log = (1 << 14);
|
|
|
|
/*
|
|
* When the log space map feature is enabled, we accumulate a lot of
|
|
* changes per metaslab that are flushed once in a while so we benefit
|
|
* from a bigger block size like 128K for the metaslab space maps.
|
|
*/
|
|
int zfs_metaslab_sm_blksz_with_log = (1 << 17);
|
|
|
|
/*
|
|
* The in-core space map representation is more compact than its on-disk form.
|
|
* The zfs_condense_pct determines how much more compact the in-core
|
|
* space map representation must be before we compact it on-disk.
|
|
* Values should be greater than or equal to 100.
|
|
*/
|
|
uint_t zfs_condense_pct = 200;
|
|
|
|
/*
|
|
* Condensing a metaslab is not guaranteed to actually reduce the amount of
|
|
* space used on disk. In particular, a space map uses data in increments of
|
|
* MAX(1 << ashift, space_map_blksz), so a metaslab might use the
|
|
* same number of blocks after condensing. Since the goal of condensing is to
|
|
* reduce the number of IOPs required to read the space map, we only want to
|
|
* condense when we can be sure we will reduce the number of blocks used by the
|
|
* space map. Unfortunately, we cannot precisely compute whether or not this is
|
|
* the case in metaslab_should_condense since we are holding ms_lock. Instead,
|
|
* we apply the following heuristic: do not condense a spacemap unless the
|
|
* uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
|
|
* blocks.
|
|
*/
|
|
static const int zfs_metaslab_condense_block_threshold = 4;
|
|
|
|
/*
|
|
* The zfs_mg_noalloc_threshold defines which metaslab groups should
|
|
* be eligible for allocation. The value is defined as a percentage of
|
|
* free space. Metaslab groups that have more free space than
|
|
* zfs_mg_noalloc_threshold are always eligible for allocations. Once
|
|
* a metaslab group's free space is less than or equal to the
|
|
* zfs_mg_noalloc_threshold the allocator will avoid allocating to that
|
|
* group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
|
|
* Once all groups in the pool reach zfs_mg_noalloc_threshold then all
|
|
* groups are allowed to accept allocations. Gang blocks are always
|
|
* eligible to allocate on any metaslab group. The default value of 0 means
|
|
* no metaslab group will be excluded based on this criterion.
|
|
*/
|
|
static uint_t zfs_mg_noalloc_threshold = 0;
|
|
|
|
/*
|
|
* Metaslab groups are considered eligible for allocations if their
|
|
* fragmentation metric (measured as a percentage) is less than or
|
|
* equal to zfs_mg_fragmentation_threshold. If a metaslab group
|
|
* exceeds this threshold then it will be skipped unless all metaslab
|
|
* groups within the metaslab class have also crossed this threshold.
|
|
*
|
|
* This tunable was introduced to avoid edge cases where we continue
|
|
* allocating from very fragmented disks in our pool while other, less
|
|
* fragmented disks, exists. On the other hand, if all disks in the
|
|
* pool are uniformly approaching the threshold, the threshold can
|
|
* be a speed bump in performance, where we keep switching the disks
|
|
* that we allocate from (e.g. we allocate some segments from disk A
|
|
* making it bypassing the threshold while freeing segments from disk
|
|
* B getting its fragmentation below the threshold).
|
|
*
|
|
* Empirically, we've seen that our vdev selection for allocations is
|
|
* good enough that fragmentation increases uniformly across all vdevs
|
|
* the majority of the time. Thus we set the threshold percentage high
|
|
* enough to avoid hitting the speed bump on pools that are being pushed
|
|
* to the edge.
|
|
*/
|
|
static uint_t zfs_mg_fragmentation_threshold = 95;
|
|
|
|
/*
|
|
* Allow metaslabs to keep their active state as long as their fragmentation
|
|
* percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
|
|
* active metaslab that exceeds this threshold will no longer keep its active
|
|
* status allowing better metaslabs to be selected.
|
|
*/
|
|
static uint_t zfs_metaslab_fragmentation_threshold = 70;
|
|
|
|
/*
|
|
* When set will load all metaslabs when pool is first opened.
|
|
*/
|
|
int metaslab_debug_load = B_FALSE;
|
|
|
|
/*
|
|
* When set will prevent metaslabs from being unloaded.
|
|
*/
|
|
static int metaslab_debug_unload = B_FALSE;
|
|
|
|
/*
|
|
* Minimum size which forces the dynamic allocator to change
|
|
* it's allocation strategy. Once the space map cannot satisfy
|
|
* an allocation of this size then it switches to using more
|
|
* aggressive strategy (i.e search by size rather than offset).
|
|
*/
|
|
uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
|
|
|
|
/*
|
|
* The minimum free space, in percent, which must be available
|
|
* in a space map to continue allocations in a first-fit fashion.
|
|
* Once the space map's free space drops below this level we dynamically
|
|
* switch to using best-fit allocations.
|
|
*/
|
|
uint_t metaslab_df_free_pct = 4;
|
|
|
|
/*
|
|
* Maximum distance to search forward from the last offset. Without this
|
|
* limit, fragmented pools can see >100,000 iterations and
|
|
* metaslab_block_picker() becomes the performance limiting factor on
|
|
* high-performance storage.
|
|
*
|
|
* With the default setting of 16MB, we typically see less than 500
|
|
* iterations, even with very fragmented, ashift=9 pools. The maximum number
|
|
* of iterations possible is:
|
|
* metaslab_df_max_search / (2 * (1<<ashift))
|
|
* With the default setting of 16MB this is 16*1024 (with ashift=9) or
|
|
* 2048 (with ashift=12).
|
|
*/
|
|
static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
|
|
|
|
/*
|
|
* Forces the metaslab_block_picker function to search for at least this many
|
|
* segments forwards until giving up on finding a segment that the allocation
|
|
* will fit into.
|
|
*/
|
|
static const uint32_t metaslab_min_search_count = 100;
|
|
|
|
/*
|
|
* If we are not searching forward (due to metaslab_df_max_search,
|
|
* metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
|
|
* controls what segment is used. If it is set, we will use the largest free
|
|
* segment. If it is not set, we will use a segment of exactly the requested
|
|
* size (or larger).
|
|
*/
|
|
static int metaslab_df_use_largest_segment = B_FALSE;
|
|
|
|
/*
|
|
* These tunables control how long a metaslab will remain loaded after the
|
|
* last allocation from it. A metaslab can't be unloaded until at least
|
|
* metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
|
|
* have elapsed. However, zfs_metaslab_mem_limit may cause it to be
|
|
* unloaded sooner. These settings are intended to be generous -- to keep
|
|
* metaslabs loaded for a long time, reducing the rate of metaslab loading.
|
|
*/
|
|
static uint_t metaslab_unload_delay = 32;
|
|
static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
|
|
|
|
/*
|
|
* Max number of metaslabs per group to preload.
|
|
*/
|
|
uint_t metaslab_preload_limit = 10;
|
|
|
|
/*
|
|
* Enable/disable preloading of metaslab.
|
|
*/
|
|
static int metaslab_preload_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable fragmentation weighting on metaslabs.
|
|
*/
|
|
static int metaslab_fragmentation_factor_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable lba weighting (i.e. outer tracks are given preference).
|
|
*/
|
|
static int metaslab_lba_weighting_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable metaslab group biasing.
|
|
*/
|
|
static int metaslab_bias_enabled = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable remapping of indirect DVAs to their concrete vdevs.
|
|
*/
|
|
static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
|
|
|
|
/*
|
|
* Enable/disable segment-based metaslab selection.
|
|
*/
|
|
static int zfs_metaslab_segment_weight_enabled = B_TRUE;
|
|
|
|
/*
|
|
* When using segment-based metaslab selection, we will continue
|
|
* allocating from the active metaslab until we have exhausted
|
|
* zfs_metaslab_switch_threshold of its buckets.
|
|
*/
|
|
static int zfs_metaslab_switch_threshold = 2;
|
|
|
|
/*
|
|
* Internal switch to enable/disable the metaslab allocation tracing
|
|
* facility.
|
|
*/
|
|
static const boolean_t metaslab_trace_enabled = B_FALSE;
|
|
|
|
/*
|
|
* Maximum entries that the metaslab allocation tracing facility will keep
|
|
* in a given list when running in non-debug mode. We limit the number
|
|
* of entries in non-debug mode to prevent us from using up too much memory.
|
|
* The limit should be sufficiently large that we don't expect any allocation
|
|
* to every exceed this value. In debug mode, the system will panic if this
|
|
* limit is ever reached allowing for further investigation.
|
|
*/
|
|
static const uint64_t metaslab_trace_max_entries = 5000;
|
|
|
|
/*
|
|
* Maximum number of metaslabs per group that can be disabled
|
|
* simultaneously.
|
|
*/
|
|
static const int max_disabled_ms = 3;
|
|
|
|
/*
|
|
* Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
|
|
* To avoid 64-bit overflow, don't set above UINT32_MAX.
|
|
*/
|
|
static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
|
|
|
|
/*
|
|
* Maximum percentage of memory to use on storing loaded metaslabs. If loading
|
|
* a metaslab would take it over this percentage, the oldest selected metaslab
|
|
* is automatically unloaded.
|
|
*/
|
|
static uint_t zfs_metaslab_mem_limit = 25;
|
|
|
|
/*
|
|
* Force the per-metaslab range trees to use 64-bit integers to store
|
|
* segments. Used for debugging purposes.
|
|
*/
|
|
static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
|
|
|
|
/*
|
|
* By default we only store segments over a certain size in the size-sorted
|
|
* metaslab trees (ms_allocatable_by_size and
|
|
* ms_unflushed_frees_by_size). This dramatically reduces memory usage and
|
|
* improves load and unload times at the cost of causing us to use slightly
|
|
* larger segments than we would otherwise in some cases.
|
|
*/
|
|
static const uint32_t metaslab_by_size_min_shift = 14;
|
|
|
|
/*
|
|
* If not set, we will first try normal allocation. If that fails then
|
|
* we will do a gang allocation. If that fails then we will do a "try hard"
|
|
* gang allocation. If that fails then we will have a multi-layer gang
|
|
* block.
|
|
*
|
|
* If set, we will first try normal allocation. If that fails then
|
|
* we will do a "try hard" allocation. If that fails we will do a gang
|
|
* allocation. If that fails we will do a "try hard" gang allocation. If
|
|
* that fails then we will have a multi-layer gang block.
|
|
*/
|
|
static int zfs_metaslab_try_hard_before_gang = B_FALSE;
|
|
|
|
/*
|
|
* When not trying hard, we only consider the best zfs_metaslab_find_max_tries
|
|
* metaslabs. This improves performance, especially when there are many
|
|
* metaslabs per vdev and the allocation can't actually be satisfied (so we
|
|
* would otherwise iterate all the metaslabs). If there is a metaslab with a
|
|
* worse weight but it can actually satisfy the allocation, we won't find it
|
|
* until trying hard. This may happen if the worse metaslab is not loaded
|
|
* (and the true weight is better than we have calculated), or due to weight
|
|
* bucketization. E.g. we are looking for a 60K segment, and the best
|
|
* metaslabs all have free segments in the 32-63K bucket, but the best
|
|
* zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
|
|
* subsequent metaslab has ms_max_size >60KB (but fewer segments in this
|
|
* bucket, and therefore a lower weight).
|
|
*/
|
|
static uint_t zfs_metaslab_find_max_tries = 100;
|
|
|
|
static uint64_t metaslab_weight(metaslab_t *, boolean_t);
|
|
static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
|
|
static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
|
|
static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
|
|
|
|
static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
|
|
static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
|
|
static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
|
|
static unsigned int metaslab_idx_func(multilist_t *, void *);
|
|
static void metaslab_evict(metaslab_t *, uint64_t);
|
|
static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
|
|
kmem_cache_t *metaslab_alloc_trace_cache;
|
|
|
|
typedef struct metaslab_stats {
|
|
kstat_named_t metaslabstat_trace_over_limit;
|
|
kstat_named_t metaslabstat_reload_tree;
|
|
kstat_named_t metaslabstat_too_many_tries;
|
|
kstat_named_t metaslabstat_try_hard;
|
|
} metaslab_stats_t;
|
|
|
|
static metaslab_stats_t metaslab_stats = {
|
|
{ "trace_over_limit", KSTAT_DATA_UINT64 },
|
|
{ "reload_tree", KSTAT_DATA_UINT64 },
|
|
{ "too_many_tries", KSTAT_DATA_UINT64 },
|
|
{ "try_hard", KSTAT_DATA_UINT64 },
|
|
};
|
|
|
|
#define METASLABSTAT_BUMP(stat) \
|
|
atomic_inc_64(&metaslab_stats.stat.value.ui64);
|
|
|
|
|
|
static kstat_t *metaslab_ksp;
|
|
|
|
void
|
|
metaslab_stat_init(void)
|
|
{
|
|
ASSERT(metaslab_alloc_trace_cache == NULL);
|
|
metaslab_alloc_trace_cache = kmem_cache_create(
|
|
"metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
|
|
0, NULL, NULL, NULL, NULL, NULL, 0);
|
|
metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
|
|
"misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
|
|
sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
|
|
if (metaslab_ksp != NULL) {
|
|
metaslab_ksp->ks_data = &metaslab_stats;
|
|
kstat_install(metaslab_ksp);
|
|
}
|
|
}
|
|
|
|
void
|
|
metaslab_stat_fini(void)
|
|
{
|
|
if (metaslab_ksp != NULL) {
|
|
kstat_delete(metaslab_ksp);
|
|
metaslab_ksp = NULL;
|
|
}
|
|
|
|
kmem_cache_destroy(metaslab_alloc_trace_cache);
|
|
metaslab_alloc_trace_cache = NULL;
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab classes
|
|
* ==========================================================================
|
|
*/
|
|
metaslab_class_t *
|
|
metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
|
|
{
|
|
metaslab_class_t *mc;
|
|
|
|
mc = kmem_zalloc(offsetof(metaslab_class_t,
|
|
mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
|
|
|
|
mc->mc_spa = spa;
|
|
mc->mc_ops = ops;
|
|
mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
|
|
offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
|
|
for (int i = 0; i < spa->spa_alloc_count; i++) {
|
|
metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
|
|
mca->mca_rotor = NULL;
|
|
zfs_refcount_create_tracked(&mca->mca_alloc_slots);
|
|
}
|
|
|
|
return (mc);
|
|
}
|
|
|
|
void
|
|
metaslab_class_destroy(metaslab_class_t *mc)
|
|
{
|
|
spa_t *spa = mc->mc_spa;
|
|
|
|
ASSERT(mc->mc_alloc == 0);
|
|
ASSERT(mc->mc_deferred == 0);
|
|
ASSERT(mc->mc_space == 0);
|
|
ASSERT(mc->mc_dspace == 0);
|
|
|
|
for (int i = 0; i < spa->spa_alloc_count; i++) {
|
|
metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
|
|
ASSERT(mca->mca_rotor == NULL);
|
|
zfs_refcount_destroy(&mca->mca_alloc_slots);
|
|
}
|
|
mutex_destroy(&mc->mc_lock);
|
|
multilist_destroy(&mc->mc_metaslab_txg_list);
|
|
kmem_free(mc, offsetof(metaslab_class_t,
|
|
mc_allocator[spa->spa_alloc_count]));
|
|
}
|
|
|
|
int
|
|
metaslab_class_validate(metaslab_class_t *mc)
|
|
{
|
|
metaslab_group_t *mg;
|
|
vdev_t *vd;
|
|
|
|
/*
|
|
* Must hold one of the spa_config locks.
|
|
*/
|
|
ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
|
|
spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
|
|
|
|
if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
|
|
return (0);
|
|
|
|
do {
|
|
vd = mg->mg_vd;
|
|
ASSERT(vd->vdev_mg != NULL);
|
|
ASSERT3P(vd->vdev_top, ==, vd);
|
|
ASSERT3P(mg->mg_class, ==, mc);
|
|
ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
|
|
} while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
|
|
int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
|
|
{
|
|
atomic_add_64(&mc->mc_alloc, alloc_delta);
|
|
atomic_add_64(&mc->mc_deferred, defer_delta);
|
|
atomic_add_64(&mc->mc_space, space_delta);
|
|
atomic_add_64(&mc->mc_dspace, dspace_delta);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_alloc(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_alloc);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_deferred(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_deferred);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_space(metaslab_class_t *mc)
|
|
{
|
|
return (mc->mc_space);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_class_get_dspace(metaslab_class_t *mc)
|
|
{
|
|
return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
|
|
}
|
|
|
|
void
|
|
metaslab_class_histogram_verify(metaslab_class_t *mc)
|
|
{
|
|
spa_t *spa = mc->mc_spa;
|
|
vdev_t *rvd = spa->spa_root_vdev;
|
|
uint64_t *mc_hist;
|
|
int i;
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
|
|
return;
|
|
|
|
mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
|
|
KM_SLEEP);
|
|
|
|
mutex_enter(&mc->mc_lock);
|
|
for (int c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = vdev_get_mg(tvd, mc);
|
|
|
|
/*
|
|
* Skip any holes, uninitialized top-levels, or
|
|
* vdevs that are not in this metalab class.
|
|
*/
|
|
if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
|
|
mg->mg_class != mc) {
|
|
continue;
|
|
}
|
|
|
|
IMPLY(mg == mg->mg_vd->vdev_log_mg,
|
|
mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
|
|
|
|
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
|
|
mc_hist[i] += mg->mg_histogram[i];
|
|
}
|
|
|
|
for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
|
|
VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
|
|
}
|
|
|
|
mutex_exit(&mc->mc_lock);
|
|
kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Calculate the metaslab class's fragmentation metric. The metric
|
|
* is weighted based on the space contribution of each metaslab group.
|
|
* The return value will be a number between 0 and 100 (inclusive), or
|
|
* ZFS_FRAG_INVALID if the metric has not been set. See comment above the
|
|
* zfs_frag_table for more information about the metric.
|
|
*/
|
|
uint64_t
|
|
metaslab_class_fragmentation(metaslab_class_t *mc)
|
|
{
|
|
vdev_t *rvd = mc->mc_spa->spa_root_vdev;
|
|
uint64_t fragmentation = 0;
|
|
|
|
spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
|
|
|
|
for (int c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
/*
|
|
* Skip any holes, uninitialized top-levels,
|
|
* or vdevs that are not in this metalab class.
|
|
*/
|
|
if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
|
|
mg->mg_class != mc) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If a metaslab group does not contain a fragmentation
|
|
* metric then just bail out.
|
|
*/
|
|
if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
|
|
spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
|
|
return (ZFS_FRAG_INVALID);
|
|
}
|
|
|
|
/*
|
|
* Determine how much this metaslab_group is contributing
|
|
* to the overall pool fragmentation metric.
|
|
*/
|
|
fragmentation += mg->mg_fragmentation *
|
|
metaslab_group_get_space(mg);
|
|
}
|
|
fragmentation /= metaslab_class_get_space(mc);
|
|
|
|
ASSERT3U(fragmentation, <=, 100);
|
|
spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
|
|
return (fragmentation);
|
|
}
|
|
|
|
/*
|
|
* Calculate the amount of expandable space that is available in
|
|
* this metaslab class. If a device is expanded then its expandable
|
|
* space will be the amount of allocatable space that is currently not
|
|
* part of this metaslab class.
|
|
*/
|
|
uint64_t
|
|
metaslab_class_expandable_space(metaslab_class_t *mc)
|
|
{
|
|
vdev_t *rvd = mc->mc_spa->spa_root_vdev;
|
|
uint64_t space = 0;
|
|
|
|
spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
|
|
for (int c = 0; c < rvd->vdev_children; c++) {
|
|
vdev_t *tvd = rvd->vdev_child[c];
|
|
metaslab_group_t *mg = tvd->vdev_mg;
|
|
|
|
if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
|
|
mg->mg_class != mc) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Calculate if we have enough space to add additional
|
|
* metaslabs. We report the expandable space in terms
|
|
* of the metaslab size since that's the unit of expansion.
|
|
*/
|
|
space += P2ALIGN_TYPED(tvd->vdev_max_asize - tvd->vdev_asize,
|
|
1ULL << tvd->vdev_ms_shift, uint64_t);
|
|
}
|
|
spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
|
|
return (space);
|
|
}
|
|
|
|
void
|
|
metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
|
|
{
|
|
multilist_t *ml = &mc->mc_metaslab_txg_list;
|
|
hrtime_t now = gethrtime();
|
|
for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
|
|
multilist_sublist_t *mls = multilist_sublist_lock_idx(ml, i);
|
|
metaslab_t *msp = multilist_sublist_head(mls);
|
|
multilist_sublist_unlock(mls);
|
|
while (msp != NULL) {
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* If the metaslab has been removed from the list
|
|
* (which could happen if we were at the memory limit
|
|
* and it was evicted during this loop), then we can't
|
|
* proceed and we should restart the sublist.
|
|
*/
|
|
if (!multilist_link_active(&msp->ms_class_txg_node)) {
|
|
mutex_exit(&msp->ms_lock);
|
|
i--;
|
|
break;
|
|
}
|
|
mls = multilist_sublist_lock_idx(ml, i);
|
|
metaslab_t *next_msp = multilist_sublist_next(mls, msp);
|
|
multilist_sublist_unlock(mls);
|
|
if (txg >
|
|
msp->ms_selected_txg + metaslab_unload_delay &&
|
|
now > msp->ms_selected_time +
|
|
MSEC2NSEC(metaslab_unload_delay_ms) &&
|
|
(msp->ms_allocator == -1 ||
|
|
!metaslab_preload_enabled)) {
|
|
metaslab_evict(msp, txg);
|
|
} else {
|
|
/*
|
|
* Once we've hit a metaslab selected too
|
|
* recently to evict, we're done evicting for
|
|
* now.
|
|
*/
|
|
mutex_exit(&msp->ms_lock);
|
|
break;
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
msp = next_msp;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
metaslab_compare(const void *x1, const void *x2)
|
|
{
|
|
const metaslab_t *m1 = (const metaslab_t *)x1;
|
|
const metaslab_t *m2 = (const metaslab_t *)x2;
|
|
|
|
int sort1 = 0;
|
|
int sort2 = 0;
|
|
if (m1->ms_allocator != -1 && m1->ms_primary)
|
|
sort1 = 1;
|
|
else if (m1->ms_allocator != -1 && !m1->ms_primary)
|
|
sort1 = 2;
|
|
if (m2->ms_allocator != -1 && m2->ms_primary)
|
|
sort2 = 1;
|
|
else if (m2->ms_allocator != -1 && !m2->ms_primary)
|
|
sort2 = 2;
|
|
|
|
/*
|
|
* Sort inactive metaslabs first, then primaries, then secondaries. When
|
|
* selecting a metaslab to allocate from, an allocator first tries its
|
|
* primary, then secondary active metaslab. If it doesn't have active
|
|
* metaslabs, or can't allocate from them, it searches for an inactive
|
|
* metaslab to activate. If it can't find a suitable one, it will steal
|
|
* a primary or secondary metaslab from another allocator.
|
|
*/
|
|
if (sort1 < sort2)
|
|
return (-1);
|
|
if (sort1 > sort2)
|
|
return (1);
|
|
|
|
int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
|
|
|
|
return (TREE_CMP(m1->ms_start, m2->ms_start));
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab groups
|
|
* ==========================================================================
|
|
*/
|
|
/*
|
|
* Update the allocatable flag and the metaslab group's capacity.
|
|
* The allocatable flag is set to true if the capacity is below
|
|
* the zfs_mg_noalloc_threshold or has a fragmentation value that is
|
|
* greater than zfs_mg_fragmentation_threshold. If a metaslab group
|
|
* transitions from allocatable to non-allocatable or vice versa then the
|
|
* metaslab group's class is updated to reflect the transition.
|
|
*/
|
|
static void
|
|
metaslab_group_alloc_update(metaslab_group_t *mg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
boolean_t was_allocatable;
|
|
boolean_t was_initialized;
|
|
|
|
ASSERT(vd == vd->vdev_top);
|
|
ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
|
|
SCL_ALLOC);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
was_allocatable = mg->mg_allocatable;
|
|
was_initialized = mg->mg_initialized;
|
|
|
|
mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
|
|
(vs->vs_space + 1);
|
|
|
|
mutex_enter(&mc->mc_lock);
|
|
|
|
/*
|
|
* If the metaslab group was just added then it won't
|
|
* have any space until we finish syncing out this txg.
|
|
* At that point we will consider it initialized and available
|
|
* for allocations. We also don't consider non-activated
|
|
* metaslab groups (e.g. vdevs that are in the middle of being removed)
|
|
* to be initialized, because they can't be used for allocation.
|
|
*/
|
|
mg->mg_initialized = metaslab_group_initialized(mg);
|
|
if (!was_initialized && mg->mg_initialized) {
|
|
mc->mc_groups++;
|
|
} else if (was_initialized && !mg->mg_initialized) {
|
|
ASSERT3U(mc->mc_groups, >, 0);
|
|
mc->mc_groups--;
|
|
}
|
|
if (mg->mg_initialized)
|
|
mg->mg_no_free_space = B_FALSE;
|
|
|
|
/*
|
|
* A metaslab group is considered allocatable if it has plenty
|
|
* of free space or is not heavily fragmented. We only take
|
|
* fragmentation into account if the metaslab group has a valid
|
|
* fragmentation metric (i.e. a value between 0 and 100).
|
|
*/
|
|
mg->mg_allocatable = (mg->mg_activation_count > 0 &&
|
|
mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
|
|
(mg->mg_fragmentation == ZFS_FRAG_INVALID ||
|
|
mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
|
|
|
|
/*
|
|
* The mc_alloc_groups maintains a count of the number of
|
|
* groups in this metaslab class that are still above the
|
|
* zfs_mg_noalloc_threshold. This is used by the allocating
|
|
* threads to determine if they should avoid allocations to
|
|
* a given group. The allocator will avoid allocations to a group
|
|
* if that group has reached or is below the zfs_mg_noalloc_threshold
|
|
* and there are still other groups that are above the threshold.
