mirror_zfs/module/zfs/zvol.c
Rob Norris 670147be53 zvol: ensure device minors are properly cleaned up
Currently, if a minor is in use when we try to remove it, we'll skip it
and never come back to it again. Since the zvol state is hung off the
minor in the kernel, this can get us into weird situations if something
tries to use it after the removal fails. It's even worse at pool export,
as there's now a vestigial zvol state with no pool under it. It's
weirder again if the pool is subsequently reimported, as the zvol code
(reasonably) assumes the zvol state has been properly setup, when it's
actually left over from the previous import of the pool.

This commit attempts to tackle that by setting a flag on the zvol if its
minor can't be removed, and then checking that flag when a request is
made and rejecting it, thus stopping new work coming in.

The flag also causes a condvar to be signaled when the last client
finishes. For the case where a single minor is being removed (eg
changing volmode), it will wait for this signal before proceeding.
Meanwhile, when removing all minors, a background task is created for
each minor that couldn't be removed on the spot, and those tasks then
wake and clean up.

Since any new tasks are queued on to the pool's spa_zvol_taskq,
spa_export_common() will continue to wait at export until all minors are
removed.

Reviewed-by: Tony Hutter <hutter2@llnl.gov>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Sponsored-by: Klara, Inc.
Sponsored-by: Wasabi Technology, Inc.
Signed-off-by: Rob Norris <rob.norris@klarasystems.com>
Closes #14872
Closes #16364
2024-08-06 12:08:14 -07:00

1767 lines
43 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
* Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
* Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
* LLNL-CODE-403049.
*
* ZFS volume emulation driver.
*
* Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
* Volumes are accessed through the symbolic links named:
*
* /dev/<pool_name>/<dataset_name>
*
* Volumes are persistent through reboot and module load. No user command
* needs to be run before opening and using a device.
*
* Copyright 2014 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
* Copyright (c) 2012, 2019 by Delphix. All rights reserved.
* Copyright (c) 2024, Klara, Inc.
*/
/*
* Note on locking of zvol state structures.
*
* These structures are used to maintain internal state used to emulate block
* devices on top of zvols. In particular, management of device minor number
* operations - create, remove, rename, and set_snapdev - involves access to
* these structures. The zvol_state_lock is primarily used to protect the
* zvol_state_list. The zv->zv_state_lock is used to protect the contents
* of the zvol_state_t structures, as well as to make sure that when the
* time comes to remove the structure from the list, it is not in use, and
* therefore, it can be taken off zvol_state_list and freed.
*
* The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
* e.g. for the duration of receive and rollback operations. This lock can be
* held for significant periods of time. Given that it is undesirable to hold
* mutexes for long periods of time, the following lock ordering applies:
* - take zvol_state_lock if necessary, to protect zvol_state_list
* - take zv_suspend_lock if necessary, by the code path in question
* - take zv_state_lock to protect zvol_state_t
*
* The minor operations are issued to spa->spa_zvol_taskq queues, that are
* single-threaded (to preserve order of minor operations), and are executed
* through the zvol_task_cb that dispatches the specific operations. Therefore,
* these operations are serialized per pool. Consequently, we can be certain
* that for a given zvol, there is only one operation at a time in progress.
* That is why one can be sure that first, zvol_state_t for a given zvol is
* allocated and placed on zvol_state_list, and then other minor operations
* for this zvol are going to proceed in the order of issue.
*
*/
#include <sys/dataset_kstats.h>
#include <sys/dbuf.h>
#include <sys/dmu_traverse.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_dir.h>
#include <sys/zap.h>
#include <sys/zfeature.h>
#include <sys/zil_impl.h>
#include <sys/dmu_tx.h>
#include <sys/zio.h>
#include <sys/zfs_rlock.h>
#include <sys/spa_impl.h>
#include <sys/zvol.h>
#include <sys/zvol_impl.h>
unsigned int zvol_inhibit_dev = 0;
unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
struct hlist_head *zvol_htable;
static list_t zvol_state_list;
krwlock_t zvol_state_lock;
typedef enum {
ZVOL_ASYNC_REMOVE_MINORS,
ZVOL_ASYNC_RENAME_MINORS,
ZVOL_ASYNC_SET_SNAPDEV,
ZVOL_ASYNC_SET_VOLMODE,
ZVOL_ASYNC_MAX
} zvol_async_op_t;
typedef struct {
zvol_async_op_t op;
char name1[MAXNAMELEN];
char name2[MAXNAMELEN];
uint64_t value;
} zvol_task_t;
uint64_t
zvol_name_hash(const char *name)
{
uint64_t crc = -1ULL;
ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++)
crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
return (crc);
}
/*
* Find a zvol_state_t given the name and hash generated by zvol_name_hash.