|
|
* When a group transitions from allocatable to non-allocatable or
|
|
* vice versa we update the metaslab class to reflect that change.
|
|
* When the mc_alloc_groups value drops to 0 that means that all
|
|
* groups have reached the zfs_mg_noalloc_threshold making all groups
|
|
* eligible for allocations. This effectively means that all devices
|
|
* are balanced again.
|
|
*/
|
|
if (was_allocatable && !mg->mg_allocatable)
|
|
mc->mc_alloc_groups--;
|
|
else if (!was_allocatable && mg->mg_allocatable)
|
|
mc->mc_alloc_groups++;
|
|
mutex_exit(&mc->mc_lock);
|
|
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
int
|
|
metaslab_sort_by_flushed(const void *va, const void *vb)
|
|
{
|
|
const metaslab_t *a = va;
|
|
const metaslab_t *b = vb;
|
|
|
|
int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
|
|
uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
|
|
cmp = TREE_CMP(a_vdev_id, b_vdev_id);
|
|
if (cmp)
|
|
return (cmp);
|
|
|
|
return (TREE_CMP(a->ms_id, b->ms_id));
|
|
}
|
|
|
|
metaslab_group_t *
|
|
metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
|
|
{
|
|
metaslab_group_t *mg;
|
|
|
|
mg = kmem_zalloc(offsetof(metaslab_group_t,
|
|
mg_allocator[allocators]), KM_SLEEP);
|
|
mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
|
|
avl_create(&mg->mg_metaslab_tree, metaslab_compare,
|
|
sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
|
|
mg->mg_vd = vd;
|
|
mg->mg_class = mc;
|
|
mg->mg_activation_count = 0;
|
|
mg->mg_initialized = B_FALSE;
|
|
mg->mg_no_free_space = B_TRUE;
|
|
mg->mg_allocators = allocators;
|
|
|
|
for (int i = 0; i < allocators; i++) {
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
|
|
zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
|
|
}
|
|
|
|
return (mg);
|
|
}
|
|
|
|
void
|
|
metaslab_group_destroy(metaslab_group_t *mg)
|
|
{
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
/*
|
|
* We may have gone below zero with the activation count
|
|
* either because we never activated in the first place or
|
|
* because we're done, and possibly removing the vdev.
|
|
*/
|
|
ASSERT(mg->mg_activation_count <= 0);
|
|
|
|
avl_destroy(&mg->mg_metaslab_tree);
|
|
mutex_destroy(&mg->mg_lock);
|
|
mutex_destroy(&mg->mg_ms_disabled_lock);
|
|
cv_destroy(&mg->mg_ms_disabled_cv);
|
|
|
|
for (int i = 0; i < mg->mg_allocators; i++) {
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
|
|
zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
|
|
}
|
|
kmem_free(mg, offsetof(metaslab_group_t,
|
|
mg_allocator[mg->mg_allocators]));
|
|
}
|
|
|
|
void
|
|
metaslab_group_activate(metaslab_group_t *mg)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
spa_t *spa = mc->mc_spa;
|
|
metaslab_group_t *mgprev, *mgnext;
|
|
|
|
ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
|
|
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
ASSERT(mg->mg_activation_count <= 0);
|
|
|
|
if (++mg->mg_activation_count <= 0)
|
|
return;
|
|
|
|
mg->mg_aliquot = metaslab_aliquot * MAX(1,
|
|
vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
|
|
metaslab_group_alloc_update(mg);
|
|
|
|
if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
|
|
mg->mg_prev = mg;
|
|
mg->mg_next = mg;
|
|
} else {
|
|
mgnext = mgprev->mg_next;
|
|
mg->mg_prev = mgprev;
|
|
mg->mg_next = mgnext;
|
|
mgprev->mg_next = mg;
|
|
mgnext->mg_prev = mg;
|
|
}
|
|
for (int i = 0; i < spa->spa_alloc_count; i++) {
|
|
mc->mc_allocator[i].mca_rotor = mg;
|
|
mg = mg->mg_next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Passivate a metaslab group and remove it from the allocation rotor.
|
|
* Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
|
|
* a metaslab group. This function will momentarily drop spa_config_locks
|
|
* that are lower than the SCL_ALLOC lock (see comment below).
|
|
*/
|
|
void
|
|
metaslab_group_passivate(metaslab_group_t *mg)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
spa_t *spa = mc->mc_spa;
|
|
metaslab_group_t *mgprev, *mgnext;
|
|
int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
|
|
|
|
ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
|
|
(SCL_ALLOC | SCL_ZIO));
|
|
|
|
if (--mg->mg_activation_count != 0) {
|
|
for (int i = 0; i < spa->spa_alloc_count; i++)
|
|
ASSERT(mc->mc_allocator[i].mca_rotor != mg);
|
|
ASSERT(mg->mg_prev == NULL);
|
|
ASSERT(mg->mg_next == NULL);
|
|
ASSERT(mg->mg_activation_count < 0);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The spa_config_lock is an array of rwlocks, ordered as
|
|
* follows (from highest to lowest):
|
|
* SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
|
|
* SCL_ZIO > SCL_FREE > SCL_VDEV
|
|
* (For more information about the spa_config_lock see spa_misc.c)
|
|
* The higher the lock, the broader its coverage. When we passivate
|
|
* a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
|
|
* config locks. However, the metaslab group's taskq might be trying
|
|
* to preload metaslabs so we must drop the SCL_ZIO lock and any
|
|
* lower locks to allow the I/O to complete. At a minimum,
|
|
* we continue to hold the SCL_ALLOC lock, which prevents any future
|
|
* allocations from taking place and any changes to the vdev tree.
|
|
*/
|
|
spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
|
|
taskq_wait_outstanding(spa->spa_metaslab_taskq, 0);
|
|
spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
|
|
metaslab_group_alloc_update(mg);
|
|
for (int i = 0; i < mg->mg_allocators; i++) {
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
|
|
metaslab_t *msp = mga->mga_primary;
|
|
if (msp != NULL) {
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_passivate(msp,
|
|
metaslab_weight_from_range_tree(msp));
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
msp = mga->mga_secondary;
|
|
if (msp != NULL) {
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_passivate(msp,
|
|
metaslab_weight_from_range_tree(msp));
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
}
|
|
|
|
mgprev = mg->mg_prev;
|
|
mgnext = mg->mg_next;
|
|
|
|
if (mg == mgnext) {
|
|
mgnext = NULL;
|
|
} else {
|
|
mgprev->mg_next = mgnext;
|
|
mgnext->mg_prev = mgprev;
|
|
}
|
|
for (int i = 0; i < spa->spa_alloc_count; i++) {
|
|
if (mc->mc_allocator[i].mca_rotor == mg)
|
|
mc->mc_allocator[i].mca_rotor = mgnext;
|
|
}
|
|
|
|
mg->mg_prev = NULL;
|
|
mg->mg_next = NULL;
|
|
}
|
|
|
|
boolean_t
|
|
metaslab_group_initialized(metaslab_group_t *mg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
|
|
return (vs->vs_space != 0 && mg->mg_activation_count > 0);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_group_get_space(metaslab_group_t *mg)
|
|
{
|
|
/*
|
|
* Note that the number of nodes in mg_metaslab_tree may be one less
|
|
* than vdev_ms_count, due to the embedded log metaslab.
|
|
*/
|
|
mutex_enter(&mg->mg_lock);
|
|
uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
|
|
mutex_exit(&mg->mg_lock);
|
|
return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
|
|
}
|
|
|
|
void
|
|
metaslab_group_histogram_verify(metaslab_group_t *mg)
|
|
{
|
|
uint64_t *mg_hist;
|
|
avl_tree_t *t = &mg->mg_metaslab_tree;
|
|
uint64_t ashift = mg->mg_vd->vdev_ashift;
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
|
|
return;
|
|
|
|
mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
|
|
KM_SLEEP);
|
|
|
|
ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
|
|
SPACE_MAP_HISTOGRAM_SIZE + ashift);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
for (metaslab_t *msp = avl_first(t);
|
|
msp != NULL; msp = AVL_NEXT(t, msp)) {
|
|
VERIFY3P(msp->ms_group, ==, mg);
|
|
/* skip if not active */
|
|
if (msp->ms_sm == NULL)
|
|
continue;
|
|
|
|
for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
mg_hist[i + ashift] +=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
|
|
VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
|
|
|
|
mutex_exit(&mg->mg_lock);
|
|
|
|
kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
uint64_t ashift = mg->mg_vd->vdev_ashift;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
if (msp->ms_sm == NULL)
|
|
return;
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
mutex_enter(&mc->mc_lock);
|
|
for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
IMPLY(mg == mg->mg_vd->vdev_log_mg,
|
|
mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
|
|
mg->mg_histogram[i + ashift] +=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
mc->mc_histogram[i + ashift] +=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
}
|
|
mutex_exit(&mc->mc_lock);
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
uint64_t ashift = mg->mg_vd->vdev_ashift;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
if (msp->ms_sm == NULL)
|
|
return;
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
mutex_enter(&mc->mc_lock);
|
|
for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
ASSERT3U(mg->mg_histogram[i + ashift], >=,
|
|
msp->ms_sm->sm_phys->smp_histogram[i]);
|
|
ASSERT3U(mc->mc_histogram[i + ashift], >=,
|
|
msp->ms_sm->sm_phys->smp_histogram[i]);
|
|
IMPLY(mg == mg->mg_vd->vdev_log_mg,
|
|
mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
|
|
|
|
mg->mg_histogram[i + ashift] -=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
mc->mc_histogram[i + ashift] -=
|
|
msp->ms_sm->sm_phys->smp_histogram[i];
|
|
}
|
|
mutex_exit(&mc->mc_lock);
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
ASSERT(msp->ms_group == NULL);
|
|
mutex_enter(&mg->mg_lock);
|
|
msp->ms_group = mg;
|
|
msp->ms_weight = 0;
|
|
avl_add(&mg->mg_metaslab_tree, msp);
|
|
mutex_exit(&mg->mg_lock);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_group_histogram_add(mg, msp);
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
|
|
{
|
|
mutex_enter(&msp->ms_lock);
|
|
metaslab_group_histogram_remove(mg, msp);
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
ASSERT(msp->ms_group == mg);
|
|
avl_remove(&mg->mg_metaslab_tree, msp);
|
|
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
multilist_sublist_t *mls =
|
|
multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
|
|
if (multilist_link_active(&msp->ms_class_txg_node))
|
|
multilist_sublist_remove(mls, msp);
|
|
multilist_sublist_unlock(mls);
|
|
|
|
msp->ms_group = NULL;
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(MUTEX_HELD(&mg->mg_lock));
|
|
ASSERT(msp->ms_group == mg);
|
|
|
|
avl_remove(&mg->mg_metaslab_tree, msp);
|
|
msp->ms_weight = weight;
|
|
avl_add(&mg->mg_metaslab_tree, msp);
|
|
|
|
}
|
|
|
|
static void
|
|
metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
|
|
{
|
|
/*
|
|
* Although in principle the weight can be any value, in
|
|
* practice we do not use values in the range [1, 511].
|
|
*/
|
|
ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
metaslab_group_sort_impl(mg, msp, weight);
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
/*
|
|
* Calculate the fragmentation for a given metaslab group. We can use
|
|
* a simple average here since all metaslabs within the group must have
|
|
* the same size. The return value will be a value between 0 and 100
|
|
* (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
|
|
* group have a fragmentation metric.
|
|
*/
|
|
uint64_t
|
|
metaslab_group_fragmentation(metaslab_group_t *mg)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
uint64_t fragmentation = 0;
|
|
uint64_t valid_ms = 0;
|
|
|
|
for (int m = 0; m < vd->vdev_ms_count; m++) {
|
|
metaslab_t *msp = vd->vdev_ms[m];
|
|
|
|
if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
|
|
continue;
|
|
if (msp->ms_group != mg)
|
|
continue;
|
|
|
|
valid_ms++;
|
|
fragmentation += msp->ms_fragmentation;
|
|
}
|
|
|
|
if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
|
|
return (ZFS_FRAG_INVALID);
|
|
|
|
fragmentation /= valid_ms;
|
|
ASSERT3U(fragmentation, <=, 100);
|
|
return (fragmentation);
|
|
}
|
|
|
|
/*
|
|
* Determine if a given metaslab group should skip allocations. A metaslab
|
|
* group should avoid allocations if its free capacity is less than the
|
|
* zfs_mg_noalloc_threshold or its fragmentation metric is greater than
|
|
* zfs_mg_fragmentation_threshold and there is at least one metaslab group
|
|
* that can still handle allocations. If the allocation throttle is enabled
|
|
* then we skip allocations to devices that have reached their maximum
|
|
* allocation queue depth unless the selected metaslab group is the only
|
|
* eligible group remaining.
|
|
*/
|
|
static boolean_t
|
|
metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
|
|
int flags, uint64_t psize, int allocator, int d)
|
|
{
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
metaslab_class_t *mc = mg->mg_class;
|
|
|
|
/*
|
|
* We can only consider skipping this metaslab group if it's
|
|
* in the normal metaslab class and there are other metaslab
|
|
* groups to select from. Otherwise, we always consider it eligible
|
|
* for allocations.
|
|
*/
|
|
if ((mc != spa_normal_class(spa) &&
|
|
mc != spa_special_class(spa) &&
|
|
mc != spa_dedup_class(spa)) ||
|
|
mc->mc_groups <= 1)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* If the metaslab group's mg_allocatable flag is set (see comments
|
|
* in metaslab_group_alloc_update() for more information) and
|
|
* the allocation throttle is disabled then allow allocations to this
|
|
* device. However, if the allocation throttle is enabled then
|
|
* check if we have reached our allocation limit (mga_alloc_queue_depth)
|
|
* to determine if we should allow allocations to this metaslab group.
|
|
* If all metaslab groups are no longer considered allocatable
|
|
* (mc_alloc_groups == 0) or we're trying to allocate the smallest
|
|
* gang block size then we allow allocations on this metaslab group
|
|
* regardless of the mg_allocatable or throttle settings.
|
|
*/
|
|
if (mg->mg_allocatable) {
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
int64_t qdepth;
|
|
uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
|
|
|
|
if (!mc->mc_alloc_throttle_enabled)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* If this metaslab group does not have any free space, then
|
|
* there is no point in looking further.
|
|
*/
|
|
if (mg->mg_no_free_space)
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Some allocations (e.g., those coming from device removal
|
|
* where the * allocations are not even counted in the
|
|
* metaslab * allocation queues) are allowed to bypass
|
|
* the throttle.
|
|
*/
|
|
if (flags & METASLAB_DONT_THROTTLE)
|
|
return (B_TRUE);
|
|
|
|
/*
|
|
* Relax allocation throttling for ditto blocks. Due to
|
|
* random imbalances in allocation it tends to push copies
|
|
* to one vdev, that looks a bit better at the moment.
|
|
*/
|
|
qmax = qmax * (4 + d) / 4;
|
|
|
|
qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
|
|
|
|
/*
|
|
* If this metaslab group is below its qmax or it's
|
|
* the only allocatable metaslab group, then attempt
|
|
* to allocate from it.
|
|
*/
|
|
if (qdepth < qmax || mc->mc_alloc_groups == 1)
|
|
return (B_TRUE);
|
|
ASSERT3U(mc->mc_alloc_groups, >, 1);
|
|
|
|
/*
|
|
* Since this metaslab group is at or over its qmax, we
|
|
* need to determine if there are metaslab groups after this
|
|
* one that might be able to handle this allocation. This is
|
|
* racy since we can't hold the locks for all metaslab
|
|
* groups at the same time when we make this check.
|
|
*/
|
|
for (metaslab_group_t *mgp = mg->mg_next;
|
|
mgp != rotor; mgp = mgp->mg_next) {
|
|
metaslab_group_allocator_t *mgap =
|
|
&mgp->mg_allocator[allocator];
|
|
qmax = mgap->mga_cur_max_alloc_queue_depth;
|
|
qmax = qmax * (4 + d) / 4;
|
|
qdepth =
|
|
zfs_refcount_count(&mgap->mga_alloc_queue_depth);
|
|
|
|
/*
|
|
* If there is another metaslab group that
|
|
* might be able to handle the allocation, then
|
|
* we return false so that we skip this group.
|
|
*/
|
|
if (qdepth < qmax && !mgp->mg_no_free_space)
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* We didn't find another group to handle the allocation
|
|
* so we can't skip this metaslab group even though
|
|
* we are at or over our qmax.
|
|
*/
|
|
return (B_TRUE);
|
|
|
|
} else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
|
|
return (B_TRUE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Range tree callbacks
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Comparison function for the private size-ordered tree using 32-bit
|
|
* ranges. Tree is sorted by size, larger sizes at the end of the tree.
|
|
*/
|
|
__attribute__((always_inline)) inline
|
|
static int
|
|
metaslab_rangesize32_compare(const void *x1, const void *x2)
|
|
{
|
|
const range_seg32_t *r1 = x1;
|
|
const range_seg32_t *r2 = x2;
|
|
|
|
uint64_t rs_size1 = r1->rs_end - r1->rs_start;
|
|
uint64_t rs_size2 = r2->rs_end - r2->rs_start;
|
|
|
|
int cmp = TREE_CMP(rs_size1, rs_size2);
|
|
|
|
return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
|
|
}
|
|
|
|
/*
|
|
* Comparison function for the private size-ordered tree using 64-bit
|
|
* ranges. Tree is sorted by size, larger sizes at the end of the tree.
|
|
*/
|
|
__attribute__((always_inline)) inline
|
|
static int
|
|
metaslab_rangesize64_compare(const void *x1, const void *x2)
|
|
{
|
|
const range_seg64_t *r1 = x1;
|
|
const range_seg64_t *r2 = x2;
|
|
|
|
uint64_t rs_size1 = r1->rs_end - r1->rs_start;
|
|
uint64_t rs_size2 = r2->rs_end - r2->rs_start;
|
|
|
|
int cmp = TREE_CMP(rs_size1, rs_size2);
|
|
|
|
return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
|
|
}
|
|
|
|
typedef struct metaslab_rt_arg {
|
|
zfs_btree_t *mra_bt;
|
|
uint32_t mra_floor_shift;
|
|
} metaslab_rt_arg_t;
|
|
|
|
struct mssa_arg {
|
|
range_tree_t *rt;
|
|
metaslab_rt_arg_t *mra;
|
|
};
|
|
|
|
static void
|
|
metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
|
|
{
|
|
struct mssa_arg *mssap = arg;
|
|
range_tree_t *rt = mssap->rt;
|
|
metaslab_rt_arg_t *mrap = mssap->mra;
|
|
range_seg_max_t seg = {0};
|
|
rs_set_start(&seg, rt, start);
|
|
rs_set_end(&seg, rt, start + size);
|
|
metaslab_rt_add(rt, &seg, mrap);
|
|
}
|
|
|
|
static void
|
|
metaslab_size_tree_full_load(range_tree_t *rt)
|
|
{
|
|
metaslab_rt_arg_t *mrap = rt->rt_arg;
|
|
METASLABSTAT_BUMP(metaslabstat_reload_tree);
|
|
ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
|
|
mrap->mra_floor_shift = 0;
|
|
struct mssa_arg arg = {0};
|
|
arg.rt = rt;
|
|
arg.mra = mrap;
|
|
range_tree_walk(rt, metaslab_size_sorted_add, &arg);
|
|
}
|
|
|
|
|
|
ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
|
|
range_seg32_t, metaslab_rangesize32_compare)
|
|
|
|
ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
|
|
range_seg64_t, metaslab_rangesize64_compare)
|
|
|
|
/*
|
|
* Create any block allocator specific components. The current allocators
|
|
* rely on using both a size-ordered range_tree_t and an array of uint64_t's.
|
|
*/
|
|
static void
|
|
metaslab_rt_create(range_tree_t *rt, void *arg)
|
|
{
|
|
metaslab_rt_arg_t *mrap = arg;
|
|
zfs_btree_t *size_tree = mrap->mra_bt;
|
|
|
|
size_t size;
|
|
int (*compare) (const void *, const void *);
|
|
bt_find_in_buf_f bt_find;
|
|
switch (rt->rt_type) {
|
|
case RANGE_SEG32:
|
|
size = sizeof (range_seg32_t);
|
|
compare = metaslab_rangesize32_compare;
|
|
bt_find = metaslab_rt_find_rangesize32_in_buf;
|
|
break;
|
|
case RANGE_SEG64:
|
|
size = sizeof (range_seg64_t);
|
|
compare = metaslab_rangesize64_compare;
|
|
bt_find = metaslab_rt_find_rangesize64_in_buf;
|
|
break;
|
|
default:
|
|
panic("Invalid range seg type %d", rt->rt_type);
|
|
}
|
|
zfs_btree_create(size_tree, compare, bt_find, size);
|
|
mrap->mra_floor_shift = metaslab_by_size_min_shift;
|
|
}
|
|
|
|
static void
|
|
metaslab_rt_destroy(range_tree_t *rt, void *arg)
|
|
{
|
|
(void) rt;
|
|
metaslab_rt_arg_t *mrap = arg;
|
|
zfs_btree_t *size_tree = mrap->mra_bt;
|
|
|
|
zfs_btree_destroy(size_tree);
|
|
kmem_free(mrap, sizeof (*mrap));
|
|
}
|
|
|
|
static void
|
|
metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
|
|
{
|
|
metaslab_rt_arg_t *mrap = arg;
|
|
zfs_btree_t *size_tree = mrap->mra_bt;
|
|
|
|
if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
|
|
(1ULL << mrap->mra_floor_shift))
|
|
return;
|
|
|
|
zfs_btree_add(size_tree, rs);
|
|
}
|
|
|
|
static void
|
|
metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
|
|
{
|
|
metaslab_rt_arg_t *mrap = arg;
|
|
zfs_btree_t *size_tree = mrap->mra_bt;
|
|
|
|
if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
|
|
mrap->mra_floor_shift))
|
|
return;
|
|
|
|
zfs_btree_remove(size_tree, rs);
|
|
}
|
|
|
|
static void
|
|
metaslab_rt_vacate(range_tree_t *rt, void *arg)
|
|
{
|
|
metaslab_rt_arg_t *mrap = arg;
|
|
zfs_btree_t *size_tree = mrap->mra_bt;
|
|
zfs_btree_clear(size_tree);
|
|
zfs_btree_destroy(size_tree);
|
|
|
|
metaslab_rt_create(rt, arg);
|
|
}
|
|
|
|
static const range_tree_ops_t metaslab_rt_ops = {
|
|
.rtop_create = metaslab_rt_create,
|
|
.rtop_destroy = metaslab_rt_destroy,
|
|
.rtop_add = metaslab_rt_add,
|
|
.rtop_remove = metaslab_rt_remove,
|
|
.rtop_vacate = metaslab_rt_vacate
|
|
};
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Common allocator routines
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Return the maximum contiguous segment within the metaslab.
|
|
*/
|
|
uint64_t
|
|
metaslab_largest_allocatable(metaslab_t *msp)
|
|
{
|
|
zfs_btree_t *t = &msp->ms_allocatable_by_size;
|
|
range_seg_t *rs;
|
|
|
|
if (t == NULL)
|
|
return (0);
|
|
if (zfs_btree_numnodes(t) == 0)
|
|
metaslab_size_tree_full_load(msp->ms_allocatable);
|
|
|
|
rs = zfs_btree_last(t, NULL);
|
|
if (rs == NULL)
|
|
return (0);
|
|
|
|
return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
|
|
msp->ms_allocatable));
|
|
}
|
|
|
|
/*
|
|
* Return the maximum contiguous segment within the unflushed frees of this
|
|
* metaslab.
|
|
*/
|
|
static uint64_t
|
|
metaslab_largest_unflushed_free(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
if (msp->ms_unflushed_frees == NULL)
|
|
return (0);
|
|
|
|
if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
|
|
metaslab_size_tree_full_load(msp->ms_unflushed_frees);
|
|
range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
|
|
NULL);
|
|
if (rs == NULL)
|
|
return (0);
|
|
|
|
/*
|
|
* When a range is freed from the metaslab, that range is added to
|
|
* both the unflushed frees and the deferred frees. While the block
|
|
* will eventually be usable, if the metaslab were loaded the range
|
|
* would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
|
|
* txgs had passed. As a result, when attempting to estimate an upper
|
|
* bound for the largest currently-usable free segment in the
|
|
* metaslab, we need to not consider any ranges currently in the defer
|
|
* trees. This algorithm approximates the largest available chunk in
|
|
* the largest range in the unflushed_frees tree by taking the first
|
|
* chunk. While this may be a poor estimate, it should only remain so
|
|
* briefly and should eventually self-correct as frees are no longer
|
|
* deferred. Similar logic applies to the ms_freed tree. See
|
|
* metaslab_load() for more details.
|
|
*
|
|
* There are two primary sources of inaccuracy in this estimate. Both
|
|
* are tolerated for performance reasons. The first source is that we
|
|
* only check the largest segment for overlaps. Smaller segments may
|
|
* have more favorable overlaps with the other trees, resulting in
|
|
* larger usable chunks. Second, we only look at the first chunk in
|
|
* the largest segment; there may be other usable chunks in the
|
|
* largest segment, but we ignore them.
|
|
*/
|
|
uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
|
|
uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
uint64_t start = 0;
|
|
uint64_t size = 0;
|
|
boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
|
|
rsize, &start, &size);
|
|
if (found) {
|
|
if (rstart == start)
|
|
return (0);
|
|
rsize = start - rstart;
|
|
}
|
|
}
|
|
|
|
uint64_t start = 0;
|
|
uint64_t size = 0;
|
|
boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
|
|
rsize, &start, &size);
|
|
if (found)
|
|
rsize = start - rstart;
|
|
|
|
return (rsize);
|
|
}
|
|
|
|
static range_seg_t *
|
|
metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
|
|
uint64_t size, zfs_btree_index_t *where)
|
|
{
|
|
range_seg_t *rs;
|
|
range_seg_max_t rsearch;
|
|
|
|
rs_set_start(&rsearch, rt, start);
|
|
rs_set_end(&rsearch, rt, start + size);
|
|
|
|
rs = zfs_btree_find(t, &rsearch, where);
|
|
if (rs == NULL) {
|
|
rs = zfs_btree_next(t, where, where);
|
|
}
|
|
|
|
return (rs);
|
|
}
|
|
|
|
/*
|
|
* This is a helper function that can be used by the allocator to find a
|
|
* suitable block to allocate. This will search the specified B-tree looking
|
|
* for a block that matches the specified criteria.
|
|
*/
|
|
static uint64_t
|
|
metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
|
|
uint64_t max_search)
|
|
{
|
|
if (*cursor == 0)
|
|
*cursor = rt->rt_start;
|
|
zfs_btree_t *bt = &rt->rt_root;
|
|
zfs_btree_index_t where;
|
|
range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
|
|
uint64_t first_found;
|
|
int count_searched = 0;
|
|
|
|
if (rs != NULL)
|
|
first_found = rs_get_start(rs, rt);
|
|
|
|
while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
|
|
max_search || count_searched < metaslab_min_search_count)) {
|
|
uint64_t offset = rs_get_start(rs, rt);
|
|
if (offset + size <= rs_get_end(rs, rt)) {
|
|
*cursor = offset + size;
|
|
return (offset);
|
|
}
|
|
rs = zfs_btree_next(bt, &where, &where);
|
|
count_searched++;
|
|
}
|
|
|
|
*cursor = 0;
|
|
return (-1ULL);
|
|
}
|
|
|
|
static uint64_t metaslab_df_alloc(metaslab_t *msp, uint64_t size);
|
|
static uint64_t metaslab_cf_alloc(metaslab_t *msp, uint64_t size);
|
|
static uint64_t metaslab_ndf_alloc(metaslab_t *msp, uint64_t size);
|
|
metaslab_ops_t *metaslab_allocator(spa_t *spa);
|
|
|
|
static metaslab_ops_t metaslab_allocators[] = {
|
|
{ "dynamic", metaslab_df_alloc },
|
|
{ "cursor", metaslab_cf_alloc },
|
|
{ "new-dynamic", metaslab_ndf_alloc },
|
|
};
|
|
|
|
static int
|
|
spa_find_allocator_byname(const char *val)
|
|
{
|
|
int a = ARRAY_SIZE(metaslab_allocators) - 1;
|
|
if (strcmp("new-dynamic", val) == 0)
|
|
return (-1); /* remove when ndf is working */
|
|
for (; a >= 0; a--) {
|
|
if (strcmp(val, metaslab_allocators[a].msop_name) == 0)
|
|
return (a);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
void
|
|
spa_set_allocator(spa_t *spa, const char *allocator)
|
|
{
|
|
int a = spa_find_allocator_byname(allocator);
|
|
if (a < 0) a = 0;
|
|
spa->spa_active_allocator = a;
|
|
zfs_dbgmsg("spa allocator: %s\n", metaslab_allocators[a].msop_name);
|
|
}
|
|
|
|
int
|
|
spa_get_allocator(spa_t *spa)
|
|
{
|
|
return (spa->spa_active_allocator);
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
int
|
|
param_set_active_allocator_common(const char *val)
|
|
{
|
|
char *p;
|
|
|
|
if (val == NULL)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if ((p = strchr(val, '\n')) != NULL)
|
|
*p = '\0';
|
|
|
|
int a = spa_find_allocator_byname(val);
|
|
if (a < 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
zfs_active_allocator = metaslab_allocators[a].msop_name;
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
metaslab_ops_t *
|
|
metaslab_allocator(spa_t *spa)
|
|
{
|
|
int allocator = spa_get_allocator(spa);
|
|
return (&metaslab_allocators[allocator]);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Dynamic Fit (df) block allocator
|
|
*
|
|
* Search for a free chunk of at least this size, starting from the last
|
|
* offset (for this alignment of block) looking for up to
|
|
* metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
|
|
* found within 16MB, then return a free chunk of exactly the requested size (or
|
|
* larger).
|
|
*
|
|
* If it seems like searching from the last offset will be unproductive, skip
|
|
* that and just return a free chunk of exactly the requested size (or larger).
|
|
* This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
|
|
* mechanism is probably not very useful and may be removed in the future.
|
|
*
|
|
* The behavior when not searching can be changed to return the largest free
|
|
* chunk, instead of a free chunk of exactly the requested size, by setting
|
|
* metaslab_df_use_largest_segment.
|
|
* ==========================================================================
|
|
*/
|
|
static uint64_t
|
|
metaslab_df_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
/*
|
|
* Find the largest power of 2 block size that evenly divides the
|
|
* requested size. This is used to try to allocate blocks with similar
|
|
* alignment from the same area of the metaslab (i.e. same cursor
|
|
* bucket) but it does not guarantee that other allocations sizes
|
|
* may exist in the same region.
|
|
*/
|
|
uint64_t align = size & -size;
|
|
uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
|
|
range_tree_t *rt = msp->ms_allocatable;
|
|
uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
|
|
uint64_t offset;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* If we're running low on space, find a segment based on size,
|
|
* rather than iterating based on offset.
|
|
*/
|
|
if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
|
|
free_pct < metaslab_df_free_pct) {
|
|
offset = -1;
|
|
} else {
|
|
offset = metaslab_block_picker(rt,
|
|
cursor, size, metaslab_df_max_search);
|
|
}
|
|
|
|
if (offset == -1) {
|
|
range_seg_t *rs;
|
|
if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
|
|
metaslab_size_tree_full_load(msp->ms_allocatable);
|
|
|
|
if (metaslab_df_use_largest_segment) {
|
|
/* use largest free segment */
|
|
rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
|
|
} else {
|
|
zfs_btree_index_t where;
|
|
/* use segment of this size, or next largest */
|
|
rs = metaslab_block_find(&msp->ms_allocatable_by_size,
|
|
rt, msp->ms_start, size, &where);
|
|
}
|
|
if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
|
|
rt)) {
|
|
offset = rs_get_start(rs, rt);
|
|
*cursor = offset + size;
|
|
}
|
|
}
|
|
|
|
return (offset);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Cursor fit block allocator -
|
|
* Select the largest region in the metaslab, set the cursor to the beginning
|
|
* of the range and the cursor_end to the end of the range. As allocations
|
|
* are made advance the cursor. Continue allocating from the cursor until
|
|
* the range is exhausted and then find a new range.
|
|
* ==========================================================================
|
|
*/
|
|
static uint64_t
|
|
metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
range_tree_t *rt = msp->ms_allocatable;
|
|
zfs_btree_t *t = &msp->ms_allocatable_by_size;
|
|
uint64_t *cursor = &msp->ms_lbas[0];
|
|
uint64_t *cursor_end = &msp->ms_lbas[1];
|
|
uint64_t offset = 0;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
ASSERT3U(*cursor_end, >=, *cursor);
|
|
|
|
if ((*cursor + size) > *cursor_end) {
|
|
range_seg_t *rs;
|
|
|
|
if (zfs_btree_numnodes(t) == 0)
|
|
metaslab_size_tree_full_load(msp->ms_allocatable);
|
|
rs = zfs_btree_last(t, NULL);
|
|
if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
|
|
size)
|
|
return (-1ULL);
|
|
|
|
*cursor = rs_get_start(rs, rt);
|
|
*cursor_end = rs_get_end(rs, rt);
|
|
}
|
|
|
|
offset = *cursor;
|
|
*cursor += size;
|
|
|
|
return (offset);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* New dynamic fit allocator -
|
|
* Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
|
|
* contiguous blocks. If no region is found then just use the largest segment
|
|
* that remains.
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
|
|
* to request from the allocator.
|
|
*/
|
|
uint64_t metaslab_ndf_clump_shift = 4;
|
|
|
|
static uint64_t
|
|
metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
|
|
{
|
|
zfs_btree_t *t = &msp->ms_allocatable->rt_root;
|
|
range_tree_t *rt = msp->ms_allocatable;
|
|
zfs_btree_index_t where;
|
|
range_seg_t *rs;
|
|
range_seg_max_t rsearch;
|
|
uint64_t hbit = highbit64(size);
|
|
uint64_t *cursor = &msp->ms_lbas[hbit - 1];
|
|
uint64_t max_size = metaslab_largest_allocatable(msp);
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
if (max_size < size)
|
|
return (-1ULL);
|
|
|
|
rs_set_start(&rsearch, rt, *cursor);
|
|
rs_set_end(&rsearch, rt, *cursor + size);
|
|
|
|
rs = zfs_btree_find(t, &rsearch, &where);
|
|
if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
|
|
t = &msp->ms_allocatable_by_size;
|
|
|
|
rs_set_start(&rsearch, rt, 0);
|
|
rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
|
|
metaslab_ndf_clump_shift)));
|
|
|
|
rs = zfs_btree_find(t, &rsearch, &where);
|
|
if (rs == NULL)
|
|
rs = zfs_btree_next(t, &where, &where);
|
|
ASSERT(rs != NULL);
|
|
}
|
|
|
|
if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
|
|
*cursor = rs_get_start(rs, rt) + size;
|
|
return (rs_get_start(rs, rt));
|
|
}
|
|
return (-1ULL);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslabs
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Wait for any in-progress metaslab loads to complete.
|
|
*/
|
|
static void
|
|
metaslab_load_wait(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
while (msp->ms_loading) {
|
|
ASSERT(!msp->ms_loaded);
|
|
cv_wait(&msp->ms_load_cv, &msp->ms_lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wait for any in-progress flushing to complete.
|
|
*/
|
|
static void
|
|
metaslab_flush_wait(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
while (msp->ms_flushing)
|
|
cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
|
|
}
|
|
|
|
static unsigned int
|
|
metaslab_idx_func(multilist_t *ml, void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
|
|
/*
|
|
* ms_id values are allocated sequentially, so full 64bit
|
|
* division would be a waste of time, so limit it to 32 bits.
|
|
*/
|
|
return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_allocated_space(metaslab_t *msp)
|
|
{
|
|
return (msp->ms_allocated_space);
|
|
}
|
|
|
|
/*
|
|
* Verify that the space accounting on disk matches the in-core range_trees.
|
|
*/
|
|
static void
|
|
metaslab_verify_space(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
uint64_t allocating = 0;
|
|
uint64_t sm_free_space, msp_free_space;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(!msp->ms_condensing);
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
|
|
return;
|
|
|
|
/*
|
|
* We can only verify the metaslab space when we're called
|
|
* from syncing context with a loaded metaslab that has an
|
|
* allocated space map. Calling this in non-syncing context
|
|
* does not provide a consistent view of the metaslab since
|
|
* we're performing allocations in the future.
|
|
*/
|
|
if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
|
|
!msp->ms_loaded)
|
|
return;
|
|
|
|
/*
|
|
* Even though the smp_alloc field can get negative,
|
|
* when it comes to a metaslab's space map, that should
|
|
* never be the case.
|
|
*/
|
|
ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
|
|
|
|
ASSERT3U(space_map_allocated(msp->ms_sm), >=,
|
|
range_tree_space(msp->ms_unflushed_frees));
|
|
|
|
ASSERT3U(metaslab_allocated_space(msp), ==,
|
|
space_map_allocated(msp->ms_sm) +
|
|
range_tree_space(msp->ms_unflushed_allocs) -
|
|
range_tree_space(msp->ms_unflushed_frees));
|
|
|
|
sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
|
|
|
|
/*
|
|
* Account for future allocations since we would have
|
|
* already deducted that space from the ms_allocatable.
|
|
*/
|
|
for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
|
|
allocating +=
|
|
range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
|
|
}
|
|
ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
|
|
msp->ms_allocating_total);
|
|
|
|
ASSERT3U(msp->ms_deferspace, ==,
|
|
range_tree_space(msp->ms_defer[0]) +
|
|
range_tree_space(msp->ms_defer[1]));
|
|
|
|
msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
|
|
msp->ms_deferspace + range_tree_space(msp->ms_freed);
|
|
|
|
VERIFY3U(sm_free_space, ==, msp_free_space);
|
|
}
|
|
|
|
static void
|
|
metaslab_aux_histograms_clear(metaslab_t *msp)
|
|
{
|
|
/*
|
|
* Auxiliary histograms are only cleared when resetting them,
|
|
* which can only happen while the metaslab is loaded.
|
|
*/
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++)
|
|
memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
|
|
}
|
|
|
|
static void
|
|
metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
|
|
range_tree_t *rt)
|
|
{
|
|
/*
|
|
* This is modeled after space_map_histogram_add(), so refer to that
|
|
* function for implementation details. We want this to work like
|
|
* the space map histogram, and not the range tree histogram, as we
|
|
* are essentially constructing a delta that will be later subtracted
|
|
* from the space map histogram.
|
|
*/
|
|
int idx = 0;
|
|
for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
|
|
ASSERT3U(i, >=, idx + shift);
|
|
histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
|
|
|
|
if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
|
|
ASSERT3U(idx + shift, ==, i);
|
|
idx++;
|
|
ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called at every sync pass that the metaslab gets synced.
|
|
*
|
|
* The reason is that we want our auxiliary histograms to be updated
|
|
* wherever the metaslab's space map histogram is updated. This way
|
|
* we stay consistent on which parts of the metaslab space map's
|
|
* histogram are currently not available for allocations (e.g because
|
|
* they are in the defer, freed, and freeing trees).
|
|
*/
|
|
static void
|
|
metaslab_aux_histograms_update(metaslab_t *msp)
|
|
{
|
|
space_map_t *sm = msp->ms_sm;
|
|
ASSERT(sm != NULL);
|
|
|
|
/*
|
|
* This is similar to the metaslab's space map histogram updates
|
|
* that take place in metaslab_sync(). The only difference is that
|
|
* we only care about segments that haven't made it into the
|
|
* ms_allocatable tree yet.
|
|
*/
|
|
if (msp->ms_loaded) {
|
|
metaslab_aux_histograms_clear(msp);
|
|
|
|
metaslab_aux_histogram_add(msp->ms_synchist,
|
|
sm->sm_shift, msp->ms_freed);
|
|
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
metaslab_aux_histogram_add(msp->ms_deferhist[t],
|
|
sm->sm_shift, msp->ms_defer[t]);
|
|
}
|
|
}
|
|
|
|
metaslab_aux_histogram_add(msp->ms_synchist,
|
|
sm->sm_shift, msp->ms_freeing);
|
|
}
|
|
|
|
/*
|
|
* Called every time we are done syncing (writing to) the metaslab,
|
|
* i.e. at the end of each sync pass.
|
|
* [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
|
|
*/
|
|
static void
|
|
metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
space_map_t *sm = msp->ms_sm;
|
|
|
|
if (sm == NULL) {
|
|
/*
|
|
* We came here from metaslab_init() when creating/opening a
|
|
* pool, looking at a metaslab that hasn't had any allocations
|
|
* yet.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This is similar to the actions that we take for the ms_freed
|
|
* and ms_defer trees in metaslab_sync_done().
|
|
*/
|
|
uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
|
|
if (defer_allowed) {
|
|
memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
|
|
sizeof (msp->ms_synchist));
|
|
} else {
|
|
memset(msp->ms_deferhist[hist_index], 0,
|
|
sizeof (msp->ms_deferhist[hist_index]));
|
|
}
|
|
memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
|
|
}
|
|
|
|
/*
|
|
* Ensure that the metaslab's weight and fragmentation are consistent
|
|
* with the contents of the histogram (either the range tree's histogram
|
|
* or the space map's depending whether the metaslab is loaded).
|
|
*/
|
|
static void
|
|
metaslab_verify_weight_and_frag(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
|
|
return;
|
|
|
|
/*
|
|
* We can end up here from vdev_remove_complete(), in which case we
|
|
* cannot do these assertions because we hold spa config locks and
|
|
* thus we are not allowed to read from the DMU.
|
|
*
|
|
* We check if the metaslab group has been removed and if that's
|
|
* the case we return immediately as that would mean that we are
|
|
* here from the aforementioned code path.
|
|
*/
|
|
if (msp->ms_group == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Devices being removed always return a weight of 0 and leave
|
|
* fragmentation and ms_max_size as is - there is nothing for
|
|
* us to verify here.
|
|
*/
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
if (vd->vdev_removing)
|
|
return;
|
|
|
|
/*
|
|
* If the metaslab is dirty it probably means that we've done
|
|
* some allocations or frees that have changed our histograms
|
|
* and thus the weight.
|
|
*/
|
|
for (int t = 0; t < TXG_SIZE; t++) {
|
|
if (txg_list_member(&vd->vdev_ms_list, msp, t))
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* This verification checks that our in-memory state is consistent
|
|
* with what's on disk. If the pool is read-only then there aren't
|
|
* any changes and we just have the initially-loaded state.
|
|
*/
|
|
if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
|
|
return;
|
|
|
|
/* some extra verification for in-core tree if you can */
|
|
if (msp->ms_loaded) {
|
|
range_tree_stat_verify(msp->ms_allocatable);
|
|
VERIFY(space_map_histogram_verify(msp->ms_sm,
|
|
msp->ms_allocatable));
|
|
}
|
|
|
|
uint64_t weight = msp->ms_weight;
|
|
uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
|
|
boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
|
|
uint64_t frag = msp->ms_fragmentation;
|
|
uint64_t max_segsize = msp->ms_max_size;
|
|
|
|
msp->ms_weight = 0;
|
|
msp->ms_fragmentation = 0;
|
|
|
|
/*
|
|
* This function is used for verification purposes and thus should
|
|
* not introduce any side-effects/mutations on the system's state.
|
|
*
|
|
* Regardless of whether metaslab_weight() thinks this metaslab
|
|
* should be active or not, we want to ensure that the actual weight
|
|
* (and therefore the value of ms_weight) would be the same if it
|
|
* was to be recalculated at this point.
|
|
*
|
|
* In addition we set the nodirty flag so metaslab_weight() does
|
|
* not dirty the metaslab for future TXGs (e.g. when trying to
|
|
* force condensing to upgrade the metaslab spacemaps).
|
|
*/
|
|
msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
|
|
|
|
VERIFY3U(max_segsize, ==, msp->ms_max_size);
|
|
|
|
/*
|
|
* If the weight type changed then there is no point in doing
|
|
* verification. Revert fields to their original values.
|
|
*/
|
|
if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
|
|
(!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
|
|
msp->ms_fragmentation = frag;
|
|
msp->ms_weight = weight;
|
|
return;
|
|
}
|
|
|
|
VERIFY3U(msp->ms_fragmentation, ==, frag);
|
|
VERIFY3U(msp->ms_weight, ==, weight);
|
|
}
|
|
|
|
/*
|
|
* If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
|
|
* this class that was used longest ago, and attempt to unload it. We don't
|
|
* want to spend too much time in this loop to prevent performance
|
|
* degradation, and we expect that most of the time this operation will
|
|
* succeed. Between that and the normal unloading processing during txg sync,
|
|
* we expect this to keep the metaslab memory usage under control.
|
|
*/
|
|
static void
|
|
metaslab_potentially_evict(metaslab_class_t *mc)
|
|
{
|
|
#ifdef _KERNEL
|
|
uint64_t allmem = arc_all_memory();
|
|
uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
|
|
uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
|
|
uint_t tries = 0;
|
|
for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
|
|
tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
|
|
tries++) {
|
|
unsigned int idx = multilist_get_random_index(
|
|
&mc->mc_metaslab_txg_list);
|
|
multilist_sublist_t *mls =
|
|
multilist_sublist_lock_idx(&mc->mc_metaslab_txg_list, idx);
|
|
metaslab_t *msp = multilist_sublist_head(mls);
|
|
multilist_sublist_unlock(mls);
|
|
while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
|
|
inuse * size) {
|
|
VERIFY3P(mls, ==, multilist_sublist_lock_idx(
|
|
&mc->mc_metaslab_txg_list, idx));
|
|
ASSERT3U(idx, ==,
|
|
metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
|
|
|
|
if (!multilist_link_active(&msp->ms_class_txg_node)) {
|
|
multilist_sublist_unlock(mls);
|
|
break;
|
|
}
|
|
metaslab_t *next_msp = multilist_sublist_next(mls, msp);
|
|
multilist_sublist_unlock(mls);
|
|
/*
|
|
* If the metaslab is currently loading there are two
|
|
* cases. If it's the metaslab we're evicting, we
|
|
* can't continue on or we'll panic when we attempt to
|
|
* recursively lock the mutex. If it's another
|
|
* metaslab that's loading, it can be safely skipped,
|
|
* since we know it's very new and therefore not a
|
|
* good eviction candidate. We check later once the
|
|
* lock is held that the metaslab is fully loaded
|
|
* before actually unloading it.
|
|
*/
|
|
if (msp->ms_loading) {
|
|
msp = next_msp;
|
|
inuse =
|
|
spl_kmem_cache_inuse(zfs_btree_leaf_cache);
|
|
continue;
|
|
}
|
|
/*
|
|
* We can't unload metaslabs with no spacemap because
|
|
* they're not ready to be unloaded yet. We can't
|
|
* unload metaslabs with outstanding allocations
|
|
* because doing so could cause the metaslab's weight
|
|
* to decrease while it's unloaded, which violates an
|
|
* invariant that we use to prevent unnecessary
|
|
* loading. We also don't unload metaslabs that are
|
|
* currently active because they are high-weight
|
|
* metaslabs that are likely to be used in the near
|
|
* future.
|
|
*/
|
|
mutex_enter(&msp->ms_lock);
|
|
if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
|
|
msp->ms_allocating_total == 0) {
|
|
metaslab_unload(msp);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
msp = next_msp;
|
|
inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
|
|
}
|
|
}
|
|
#else
|
|
(void) mc, (void) zfs_metaslab_mem_limit;
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
metaslab_load_impl(metaslab_t *msp)
|
|
{
|
|
int error = 0;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(msp->ms_loading);
|
|
ASSERT(!msp->ms_condensing);
|
|
|
|
/*
|
|
* We temporarily drop the lock to unblock other operations while we
|
|
* are reading the space map. Therefore, metaslab_sync() and
|
|
* metaslab_sync_done() can run at the same time as we do.
|
|
*
|
|
* If we are using the log space maps, metaslab_sync() can't write to
|
|
* the metaslab's space map while we are loading as we only write to
|
|
* it when we are flushing the metaslab, and that can't happen while
|
|
* we are loading it.
|
|
*
|
|
* If we are not using log space maps though, metaslab_sync() can
|
|
* append to the space map while we are loading. Therefore we load
|
|
* only entries that existed when we started the load. Additionally,
|
|
* metaslab_sync_done() has to wait for the load to complete because
|
|
* there are potential races like metaslab_load() loading parts of the
|
|
* space map that are currently being appended by metaslab_sync(). If
|
|
* we didn't, the ms_allocatable would have entries that
|
|
* metaslab_sync_done() would try to re-add later.
|
|
*
|
|
* That's why before dropping the lock we remember the synced length
|
|
* of the metaslab and read up to that point of the space map,
|
|
* ignoring entries appended by metaslab_sync() that happen after we
|
|
* drop the lock.
|
|
*/
|
|
uint64_t length = msp->ms_synced_length;
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
hrtime_t load_start = gethrtime();
|
|
metaslab_rt_arg_t *mrap;
|
|
if (msp->ms_allocatable->rt_arg == NULL) {
|
|
mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
|
|
} else {
|
|
mrap = msp->ms_allocatable->rt_arg;
|
|
msp->ms_allocatable->rt_ops = NULL;
|
|
msp->ms_allocatable->rt_arg = NULL;
|
|
}
|
|
mrap->mra_bt = &msp->ms_allocatable_by_size;
|
|
mrap->mra_floor_shift = metaslab_by_size_min_shift;
|
|
|
|
if (msp->ms_sm != NULL) {
|
|
error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
|
|
SM_FREE, length);
|
|
|
|
/* Now, populate the size-sorted tree. */
|
|
metaslab_rt_create(msp->ms_allocatable, mrap);
|
|
msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
|
|
msp->ms_allocatable->rt_arg = mrap;
|
|
|
|
struct mssa_arg arg = {0};
|
|
arg.rt = msp->ms_allocatable;
|
|
arg.mra = mrap;
|
|
range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
|
|
&arg);
|
|
} else {
|
|
/*
|
|
* Add the size-sorted tree first, since we don't need to load
|
|
* the metaslab from the spacemap.
|
|
*/
|
|
metaslab_rt_create(msp->ms_allocatable, mrap);
|
|
msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
|
|
msp->ms_allocatable->rt_arg = mrap;
|
|
/*
|
|
* The space map has not been allocated yet, so treat
|
|
* all the space in the metaslab as free and add it to the
|
|
* ms_allocatable tree.
|
|
*/
|
|
range_tree_add(msp->ms_allocatable,
|
|
msp->ms_start, msp->ms_size);
|
|
|
|
if (msp->ms_new) {
|
|
/*
|
|
* If the ms_sm doesn't exist, this means that this
|
|
* metaslab hasn't gone through metaslab_sync() and
|
|
* thus has never been dirtied. So we shouldn't
|
|
* expect any unflushed allocs or frees from previous
|
|
* TXGs.
|
|
*/
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We need to grab the ms_sync_lock to prevent metaslab_sync() from
|
|
* changing the ms_sm (or log_sm) and the metaslab's range trees
|
|
* while we are about to use them and populate the ms_allocatable.
|
|
* The ms_lock is insufficient for this because metaslab_sync() doesn't
|
|
* hold the ms_lock while writing the ms_checkpointing tree to disk.