* If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
* return (NULL) without the taking locks. The zv_suspend_lock is always taken
* before zv_state_lock. The mode argument indicates the mode (including none)
* for zv_suspend_lock to be taken.
*/
zvol_state_t *
zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
{
zvol_state_t *zv;
struct hlist_node *p = NULL;
rw_enter(&zvol_state_lock, RW_READER);
hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
zv = hlist_entry(p, zvol_state_t, zv_hlink);
mutex_enter(&zv->zv_state_lock);
if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) {
/*
* this is the right zvol, take the locks in the
* right order
*/
if (mode != RW_NONE &&
!rw_tryenter(&zv->zv_suspend_lock, mode)) {
mutex_exit(&zv->zv_state_lock);
rw_enter(&zv->zv_suspend_lock, mode);
mutex_enter(&zv->zv_state_lock);
/*
* zvol cannot be renamed as we continue
* to hold zvol_state_lock
*/
ASSERT(zv->zv_hash == hash &&
strcmp(zv->zv_name, name) == 0);
}
rw_exit(&zvol_state_lock);
return (zv);
}
mutex_exit(&zv->zv_state_lock);
}
rw_exit(&zvol_state_lock);
return (NULL);
}
/*
* Find a zvol_state_t given the name.
* If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
* return (NULL) without the taking locks. The zv_suspend_lock is always taken
* before zv_state_lock. The mode argument indicates the mode (including none)
* for zv_suspend_lock to be taken.
*/
static zvol_state_t *
zvol_find_by_name(const char *name, int mode)
{
return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
}
/*
* ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
*/
void
zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
{
zfs_creat_t *zct = arg;
nvlist_t *nvprops = zct->zct_props;
int error;
uint64_t volblocksize, volsize;
VERIFY(nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
if (nvlist_lookup_uint64(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
/*
* These properties must be removed from the list so the generic
* property setting step won't apply to them.
*/
VERIFY(nvlist_remove_all(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
(void) nvlist_remove_all(nvprops,
zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
DMU_OT_NONE, 0, tx);
ASSERT(error == 0);
error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
DMU_OT_NONE, 0, tx);
ASSERT(error == 0);
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
ASSERT(error == 0);
}
/*
* ZFS_IOC_OBJSET_STATS entry point.
*/
int
zvol_get_stats(objset_t *os, nvlist_t *nv)
{
int error;
dmu_object_info_t *doi;
uint64_t val;
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
if (error)
return (SET_ERROR(error));
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
error = dmu_object_info(os, ZVOL_OBJ, doi);
if (error == 0) {
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
doi->doi_data_block_size);
}
kmem_free(doi, sizeof (dmu_object_info_t));
return (SET_ERROR(error));
}
/*
* Sanity check volume size.
*/
int
zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
{
if (volsize == 0)
return (SET_ERROR(EINVAL));
if (volsize % blocksize != 0)
return (SET_ERROR(EINVAL));
#ifdef _ILP32
if (volsize - 1 > SPEC_MAXOFFSET_T)
return (SET_ERROR(EOVERFLOW));
#endif
return (0);
}
/*
* Ensure the zap is flushed then inform the VFS of the capacity change.
*/
static int
zvol_update_volsize(uint64_t volsize, objset_t *os)
{
dmu_tx_t *tx;
int error;
uint64_t txg;
tx = dmu_tx_create(os);
dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
dmu_tx_mark_netfree(tx);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
return (SET_ERROR(error));
}
txg = dmu_tx_get_txg(tx);
error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
&volsize, tx);
dmu_tx_commit(tx);
txg_wait_synced(dmu_objset_pool(os), txg);
if (error == 0)
error = dmu_free_long_range(os,
ZVOL_OBJ, volsize, DMU_OBJECT_END);
return (error);
}
/*
* Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
* size will result in a udev "change" event being generated.