|
|
*/
|
|
mutex_enter(&msp->ms_sync_lock);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
ASSERT(!msp->ms_condensing);
|
|
ASSERT(!msp->ms_flushing);
|
|
|
|
if (error != 0) {
|
|
mutex_exit(&msp->ms_sync_lock);
|
|
return (error);
|
|
}
|
|
|
|
ASSERT3P(msp->ms_group, !=, NULL);
|
|
msp->ms_loaded = B_TRUE;
|
|
|
|
/*
|
|
* Apply all the unflushed changes to ms_allocatable right
|
|
* away so any manipulations we do below have a clear view
|
|
* of what is allocated and what is free.
|
|
*/
|
|
range_tree_walk(msp->ms_unflushed_allocs,
|
|
range_tree_remove, msp->ms_allocatable);
|
|
range_tree_walk(msp->ms_unflushed_frees,
|
|
range_tree_add, msp->ms_allocatable);
|
|
|
|
ASSERT3P(msp->ms_group, !=, NULL);
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
if (spa_syncing_log_sm(spa) != NULL) {
|
|
ASSERT(spa_feature_is_enabled(spa,
|
|
SPA_FEATURE_LOG_SPACEMAP));
|
|
|
|
/*
|
|
* If we use a log space map we add all the segments
|
|
* that are in ms_unflushed_frees so they are available
|
|
* for allocation.
|
|
*
|
|
* ms_allocatable needs to contain all free segments
|
|
* that are ready for allocations (thus not segments
|
|
* from ms_freeing, ms_freed, and the ms_defer trees).
|
|
* But if we grab the lock in this code path at a sync
|
|
* pass later that 1, then it also contains the
|
|
* segments of ms_freed (they were added to it earlier
|
|
* in this path through ms_unflushed_frees). So we
|
|
* need to remove all the segments that exist in
|
|
* ms_freed from ms_allocatable as they will be added
|
|
* later in metaslab_sync_done().
|
|
*
|
|
* When there's no log space map, the ms_allocatable
|
|
* correctly doesn't contain any segments that exist
|
|
* in ms_freed [see ms_synced_length].
|
|
*/
|
|
range_tree_walk(msp->ms_freed,
|
|
range_tree_remove, msp->ms_allocatable);
|
|
}
|
|
|
|
/*
|
|
* If we are not using the log space map, ms_allocatable
|
|
* contains the segments that exist in the ms_defer trees
|
|
* [see ms_synced_length]. Thus we need to remove them
|
|
* from ms_allocatable as they will be added again in
|
|
* metaslab_sync_done().
|
|
*
|
|
* If we are using the log space map, ms_allocatable still
|
|
* contains the segments that exist in the ms_defer trees.
|
|
* Not because it read them through the ms_sm though. But
|
|
* because these segments are part of ms_unflushed_frees
|
|
* whose segments we add to ms_allocatable earlier in this
|
|
* code path.
|
|
*/
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_walk(msp->ms_defer[t],
|
|
range_tree_remove, msp->ms_allocatable);
|
|
}
|
|
|
|
/*
|
|
* Call metaslab_recalculate_weight_and_sort() now that the
|
|
* metaslab is loaded so we get the metaslab's real weight.
|
|
*
|
|
* Unless this metaslab was created with older software and
|
|
* has not yet been converted to use segment-based weight, we
|
|
* expect the new weight to be better or equal to the weight
|
|
* that the metaslab had while it was not loaded. This is
|
|
* because the old weight does not take into account the
|
|
* consolidation of adjacent segments between TXGs. [see
|
|
* comment for ms_synchist and ms_deferhist[] for more info]
|
|
*/
|
|
uint64_t weight = msp->ms_weight;
|
|
uint64_t max_size = msp->ms_max_size;
|
|
metaslab_recalculate_weight_and_sort(msp);
|
|
if (!WEIGHT_IS_SPACEBASED(weight))
|
|
ASSERT3U(weight, <=, msp->ms_weight);
|
|
msp->ms_max_size = metaslab_largest_allocatable(msp);
|
|
ASSERT3U(max_size, <=, msp->ms_max_size);
|
|
hrtime_t load_end = gethrtime();
|
|
msp->ms_load_time = load_end;
|
|
zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
|
|
"ms_id %llu, smp_length %llu, "
|
|
"unflushed_allocs %llu, unflushed_frees %llu, "
|
|
"freed %llu, defer %llu + %llu, unloaded time %llu ms, "
|
|
"loading_time %lld ms, ms_max_size %llu, "
|
|
"max size error %lld, "
|
|
"old_weight %llx, new_weight %llx",
|
|
(u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
|
|
(u_longlong_t)msp->ms_group->mg_vd->vdev_id,
|
|
(u_longlong_t)msp->ms_id,
|
|
(u_longlong_t)space_map_length(msp->ms_sm),
|
|
(u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
|
|
(u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
|
|
(u_longlong_t)range_tree_space(msp->ms_freed),
|
|
(u_longlong_t)range_tree_space(msp->ms_defer[0]),
|
|
(u_longlong_t)range_tree_space(msp->ms_defer[1]),
|
|
(longlong_t)((load_start - msp->ms_unload_time) / 1000000),
|
|
(longlong_t)((load_end - load_start) / 1000000),
|
|
(u_longlong_t)msp->ms_max_size,
|
|
(u_longlong_t)msp->ms_max_size - max_size,
|
|
(u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
|
|
|
|
metaslab_verify_space(msp, spa_syncing_txg(spa));
|
|
mutex_exit(&msp->ms_sync_lock);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
metaslab_load(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* There may be another thread loading the same metaslab, if that's
|
|
* the case just wait until the other thread is done and return.
|
|
*/
|
|
metaslab_load_wait(msp);
|
|
if (msp->ms_loaded)
|
|
return (0);
|
|
VERIFY(!msp->ms_loading);
|
|
ASSERT(!msp->ms_condensing);
|
|
|
|
/*
|
|
* We set the loading flag BEFORE potentially dropping the lock to
|
|
* wait for an ongoing flush (see ms_flushing below). This way other
|
|
* threads know that there is already a thread that is loading this
|
|
* metaslab.
|
|
*/
|
|
msp->ms_loading = B_TRUE;
|
|
|
|
/*
|
|
* Wait for any in-progress flushing to finish as we drop the ms_lock
|
|
* both here (during space_map_load()) and in metaslab_flush() (when
|
|
* we flush our changes to the ms_sm).
|
|
*/
|
|
if (msp->ms_flushing)
|
|
metaslab_flush_wait(msp);
|
|
|
|
/*
|
|
* In the possibility that we were waiting for the metaslab to be
|
|
* flushed (where we temporarily dropped the ms_lock), ensure that
|
|
* no one else loaded the metaslab somehow.
|
|
*/
|
|
ASSERT(!msp->ms_loaded);
|
|
|
|
/*
|
|
* If we're loading a metaslab in the normal class, consider evicting
|
|
* another one to keep our memory usage under the limit defined by the
|
|
* zfs_metaslab_mem_limit tunable.
|
|
*/
|
|
if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
|
|
msp->ms_group->mg_class) {
|
|
metaslab_potentially_evict(msp->ms_group->mg_class);
|
|
}
|
|
|
|
int error = metaslab_load_impl(msp);
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
msp->ms_loading = B_FALSE;
|
|
cv_broadcast(&msp->ms_load_cv);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
metaslab_unload(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* This can happen if a metaslab is selected for eviction (in
|
|
* metaslab_potentially_evict) and then unloaded during spa_sync (via
|
|
* metaslab_class_evict_old).
|
|
*/
|
|
if (!msp->ms_loaded)
|
|
return;
|
|
|
|
range_tree_vacate(msp->ms_allocatable, NULL, NULL);
|
|
msp->ms_loaded = B_FALSE;
|
|
msp->ms_unload_time = gethrtime();
|
|
|
|
msp->ms_activation_weight = 0;
|
|
msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
|
|
|
|
if (msp->ms_group != NULL) {
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
multilist_sublist_t *mls =
|
|
multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
|
|
if (multilist_link_active(&msp->ms_class_txg_node))
|
|
multilist_sublist_remove(mls, msp);
|
|
multilist_sublist_unlock(mls);
|
|
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
|
|
"ms_id %llu, weight %llx, "
|
|
"selected txg %llu (%llu ms ago), alloc_txg %llu, "
|
|
"loaded %llu ms ago, max_size %llu",
|
|
(u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
|
|
(u_longlong_t)msp->ms_group->mg_vd->vdev_id,
|
|
(u_longlong_t)msp->ms_id,
|
|
(u_longlong_t)msp->ms_weight,
|
|
(u_longlong_t)msp->ms_selected_txg,
|
|
(u_longlong_t)(msp->ms_unload_time -
|
|
msp->ms_selected_time) / 1000 / 1000,
|
|
(u_longlong_t)msp->ms_alloc_txg,
|
|
(u_longlong_t)(msp->ms_unload_time -
|
|
msp->ms_load_time) / 1000 / 1000,
|
|
(u_longlong_t)msp->ms_max_size);
|
|
}
|
|
|
|
/*
|
|
* We explicitly recalculate the metaslab's weight based on its space
|
|
* map (as it is now not loaded). We want unload metaslabs to always
|
|
* have their weights calculated from the space map histograms, while
|
|
* loaded ones have it calculated from their in-core range tree
|
|
* [see metaslab_load()]. This way, the weight reflects the information
|
|
* available in-core, whether it is loaded or not.
|
|
*
|
|
* If ms_group == NULL means that we came here from metaslab_fini(),
|
|
* at which point it doesn't make sense for us to do the recalculation
|
|
* and the sorting.
|
|
*/
|
|
if (msp->ms_group != NULL)
|
|
metaslab_recalculate_weight_and_sort(msp);
|
|
}
|
|
|
|
/*
|
|
* We want to optimize the memory use of the per-metaslab range
|
|
* trees. To do this, we store the segments in the range trees in
|
|
* units of sectors, zero-indexing from the start of the metaslab. If
|
|
* the vdev_ms_shift - the vdev_ashift is less than 32, we can store
|
|
* the ranges using two uint32_ts, rather than two uint64_ts.
|
|
*/
|
|
range_seg_type_t
|
|
metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
|
|
uint64_t *start, uint64_t *shift)
|
|
{
|
|
if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
|
|
!zfs_metaslab_force_large_segs) {
|
|
*shift = vdev->vdev_ashift;
|
|
*start = msp->ms_start;
|
|
return (RANGE_SEG32);
|
|
} else {
|
|
*shift = 0;
|
|
*start = 0;
|
|
return (RANGE_SEG64);
|
|
}
|
|
}
|
|
|
|
void
|
|
metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
multilist_sublist_t *mls =
|
|
multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
|
|
if (multilist_link_active(&msp->ms_class_txg_node))
|
|
multilist_sublist_remove(mls, msp);
|
|
msp->ms_selected_txg = txg;
|
|
msp->ms_selected_time = gethrtime();
|
|
multilist_sublist_insert_tail(mls, msp);
|
|
multilist_sublist_unlock(mls);
|
|
}
|
|
|
|
void
|
|
metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
|
|
int64_t defer_delta, int64_t space_delta)
|
|
{
|
|
vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
|
|
|
|
ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
|
|
ASSERT(vd->vdev_ms_count != 0);
|
|
|
|
metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
|
|
vdev_deflated_space(vd, space_delta));
|
|
}
|
|
|
|
int
|
|
metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
|
|
uint64_t txg, metaslab_t **msp)
|
|
{
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa->spa_meta_objset;
|
|
metaslab_t *ms;
|
|
int error;
|
|
|
|
ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
|
|
mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
|
|
cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
|
|
multilist_link_init(&ms->ms_class_txg_node);
|
|
|
|
ms->ms_id = id;
|
|
ms->ms_start = id << vd->vdev_ms_shift;
|
|
ms->ms_size = 1ULL << vd->vdev_ms_shift;
|
|
ms->ms_allocator = -1;
|
|
ms->ms_new = B_TRUE;
|
|
|
|
vdev_ops_t *ops = vd->vdev_ops;
|
|
if (ops->vdev_op_metaslab_init != NULL)
|
|
ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
|
|
|
|
/*
|
|
* We only open space map objects that already exist. All others
|
|
* will be opened when we finally allocate an object for it. For
|
|
* readonly pools there is no need to open the space map object.
|
|
*
|
|
* Note:
|
|
* When called from vdev_expand(), we can't call into the DMU as
|
|
* we are holding the spa_config_lock as a writer and we would
|
|
* deadlock [see relevant comment in vdev_metaslab_init()]. in
|
|
* that case, the object parameter is zero though, so we won't
|
|
* call into the DMU.
|
|
*/
|
|
if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
|
|
!spa->spa_read_spacemaps)) {
|
|
error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
|
|
ms->ms_size, vd->vdev_ashift);
|
|
|
|
if (error != 0) {
|
|
kmem_free(ms, sizeof (metaslab_t));
|
|
return (error);
|
|
}
|
|
|
|
ASSERT(ms->ms_sm != NULL);
|
|
ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
|
|
}
|
|
|
|
uint64_t shift, start;
|
|
range_seg_type_t type =
|
|
metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
|
|
|
|
ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
|
|
for (int t = 0; t < TXG_SIZE; t++) {
|
|
ms->ms_allocating[t] = range_tree_create(NULL, type,
|
|
NULL, start, shift);
|
|
}
|
|
ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
|
|
ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
|
|
start, shift);
|
|
}
|
|
ms->ms_checkpointing =
|
|
range_tree_create(NULL, type, NULL, start, shift);
|
|
ms->ms_unflushed_allocs =
|
|
range_tree_create(NULL, type, NULL, start, shift);
|
|
|
|
metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
|
|
mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
|
|
mrap->mra_floor_shift = metaslab_by_size_min_shift;
|
|
ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
|
|
type, mrap, start, shift);
|
|
|
|
ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
|
|
|
|
metaslab_group_add(mg, ms);
|
|
metaslab_set_fragmentation(ms, B_FALSE);
|
|
|
|
/*
|
|
* If we're opening an existing pool (txg == 0) or creating
|
|
* a new one (txg == TXG_INITIAL), all space is available now.
|
|
* If we're adding space to an existing pool, the new space
|
|
* does not become available until after this txg has synced.
|
|
* The metaslab's weight will also be initialized when we sync
|
|
* out this txg. This ensures that we don't attempt to allocate
|
|
* from it before we have initialized it completely.
|
|
*/
|
|
if (txg <= TXG_INITIAL) {
|
|
metaslab_sync_done(ms, 0);
|
|
metaslab_space_update(vd, mg->mg_class,
|
|
metaslab_allocated_space(ms), 0, 0);
|
|
}
|
|
|
|
if (txg != 0) {
|
|
vdev_dirty(vd, 0, NULL, txg);
|
|
vdev_dirty(vd, VDD_METASLAB, ms, txg);
|
|
}
|
|
|
|
*msp = ms;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
metaslab_fini_flush_data(metaslab_t *msp)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
|
|
if (metaslab_unflushed_txg(msp) == 0) {
|
|
ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
|
|
==, NULL);
|
|
return;
|
|
}
|
|
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
|
|
mutex_enter(&spa->spa_flushed_ms_lock);
|
|
avl_remove(&spa->spa_metaslabs_by_flushed, msp);
|
|
mutex_exit(&spa->spa_flushed_ms_lock);
|
|
|
|
spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
|
|
spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
|
|
metaslab_unflushed_dirty(msp));
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_unflushed_changes_memused(metaslab_t *ms)
|
|
{
|
|
return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
|
|
range_tree_numsegs(ms->ms_unflushed_frees)) *
|
|
ms->ms_unflushed_allocs->rt_root.bt_elem_size);
|
|
}
|
|
|
|
void
|
|
metaslab_fini(metaslab_t *msp)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
metaslab_fini_flush_data(msp);
|
|
|
|
metaslab_group_remove(mg, msp);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
VERIFY(msp->ms_group == NULL);
|
|
|
|
/*
|
|
* If this metaslab hasn't been through metaslab_sync_done() yet its
|
|
* space hasn't been accounted for in its vdev and doesn't need to be
|
|
* subtracted.
|
|
*/
|
|
if (!msp->ms_new) {
|
|
metaslab_space_update(vd, mg->mg_class,
|
|
-metaslab_allocated_space(msp), 0, -msp->ms_size);
|
|
|
|
}
|
|
space_map_close(msp->ms_sm);
|
|
msp->ms_sm = NULL;
|
|
|
|
metaslab_unload(msp);
|
|
|
|
range_tree_destroy(msp->ms_allocatable);
|
|
range_tree_destroy(msp->ms_freeing);
|
|
range_tree_destroy(msp->ms_freed);
|
|
|
|
ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
|
|
metaslab_unflushed_changes_memused(msp));
|
|
spa->spa_unflushed_stats.sus_memused -=
|
|
metaslab_unflushed_changes_memused(msp);
|
|
range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
|
|
range_tree_destroy(msp->ms_unflushed_allocs);
|
|
range_tree_destroy(msp->ms_checkpointing);
|
|
range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
|
|
range_tree_destroy(msp->ms_unflushed_frees);
|
|
|
|
for (int t = 0; t < TXG_SIZE; t++) {
|
|
range_tree_destroy(msp->ms_allocating[t]);
|
|
}
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_destroy(msp->ms_defer[t]);
|
|
}
|
|
ASSERT0(msp->ms_deferspace);
|
|
|
|
for (int t = 0; t < TXG_SIZE; t++)
|
|
ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
|
|
|
|
range_tree_vacate(msp->ms_trim, NULL, NULL);
|
|
range_tree_destroy(msp->ms_trim);
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
cv_destroy(&msp->ms_load_cv);
|
|
cv_destroy(&msp->ms_flush_cv);
|
|
mutex_destroy(&msp->ms_lock);
|
|
mutex_destroy(&msp->ms_sync_lock);
|
|
ASSERT3U(msp->ms_allocator, ==, -1);
|
|
|
|
kmem_free(msp, sizeof (metaslab_t));
|
|
}
|
|
|
|
#define FRAGMENTATION_TABLE_SIZE 17
|
|
|
|
/*
|
|
* This table defines a segment size based fragmentation metric that will
|
|
* allow each metaslab to derive its own fragmentation value. This is done
|
|
* by calculating the space in each bucket of the spacemap histogram and
|
|
* multiplying that by the fragmentation metric in this table. Doing
|
|
* this for all buckets and dividing it by the total amount of free
|
|
* space in this metaslab (i.e. the total free space in all buckets) gives
|
|
* us the fragmentation metric. This means that a high fragmentation metric
|
|
* equates to most of the free space being comprised of small segments.
|
|
* Conversely, if the metric is low, then most of the free space is in
|
|
* large segments. A 10% change in fragmentation equates to approximately
|
|
* double the number of segments.
|
|
*
|
|
* This table defines 0% fragmented space using 16MB segments. Testing has
|
|
* shown that segments that are greater than or equal to 16MB do not suffer
|
|
* from drastic performance problems. Using this value, we derive the rest
|
|
* of the table. Since the fragmentation value is never stored on disk, it
|
|
* is possible to change these calculations in the future.
|
|
*/
|
|
static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
|
|
100, /* 512B */
|
|
100, /* 1K */
|
|
98, /* 2K */
|
|
95, /* 4K */
|
|
90, /* 8K */
|
|
80, /* 16K */
|
|
70, /* 32K */
|
|
60, /* 64K */
|
|
50, /* 128K */
|
|
40, /* 256K */
|
|
30, /* 512K */
|
|
20, /* 1M */
|
|
15, /* 2M */
|
|
10, /* 4M */
|
|
5, /* 8M */
|
|
0 /* 16M */
|
|
};
|
|
|
|
/*
|
|
* Calculate the metaslab's fragmentation metric and set ms_fragmentation.
|
|
* Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
|
|
* been upgraded and does not support this metric. Otherwise, the return
|
|
* value should be in the range [0, 100].
|
|
*/
|
|
static void
|
|
metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
uint64_t fragmentation = 0;
|
|
uint64_t total = 0;
|
|
boolean_t feature_enabled = spa_feature_is_enabled(spa,
|
|
SPA_FEATURE_SPACEMAP_HISTOGRAM);
|
|
|
|
if (!feature_enabled) {
|
|
msp->ms_fragmentation = ZFS_FRAG_INVALID;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* A null space map means that the entire metaslab is free
|
|
* and thus is not fragmented.
|
|
*/
|
|
if (msp->ms_sm == NULL) {
|
|
msp->ms_fragmentation = 0;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If this metaslab's space map has not been upgraded, flag it
|
|
* so that we upgrade next time we encounter it.
|
|
*/
|
|
if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
|
|
uint64_t txg = spa_syncing_txg(spa);
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
|
|
/*
|
|
* If we've reached the final dirty txg, then we must
|
|
* be shutting down the pool. We don't want to dirty
|
|
* any data past this point so skip setting the condense
|
|
* flag. We can retry this action the next time the pool
|
|
* is imported. We also skip marking this metaslab for
|
|
* condensing if the caller has explicitly set nodirty.
|
|
*/
|
|
if (!nodirty &&
|
|
spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
|
|
msp->ms_condense_wanted = B_TRUE;
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
|
|
zfs_dbgmsg("txg %llu, requesting force condense: "
|
|
"ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
|
|
(u_longlong_t)msp->ms_id,
|
|
(u_longlong_t)vd->vdev_id);
|
|
}
|
|
msp->ms_fragmentation = ZFS_FRAG_INVALID;
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
uint64_t space = 0;
|
|
uint8_t shift = msp->ms_sm->sm_shift;
|
|
|
|
int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
|
|
FRAGMENTATION_TABLE_SIZE - 1);
|
|
|
|
if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
|
|
continue;
|
|
|
|
space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
|
|
total += space;
|
|
|
|
ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
|
|
fragmentation += space * zfs_frag_table[idx];
|
|
}
|
|
|
|
if (total > 0)
|
|
fragmentation /= total;
|
|
ASSERT3U(fragmentation, <=, 100);
|
|
|
|
msp->ms_fragmentation = fragmentation;
|
|
}
|
|
|
|
/*
|
|
* Compute a weight -- a selection preference value -- for the given metaslab.
|
|
* This is based on the amount of free space, the level of fragmentation,
|
|
* the LBA range, and whether the metaslab is loaded.
|
|
*/
|
|
static uint64_t
|
|
metaslab_space_weight(metaslab_t *msp)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
uint64_t weight, space;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* The baseline weight is the metaslab's free space.
|
|
*/
|
|
space = msp->ms_size - metaslab_allocated_space(msp);
|
|
|
|
if (metaslab_fragmentation_factor_enabled &&
|
|
msp->ms_fragmentation != ZFS_FRAG_INVALID) {
|
|
/*
|
|
* Use the fragmentation information to inversely scale
|
|
* down the baseline weight. We need to ensure that we
|
|
* don't exclude this metaslab completely when it's 100%
|
|
* fragmented. To avoid this we reduce the fragmented value
|
|
* by 1.
|
|
*/
|
|
space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
|
|
|
|
/*
|
|
* If space < SPA_MINBLOCKSIZE, then we will not allocate from
|
|
* this metaslab again. The fragmentation metric may have
|
|
* decreased the space to something smaller than
|
|
* SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
|
|
* so that we can consume any remaining space.
|
|
*/
|
|
if (space > 0 && space < SPA_MINBLOCKSIZE)
|
|
space = SPA_MINBLOCKSIZE;
|
|
}
|
|
weight = space;
|
|
|
|
/*
|
|
* Modern disks have uniform bit density and constant angular velocity.
|
|
* Therefore, the outer recording zones are faster (higher bandwidth)
|
|
* than the inner zones by the ratio of outer to inner track diameter,
|
|
* which is typically around 2:1. We account for this by assigning
|
|
* higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
|
|
* In effect, this means that we'll select the metaslab with the most
|
|
* free bandwidth rather than simply the one with the most free space.
|
|
*/
|
|
if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
|
|
weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
|
|
ASSERT(weight >= space && weight <= 2 * space);
|
|
}
|
|
|
|
/*
|
|
* If this metaslab is one we're actively using, adjust its
|
|
* weight to make it preferable to any inactive metaslab so
|
|
* we'll polish it off. If the fragmentation on this metaslab
|
|
* has exceed our threshold, then don't mark it active.
|
|
*/
|
|
if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
|
|
msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
|
|
weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
}
|
|
|
|
WEIGHT_SET_SPACEBASED(weight);
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Return the weight of the specified metaslab, according to the segment-based
|
|
* weighting algorithm. The metaslab must be loaded. This function can
|
|
* be called within a sync pass since it relies only on the metaslab's
|
|
* range tree which is always accurate when the metaslab is loaded.
|
|
*/
|
|
static uint64_t
|
|
metaslab_weight_from_range_tree(metaslab_t *msp)
|
|
{
|
|
uint64_t weight = 0;
|
|
uint32_t segments = 0;
|
|
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
|
|
i--) {
|
|
uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
|
|
int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
|
|
|
|
segments <<= 1;
|
|
segments += msp->ms_allocatable->rt_histogram[i];
|
|
|
|
/*
|
|
* The range tree provides more precision than the space map
|
|
* and must be downgraded so that all values fit within the
|
|
* space map's histogram. This allows us to compare loaded
|
|
* vs. unloaded metaslabs to determine which metaslab is
|
|
* considered "best".
|
|
*/
|
|
if (i > max_idx)
|
|
continue;
|
|
|
|
if (segments != 0) {
|
|
WEIGHT_SET_COUNT(weight, segments);
|
|
WEIGHT_SET_INDEX(weight, i);
|
|
WEIGHT_SET_ACTIVE(weight, 0);
|
|
break;
|
|
}
|
|
}
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Calculate the weight based on the on-disk histogram. Should be applied
|
|
* only to unloaded metaslabs (i.e no incoming allocations) in-order to
|
|
* give results consistent with the on-disk state
|
|
*/
|
|
static uint64_t
|
|
metaslab_weight_from_spacemap(metaslab_t *msp)
|
|
{
|
|
space_map_t *sm = msp->ms_sm;
|
|
ASSERT(!msp->ms_loaded);
|
|
ASSERT(sm != NULL);
|
|
ASSERT3U(space_map_object(sm), !=, 0);
|
|
ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
|
|
|
|
/*
|
|
* Create a joint histogram from all the segments that have made
|
|
* it to the metaslab's space map histogram, that are not yet
|
|
* available for allocation because they are still in the freeing
|
|
* pipeline (e.g. freeing, freed, and defer trees). Then subtract
|
|
* these segments from the space map's histogram to get a more
|
|
* accurate weight.
|
|
*/
|
|
uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
|
|
for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
|
|
deferspace_histogram[i] += msp->ms_synchist[i];
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
|
|
deferspace_histogram[i] += msp->ms_deferhist[t][i];
|
|
}
|
|
}
|
|
|
|
uint64_t weight = 0;
|
|
for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
|
|
ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
|
|
deferspace_histogram[i]);
|
|
uint64_t count =
|
|
sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
|
|
if (count != 0) {
|
|
WEIGHT_SET_COUNT(weight, count);
|
|
WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
|
|
WEIGHT_SET_ACTIVE(weight, 0);
|
|
break;
|
|
}
|
|
}
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Compute a segment-based weight for the specified metaslab. The weight
|
|
* is determined by highest bucket in the histogram. The information
|
|
* for the highest bucket is encoded into the weight value.
|
|
*/
|
|
static uint64_t
|
|
metaslab_segment_weight(metaslab_t *msp)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
uint64_t weight = 0;
|
|
uint8_t shift = mg->mg_vd->vdev_ashift;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* The metaslab is completely free.
|
|
*/
|
|
if (metaslab_allocated_space(msp) == 0) {
|
|
int idx = highbit64(msp->ms_size) - 1;
|
|
int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
|
|
|
|
if (idx < max_idx) {
|
|
WEIGHT_SET_COUNT(weight, 1ULL);
|
|
WEIGHT_SET_INDEX(weight, idx);
|
|
} else {
|
|
WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
|
|
WEIGHT_SET_INDEX(weight, max_idx);
|
|
}
|
|
WEIGHT_SET_ACTIVE(weight, 0);
|
|
ASSERT(!WEIGHT_IS_SPACEBASED(weight));
|
|
return (weight);
|
|
}
|
|
|
|
ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
|
|
|
|
/*
|
|
* If the metaslab is fully allocated then just make the weight 0.
|
|
*/
|
|
if (metaslab_allocated_space(msp) == msp->ms_size)
|
|
return (0);
|
|
/*
|
|
* If the metaslab is already loaded, then use the range tree to
|
|
* determine the weight. Otherwise, we rely on the space map information
|
|
* to generate the weight.
|
|
*/
|
|
if (msp->ms_loaded) {
|
|
weight = metaslab_weight_from_range_tree(msp);
|
|
} else {
|
|
weight = metaslab_weight_from_spacemap(msp);
|
|
}
|
|
|
|
/*
|
|
* If the metaslab was active the last time we calculated its weight
|
|
* then keep it active. We want to consume the entire region that
|
|
* is associated with this weight.
|
|
*/
|
|
if (msp->ms_activation_weight != 0 && weight != 0)
|
|
WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
|
|
return (weight);
|
|
}
|
|
|
|
/*
|
|
* Determine if we should attempt to allocate from this metaslab. If the
|
|
* metaslab is loaded, then we can determine if the desired allocation
|
|
* can be satisfied by looking at the size of the maximum free segment
|
|
* on that metaslab. Otherwise, we make our decision based on the metaslab's
|
|
* weight. For segment-based weighting we can determine the maximum
|
|
* allocation based on the index encoded in its value. For space-based
|
|
* weights we rely on the entire weight (excluding the weight-type bit).
|
|
*/
|
|
static boolean_t
|
|
metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
|
|
{
|
|
/*
|
|
* This case will usually but not always get caught by the checks below;
|
|
* metaslabs can be loaded by various means, including the trim and
|
|
* initialize code. Once that happens, without this check they are
|
|
* allocatable even before they finish their first txg sync.
|
|
*/
|
|
if (unlikely(msp->ms_new))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* If the metaslab is loaded, ms_max_size is definitive and we can use
|
|
* the fast check. If it's not, the ms_max_size is a lower bound (once
|
|
* set), and we should use the fast check as long as we're not in
|
|
* try_hard and it's been less than zfs_metaslab_max_size_cache_sec
|
|
* seconds since the metaslab was unloaded.
|
|
*/
|
|
if (msp->ms_loaded ||
|
|
(msp->ms_max_size != 0 && !try_hard && gethrtime() <
|
|
msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
|
|
return (msp->ms_max_size >= asize);
|
|
|
|
boolean_t should_allocate;
|
|
if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
|
|
/*
|
|
* The metaslab segment weight indicates segments in the
|
|
* range [2^i, 2^(i+1)), where i is the index in the weight.
|
|
* Since the asize might be in the middle of the range, we
|
|
* should attempt the allocation if asize < 2^(i+1).
|
|
*/
|
|
should_allocate = (asize <
|
|
1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
|
|
} else {
|
|
should_allocate = (asize <=
|
|
(msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
|
|
}
|
|
|
|
return (should_allocate);
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_weight(metaslab_t *msp, boolean_t nodirty)
|
|
{
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
uint64_t weight;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
metaslab_set_fragmentation(msp, nodirty);
|
|
|
|
/*
|
|
* Update the maximum size. If the metaslab is loaded, this will
|
|
* ensure that we get an accurate maximum size if newly freed space
|
|
* has been added back into the free tree. If the metaslab is
|
|
* unloaded, we check if there's a larger free segment in the
|
|
* unflushed frees. This is a lower bound on the largest allocatable
|
|
* segment size. Coalescing of adjacent entries may reveal larger
|
|
* allocatable segments, but we aren't aware of those until loading
|
|
* the space map into a range tree.
|
|
*/
|
|
if (msp->ms_loaded) {
|
|
msp->ms_max_size = metaslab_largest_allocatable(msp);
|
|
} else {
|
|
msp->ms_max_size = MAX(msp->ms_max_size,
|
|
metaslab_largest_unflushed_free(msp));
|
|
}
|
|
|
|
/*
|
|
* Segment-based weighting requires space map histogram support.
|
|
*/
|
|
if (zfs_metaslab_segment_weight_enabled &&
|
|
spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
|
|
(msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
|
|
sizeof (space_map_phys_t))) {
|
|
weight = metaslab_segment_weight(msp);
|
|
} else {
|
|
weight = metaslab_space_weight(msp);
|
|
}
|
|
return (weight);
|
|
}
|
|
|
|
void
|
|
metaslab_recalculate_weight_and_sort(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/* note: we preserve the mask (e.g. indication of primary, etc..) */
|
|
uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
|
|
metaslab_group_sort(msp->ms_group, msp,
|
|
metaslab_weight(msp, B_FALSE) | was_active);
|
|
}
|
|
|
|
static int
|
|
metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
|
|
int allocator, uint64_t activation_weight)
|
|
{
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* If we're activating for the claim code, we don't want to actually
|
|
* set the metaslab up for a specific allocator.
|
|
*/
|
|
if (activation_weight == METASLAB_WEIGHT_CLAIM) {
|
|
ASSERT0(msp->ms_activation_weight);
|
|
msp->ms_activation_weight = msp->ms_weight;
|
|
metaslab_group_sort(mg, msp, msp->ms_weight |
|
|
activation_weight);
|
|
return (0);
|
|
}
|
|
|
|
metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
|
|
&mga->mga_primary : &mga->mga_secondary);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
if (*mspp != NULL) {
|
|
mutex_exit(&mg->mg_lock);
|
|
return (EEXIST);
|
|
}
|
|
|
|
*mspp = msp;
|
|
ASSERT3S(msp->ms_allocator, ==, -1);
|
|
msp->ms_allocator = allocator;
|
|
msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
|
|
|
|
ASSERT0(msp->ms_activation_weight);
|
|
msp->ms_activation_weight = msp->ms_weight;
|
|
metaslab_group_sort_impl(mg, msp,
|
|
msp->ms_weight | activation_weight);
|
|
mutex_exit(&mg->mg_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
/*
|
|
* The current metaslab is already activated for us so there
|
|
* is nothing to do. Already activated though, doesn't mean
|
|
* that this metaslab is activated for our allocator nor our
|
|
* requested activation weight. The metaslab could have started
|
|
* as an active one for our allocator but changed allocators
|
|
* while we were waiting to grab its ms_lock or we stole it
|
|
* [see find_valid_metaslab()]. This means that there is a
|
|
* possibility of passivating a metaslab of another allocator
|
|
* or from a different activation mask, from this thread.
|
|
*/
|
|
if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
|
|
ASSERT(msp->ms_loaded);
|
|
return (0);
|
|
}
|
|
|
|
int error = metaslab_load(msp);
|
|
if (error != 0) {
|
|
metaslab_group_sort(msp->ms_group, msp, 0);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* When entering metaslab_load() we may have dropped the
|
|
* ms_lock because we were loading this metaslab, or we
|
|
* were waiting for another thread to load it for us. In
|
|
* that scenario, we recheck the weight of the metaslab
|
|
* to see if it was activated by another thread.
|
|
*
|
|
* If the metaslab was activated for another allocator or
|
|
* it was activated with a different activation weight (e.g.
|
|
* we wanted to make it a primary but it was activated as
|
|
* secondary) we return error (EBUSY).
|
|
*
|
|
* If the metaslab was activated for the same allocator
|
|
* and requested activation mask, skip activating it.
|
|
*/
|
|
if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
|
|
if (msp->ms_allocator != allocator)
|
|
return (EBUSY);
|
|
|
|
if ((msp->ms_weight & activation_weight) == 0)
|
|
return (SET_ERROR(EBUSY));
|
|
|
|
EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
|
|
msp->ms_primary);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* If the metaslab has literally 0 space, it will have weight 0. In
|
|
* that case, don't bother activating it. This can happen if the
|
|
* metaslab had space during find_valid_metaslab, but another thread
|
|
* loaded it and used all that space while we were waiting to grab the
|
|
* lock.
|
|
*/
|
|
if (msp->ms_weight == 0) {
|
|
ASSERT0(range_tree_space(msp->ms_allocatable));
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
if ((error = metaslab_activate_allocator(msp->ms_group, msp,
|
|
allocator, activation_weight)) != 0) {
|
|
return (error);
|
|
}
|
|
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
|
|
uint64_t weight)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
|
|
metaslab_group_sort(mg, msp, weight);
|
|
return;
|
|
}
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
ASSERT3P(msp->ms_group, ==, mg);
|
|
ASSERT3S(0, <=, msp->ms_allocator);
|
|
ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
|
|
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
|
|
if (msp->ms_primary) {
|
|
ASSERT3P(mga->mga_primary, ==, msp);
|
|
ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
|
|
mga->mga_primary = NULL;
|
|
} else {
|
|
ASSERT3P(mga->mga_secondary, ==, msp);
|
|
ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
|
|
mga->mga_secondary = NULL;
|
|
}
|
|
msp->ms_allocator = -1;
|
|
metaslab_group_sort_impl(mg, msp, weight);
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
static void
|
|
metaslab_passivate(metaslab_t *msp, uint64_t weight)
|
|
{
|
|
uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
|
|
|
|
/*
|
|
* If size < SPA_MINBLOCKSIZE, then we will not allocate from
|
|
* this metaslab again. In that case, it had better be empty,
|
|
* or we would be leaving space on the table.
|
|
*/
|
|
ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
|
|
size >= SPA_MINBLOCKSIZE ||
|
|
range_tree_space(msp->ms_allocatable) == 0);
|
|
ASSERT0(weight & METASLAB_ACTIVE_MASK);
|
|
|
|
ASSERT(msp->ms_activation_weight != 0);
|
|
msp->ms_activation_weight = 0;
|
|
metaslab_passivate_allocator(msp->ms_group, msp, weight);
|
|
ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
}
|
|
|
|
/*
|
|
* Segment-based metaslabs are activated once and remain active until
|
|
* we either fail an allocation attempt (similar to space-based metaslabs)
|
|
* or have exhausted the free space in zfs_metaslab_switch_threshold
|
|
* buckets since the metaslab was activated. This function checks to see
|
|
* if we've exhausted the zfs_metaslab_switch_threshold buckets in the
|
|
* metaslab and passivates it proactively. This will allow us to select a
|
|
* metaslab with a larger contiguous region, if any, remaining within this
|
|
* metaslab group. If we're in sync pass > 1, then we continue using this
|
|
* metaslab so that we don't dirty more block and cause more sync passes.
|
|
*/
|
|
static void
|
|
metaslab_segment_may_passivate(metaslab_t *msp)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
|
|
if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
|
|
return;
|
|
|
|
/*
|
|
* Since we are in the middle of a sync pass, the most accurate
|
|
* information that is accessible to us is the in-core range tree
|
|
* histogram; calculate the new weight based on that information.
|
|
*/
|
|
uint64_t weight = metaslab_weight_from_range_tree(msp);
|
|
int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
|
|
int current_idx = WEIGHT_GET_INDEX(weight);
|
|
|
|
if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
|
|
metaslab_passivate(msp, weight);
|
|
}
|
|
|
|
static void
|
|
metaslab_preload(void *arg)
|
|
{
|
|
metaslab_t *msp = arg;
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
spa_t *spa = mc->mc_spa;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
|
|
ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
(void) metaslab_load(msp);
|
|
metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
|
|
mutex_exit(&msp->ms_lock);
|
|
spl_fstrans_unmark(cookie);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_preload(metaslab_group_t *mg)
|
|
{
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
metaslab_t *msp;
|
|
avl_tree_t *t = &mg->mg_metaslab_tree;
|
|
int m = 0;
|
|
|
|
if (spa_shutting_down(spa) || !metaslab_preload_enabled)
|
|
return;
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
|
|
/*
|
|
* Load the next potential metaslabs
|
|
*/
|
|
for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
|
|
ASSERT3P(msp->ms_group, ==, mg);
|
|
|
|
/*
|
|
* We preload only the maximum number of metaslabs specified
|
|
* by metaslab_preload_limit. If a metaslab is being forced
|
|
* to condense then we preload it too. This will ensure
|
|
* that force condensing happens in the next txg.
|
|
*/
|
|
if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
|
|
continue;
|
|
}
|
|
|
|
VERIFY(taskq_dispatch(spa->spa_metaslab_taskq, metaslab_preload,
|
|
msp, TQ_SLEEP | (m <= mg->mg_allocators ? TQ_FRONT : 0))
|
|
!= TASKQID_INVALID);
|
|
}
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
/*
|
|
* Determine if the space map's on-disk footprint is past our tolerance for
|
|
* inefficiency. We would like to use the following criteria to make our
|
|
* decision:
|
|
*
|
|
* 1. Do not condense if the size of the space map object would dramatically
|
|
* increase as a result of writing out the free space range tree.
|
|
*
|
|
* 2. Condense if the on on-disk space map representation is at least
|
|
* zfs_condense_pct/100 times the size of the optimal representation
|
|
* (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
|
|
*
|
|
* 3. Do not condense if the on-disk size of the space map does not actually
|
|
* decrease.
|
|
*
|
|
* Unfortunately, we cannot compute the on-disk size of the space map in this
|
|
* context because we cannot accurately compute the effects of compression, etc.
|
|
* Instead, we apply the heuristic described in the block comment for
|
|
* zfs_metaslab_condense_block_threshold - we only condense if the space used
|
|
* is greater than a threshold number of blocks.
|
|
*/
|
|
static boolean_t
|
|
metaslab_should_condense(metaslab_t *msp)
|
|
{
|
|
space_map_t *sm = msp->ms_sm;
|
|
vdev_t *vd = msp->ms_group->mg_vd;
|
|
uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT(sm != NULL);
|
|
ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
|
|
|
|
/*
|
|
* We always condense metaslabs that are empty and metaslabs for
|
|
* which a condense request has been made.
|
|
*/
|
|
if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
|
|
msp->ms_condense_wanted)
|
|
return (B_TRUE);
|
|
|
|
uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
|
|
uint64_t object_size = space_map_length(sm);
|
|
uint64_t optimal_size = space_map_estimate_optimal_size(sm,
|
|
msp->ms_allocatable, SM_NO_VDEVID);
|
|
|
|
return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
|
|
object_size > zfs_metaslab_condense_block_threshold * record_size);
|
|
}
|
|
|
|
/*
|
|
* Condense the on-disk space map representation to its minimized form.
|
|
* The minimized form consists of a small number of allocations followed
|
|
* by the entries of the free range tree (ms_allocatable). The condensed
|
|
* spacemap contains all the entries of previous TXGs (including those in
|
|
* the pool-wide log spacemaps; thus this is effectively a superset of
|
|
* metaslab_flush()), but this TXG's entries still need to be written.
|
|
*/
|
|
static void
|
|
metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
|
|
{
|
|
range_tree_t *condense_tree;
|
|
space_map_t *sm = msp->ms_sm;
|
|
uint64_t txg = dmu_tx_get_txg(tx);
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT(msp->ms_sm != NULL);
|
|
|
|
/*
|
|
* In order to condense the space map, we need to change it so it
|
|
* only describes which segments are currently allocated and free.
|
|
*
|
|
* All the current free space resides in the ms_allocatable, all
|
|
* the ms_defer trees, and all the ms_allocating trees. We ignore
|
|
* ms_freed because it is empty because we're in sync pass 1. We
|
|
* ignore ms_freeing because these changes are not yet reflected
|
|
* in the spacemap (they will be written later this txg).
|
|
*
|
|
* So to truncate the space map to represent all the entries of
|
|
* previous TXGs we do the following:
|
|
*
|
|
* 1] We create a range tree (condense tree) that is 100% empty.
|
|
* 2] We add to it all segments found in the ms_defer trees
|
|
* as those segments are marked as free in the original space
|
|
* map. We do the same with the ms_allocating trees for the same
|
|
* reason. Adding these segments should be a relatively
|
|
* inexpensive operation since we expect these trees to have a
|
|
* small number of nodes.
|
|
* 3] We vacate any unflushed allocs, since they are not frees we
|
|
* need to add to the condense tree. Then we vacate any
|
|
* unflushed frees as they should already be part of ms_allocatable.
|
|
* 4] At this point, we would ideally like to add all segments
|
|
* in the ms_allocatable tree from the condense tree. This way
|
|
* we would write all the entries of the condense tree as the
|
|
* condensed space map, which would only contain freed
|
|
* segments with everything else assumed to be allocated.
|
|
*
|
|
* Doing so can be prohibitively expensive as ms_allocatable can
|
|
* be large, and therefore computationally expensive to add to
|
|
* the condense_tree. Instead we first sync out an entry marking
|
|
* everything as allocated, then the condense_tree and then the
|
|
* ms_allocatable, in the condensed space map. While this is not
|
|
* optimal, it is typically close to optimal and more importantly
|
|
* much cheaper to compute.
|
|
*
|
|
* 5] Finally, as both of the unflushed trees were written to our
|
|
* new and condensed metaslab space map, we basically flushed
|
|
* all the unflushed changes to disk, thus we call
|
|
* metaslab_flush_update().
|
|
*/
|
|
ASSERT3U(spa_sync_pass(spa), ==, 1);
|
|
ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
|
|
|
|
zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
|
|
"spa %s, smp size %llu, segments %llu, forcing condense=%s",
|
|
(u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
|
|
(u_longlong_t)msp->ms_group->mg_vd->vdev_id,
|
|
spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
|
|
(u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
|
|
msp->ms_condense_wanted ? "TRUE" : "FALSE");
|
|
|
|
msp->ms_condense_wanted = B_FALSE;
|
|
|
|
range_seg_type_t type;
|
|
uint64_t shift, start;
|
|
type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
|
|
&start, &shift);
|
|
|
|
condense_tree = range_tree_create(NULL, type, NULL, start, shift);
|
|
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
range_tree_walk(msp->ms_defer[t],
|
|
range_tree_add, condense_tree);
|
|
}
|
|
|
|
for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
|
|
range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
|
|
range_tree_add, condense_tree);
|
|
}
|
|
|
|
ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
|
|
metaslab_unflushed_changes_memused(msp));
|
|
spa->spa_unflushed_stats.sus_memused -=
|
|
metaslab_unflushed_changes_memused(msp);
|
|
range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
|
|
range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
|
|
|
|
/*
|
|
* We're about to drop the metaslab's lock thus allowing other
|
|
* consumers to change it's content. Set the metaslab's ms_condensing
|
|
* flag to ensure that allocations on this metaslab do not occur
|
|
* while we're in the middle of committing it to disk. This is only
|
|
* critical for ms_allocatable as all other range trees use per TXG
|
|
* views of their content.
|
|
*/
|
|
msp->ms_condensing = B_TRUE;
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
uint64_t object = space_map_object(msp->ms_sm);
|
|
space_map_truncate(sm,
|
|
spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
|
|
zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
|
|
|
|
/*
|
|
* space_map_truncate() may have reallocated the spacemap object.
|
|
* If so, update the vdev_ms_array.
|
|
*/
|
|
if (space_map_object(msp->ms_sm) != object) {
|
|
object = space_map_object(msp->ms_sm);
|
|
dmu_write(spa->spa_meta_objset,
|
|
msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
|
|
msp->ms_id, sizeof (uint64_t), &object, tx);
|
|
}
|
|
|
|
/*
|
|
* Note:
|
|
* When the log space map feature is enabled, each space map will
|
|
* always have ALLOCS followed by FREES for each sync pass. This is
|
|
* typically true even when the log space map feature is disabled,
|
|
* except from the case where a metaslab goes through metaslab_sync()
|
|
* and gets condensed. In that case the metaslab's space map will have
|
|
* ALLOCS followed by FREES (due to condensing) followed by ALLOCS
|
|
* followed by FREES (due to space_map_write() in metaslab_sync()) for
|
|
* sync pass 1.
|
|
*/
|
|
range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
|
|
shift);
|
|
range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
|
|
space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
|
|
space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
|
|
space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
|
|
|
|
range_tree_vacate(condense_tree, NULL, NULL);
|
|
range_tree_destroy(condense_tree);
|
|
range_tree_vacate(tmp_tree, NULL, NULL);
|
|
range_tree_destroy(tmp_tree);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
msp->ms_condensing = B_FALSE;
|
|
metaslab_flush_update(msp, tx);
|
|
}
|
|
|
|
static void
|
|
metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
ASSERT(spa_syncing_log_sm(spa) != NULL);
|
|
ASSERT(msp->ms_sm != NULL);
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
|
|
|
|
mutex_enter(&spa->spa_flushed_ms_lock);
|
|
metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
|
|
metaslab_set_unflushed_dirty(msp, B_TRUE);
|
|
avl_add(&spa->spa_metaslabs_by_flushed, msp);
|
|
mutex_exit(&spa->spa_flushed_ms_lock);
|
|
|
|
spa_log_sm_increment_current_mscount(spa);
|
|
spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
|
|
}
|
|
|
|
void
|
|
metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
ASSERT(spa_syncing_log_sm(spa) != NULL);
|
|
ASSERT(msp->ms_sm != NULL);
|
|
ASSERT(metaslab_unflushed_txg(msp) != 0);
|
|
ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
|
|
|
|
VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
|
|
|
|
/* update metaslab's position in our flushing tree */
|
|
uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
|
|
boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
|
|
mutex_enter(&spa->spa_flushed_ms_lock);
|
|
avl_remove(&spa->spa_metaslabs_by_flushed, msp);
|
|
metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
|
|
metaslab_set_unflushed_dirty(msp, dirty);
|
|
avl_add(&spa->spa_metaslabs_by_flushed, msp);
|
|
mutex_exit(&spa->spa_flushed_ms_lock);
|
|
|
|
/* update metaslab counts of spa_log_sm_t nodes */
|
|
spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
|
|
spa_log_sm_increment_current_mscount(spa);
|
|
|
|
/* update log space map summary */
|
|
spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
|
|
ms_prev_flushed_dirty);
|
|
spa_log_summary_add_flushed_metaslab(spa, dirty);
|
|
|
|
/* cleanup obsolete logs if any */
|
|
spa_cleanup_old_sm_logs(spa, tx);
|
|
}
|
|
|
|
/*
|
|
* Called when the metaslab has been flushed (its own spacemap now reflects
|
|
* all the contents of the pool-wide spacemap log). Updates the metaslab's
|
|
* metadata and any pool-wide related log space map data (e.g. summary,
|
|
* obsolete logs, etc..) to reflect that.
|
|
*/
|
|
static void
|
|
metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
ASSERT3U(spa_sync_pass(spa), ==, 1);
|
|
|
|
/*
|
|
* Just because a metaslab got flushed, that doesn't mean that
|
|
* it will pass through metaslab_sync_done(). Thus, make sure to
|
|
* update ms_synced_length here in case it doesn't.
|
|
*/
|
|
msp->ms_synced_length = space_map_length(msp->ms_sm);
|
|
|
|
/*
|
|
* We may end up here from metaslab_condense() without the
|
|
* feature being active. In that case this is a no-op.
|
|
*/
|
|
if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
|
|
metaslab_unflushed_txg(msp) == 0)
|
|
return;
|
|
|
|
metaslab_unflushed_bump(msp, tx, B_FALSE);
|
|
}
|
|
|
|
boolean_t
|
|
metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
|
|
{
|
|
spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
ASSERT3U(spa_sync_pass(spa), ==, 1);
|
|
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
|
|
ASSERT(msp->ms_sm != NULL);
|
|
ASSERT(metaslab_unflushed_txg(msp) != 0);
|
|
ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
|
|
|
|
/*
|
|
* There is nothing wrong with flushing the same metaslab twice, as
|
|
* this codepath should work on that case. However, the current
|
|
* flushing scheme makes sure to avoid this situation as we would be
|
|
* making all these calls without having anything meaningful to write
|
|
* to disk. We assert this behavior here.