*/
int
zvol_set_volsize(const char *name, uint64_t volsize)
{
objset_t *os = NULL;
uint64_t readonly;
int error;
boolean_t owned = B_FALSE;
error = dsl_prop_get_integer(name,
zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
if (error != 0)
return (SET_ERROR(error));
if (readonly)
return (SET_ERROR(EROFS));
zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
RW_READ_HELD(&zv->zv_suspend_lock)));
if (zv == NULL || zv->zv_objset == NULL) {
if (zv != NULL)
rw_exit(&zv->zv_suspend_lock);
if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
FTAG, &os)) != 0) {
if (zv != NULL)
mutex_exit(&zv->zv_state_lock);
return (SET_ERROR(error));
}
owned = B_TRUE;
if (zv != NULL)
zv->zv_objset = os;
} else {
os = zv->zv_objset;
}
dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
(error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
goto out;
error = zvol_update_volsize(volsize, os);
if (error == 0 && zv != NULL) {
zv->zv_volsize = volsize;
zv->zv_changed = 1;
}
out:
kmem_free(doi, sizeof (dmu_object_info_t));
if (owned) {
dmu_objset_disown(os, B_TRUE, FTAG);
if (zv != NULL)
zv->zv_objset = NULL;
} else {
rw_exit(&zv->zv_suspend_lock);
}
if (zv != NULL)
mutex_exit(&zv->zv_state_lock);
if (error == 0 && zv != NULL)
zvol_os_update_volsize(zv, volsize);
return (SET_ERROR(error));
}
/*
* Update volthreading.
*/
int
zvol_set_volthreading(const char *name, boolean_t value)
{
zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
if (zv == NULL)
return (ENOENT);
zv->zv_threading = value;
mutex_exit(&zv->zv_state_lock);
return (0);
}
/*
* Update zvol ro property.
*/
int
zvol_set_ro(const char *name, boolean_t value)
{
zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
if (zv == NULL)
return (-1);
if (value) {
zvol_os_set_disk_ro(zv, 1);
zv->zv_flags |= ZVOL_RDONLY;
} else {
zvol_os_set_disk_ro(zv, 0);
zv->zv_flags &= ~ZVOL_RDONLY;
}
mutex_exit(&zv->zv_state_lock);
return (0);
}
/*
* Sanity check volume block size.
*/
int
zvol_check_volblocksize(const char *name, uint64_t volblocksize)
{
/* Record sizes above 128k need the feature to be enabled */
if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
spa_t *spa;
int error;
if ((error = spa_open(name, &spa, FTAG)) != 0)
return (error);
if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
spa_close(spa, FTAG);
return (SET_ERROR(ENOTSUP));
}
/*
* We don't allow setting the property above 1MB,
* unless the tunable has been changed.
*/
if (volblocksize > zfs_max_recordsize)
return (SET_ERROR(EDOM));
spa_close(spa, FTAG);
}
if (volblocksize < SPA_MINBLOCKSIZE ||
volblocksize > SPA_MAXBLOCKSIZE ||
!ISP2(volblocksize))
return (SET_ERROR(EDOM));
return (0);
}
/*
* Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
* implement DKIOCFREE/free-long-range.
*/
static int
zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
{
zvol_state_t *zv = arg1;
lr_truncate_t *lr = arg2;
uint64_t offset, length;
ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
offset = lr->lr_offset;
length = lr->lr_length;
dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
dmu_tx_mark_netfree(tx);
int error = dmu_tx_assign(tx, TXG_WAIT);
if (error != 0) {
dmu_tx_abort(tx);
} else {
(void) zil_replaying(zv->zv_zilog, tx);
dmu_tx_commit(tx);
error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
length);
}
return (error);
}
/*
* Replay a TX_WRITE ZIL transaction that didn't get committed
* after a system failure
*/
static int
zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
{
zvol_state_t *zv = arg1;
lr_write_t *lr = arg2;
objset_t *os = zv->zv_objset;
char *data = (char *)(lr + 1); /* data follows lr_write_t */
uint64_t offset, length;
dmu_tx_t *tx;
int error;
ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
if (byteswap)
byteswap_uint64_array(lr, sizeof (*lr));
offset = lr->lr_offset;
length = lr->lr_length;
/* If it's a dmu_sync() block, write the whole block */
if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
if (length < blocksize) {
offset -= offset % blocksize;
length = blocksize;
}
}
tx = dmu_tx_create(os);
dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
error = dmu_tx_assign(tx, TXG_WAIT);
if (error) {
dmu_tx_abort(tx);
} else {
dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
(void) zil_replaying(zv->zv_zilog, tx);
dmu_tx_commit(tx);
}
return (error);
}
static int
zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
{
(void) arg1, (void) arg2, (void) byteswap;
return (SET_ERROR(ENOTSUP));
}
/*
* Callback vectors for replaying records.