|
|
*/
|
|
ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
|
|
|
|
/*
|
|
* We can not flush while loading, because then we would
|
|
* not load the ms_unflushed_{allocs,frees}.
|
|
*/
|
|
if (msp->ms_loading)
|
|
return (B_FALSE);
|
|
|
|
metaslab_verify_space(msp, dmu_tx_get_txg(tx));
|
|
metaslab_verify_weight_and_frag(msp);
|
|
|
|
/*
|
|
* Metaslab condensing is effectively flushing. Therefore if the
|
|
* metaslab can be condensed we can just condense it instead of
|
|
* flushing it.
|
|
*
|
|
* Note that metaslab_condense() does call metaslab_flush_update()
|
|
* so we can just return immediately after condensing. We also
|
|
* don't need to care about setting ms_flushing or broadcasting
|
|
* ms_flush_cv, even if we temporarily drop the ms_lock in
|
|
* metaslab_condense(), as the metaslab is already loaded.
|
|
*/
|
|
if (msp->ms_loaded && metaslab_should_condense(msp)) {
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
|
|
/*
|
|
* For all histogram operations below refer to the
|
|
* comments of metaslab_sync() where we follow a
|
|
* similar procedure.
|
|
*/
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
metaslab_group_histogram_remove(mg, msp);
|
|
|
|
metaslab_condense(msp, tx);
|
|
|
|
space_map_histogram_clear(msp->ms_sm);
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
|
|
ASSERT(range_tree_is_empty(msp->ms_freed));
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
space_map_histogram_add(msp->ms_sm,
|
|
msp->ms_defer[t], tx);
|
|
}
|
|
metaslab_aux_histograms_update(msp);
|
|
|
|
metaslab_group_histogram_add(mg, msp);
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
|
|
metaslab_verify_space(msp, dmu_tx_get_txg(tx));
|
|
|
|
/*
|
|
* Since we recreated the histogram (and potentially
|
|
* the ms_sm too while condensing) ensure that the
|
|
* weight is updated too because we are not guaranteed
|
|
* that this metaslab is dirty and will go through
|
|
* metaslab_sync_done().
|
|
*/
|
|
metaslab_recalculate_weight_and_sort(msp);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
msp->ms_flushing = B_TRUE;
|
|
uint64_t sm_len_before = space_map_length(msp->ms_sm);
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
|
|
SM_NO_VDEVID, tx);
|
|
space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
|
|
SM_NO_VDEVID, tx);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
uint64_t sm_len_after = space_map_length(msp->ms_sm);
|
|
if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
|
|
zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
|
|
"ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
|
|
"appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
|
|
spa_name(spa),
|
|
(u_longlong_t)msp->ms_group->mg_vd->vdev_id,
|
|
(u_longlong_t)msp->ms_id,
|
|
(u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
|
|
(u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
|
|
(u_longlong_t)(sm_len_after - sm_len_before));
|
|
}
|
|
|
|
ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
|
|
metaslab_unflushed_changes_memused(msp));
|
|
spa->spa_unflushed_stats.sus_memused -=
|
|
metaslab_unflushed_changes_memused(msp);
|
|
range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
|
|
range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
|
|
|
|
metaslab_verify_space(msp, dmu_tx_get_txg(tx));
|
|
metaslab_verify_weight_and_frag(msp);
|
|
|
|
metaslab_flush_update(msp, tx);
|
|
|
|
metaslab_verify_space(msp, dmu_tx_get_txg(tx));
|
|
metaslab_verify_weight_and_frag(msp);
|
|
|
|
msp->ms_flushing = B_FALSE;
|
|
cv_broadcast(&msp->ms_flush_cv);
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Write a metaslab to disk in the context of the specified transaction group.
|
|
*/
|
|
void
|
|
metaslab_sync(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa_meta_objset(spa);
|
|
range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
|
|
dmu_tx_t *tx;
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
/*
|
|
* This metaslab has just been added so there's no work to do now.
|
|
*/
|
|
if (msp->ms_new) {
|
|
ASSERT0(range_tree_space(alloctree));
|
|
ASSERT0(range_tree_space(msp->ms_freeing));
|
|
ASSERT0(range_tree_space(msp->ms_freed));
|
|
ASSERT0(range_tree_space(msp->ms_checkpointing));
|
|
ASSERT0(range_tree_space(msp->ms_trim));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Normally, we don't want to process a metaslab if there are no
|
|
* allocations or frees to perform. However, if the metaslab is being
|
|
* forced to condense, it's loaded and we're not beyond the final
|
|
* dirty txg, we need to let it through. Not condensing beyond the
|
|
* final dirty txg prevents an issue where metaslabs that need to be
|
|
* condensed but were loaded for other reasons could cause a panic
|
|
* here. By only checking the txg in that branch of the conditional,
|
|
* we preserve the utility of the VERIFY statements in all other
|
|
* cases.
|
|
*/
|
|
if (range_tree_is_empty(alloctree) &&
|
|
range_tree_is_empty(msp->ms_freeing) &&
|
|
range_tree_is_empty(msp->ms_checkpointing) &&
|
|
!(msp->ms_loaded && msp->ms_condense_wanted &&
|
|
txg <= spa_final_dirty_txg(spa)))
|
|
return;
|
|
|
|
|
|
VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
|
|
|
|
/*
|
|
* The only state that can actually be changing concurrently
|
|
* with metaslab_sync() is the metaslab's ms_allocatable. No
|
|
* other thread can be modifying this txg's alloc, freeing,
|
|
* freed, or space_map_phys_t. We drop ms_lock whenever we
|
|
* could call into the DMU, because the DMU can call down to
|
|
* us (e.g. via zio_free()) at any time.
|
|
*
|
|
* The spa_vdev_remove_thread() can be reading metaslab state
|
|
* concurrently, and it is locked out by the ms_sync_lock.
|
|
* Note that the ms_lock is insufficient for this, because it
|
|
* is dropped by space_map_write().
|
|
*/
|
|
tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
|
|
|
|
/*
|
|
* Generate a log space map if one doesn't exist already.
|
|
*/
|
|
spa_generate_syncing_log_sm(spa, tx);
|
|
|
|
if (msp->ms_sm == NULL) {
|
|
uint64_t new_object = space_map_alloc(mos,
|
|
spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
|
|
zfs_metaslab_sm_blksz_with_log :
|
|
zfs_metaslab_sm_blksz_no_log, tx);
|
|
VERIFY3U(new_object, !=, 0);
|
|
|
|
dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
|
|
msp->ms_id, sizeof (uint64_t), &new_object, tx);
|
|
|
|
VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
|
|
msp->ms_start, msp->ms_size, vd->vdev_ashift));
|
|
ASSERT(msp->ms_sm != NULL);
|
|
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
|
|
ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
|
|
ASSERT0(metaslab_allocated_space(msp));
|
|
}
|
|
|
|
if (!range_tree_is_empty(msp->ms_checkpointing) &&
|
|
vd->vdev_checkpoint_sm == NULL) {
|
|
ASSERT(spa_has_checkpoint(spa));
|
|
|
|
uint64_t new_object = space_map_alloc(mos,
|
|
zfs_vdev_standard_sm_blksz, tx);
|
|
VERIFY3U(new_object, !=, 0);
|
|
|
|
VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
|
|
mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
|
|
ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
|
|
|
|
/*
|
|
* We save the space map object as an entry in vdev_top_zap
|
|
* so it can be retrieved when the pool is reopened after an
|
|
* export or through zdb.
|
|
*/
|
|
VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
|
|
vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
|
|
sizeof (new_object), 1, &new_object, tx));
|
|
}
|
|
|
|
mutex_enter(&msp->ms_sync_lock);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
/*
|
|
* Note: metaslab_condense() clears the space map's histogram.
|
|
* Therefore we must verify and remove this histogram before
|
|
* condensing.
|
|
*/
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
metaslab_group_histogram_remove(mg, msp);
|
|
|
|
if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
|
|
metaslab_should_condense(msp))
|
|
metaslab_condense(msp, tx);
|
|
|
|
/*
|
|
* We'll be going to disk to sync our space accounting, thus we
|
|
* drop the ms_lock during that time so allocations coming from
|
|
* open-context (ZIL) for future TXGs do not block.
|
|
*/
|
|
mutex_exit(&msp->ms_lock);
|
|
space_map_t *log_sm = spa_syncing_log_sm(spa);
|
|
if (log_sm != NULL) {
|
|
ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
if (metaslab_unflushed_txg(msp) == 0)
|
|
metaslab_unflushed_add(msp, tx);
|
|
else if (!metaslab_unflushed_dirty(msp))
|
|
metaslab_unflushed_bump(msp, tx, B_TRUE);
|
|
|
|
space_map_write(log_sm, alloctree, SM_ALLOC,
|
|
vd->vdev_id, tx);
|
|
space_map_write(log_sm, msp->ms_freeing, SM_FREE,
|
|
vd->vdev_id, tx);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
|
|
metaslab_unflushed_changes_memused(msp));
|
|
spa->spa_unflushed_stats.sus_memused -=
|
|
metaslab_unflushed_changes_memused(msp);
|
|
range_tree_remove_xor_add(alloctree,
|
|
msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
|
|
range_tree_remove_xor_add(msp->ms_freeing,
|
|
msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
|
|
spa->spa_unflushed_stats.sus_memused +=
|
|
metaslab_unflushed_changes_memused(msp);
|
|
} else {
|
|
ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
|
|
space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
|
|
SM_NO_VDEVID, tx);
|
|
space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
|
|
SM_NO_VDEVID, tx);
|
|
mutex_enter(&msp->ms_lock);
|
|
}
|
|
|
|
msp->ms_allocated_space += range_tree_space(alloctree);
|
|
ASSERT3U(msp->ms_allocated_space, >=,
|
|
range_tree_space(msp->ms_freeing));
|
|
msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
|
|
|
|
if (!range_tree_is_empty(msp->ms_checkpointing)) {
|
|
ASSERT(spa_has_checkpoint(spa));
|
|
ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
|
|
|
|
/*
|
|
* Since we are doing writes to disk and the ms_checkpointing
|
|
* tree won't be changing during that time, we drop the
|
|
* ms_lock while writing to the checkpoint space map, for the
|
|
* same reason mentioned above.
|
|
*/
|
|
mutex_exit(&msp->ms_lock);
|
|
space_map_write(vd->vdev_checkpoint_sm,
|
|
msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
spa->spa_checkpoint_info.sci_dspace +=
|
|
range_tree_space(msp->ms_checkpointing);
|
|
vd->vdev_stat.vs_checkpoint_space +=
|
|
range_tree_space(msp->ms_checkpointing);
|
|
ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
|
|
-space_map_allocated(vd->vdev_checkpoint_sm));
|
|
|
|
range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
|
|
}
|
|
|
|
if (msp->ms_loaded) {
|
|
/*
|
|
* When the space map is loaded, we have an accurate
|
|
* histogram in the range tree. This gives us an opportunity
|
|
* to bring the space map's histogram up-to-date so we clear
|
|
* it first before updating it.
|
|
*/
|
|
space_map_histogram_clear(msp->ms_sm);
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
|
|
|
|
/*
|
|
* Since we've cleared the histogram we need to add back
|
|
* any free space that has already been processed, plus
|
|
* any deferred space. This allows the on-disk histogram
|
|
* to accurately reflect all free space even if some space
|
|
* is not yet available for allocation (i.e. deferred).
|
|
*/
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
|
|
|
|
/*
|
|
* Add back any deferred free space that has not been
|
|
* added back into the in-core free tree yet. This will
|
|
* ensure that we don't end up with a space map histogram
|
|
* that is completely empty unless the metaslab is fully
|
|
* allocated.
|
|
*/
|
|
for (int t = 0; t < TXG_DEFER_SIZE; t++) {
|
|
space_map_histogram_add(msp->ms_sm,
|
|
msp->ms_defer[t], tx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Always add the free space from this sync pass to the space
|
|
* map histogram. We want to make sure that the on-disk histogram
|
|
* accounts for all free space. If the space map is not loaded,
|
|
* then we will lose some accuracy but will correct it the next
|
|
* time we load the space map.
|
|
*/
|
|
space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
|
|
metaslab_aux_histograms_update(msp);
|
|
|
|
metaslab_group_histogram_add(mg, msp);
|
|
metaslab_group_histogram_verify(mg);
|
|
metaslab_class_histogram_verify(mg->mg_class);
|
|
|
|
/*
|
|
* For sync pass 1, we avoid traversing this txg's free range tree
|
|
* and instead will just swap the pointers for freeing and freed.
|
|
* We can safely do this since the freed_tree is guaranteed to be
|
|
* empty on the initial pass.
|
|
*
|
|
* Keep in mind that even if we are currently using a log spacemap
|
|
* we want current frees to end up in the ms_allocatable (but not
|
|
* get appended to the ms_sm) so their ranges can be reused as usual.
|
|
*/
|
|
if (spa_sync_pass(spa) == 1) {
|
|
range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
|
|
ASSERT0(msp->ms_allocated_this_txg);
|
|
} else {
|
|
range_tree_vacate(msp->ms_freeing,
|
|
range_tree_add, msp->ms_freed);
|
|
}
|
|
msp->ms_allocated_this_txg += range_tree_space(alloctree);
|
|
range_tree_vacate(alloctree, NULL, NULL);
|
|
|
|
ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
|
|
ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
|
|
& TXG_MASK]));
|
|
ASSERT0(range_tree_space(msp->ms_freeing));
|
|
ASSERT0(range_tree_space(msp->ms_checkpointing));
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
/*
|
|
* Verify that the space map object ID has been recorded in the
|
|
* vdev_ms_array.
|
|
*/
|
|
uint64_t object;
|
|
VERIFY0(dmu_read(mos, vd->vdev_ms_array,
|
|
msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
|
|
VERIFY3U(object, ==, space_map_object(msp->ms_sm));
|
|
|
|
mutex_exit(&msp->ms_sync_lock);
|
|
dmu_tx_commit(tx);
|
|
}
|
|
|
|
static void
|
|
metaslab_evict(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
if (!msp->ms_loaded || msp->ms_disabled != 0)
|
|
return;
|
|
|
|
for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
|
|
VERIFY0(range_tree_space(
|
|
msp->ms_allocating[(txg + t) & TXG_MASK]));
|
|
}
|
|
if (msp->ms_allocator != -1)
|
|
metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
|
|
|
|
if (!metaslab_debug_unload)
|
|
metaslab_unload(msp);
|
|
}
|
|
|
|
/*
|
|
* Called after a transaction group has completely synced to mark
|
|
* all of the metaslab's free space as usable.
|
|
*/
|
|
void
|
|
metaslab_sync_done(metaslab_t *msp, uint64_t txg)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
range_tree_t **defer_tree;
|
|
int64_t alloc_delta, defer_delta;
|
|
boolean_t defer_allowed = B_TRUE;
|
|
|
|
ASSERT(!vd->vdev_ishole);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
if (msp->ms_new) {
|
|
/* this is a new metaslab, add its capacity to the vdev */
|
|
metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
|
|
|
|
/* there should be no allocations nor frees at this point */
|
|
VERIFY0(msp->ms_allocated_this_txg);
|
|
VERIFY0(range_tree_space(msp->ms_freed));
|
|
}
|
|
|
|
ASSERT0(range_tree_space(msp->ms_freeing));
|
|
ASSERT0(range_tree_space(msp->ms_checkpointing));
|
|
|
|
defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
|
|
|
|
uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
|
|
metaslab_class_get_alloc(spa_normal_class(spa));
|
|
if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing ||
|
|
vd->vdev_rz_expanding) {
|
|
defer_allowed = B_FALSE;
|
|
}
|
|
|
|
defer_delta = 0;
|
|
alloc_delta = msp->ms_allocated_this_txg -
|
|
range_tree_space(msp->ms_freed);
|
|
|
|
if (defer_allowed) {
|
|
defer_delta = range_tree_space(msp->ms_freed) -
|
|
range_tree_space(*defer_tree);
|
|
} else {
|
|
defer_delta -= range_tree_space(*defer_tree);
|
|
}
|
|
metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
|
|
defer_delta, 0);
|
|
|
|
if (spa_syncing_log_sm(spa) == NULL) {
|
|
/*
|
|
* If there's a metaslab_load() in progress and we don't have
|
|
* a log space map, it means that we probably wrote to the
|
|
* metaslab's space map. If this is the case, we need to
|
|
* make sure that we wait for the load to complete so that we
|
|
* have a consistent view at the in-core side of the metaslab.
|
|
*/
|
|
metaslab_load_wait(msp);
|
|
} else {
|
|
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
}
|
|
|
|
/*
|
|
* When auto-trimming is enabled, free ranges which are added to
|
|
* ms_allocatable are also be added to ms_trim. The ms_trim tree is
|
|
* periodically consumed by the vdev_autotrim_thread() which issues
|
|
* trims for all ranges and then vacates the tree. The ms_trim tree
|
|
* can be discarded at any time with the sole consequence of recent
|
|
* frees not being trimmed.
|
|
*/
|
|
if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
|
|
range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
|
|
if (!defer_allowed) {
|
|
range_tree_walk(msp->ms_freed, range_tree_add,
|
|
msp->ms_trim);
|
|
}
|
|
} else {
|
|
range_tree_vacate(msp->ms_trim, NULL, NULL);
|
|
}
|
|
|
|
/*
|
|
* Move the frees from the defer_tree back to the free
|
|
* range tree (if it's loaded). Swap the freed_tree and
|
|
* the defer_tree -- this is safe to do because we've
|
|
* just emptied out the defer_tree.
|
|
*/
|
|
range_tree_vacate(*defer_tree,
|
|
msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
|
|
if (defer_allowed) {
|
|
range_tree_swap(&msp->ms_freed, defer_tree);
|
|
} else {
|
|
range_tree_vacate(msp->ms_freed,
|
|
msp->ms_loaded ? range_tree_add : NULL,
|
|
msp->ms_allocatable);
|
|
}
|
|
|
|
msp->ms_synced_length = space_map_length(msp->ms_sm);
|
|
|
|
msp->ms_deferspace += defer_delta;
|
|
ASSERT3S(msp->ms_deferspace, >=, 0);
|
|
ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
|
|
if (msp->ms_deferspace != 0) {
|
|
/*
|
|
* Keep syncing this metaslab until all deferred frees
|
|
* are back in circulation.
|
|
*/
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
|
|
}
|
|
metaslab_aux_histograms_update_done(msp, defer_allowed);
|
|
|
|
if (msp->ms_new) {
|
|
msp->ms_new = B_FALSE;
|
|
mutex_enter(&mg->mg_lock);
|
|
mg->mg_ms_ready++;
|
|
mutex_exit(&mg->mg_lock);
|
|
}
|
|
|
|
/*
|
|
* Re-sort metaslab within its group now that we've adjusted
|
|
* its allocatable space.
|
|
*/
|
|
metaslab_recalculate_weight_and_sort(msp);
|
|
|
|
ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
|
|
ASSERT0(range_tree_space(msp->ms_freeing));
|
|
ASSERT0(range_tree_space(msp->ms_freed));
|
|
ASSERT0(range_tree_space(msp->ms_checkpointing));
|
|
msp->ms_allocating_total -= msp->ms_allocated_this_txg;
|
|
msp->ms_allocated_this_txg = 0;
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_sync_reassess(metaslab_group_t *mg)
|
|
{
|
|
spa_t *spa = mg->mg_class->mc_spa;
|
|
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
|
|
metaslab_group_alloc_update(mg);
|
|
mg->mg_fragmentation = metaslab_group_fragmentation(mg);
|
|
|
|
/*
|
|
* Preload the next potential metaslabs but only on active
|
|
* metaslab groups. We can get into a state where the metaslab
|
|
* is no longer active since we dirty metaslabs as we remove a
|
|
* a device, thus potentially making the metaslab group eligible
|
|
* for preloading.
|
|
*/
|
|
if (mg->mg_activation_count > 0) {
|
|
metaslab_group_preload(mg);
|
|
}
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
}
|
|
|
|
/*
|
|
* When writing a ditto block (i.e. more than one DVA for a given BP) on
|
|
* the same vdev as an existing DVA of this BP, then try to allocate it
|
|
* on a different metaslab than existing DVAs (i.e. a unique metaslab).
|
|
*/
|
|
static boolean_t
|
|
metaslab_is_unique(metaslab_t *msp, dva_t *dva)
|
|
{
|
|
uint64_t dva_ms_id;
|
|
|
|
if (DVA_GET_ASIZE(dva) == 0)
|
|
return (B_TRUE);
|
|
|
|
if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
|
|
return (B_TRUE);
|
|
|
|
dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
|
|
|
|
return (msp->ms_id != dva_ms_id);
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab allocation tracing facility
|
|
* ==========================================================================
|
|
*/
|
|
|
|
/*
|
|
* Add an allocation trace element to the allocation tracing list.
|
|
*/
|
|
static void
|
|
metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
|
|
metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
|
|
int allocator)
|
|
{
|
|
metaslab_alloc_trace_t *mat;
|
|
|
|
if (!metaslab_trace_enabled)
|
|
return;
|
|
|
|
/*
|
|
* When the tracing list reaches its maximum we remove
|
|
* the second element in the list before adding a new one.
|
|
* By removing the second element we preserve the original
|
|
* entry as a clue to what allocations steps have already been
|
|
* performed.
|
|
*/
|
|
if (zal->zal_size == metaslab_trace_max_entries) {
|
|
metaslab_alloc_trace_t *mat_next;
|
|
#ifdef ZFS_DEBUG
|
|
panic("too many entries in allocation list");
|
|
#endif
|
|
METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
|
|
zal->zal_size--;
|
|
mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
|
|
list_remove(&zal->zal_list, mat_next);
|
|
kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
|
|
}
|
|
|
|
mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
|
|
list_link_init(&mat->mat_list_node);
|
|
mat->mat_mg = mg;
|
|
mat->mat_msp = msp;
|
|
mat->mat_size = psize;
|
|
mat->mat_dva_id = dva_id;
|
|
mat->mat_offset = offset;
|
|
mat->mat_weight = 0;
|
|
mat->mat_allocator = allocator;
|
|
|
|
if (msp != NULL)
|
|
mat->mat_weight = msp->ms_weight;
|
|
|
|
/*
|
|
* The list is part of the zio so locking is not required. Only
|
|
* a single thread will perform allocations for a given zio.
|
|
*/
|
|
list_insert_tail(&zal->zal_list, mat);
|
|
zal->zal_size++;
|
|
|
|
ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
|
|
}
|
|
|
|
void
|
|
metaslab_trace_init(zio_alloc_list_t *zal)
|
|
{
|
|
list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
|
|
offsetof(metaslab_alloc_trace_t, mat_list_node));
|
|
zal->zal_size = 0;
|
|
}
|
|
|
|
void
|
|
metaslab_trace_fini(zio_alloc_list_t *zal)
|
|
{
|
|
metaslab_alloc_trace_t *mat;
|
|
|
|
while ((mat = list_remove_head(&zal->zal_list)) != NULL)
|
|
kmem_cache_free(metaslab_alloc_trace_cache, mat);
|
|
list_destroy(&zal->zal_list);
|
|
zal->zal_size = 0;
|
|
}
|
|
|
|
/*
|
|
* ==========================================================================
|
|
* Metaslab block operations
|
|
* ==========================================================================
|
|
*/
|
|
|
|
static void
|
|
metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
|
|
int flags, int allocator)
|
|
{
|
|
if (!(flags & METASLAB_ASYNC_ALLOC) ||
|
|
(flags & METASLAB_DONT_THROTTLE))
|
|
return;
|
|
|
|
metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
|
|
if (!mg->mg_class->mc_alloc_throttle_enabled)
|
|
return;
|
|
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
(void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
|
|
{
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
metaslab_class_allocator_t *mca =
|
|
&mg->mg_class->mc_allocator[allocator];
|
|
uint64_t max = mg->mg_max_alloc_queue_depth;
|
|
uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
|
|
while (cur < max) {
|
|
if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
|
|
cur, cur + 1) == cur) {
|
|
atomic_inc_64(&mca->mca_alloc_max_slots);
|
|
return;
|
|
}
|
|
cur = mga->mga_cur_max_alloc_queue_depth;
|
|
}
|
|
}
|
|
|
|
void
|
|
metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
|
|
int flags, int allocator, boolean_t io_complete)
|
|
{
|
|
if (!(flags & METASLAB_ASYNC_ALLOC) ||
|
|
(flags & METASLAB_DONT_THROTTLE))
|
|
return;
|
|
|
|
metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
|
|
if (!mg->mg_class->mc_alloc_throttle_enabled)
|
|
return;
|
|
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
(void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
|
|
if (io_complete)
|
|
metaslab_group_increment_qdepth(mg, allocator);
|
|
}
|
|
|
|
void
|
|
metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
|
|
int allocator)
|
|
{
|
|
#ifdef ZFS_DEBUG
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
|
|
for (int d = 0; d < ndvas; d++) {
|
|
uint64_t vdev = DVA_GET_VDEV(&dva[d]);
|
|
metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
|
|
{
|
|
uint64_t start;
|
|
range_tree_t *rt = msp->ms_allocatable;
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY0(msp->ms_disabled);
|
|
VERIFY0(msp->ms_new);
|
|
|
|
start = mc->mc_ops->msop_alloc(msp, size);
|
|
if (start != -1ULL) {
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
vdev_t *vd = mg->mg_vd;
|
|
|
|
VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
|
|
range_tree_remove(rt, start, size);
|
|
range_tree_clear(msp->ms_trim, start, size);
|
|
|
|
if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
|
|
vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
|
|
|
|
range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
|
|
msp->ms_allocating_total += size;
|
|
|
|
/* Track the last successful allocation */
|
|
msp->ms_alloc_txg = txg;
|
|
metaslab_verify_space(msp, txg);
|
|
}
|
|
|
|
/*
|
|
* Now that we've attempted the allocation we need to update the
|
|
* metaslab's maximum block size since it may have changed.
|
|
*/
|
|
msp->ms_max_size = metaslab_largest_allocatable(msp);
|
|
return (start);
|
|
}
|
|
|
|
/*
|
|
* Find the metaslab with the highest weight that is less than what we've
|
|
* already tried. In the common case, this means that we will examine each
|
|
* metaslab at most once. Note that concurrent callers could reorder metaslabs
|
|
* by activation/passivation once we have dropped the mg_lock. If a metaslab is
|
|
* activated by another thread, and we fail to allocate from the metaslab we
|
|
* have selected, we may not try the newly-activated metaslab, and instead
|
|
* activate another metaslab. This is not optimal, but generally does not cause
|
|
* any problems (a possible exception being if every metaslab is completely full
|
|
* except for the newly-activated metaslab which we fail to examine).
|
|
*/
|
|
static metaslab_t *
|
|
find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
|
|
dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
|
|
boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
|
|
boolean_t *was_active)
|
|
{
|
|
avl_index_t idx;
|
|
avl_tree_t *t = &mg->mg_metaslab_tree;
|
|
metaslab_t *msp = avl_find(t, search, &idx);
|
|
if (msp == NULL)
|
|
msp = avl_nearest(t, idx, AVL_AFTER);
|
|
|
|
uint_t tries = 0;
|
|
for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
|
|
int i;
|
|
|
|
if (!try_hard && tries > zfs_metaslab_find_max_tries) {
|
|
METASLABSTAT_BUMP(metaslabstat_too_many_tries);
|
|
return (NULL);
|
|
}
|
|
tries++;
|
|
|
|
if (!metaslab_should_allocate(msp, asize, try_hard)) {
|
|
metaslab_trace_add(zal, mg, msp, asize, d,
|
|
TRACE_TOO_SMALL, allocator);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the selected metaslab is condensing or disabled, or
|
|
* hasn't gone through a metaslab_sync_done(), then skip it.
|
|
*/
|
|
if (msp->ms_condensing || msp->ms_disabled > 0 || msp->ms_new)
|
|
continue;
|
|
|
|
*was_active = msp->ms_allocator != -1;
|
|
/*
|
|
* If we're activating as primary, this is our first allocation
|
|
* from this disk, so we don't need to check how close we are.
|
|
* If the metaslab under consideration was already active,
|
|
* we're getting desperate enough to steal another allocator's
|
|
* metaslab, so we still don't care about distances.
|
|
*/
|
|
if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
|
|
break;
|
|
|
|
for (i = 0; i < d; i++) {
|
|
if (want_unique &&
|
|
!metaslab_is_unique(msp, &dva[i]))
|
|
break; /* try another metaslab */
|
|
}
|
|
if (i == d)
|
|
break;
|
|
}
|
|
|
|
if (msp != NULL) {
|
|
search->ms_weight = msp->ms_weight;
|
|
search->ms_start = msp->ms_start + 1;
|
|
search->ms_allocator = msp->ms_allocator;
|
|
search->ms_primary = msp->ms_primary;
|
|
}
|
|
return (msp);
|
|
}
|
|
|
|
static void
|
|
metaslab_active_mask_verify(metaslab_t *msp)
|
|
{
|
|
ASSERT(MUTEX_HELD(&msp->ms_lock));
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
|
|
return;
|
|
|
|
if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
|
|
return;
|
|
|
|
if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
|
|
VERIFY3S(msp->ms_allocator, !=, -1);
|
|
VERIFY(msp->ms_primary);
|
|
return;
|
|
}
|
|
|
|
if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
|
|
VERIFY3S(msp->ms_allocator, !=, -1);
|
|
VERIFY(!msp->ms_primary);
|
|
return;
|
|
}
|
|
|
|
if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
|
|
VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
|
|
VERIFY3S(msp->ms_allocator, ==, -1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
|
|
uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
|
|
int allocator, boolean_t try_hard)
|
|
{
|
|
metaslab_t *msp = NULL;
|
|
uint64_t offset = -1ULL;
|
|
|
|
uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
|
|
for (int i = 0; i < d; i++) {
|
|
if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
|
|
DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
|
|
activation_weight = METASLAB_WEIGHT_SECONDARY;
|
|
} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
|
|
DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
|
|
activation_weight = METASLAB_WEIGHT_CLAIM;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we don't have enough metaslabs active to fill the entire array, we
|
|
* just use the 0th slot.
|
|
*/
|
|
if (mg->mg_ms_ready < mg->mg_allocators * 3)
|
|
allocator = 0;
|
|
metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
|
|
|
|
ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
|
|
|
|
metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
|
|
search->ms_weight = UINT64_MAX;
|
|
search->ms_start = 0;
|
|
/*
|
|
* At the end of the metaslab tree are the already-active metaslabs,
|
|
* first the primaries, then the secondaries. When we resume searching
|
|
* through the tree, we need to consider ms_allocator and ms_primary so
|
|
* we start in the location right after where we left off, and don't
|
|
* accidentally loop forever considering the same metaslabs.
|
|
*/
|
|
search->ms_allocator = -1;
|
|
search->ms_primary = B_TRUE;
|
|
for (;;) {
|
|
boolean_t was_active = B_FALSE;
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
|
|
if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
|
|
mga->mga_primary != NULL) {
|
|
msp = mga->mga_primary;
|
|
|
|
/*
|
|
* Even though we don't hold the ms_lock for the
|
|
* primary metaslab, those fields should not
|
|
* change while we hold the mg_lock. Thus it is
|
|
* safe to make assertions on them.
|
|
*/
|
|
ASSERT(msp->ms_primary);
|
|
ASSERT3S(msp->ms_allocator, ==, allocator);
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
was_active = B_TRUE;
|
|
ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
} else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
|
|
mga->mga_secondary != NULL) {
|
|
msp = mga->mga_secondary;
|
|
|
|
/*
|
|
* See comment above about the similar assertions
|
|
* for the primary metaslab.
|
|
*/
|
|
ASSERT(!msp->ms_primary);
|
|
ASSERT3S(msp->ms_allocator, ==, allocator);
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
was_active = B_TRUE;
|
|
ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
} else {
|
|
msp = find_valid_metaslab(mg, activation_weight, dva, d,
|
|
want_unique, asize, allocator, try_hard, zal,
|
|
search, &was_active);
|
|
}
|
|
|
|
mutex_exit(&mg->mg_lock);
|
|
if (msp == NULL) {
|
|
kmem_free(search, sizeof (*search));
|
|
return (-1ULL);
|
|
}
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
metaslab_active_mask_verify(msp);
|
|
|
|
/*
|
|
* This code is disabled out because of issues with
|
|
* tracepoints in non-gpl kernel modules.
|
|
*/
|
|
#if 0
|
|
DTRACE_PROBE3(ms__activation__attempt,
|
|
metaslab_t *, msp, uint64_t, activation_weight,
|
|
boolean_t, was_active);
|
|
#endif
|
|
|
|
/*
|
|
* Ensure that the metaslab we have selected is still
|
|
* capable of handling our request. It's possible that
|
|
* another thread may have changed the weight while we
|
|
* were blocked on the metaslab lock. We check the
|
|
* active status first to see if we need to set_selected_txg
|
|
* a new metaslab.
|
|
*/
|
|
if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
|
|
ASSERT3S(msp->ms_allocator, ==, -1);
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If the metaslab was activated for another allocator
|
|
* while we were waiting in the ms_lock above, or it's
|
|
* a primary and we're seeking a secondary (or vice versa),
|
|
* we go back and select a new metaslab.
|
|
*/
|
|
if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
|
|
(msp->ms_allocator != -1) &&
|
|
(msp->ms_allocator != allocator || ((activation_weight ==
|
|
METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
|
|
msp->ms_allocator != -1);
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* This metaslab was used for claiming regions allocated
|
|
* by the ZIL during pool import. Once these regions are
|
|
* claimed we don't need to keep the CLAIM bit set
|
|
* anymore. Passivate this metaslab to zero its activation
|
|
* mask.
|
|
*/
|
|
if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
|
|
activation_weight != METASLAB_WEIGHT_CLAIM) {
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT3S(msp->ms_allocator, ==, -1);
|
|
metaslab_passivate(msp, msp->ms_weight &
|
|
~METASLAB_WEIGHT_CLAIM);
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
metaslab_set_selected_txg(msp, txg);
|
|
|
|
int activation_error =
|
|
metaslab_activate(msp, allocator, activation_weight);
|
|
metaslab_active_mask_verify(msp);
|
|
|
|
/*
|
|
* If the metaslab was activated by another thread for
|
|
* another allocator or activation_weight (EBUSY), or it
|
|
* failed because another metaslab was assigned as primary
|
|
* for this allocator (EEXIST) we continue using this
|
|
* metaslab for our allocation, rather than going on to a
|
|
* worse metaslab (we waited for that metaslab to be loaded
|
|
* after all).
|
|
*
|
|
* If the activation failed due to an I/O error or ENOSPC we
|
|
* skip to the next metaslab.
|
|
*/
|
|
boolean_t activated;
|
|
if (activation_error == 0) {
|
|
activated = B_TRUE;
|
|
} else if (activation_error == EBUSY ||
|
|
activation_error == EEXIST) {
|
|
activated = B_FALSE;
|
|
} else {
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
/*
|
|
* Now that we have the lock, recheck to see if we should
|
|
* continue to use this metaslab for this allocation. The
|
|
* the metaslab is now loaded so metaslab_should_allocate()
|
|
* can accurately determine if the allocation attempt should
|
|
* proceed.
|
|
*/
|
|
if (!metaslab_should_allocate(msp, asize, try_hard)) {
|
|
/* Passivate this metaslab and select a new one. */
|
|
metaslab_trace_add(zal, mg, msp, asize, d,
|
|
TRACE_TOO_SMALL, allocator);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* If this metaslab is currently condensing then pick again
|
|
* as we can't manipulate this metaslab until it's committed
|
|
* to disk. If this metaslab is being initialized, we shouldn't
|
|
* allocate from it since the allocated region might be
|
|
* overwritten after allocation.
|
|
*/
|
|
if (msp->ms_condensing) {
|
|
metaslab_trace_add(zal, mg, msp, asize, d,
|
|
TRACE_CONDENSING, allocator);
|
|
if (activated) {
|
|
metaslab_passivate(msp, msp->ms_weight &
|
|
~METASLAB_ACTIVE_MASK);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
} else if (msp->ms_disabled > 0) {
|
|
metaslab_trace_add(zal, mg, msp, asize, d,
|
|
TRACE_DISABLED, allocator);
|
|
if (activated) {
|
|
metaslab_passivate(msp, msp->ms_weight &
|
|
~METASLAB_ACTIVE_MASK);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
continue;
|
|
}
|
|
|
|
offset = metaslab_block_alloc(msp, asize, txg);
|
|
metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
|
|
|
|
if (offset != -1ULL) {
|
|
/* Proactively passivate the metaslab, if needed */
|
|
if (activated)
|
|
metaslab_segment_may_passivate(msp);
|
|
break;
|
|
}
|
|
next:
|
|
ASSERT(msp->ms_loaded);
|
|
|
|
/*
|
|
* This code is disabled out because of issues with
|
|
* tracepoints in non-gpl kernel modules.
|
|
*/
|
|
#if 0
|
|
DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
|
|
uint64_t, asize);
|
|
#endif
|
|
|
|
/*
|
|
* We were unable to allocate from this metaslab so determine
|
|
* a new weight for this metaslab. Now that we have loaded
|
|
* the metaslab we can provide a better hint to the metaslab
|
|
* selector.
|
|
*
|
|
* For space-based metaslabs, we use the maximum block size.
|
|
* This information is only available when the metaslab
|
|
* is loaded and is more accurate than the generic free
|
|
* space weight that was calculated by metaslab_weight().
|
|
* This information allows us to quickly compare the maximum
|
|
* available allocation in the metaslab to the allocation
|
|
* size being requested.
|
|
*
|
|
* For segment-based metaslabs, determine the new weight
|
|
* based on the highest bucket in the range tree. We
|
|
* explicitly use the loaded segment weight (i.e. the range
|
|
* tree histogram) since it contains the space that is
|
|
* currently available for allocation and is accurate
|
|
* even within a sync pass.
|
|
*/
|
|
uint64_t weight;
|
|
if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
|
|
weight = metaslab_largest_allocatable(msp);
|
|
WEIGHT_SET_SPACEBASED(weight);
|
|
} else {
|
|
weight = metaslab_weight_from_range_tree(msp);
|
|
}
|
|
|
|
if (activated) {
|
|
metaslab_passivate(msp, weight);
|
|
} else {
|
|
/*
|
|
* For the case where we use the metaslab that is
|
|
* active for another allocator we want to make
|
|
* sure that we retain the activation mask.
|
|
*
|
|
* Note that we could attempt to use something like
|
|
* metaslab_recalculate_weight_and_sort() that
|
|
* retains the activation mask here. That function
|
|
* uses metaslab_weight() to set the weight though
|
|
* which is not as accurate as the calculations
|
|
* above.
|
|
*/
|
|
weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
|
|
metaslab_group_sort(mg, msp, weight);
|
|
}
|
|
metaslab_active_mask_verify(msp);
|
|
|
|
/*
|
|
* We have just failed an allocation attempt, check
|
|
* that metaslab_should_allocate() agrees. Otherwise,
|
|
* we may end up in an infinite loop retrying the same
|
|
* metaslab.
|
|
*/
|
|
ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
kmem_free(search, sizeof (*search));
|
|
return (offset);
|
|
}
|
|
|
|
static uint64_t
|
|
metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
|
|
uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
|
|
int allocator, boolean_t try_hard)
|
|
{
|
|
uint64_t offset;
|
|
|
|
offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
|
|
dva, d, allocator, try_hard);
|
|
|
|
mutex_enter(&mg->mg_lock);
|
|
if (offset == -1ULL) {
|
|
mg->mg_failed_allocations++;
|
|
metaslab_trace_add(zal, mg, NULL, asize, d,
|
|
TRACE_GROUP_FAILURE, allocator);
|
|
if (asize == SPA_GANGBLOCKSIZE) {
|
|
/*
|
|
* This metaslab group was unable to allocate
|
|
* the minimum gang block size so it must be out of
|
|
* space. We must notify the allocation throttle
|
|
* to start skipping allocation attempts to this
|
|
* metaslab group until more space becomes available.
|
|
* Note: this failure cannot be caused by the
|
|
* allocation throttle since the allocation throttle
|
|
* is only responsible for skipping devices and
|
|
* not failing block allocations.
|
|
*/
|
|
mg->mg_no_free_space = B_TRUE;
|
|
}
|
|
}
|
|
mg->mg_allocations++;
|
|
mutex_exit(&mg->mg_lock);
|
|
return (offset);
|
|
}
|
|
|
|
/*
|
|
* Allocate a block for the specified i/o.
|
|
*/
|
|
int
|
|
metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
|
|
dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
|
|
zio_alloc_list_t *zal, int allocator)
|
|
{
|
|
metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
|
|
metaslab_group_t *mg, *rotor;
|
|
vdev_t *vd;
|
|
boolean_t try_hard = B_FALSE;
|
|
|
|
ASSERT(!DVA_IS_VALID(&dva[d]));
|
|
|
|
/*
|
|
* For testing, make some blocks above a certain size be gang blocks.
|
|
* This will result in more split blocks when using device removal,
|
|
* and a large number of split blocks coupled with ztest-induced
|
|
* damage can result in extremely long reconstruction times. This
|
|
* will also test spilling from special to normal.
|
|
*/
|
|
if (psize >= metaslab_force_ganging &&
|
|
metaslab_force_ganging_pct > 0 &&
|
|
(random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
|
|
metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
|
|
allocator);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
/*
|
|
* Start at the rotor and loop through all mgs until we find something.
|
|
* Note that there's no locking on mca_rotor or mca_aliquot because
|
|
* nothing actually breaks if we miss a few updates -- we just won't
|
|
* allocate quite as evenly. It all balances out over time.
|
|
*
|
|
* If we are doing ditto or log blocks, try to spread them across
|
|
* consecutive vdevs. If we're forced to reuse a vdev before we've
|
|
* allocated all of our ditto blocks, then try and spread them out on
|
|
* that vdev as much as possible. If it turns out to not be possible,
|
|
* gradually lower our standards until anything becomes acceptable.
|
|
* Also, allocating on consecutive vdevs (as opposed to random vdevs)
|
|
* gives us hope of containing our fault domains to something we're
|
|
* able to reason about. Otherwise, any two top-level vdev failures
|
|
* will guarantee the loss of data. With consecutive allocation,
|
|
* only two adjacent top-level vdev failures will result in data loss.
|
|
*
|
|
* If we are doing gang blocks (hintdva is non-NULL), try to keep
|
|
* ourselves on the same vdev as our gang block header. That
|
|
* way, we can hope for locality in vdev_cache, plus it makes our
|
|
* fault domains something tractable.
|
|
*/
|
|
if (hintdva) {
|
|
vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
|
|
|
|
/*
|
|
* It's possible the vdev we're using as the hint no
|
|
* longer exists or its mg has been closed (e.g. by
|
|
* device removal). Consult the rotor when
|
|
* all else fails.
|
|
*/
|
|
if (vd != NULL && vd->vdev_mg != NULL) {
|
|
mg = vdev_get_mg(vd, mc);
|
|
|
|
if (flags & METASLAB_HINTBP_AVOID)
|
|
mg = mg->mg_next;
|
|
} else {
|
|
mg = mca->mca_rotor;
|
|
}
|
|
} else if (d != 0) {
|
|
vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
|
|
mg = vd->vdev_mg->mg_next;
|
|
} else {
|
|
ASSERT(mca->mca_rotor != NULL);
|
|
mg = mca->mca_rotor;
|
|
}
|
|
|
|
/*
|
|
* If the hint put us into the wrong metaslab class, or into a
|
|
* metaslab group that has been passivated, just follow the rotor.
|
|
*/
|
|
if (mg->mg_class != mc || mg->mg_activation_count <= 0)
|
|
mg = mca->mca_rotor;
|
|
|
|
rotor = mg;
|
|
top:
|
|
do {
|
|
boolean_t allocatable;
|
|
|
|
ASSERT(mg->mg_activation_count == 1);
|
|
vd = mg->mg_vd;
|
|
|
|
/*
|
|
* Don't allocate from faulted devices.
|
|
*/
|
|
if (try_hard) {
|
|
spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
|
|
allocatable = vdev_allocatable(vd);
|
|
spa_config_exit(spa, SCL_ZIO, FTAG);
|
|
} else {
|
|
allocatable = vdev_allocatable(vd);
|
|
}
|
|
|
|
/*
|
|
* Determine if the selected metaslab group is eligible
|
|
* for allocations. If we're ganging then don't allow
|
|
* this metaslab group to skip allocations since that would
|
|
* inadvertently return ENOSPC and suspend the pool
|
|
* even though space is still available.
|
|
*/
|
|
if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
|
|
allocatable = metaslab_group_allocatable(mg, rotor,
|
|
flags, psize, allocator, d);
|
|
}
|
|
|
|
if (!allocatable) {
|
|
metaslab_trace_add(zal, mg, NULL, psize, d,
|
|
TRACE_NOT_ALLOCATABLE, allocator);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* Avoid writing single-copy data to an unhealthy,
|
|
* non-redundant vdev, unless we've already tried all
|
|
* other vdevs.
|
|
*/
|
|
if (vd->vdev_state < VDEV_STATE_HEALTHY &&
|
|
d == 0 && !try_hard && vd->vdev_children == 0) {
|
|
metaslab_trace_add(zal, mg, NULL, psize, d,
|
|
TRACE_VDEV_ERROR, allocator);
|
|
goto next;
|
|
}
|
|
|
|
ASSERT(mg->mg_class == mc);
|
|
|
|
uint64_t asize = vdev_psize_to_asize_txg(vd, psize, txg);
|
|
ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
|
|
|
|
/*
|
|
* If we don't need to try hard, then require that the
|
|
* block be on a different metaslab from any other DVAs
|
|
* in this BP (unique=true). If we are trying hard, then
|
|
* allow any metaslab to be used (unique=false).
|
|
*/
|
|
uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
|
|
!try_hard, dva, d, allocator, try_hard);
|
|
|
|
if (offset != -1ULL) {
|
|
/*
|
|
* If we've just selected this metaslab group,
|
|
* figure out whether the corresponding vdev is
|
|
* over- or under-used relative to the pool,
|
|
* and set an allocation bias to even it out.
|
|
*
|
|
* Bias is also used to compensate for unequally
|
|
* sized vdevs so that space is allocated fairly.
|
|
*/
|
|
if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
|
|
vdev_stat_t *vs = &vd->vdev_stat;
|
|
int64_t vs_free = vs->vs_space - vs->vs_alloc;
|
|
int64_t mc_free = mc->mc_space - mc->mc_alloc;
|
|
int64_t ratio;
|
|
|
|
/*
|
|
* Calculate how much more or less we should
|
|
* try to allocate from this device during
|
|
* this iteration around the rotor.
|
|
*
|
|
* This basically introduces a zero-centered
|
|
* bias towards the devices with the most
|
|
* free space, while compensating for vdev
|
|
* size differences.
|
|
*
|
|
* Examples:
|
|
* vdev V1 = 16M/128M
|
|
* vdev V2 = 16M/128M
|
|
* ratio(V1) = 100% ratio(V2) = 100%
|
|
*
|
|
* vdev V1 = 16M/128M
|
|
* vdev V2 = 64M/128M
|
|
* ratio(V1) = 127% ratio(V2) = 72%
|
|
*
|
|
* vdev V1 = 16M/128M
|
|
* vdev V2 = 64M/512M
|
|
* ratio(V1) = 40% ratio(V2) = 160%
|
|
*/
|
|
ratio = (vs_free * mc->mc_alloc_groups * 100) /
|
|
(mc_free + 1);
|
|
mg->mg_bias = ((ratio - 100) *
|
|
(int64_t)mg->mg_aliquot) / 100;
|
|
} else if (!metaslab_bias_enabled) {
|
|
mg->mg_bias = 0;
|
|
}
|
|
|
|
if ((flags & METASLAB_ZIL) ||
|
|
atomic_add_64_nv(&mca->mca_aliquot, asize) >=
|
|
mg->mg_aliquot + mg->mg_bias) {
|
|
mca->mca_rotor = mg->mg_next;
|
|
mca->mca_aliquot = 0;
|
|
}
|
|
|
|
DVA_SET_VDEV(&dva[d], vd->vdev_id);
|
|
DVA_SET_OFFSET(&dva[d], offset);
|
|
DVA_SET_GANG(&dva[d],
|
|
((flags & METASLAB_GANG_HEADER) ? 1 : 0));
|
|
DVA_SET_ASIZE(&dva[d], asize);
|
|
|
|
return (0);
|
|
}
|
|
next:
|
|
mca->mca_rotor = mg->mg_next;
|
|
mca->mca_aliquot = 0;
|
|
} while ((mg = mg->mg_next) != rotor);
|
|
|
|
/*
|
|
* If we haven't tried hard, perhaps do so now.
|
|
*/
|
|
if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
|
|
GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
|
|
psize <= 1 << spa->spa_min_ashift)) {
|
|
METASLABSTAT_BUMP(metaslabstat_try_hard);
|
|
try_hard = B_TRUE;
|
|
goto top;
|
|
}
|
|
|
|
memset(&dva[d], 0, sizeof (dva_t));
|
|
|
|
metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
void
|
|
metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
|
|
boolean_t checkpoint)
|
|
{
|
|
metaslab_t *msp;
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
|
|
ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
|
|
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY3U(offset, >=, msp->ms_start);
|
|
VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
|
|
VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
|
|
|
|
metaslab_check_free_impl(vd, offset, asize);
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
if (range_tree_is_empty(msp->ms_freeing) &&
|
|
range_tree_is_empty(msp->ms_checkpointing)) {
|
|
vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
|
|
}
|
|
|
|
if (checkpoint) {
|
|
ASSERT(spa_has_checkpoint(spa));
|
|
range_tree_add(msp->ms_checkpointing, offset, asize);
|
|
} else {
|
|
range_tree_add(msp->ms_freeing, offset, asize);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
|
|
uint64_t size, void *arg)
|
|
{
|
|
(void) inner_offset;
|
|
boolean_t *checkpoint = arg;
|
|
|
|
ASSERT3P(checkpoint, !=, NULL);
|
|
|
|
if (vd->vdev_ops->vdev_op_remap != NULL)
|
|
vdev_indirect_mark_obsolete(vd, offset, size);
|
|
else
|
|
metaslab_free_impl(vd, offset, size, *checkpoint);
|
|
}
|
|
|
|
static void
|
|
metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
|
|
boolean_t checkpoint)
|
|
{
|
|
spa_t *spa = vd->vdev_spa;
|
|
|
|
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
|
|
|
|
if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
|
|
return;
|
|
|
|
if (spa->spa_vdev_removal != NULL &&
|
|
spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
|
|
vdev_is_concrete(vd)) {
|
|
/*
|
|
* Note: we check if the vdev is concrete because when
|
|
* we complete the removal, we first change the vdev to be
|
|
* an indirect vdev (in open context), and then (in syncing
|
|
* context) clear spa_vdev_removal.
|
|
*/
|
|
free_from_removing_vdev(vd, offset, size);
|
|
} else if (vd->vdev_ops->vdev_op_remap != NULL) {
|
|
vdev_indirect_mark_obsolete(vd, offset, size);
|
|
vd->vdev_ops->vdev_op_remap(vd, offset, size,
|
|
metaslab_free_impl_cb, &checkpoint);
|
|
} else {
|
|
metaslab_free_concrete(vd, offset, size, checkpoint);
|
|
}
|
|
}
|
|
|
|
typedef struct remap_blkptr_cb_arg {
|
|
blkptr_t *rbca_bp;
|
|
spa_remap_cb_t rbca_cb;
|
|
vdev_t *rbca_remap_vd;
|
|
uint64_t rbca_remap_offset;
|
|
void *rbca_cb_arg;
|
|
} remap_blkptr_cb_arg_t;
|
|
|
|
static void
|
|
remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
|
|
uint64_t size, void *arg)
|
|
{
|
|
remap_blkptr_cb_arg_t *rbca = arg;
|
|
blkptr_t *bp = rbca->rbca_bp;
|
|
|
|
/* We can not remap split blocks. */
|
|
if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
|
|
return;
|
|
ASSERT0(inner_offset);
|
|
|
|
if (rbca->rbca_cb != NULL) {
|
|
/*
|
|
* At this point we know that we are not handling split
|
|
* blocks and we invoke the callback on the previous
|
|
* vdev which must be indirect.