* Only TX_WRITE and TX_TRUNCATE are needed for zvol.
*/
zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
zvol_replay_err, /* no such transaction type */
zvol_replay_err, /* TX_CREATE */
zvol_replay_err, /* TX_MKDIR */
zvol_replay_err, /* TX_MKXATTR */
zvol_replay_err, /* TX_SYMLINK */
zvol_replay_err, /* TX_REMOVE */
zvol_replay_err, /* TX_RMDIR */
zvol_replay_err, /* TX_LINK */
zvol_replay_err, /* TX_RENAME */
zvol_replay_write, /* TX_WRITE */
zvol_replay_truncate, /* TX_TRUNCATE */
zvol_replay_err, /* TX_SETATTR */
zvol_replay_err, /* TX_ACL */
zvol_replay_err, /* TX_CREATE_ATTR */
zvol_replay_err, /* TX_CREATE_ACL_ATTR */
zvol_replay_err, /* TX_MKDIR_ACL */
zvol_replay_err, /* TX_MKDIR_ATTR */
zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
zvol_replay_err, /* TX_WRITE2 */
zvol_replay_err, /* TX_SETSAXATTR */
zvol_replay_err, /* TX_RENAME_EXCHANGE */
zvol_replay_err, /* TX_RENAME_WHITEOUT */
zvol_replay_err, /* TX_CLONE_RANGE */
};
/*
* zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
*
* We store data in the log buffers if it's small enough.
* Otherwise we will later flush the data out via dmu_sync().
*/
static const ssize_t zvol_immediate_write_sz = 32768;
void
zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
uint64_t size, boolean_t commit)
{
uint32_t blocksize = zv->zv_volblocksize;
zilog_t *zilog = zv->zv_zilog;
itx_wr_state_t write_state;
uint64_t sz = size;
if (zil_replaying(zilog, tx))
return;
if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
write_state = WR_INDIRECT;
else if (!spa_has_slogs(zilog->zl_spa) &&
size >= blocksize && blocksize > zvol_immediate_write_sz)
write_state = WR_INDIRECT;
else if (commit)
write_state = WR_COPIED;
else
write_state = WR_NEED_COPY;
while (size) {
itx_t *itx;
lr_write_t *lr;
itx_wr_state_t wr_state = write_state;
ssize_t len = size;
if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
wr_state = WR_NEED_COPY;
else if (wr_state == WR_INDIRECT)
len = MIN(blocksize - P2PHASE(offset, blocksize), size);
itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
(wr_state == WR_COPIED ? len : 0));
lr = (lr_write_t *)&itx->itx_lr;
if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
zil_itx_destroy(itx);
itx = zil_itx_create(TX_WRITE, sizeof (*lr));
lr = (lr_write_t *)&itx->itx_lr;
wr_state = WR_NEED_COPY;
}
itx->itx_wr_state = wr_state;
lr->lr_foid = ZVOL_OBJ;
lr->lr_offset = offset;
lr->lr_length = len;
lr->lr_blkoff = 0;
BP_ZERO(&lr->lr_blkptr);
itx->itx_private = zv;
(void) zil_itx_assign(zilog, itx, tx);
offset += len;
size -= len;
}
if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
}
}
/*
* Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
*/
void
zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len)
{
itx_t *itx;
lr_truncate_t *lr;
zilog_t *zilog = zv->zv_zilog;
if (zil_replaying(zilog, tx))
return;
itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
lr = (lr_truncate_t *)&itx->itx_lr;
lr->lr_foid = ZVOL_OBJ;
lr->lr_offset = off;
lr->lr_length = len;
zil_itx_assign(zilog, itx, tx);
}
static void
zvol_get_done(zgd_t *zgd, int error)
{
(void) error;
if (zgd->zgd_db)
dmu_buf_rele(zgd->zgd_db, zgd);
zfs_rangelock_exit(zgd->zgd_lr);
kmem_free(zgd, sizeof (zgd_t));
}
/*
* Get data to generate a TX_WRITE intent log record.