|
|
*/
|
|
ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
|
|
|
|
rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
|
|
rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
|
|
|
|
/* set up remap_blkptr_cb_arg for the next call */
|
|
rbca->rbca_remap_vd = vd;
|
|
rbca->rbca_remap_offset = offset;
|
|
}
|
|
|
|
/*
|
|
* The phys birth time is that of dva[0]. This ensures that we know
|
|
* when each dva was written, so that resilver can determine which
|
|
* blocks need to be scrubbed (i.e. those written during the time
|
|
* the vdev was offline). It also ensures that the key used in
|
|
* the ARC hash table is unique (i.e. dva[0] + phys_birth). If
|
|
* we didn't change the phys_birth, a lookup in the ARC for a
|
|
* remapped BP could find the data that was previously stored at
|
|
* this vdev + offset.
|
|
*/
|
|
vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
|
|
DVA_GET_VDEV(&bp->blk_dva[0]));
|
|
vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
|
|
uint64_t physical_birth = vdev_indirect_births_physbirth(vib,
|
|
DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
|
|
BP_SET_PHYSICAL_BIRTH(bp, physical_birth);
|
|
|
|
DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
|
|
DVA_SET_OFFSET(&bp->blk_dva[0], offset);
|
|
}
|
|
|
|
/*
|
|
* If the block pointer contains any indirect DVAs, modify them to refer to
|
|
* concrete DVAs. Note that this will sometimes not be possible, leaving
|
|
* the indirect DVA in place. This happens if the indirect DVA spans multiple
|
|
* segments in the mapping (i.e. it is a "split block").
|
|
*
|
|
* If the BP was remapped, calls the callback on the original dva (note the
|
|
* callback can be called multiple times if the original indirect DVA refers
|
|
* to another indirect DVA, etc).
|
|
*
|
|
* Returns TRUE if the BP was remapped.
|
|
*/
|
|
boolean_t
|
|
spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
|
|
{
|
|
remap_blkptr_cb_arg_t rbca;
|
|
|
|
if (!zfs_remap_blkptr_enable)
|
|
return (B_FALSE);
|
|
|
|
if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Dedup BP's can not be remapped, because ddt_phys_select() depends
|
|
* on DVA[0] being the same in the BP as in the DDT (dedup table).
|
|
*/
|
|
if (BP_GET_DEDUP(bp))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Gang blocks can not be remapped, because
|
|
* zio_checksum_gang_verifier() depends on the DVA[0] that's in
|
|
* the BP used to read the gang block header (GBH) being the same
|
|
* as the DVA[0] that we allocated for the GBH.
|
|
*/
|
|
if (BP_IS_GANG(bp))
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Embedded BP's have no DVA to remap.
|
|
*/
|
|
if (BP_GET_NDVAS(bp) < 1)
|
|
return (B_FALSE);
|
|
|
|
/*
|
|
* Note: we only remap dva[0]. If we remapped other dvas, we
|
|
* would no longer know what their phys birth txg is.
|
|
*/
|
|
dva_t *dva = &bp->blk_dva[0];
|
|
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
|
|
|
|
if (vd->vdev_ops->vdev_op_remap == NULL)
|
|
return (B_FALSE);
|
|
|
|
rbca.rbca_bp = bp;
|
|
rbca.rbca_cb = callback;
|
|
rbca.rbca_remap_vd = vd;
|
|
rbca.rbca_remap_offset = offset;
|
|
rbca.rbca_cb_arg = arg;
|
|
|
|
/*
|
|
* remap_blkptr_cb() will be called in order for each level of
|
|
* indirection, until a concrete vdev is reached or a split block is
|
|
* encountered. old_vd and old_offset are updated within the callback
|
|
* as we go from the one indirect vdev to the next one (either concrete
|
|
* or indirect again) in that order.
|
|
*/
|
|
vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
|
|
|
|
/* Check if the DVA wasn't remapped because it is a split block */
|
|
if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
|
|
return (B_FALSE);
|
|
|
|
return (B_TRUE);
|
|
}
|
|
|
|
/*
|
|
* Undo the allocation of a DVA which happened in the given transaction group.
|
|
*/
|
|
void
|
|
metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
|
|
{
|
|
metaslab_t *msp;
|
|
vdev_t *vd;
|
|
uint64_t vdev = DVA_GET_VDEV(dva);
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
|
|
ASSERT(DVA_IS_VALID(dva));
|
|
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
|
|
|
|
if (txg > spa_freeze_txg(spa))
|
|
return;
|
|
|
|
if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
|
|
(offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
|
|
zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
|
|
(u_longlong_t)vdev, (u_longlong_t)offset,
|
|
(u_longlong_t)size);
|
|
return;
|
|
}
|
|
|
|
ASSERT(!vd->vdev_removing);
|
|
ASSERT(vdev_is_concrete(vd));
|
|
ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
|
|
ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
|
|
|
|
if (DVA_GET_GANG(dva))
|
|
size = vdev_gang_header_asize(vd);
|
|
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
|
|
offset, size);
|
|
msp->ms_allocating_total -= size;
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY3U(offset, >=, msp->ms_start);
|
|
VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
|
|
VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
|
|
msp->ms_size);
|
|
VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
range_tree_add(msp->ms_allocatable, offset, size);
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
/*
|
|
* Free the block represented by the given DVA.
|
|
*/
|
|
void
|
|
metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
|
|
{
|
|
uint64_t vdev = DVA_GET_VDEV(dva);
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev);
|
|
|
|
ASSERT(DVA_IS_VALID(dva));
|
|
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
|
|
|
|
if (DVA_GET_GANG(dva)) {
|
|
size = vdev_gang_header_asize(vd);
|
|
}
|
|
|
|
metaslab_free_impl(vd, offset, size, checkpoint);
|
|
}
|
|
|
|
/*
|
|
* Reserve some allocation slots. The reservation system must be called
|
|
* before we call into the allocator. If there aren't any available slots
|
|
* then the I/O will be throttled until an I/O completes and its slots are
|
|
* freed up. The function returns true if it was successful in placing
|
|
* the reservation.
|
|
*/
|
|
boolean_t
|
|
metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
|
|
zio_t *zio, int flags)
|
|
{
|
|
metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
|
|
uint64_t max = mca->mca_alloc_max_slots;
|
|
|
|
ASSERT(mc->mc_alloc_throttle_enabled);
|
|
if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
|
|
zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
|
|
/*
|
|
* The potential race between _count() and _add() is covered
|
|
* by the allocator lock in most cases, or irrelevant due to
|
|
* GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
|
|
* But even if we assume some other non-existing scenario, the
|
|
* worst that can happen is few more I/Os get to allocation
|
|
* earlier, that is not a problem.
|
|
*
|
|
* We reserve the slots individually so that we can unreserve
|
|
* them individually when an I/O completes.
|
|
*/
|
|
zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
|
|
zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
|
|
return (B_TRUE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
void
|
|
metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
|
|
int allocator, zio_t *zio)
|
|
{
|
|
metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
|
|
|
|
ASSERT(mc->mc_alloc_throttle_enabled);
|
|
zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
|
|
}
|
|
|
|
static int
|
|
metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
|
|
uint64_t txg)
|
|
{
|
|
metaslab_t *msp;
|
|
spa_t *spa = vd->vdev_spa;
|
|
int error = 0;
|
|
|
|
if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
|
|
return (SET_ERROR(ENXIO));
|
|
|
|
ASSERT3P(vd->vdev_ms, !=, NULL);
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
|
|
if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
|
|
error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
|
|
if (error == EBUSY) {
|
|
ASSERT(msp->ms_loaded);
|
|
ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
|
|
error = 0;
|
|
}
|
|
}
|
|
|
|
if (error == 0 &&
|
|
!range_tree_contains(msp->ms_allocatable, offset, size))
|
|
error = SET_ERROR(ENOENT);
|
|
|
|
if (error || txg == 0) { /* txg == 0 indicates dry run */
|
|
mutex_exit(&msp->ms_lock);
|
|
return (error);
|
|
}
|
|
|
|
VERIFY(!msp->ms_condensing);
|
|
VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
|
|
VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
|
|
VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
|
|
msp->ms_size);
|
|
range_tree_remove(msp->ms_allocatable, offset, size);
|
|
range_tree_clear(msp->ms_trim, offset, size);
|
|
|
|
if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
|
|
metaslab_class_t *mc = msp->ms_group->mg_class;
|
|
multilist_sublist_t *mls =
|
|
multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
|
|
if (!multilist_link_active(&msp->ms_class_txg_node)) {
|
|
msp->ms_selected_txg = txg;
|
|
multilist_sublist_insert_head(mls, msp);
|
|
}
|
|
multilist_sublist_unlock(mls);
|
|
|
|
if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
|
|
vdev_dirty(vd, VDD_METASLAB, msp, txg);
|
|
range_tree_add(msp->ms_allocating[txg & TXG_MASK],
|
|
offset, size);
|
|
msp->ms_allocating_total += size;
|
|
}
|
|
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
typedef struct metaslab_claim_cb_arg_t {
|
|
uint64_t mcca_txg;
|
|
int mcca_error;
|
|
} metaslab_claim_cb_arg_t;
|
|
|
|
static void
|
|
metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
|
|
uint64_t size, void *arg)
|
|
{
|
|
(void) inner_offset;
|
|
metaslab_claim_cb_arg_t *mcca_arg = arg;
|
|
|
|
if (mcca_arg->mcca_error == 0) {
|
|
mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
|
|
size, mcca_arg->mcca_txg);
|
|
}
|
|
}
|
|
|
|
int
|
|
metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
|
|
{
|
|
if (vd->vdev_ops->vdev_op_remap != NULL) {
|
|
metaslab_claim_cb_arg_t arg;
|
|
|
|
/*
|
|
* Only zdb(8) can claim on indirect vdevs. This is used
|
|
* to detect leaks of mapped space (that are not accounted
|
|
* for in the obsolete counts, spacemap, or bpobj).
|
|
*/
|
|
ASSERT(!spa_writeable(vd->vdev_spa));
|
|
arg.mcca_error = 0;
|
|
arg.mcca_txg = txg;
|
|
|
|
vd->vdev_ops->vdev_op_remap(vd, offset, size,
|
|
metaslab_claim_impl_cb, &arg);
|
|
|
|
if (arg.mcca_error == 0) {
|
|
arg.mcca_error = metaslab_claim_concrete(vd,
|
|
offset, size, txg);
|
|
}
|
|
return (arg.mcca_error);
|
|
} else {
|
|
return (metaslab_claim_concrete(vd, offset, size, txg));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Intent log support: upon opening the pool after a crash, notify the SPA
|
|
* of blocks that the intent log has allocated for immediate write, but
|
|
* which are still considered free by the SPA because the last transaction
|
|
* group didn't commit yet.
|
|
*/
|
|
static int
|
|
metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
|
|
{
|
|
uint64_t vdev = DVA_GET_VDEV(dva);
|
|
uint64_t offset = DVA_GET_OFFSET(dva);
|
|
uint64_t size = DVA_GET_ASIZE(dva);
|
|
vdev_t *vd;
|
|
|
|
if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
|
|
return (SET_ERROR(ENXIO));
|
|
}
|
|
|
|
ASSERT(DVA_IS_VALID(dva));
|
|
|
|
if (DVA_GET_GANG(dva))
|
|
size = vdev_gang_header_asize(vd);
|
|
|
|
return (metaslab_claim_impl(vd, offset, size, txg));
|
|
}
|
|
|
|
int
|
|
metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
|
|
int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
|
|
zio_alloc_list_t *zal, zio_t *zio, int allocator)
|
|
{
|
|
dva_t *dva = bp->blk_dva;
|
|
dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
|
|
int error = 0;
|
|
|
|
ASSERT0(BP_GET_LOGICAL_BIRTH(bp));
|
|
ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
|
|
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
|
|
|
|
if (mc->mc_allocator[allocator].mca_rotor == NULL) {
|
|
/* no vdevs in this class */
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
return (SET_ERROR(ENOSPC));
|
|
}
|
|
|
|
ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
|
|
ASSERT(BP_GET_NDVAS(bp) == 0);
|
|
ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
|
|
ASSERT3P(zal, !=, NULL);
|
|
|
|
for (int d = 0; d < ndvas; d++) {
|
|
error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
|
|
txg, flags, zal, allocator);
|
|
if (error != 0) {
|
|
for (d--; d >= 0; d--) {
|
|
metaslab_unalloc_dva(spa, &dva[d], txg);
|
|
metaslab_group_alloc_decrement(spa,
|
|
DVA_GET_VDEV(&dva[d]), zio, flags,
|
|
allocator, B_FALSE);
|
|
memset(&dva[d], 0, sizeof (dva_t));
|
|
}
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
return (error);
|
|
} else {
|
|
/*
|
|
* Update the metaslab group's queue depth
|
|
* based on the newly allocated dva.
|
|
*/
|
|
metaslab_group_alloc_increment(spa,
|
|
DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
|
|
}
|
|
}
|
|
ASSERT(error == 0);
|
|
ASSERT(BP_GET_NDVAS(bp) == ndvas);
|
|
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
|
|
BP_SET_BIRTH(bp, txg, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
ASSERT(!now || BP_GET_LOGICAL_BIRTH(bp) >= spa_syncing_txg(spa));
|
|
|
|
/*
|
|
* If we have a checkpoint for the pool we need to make sure that
|
|
* the blocks that we free that are part of the checkpoint won't be
|
|
* reused until the checkpoint is discarded or we revert to it.
|
|
*
|
|
* The checkpoint flag is passed down the metaslab_free code path
|
|
* and is set whenever we want to add a block to the checkpoint's
|
|
* accounting. That is, we "checkpoint" blocks that existed at the
|
|
* time the checkpoint was created and are therefore referenced by
|
|
* the checkpointed uberblock.
|
|
*
|
|
* Note that, we don't checkpoint any blocks if the current
|
|
* syncing txg <= spa_checkpoint_txg. We want these frees to sync
|
|
* normally as they will be referenced by the checkpointed uberblock.
|
|
*/
|
|
boolean_t checkpoint = B_FALSE;
|
|
if (BP_GET_LOGICAL_BIRTH(bp) <= spa->spa_checkpoint_txg &&
|
|
spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
|
|
/*
|
|
* At this point, if the block is part of the checkpoint
|
|
* there is no way it was created in the current txg.
|
|
*/
|
|
ASSERT(!now);
|
|
ASSERT3U(spa_syncing_txg(spa), ==, txg);
|
|
checkpoint = B_TRUE;
|
|
}
|
|
|
|
spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
|
|
|
|
for (int d = 0; d < ndvas; d++) {
|
|
if (now) {
|
|
metaslab_unalloc_dva(spa, &dva[d], txg);
|
|
} else {
|
|
ASSERT3U(txg, ==, spa_syncing_txg(spa));
|
|
metaslab_free_dva(spa, &dva[d], checkpoint);
|
|
}
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_FREE, FTAG);
|
|
}
|
|
|
|
int
|
|
metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
|
|
{
|
|
const dva_t *dva = bp->blk_dva;
|
|
int ndvas = BP_GET_NDVAS(bp);
|
|
int error = 0;
|
|
|
|
ASSERT(!BP_IS_HOLE(bp));
|
|
|
|
if (txg != 0) {
|
|
/*
|
|
* First do a dry run to make sure all DVAs are claimable,
|
|
* so we don't have to unwind from partial failures below.
|
|
*/
|
|
if ((error = metaslab_claim(spa, bp, 0)) != 0)
|
|
return (error);
|
|
}
|
|
|
|
spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
|
|
|
|
for (int d = 0; d < ndvas; d++) {
|
|
error = metaslab_claim_dva(spa, &dva[d], txg);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
|
|
spa_config_exit(spa, SCL_ALLOC, FTAG);
|
|
|
|
ASSERT(error == 0 || txg == 0);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
|
|
uint64_t size, void *arg)
|
|
{
|
|
(void) inner, (void) arg;
|
|
|
|
if (vd->vdev_ops == &vdev_indirect_ops)
|
|
return;
|
|
|
|
metaslab_check_free_impl(vd, offset, size);
|
|
}
|
|
|
|
static void
|
|
metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
|
|
{
|
|
metaslab_t *msp;
|
|
spa_t *spa __maybe_unused = vd->vdev_spa;
|
|
|
|
if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
|
|
return;
|
|
|
|
if (vd->vdev_ops->vdev_op_remap != NULL) {
|
|
vd->vdev_ops->vdev_op_remap(vd, offset, size,
|
|
metaslab_check_free_impl_cb, NULL);
|
|
return;
|
|
}
|
|
|
|
ASSERT(vdev_is_concrete(vd));
|
|
ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
|
|
ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
|
|
|
|
msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
|
|
|
|
mutex_enter(&msp->ms_lock);
|
|
if (msp->ms_loaded) {
|
|
range_tree_verify_not_present(msp->ms_allocatable,
|
|
offset, size);
|
|
}
|
|
|
|
/*
|
|
* Check all segments that currently exist in the freeing pipeline.
|
|
*
|
|
* It would intuitively make sense to also check the current allocating
|
|
* tree since metaslab_unalloc_dva() exists for extents that are
|
|
* allocated and freed in the same sync pass within the same txg.
|
|
* Unfortunately there are places (e.g. the ZIL) where we allocate a
|
|
* segment but then we free part of it within the same txg
|
|
* [see zil_sync()]. Thus, we don't call range_tree_verify() in the
|
|
* current allocating tree.
|
|
*/
|
|
range_tree_verify_not_present(msp->ms_freeing, offset, size);
|
|
range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
|
|
range_tree_verify_not_present(msp->ms_freed, offset, size);
|
|
for (int j = 0; j < TXG_DEFER_SIZE; j++)
|
|
range_tree_verify_not_present(msp->ms_defer[j], offset, size);
|
|
range_tree_verify_not_present(msp->ms_trim, offset, size);
|
|
mutex_exit(&msp->ms_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_check_free(spa_t *spa, const blkptr_t *bp)
|
|
{
|
|
if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
|
|
return;
|
|
|
|
spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
|
|
for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
|
|
uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
|
|
vdev_t *vd = vdev_lookup_top(spa, vdev);
|
|
uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
|
|
uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
|
|
|
|
if (DVA_GET_GANG(&bp->blk_dva[i]))
|
|
size = vdev_gang_header_asize(vd);
|
|
|
|
ASSERT3P(vd, !=, NULL);
|
|
|
|
metaslab_check_free_impl(vd, offset, size);
|
|
}
|
|
spa_config_exit(spa, SCL_VDEV, FTAG);
|
|
}
|
|
|
|
static void
|
|
metaslab_group_disable_wait(metaslab_group_t *mg)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
|
|
while (mg->mg_disabled_updating) {
|
|
cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
metaslab_group_disabled_increment(metaslab_group_t *mg)
|
|
{
|
|
ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
|
|
ASSERT(mg->mg_disabled_updating);
|
|
|
|
while (mg->mg_ms_disabled >= max_disabled_ms) {
|
|
cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
|
|
}
|
|
mg->mg_ms_disabled++;
|
|
ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
|
|
}
|
|
|
|
/*
|
|
* Mark the metaslab as disabled to prevent any allocations on this metaslab.
|
|
* We must also track how many metaslabs are currently disabled within a
|
|
* metaslab group and limit them to prevent allocation failures from
|
|
* occurring because all metaslabs are disabled.
|
|
*/
|
|
void
|
|
metaslab_disable(metaslab_t *msp)
|
|
{
|
|
ASSERT(!MUTEX_HELD(&msp->ms_lock));
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
|
|
mutex_enter(&mg->mg_ms_disabled_lock);
|
|
|
|
/*
|
|
* To keep an accurate count of how many threads have disabled
|
|
* a specific metaslab group, we only allow one thread to mark
|
|
* the metaslab group at a time. This ensures that the value of
|
|
* ms_disabled will be accurate when we decide to mark a metaslab
|
|
* group as disabled. To do this we force all other threads
|
|
* to wait till the metaslab's mg_disabled_updating flag is no
|
|
* longer set.
|
|
*/
|
|
metaslab_group_disable_wait(mg);
|
|
mg->mg_disabled_updating = B_TRUE;
|
|
if (msp->ms_disabled == 0) {
|
|
metaslab_group_disabled_increment(mg);
|
|
}
|
|
mutex_enter(&msp->ms_lock);
|
|
msp->ms_disabled++;
|
|
mutex_exit(&msp->ms_lock);
|
|
|
|
mg->mg_disabled_updating = B_FALSE;
|
|
cv_broadcast(&mg->mg_ms_disabled_cv);
|
|
mutex_exit(&mg->mg_ms_disabled_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
|
|
{
|
|
metaslab_group_t *mg = msp->ms_group;
|
|
spa_t *spa = mg->mg_vd->vdev_spa;
|
|
|
|
/*
|
|
* Wait for the outstanding IO to be synced to prevent newly
|
|
* allocated blocks from being overwritten. This used by
|
|
* initialize and TRIM which are modifying unallocated space.
|
|
*/
|
|
if (sync)
|
|
txg_wait_synced(spa_get_dsl(spa), 0);
|
|
|
|
mutex_enter(&mg->mg_ms_disabled_lock);
|
|
mutex_enter(&msp->ms_lock);
|
|
if (--msp->ms_disabled == 0) {
|
|
mg->mg_ms_disabled--;
|
|
cv_broadcast(&mg->mg_ms_disabled_cv);
|
|
if (unload)
|
|
metaslab_unload(msp);
|
|
}
|
|
mutex_exit(&msp->ms_lock);
|
|
mutex_exit(&mg->mg_ms_disabled_lock);
|
|
}
|
|
|
|
void
|
|
metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
|
|
{
|
|
ms->ms_unflushed_dirty = dirty;
|
|
}
|
|
|
|
static void
|
|
metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
|
|
{
|
|
vdev_t *vd = ms->ms_group->mg_vd;
|
|
spa_t *spa = vd->vdev_spa;
|
|
objset_t *mos = spa_meta_objset(spa);
|
|
|
|
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
|
|
|
|
metaslab_unflushed_phys_t entry = {
|
|
.msp_unflushed_txg = metaslab_unflushed_txg(ms),
|
|
};
|
|
uint64_t entry_size = sizeof (entry);
|
|
uint64_t entry_offset = ms->ms_id * entry_size;
|
|
|
|
uint64_t object = 0;
|
|
int err = zap_lookup(mos, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
|
|
&object);
|
|
if (err == ENOENT) {
|
|
object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
|
|
SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
|
|
VERIFY0(zap_add(mos, vd->vdev_top_zap,
|
|
VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
|
|
&object, tx));
|
|
} else {
|
|
VERIFY0(err);
|
|
}
|
|
|
|
dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
|
|
&entry, tx);
|
|
}
|
|
|
|
void
|
|
metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
|
|
{
|
|
ms->ms_unflushed_txg = txg;
|
|
metaslab_update_ondisk_flush_data(ms, tx);
|
|
}
|
|
|
|
boolean_t
|
|
metaslab_unflushed_dirty(metaslab_t *ms)
|
|
{
|
|
return (ms->ms_unflushed_dirty);
|
|
}
|
|
|
|
uint64_t
|
|
metaslab_unflushed_txg(metaslab_t *ms)
|
|
{
|
|
return (ms->ms_unflushed_txg);
|
|
}
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
|
|
"Allocation granularity (a.k.a. stripe size)");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
|
|
"Load all metaslabs when pool is first opened");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
|
|
"Prevent metaslabs from being unloaded");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
|
|
"Preload potential metaslabs during reassessment");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_limit, UINT, ZMOD_RW,
|
|
"Max number of metaslabs per group to preload");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
|
|
"Delay in txgs after metaslab was last used before unloading");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
|
|
"Delay in milliseconds after metaslab was last used before unloading");
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
|
|
"Percentage of metaslab group size that should be free to make it "
|
|
"eligible for allocation");
|
|
|
|
ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
|
|
"Percentage of metaslab group size that should be considered eligible "
|
|
"for allocations unless all metaslab groups within the metaslab class "
|
|
"have also crossed this threshold");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
|
|
ZMOD_RW,
|
|
"Use the fragmentation metric to prefer less fragmented metaslabs");
|
|
/* END CSTYLED */
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
|
|
ZMOD_RW, "Fragmentation for metaslab to allow allocation");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
|
|
"Prefer metaslabs with lower LBAs");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
|
|
"Enable metaslab group biasing");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
|
|
ZMOD_RW, "Enable segment-based metaslab selection");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
|
|
"Segment-based metaslab selection maximum buckets before switching");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
|
|
"Blocks larger than this size are sometimes forced to be gang blocks");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
|
|
"Percentage of large blocks that will be forced to be gang blocks");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
|
|
"Max distance (bytes) to search forward before using size tree");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
|
|
"When looking in size tree, use largest segment instead of exact fit");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
|
|
ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
|
|
"Percentage of memory that can be used to store metaslab range trees");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
|
|
ZMOD_RW, "Try hard to allocate before ganging");
|
|
|
|
ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
|
|
"Normally only consider this many of the best metaslabs in each vdev");
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM_CALL(zfs, zfs_, active_allocator,
|
|
param_set_active_allocator, param_get_charp, ZMOD_RW,
|
|
"SPA active allocator");
|
|
/* END CSTYLED */
|