*/
int
zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
struct lwb *lwb, zio_t *zio)
{
zvol_state_t *zv = arg;
uint64_t offset = lr->lr_offset;
uint64_t size = lr->lr_length;
dmu_buf_t *db;
zgd_t *zgd;
int error;
ASSERT3P(lwb, !=, NULL);
ASSERT3U(size, !=, 0);
zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
zgd->zgd_lwb = lwb;
/*
* Write records come in two flavors: immediate and indirect.
* For small writes it's cheaper to store the data with the
* log record (immediate); for large writes it's cheaper to
* sync the data and get a pointer to it (indirect) so that
* we don't have to write the data twice.
*/
if (buf != NULL) { /* immediate write */
zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
size, RL_READER);
error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
DMU_READ_NO_PREFETCH);
} else { /* indirect write */
ASSERT3P(zio, !=, NULL);
/*
* Have to lock the whole block to ensure when it's written out
* and its checksum is being calculated that no one can change
* the data. Contrarily to zfs_get_data we need not re-check
* blocksize after we get the lock because it cannot be changed.
*/
size = zv->zv_volblocksize;
offset = P2ALIGN_TYPED(offset, size, uint64_t);
zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
size, RL_READER);
error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
&db);
if (error == 0) {
blkptr_t *bp = &lr->lr_blkptr;
zgd->zgd_db = db;
zgd->zgd_bp = bp;
ASSERT(db != NULL);
ASSERT(db->db_offset == offset);
ASSERT(db->db_size == size);
error = dmu_sync(zio, lr->lr_common.lrc_txg,
zvol_get_done, zgd);
if (error == 0)
return (0);
}
}
zvol_get_done(zgd, error);
return (SET_ERROR(error));
}
/*
* The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
*/
void
zvol_insert(zvol_state_t *zv)
{
ASSERT(RW_WRITE_HELD(&zvol_state_lock));
list_insert_head(&zvol_state_list, zv);
hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
}
/*
* Simply remove the zvol from to list of zvols.
*/
static void
zvol_remove(zvol_state_t *zv)
{
ASSERT(RW_WRITE_HELD(&zvol_state_lock));
list_remove(&zvol_state_list, zv);
hlist_del(&zv->zv_hlink);
}
/*
* Setup zv after we just own the zv->objset
*/
static int
zvol_setup_zv(zvol_state_t *zv)
{
uint64_t volsize;
int error;
uint64_t ro;
objset_t *os = zv->zv_objset;
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
zv->zv_zilog = NULL;
zv->zv_flags &= ~ZVOL_WRITTEN_TO;
error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
if (error)
return (SET_ERROR(error));
error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
if (error)
return (SET_ERROR(error));
error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
if (error)
return (SET_ERROR(error));
zvol_os_set_capacity(zv, volsize >> 9);
zv->zv_volsize = volsize;
if (ro || dmu_objset_is_snapshot(os) ||
!spa_writeable(dmu_objset_spa(os))) {
zvol_os_set_disk_ro(zv, 1);
zv->zv_flags |= ZVOL_RDONLY;
} else {
zvol_os_set_disk_ro(zv, 0);
zv->zv_flags &= ~ZVOL_RDONLY;
}
return (0);
}
/*
* Shutdown every zv_objset related stuff except zv_objset itself.
* The is the reverse of zvol_setup_zv.
*/
static void
zvol_shutdown_zv(zvol_state_t *zv)
{
ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
RW_LOCK_HELD(&zv->zv_suspend_lock));
if (zv->zv_flags & ZVOL_WRITTEN_TO) {
ASSERT(zv->zv_zilog != NULL);
zil_close(zv->zv_zilog);
}
zv->zv_zilog = NULL;
dnode_rele(zv->zv_dn, zv);
zv->zv_dn = NULL;
/*
* Evict cached data. We must write out any dirty data before
* disowning the dataset.
*/
if (zv->zv_flags & ZVOL_WRITTEN_TO)
txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
(void) dmu_objset_evict_dbufs(zv->zv_objset);
}
/*
* return the proper tag for rollback and recv
*/
void *
zvol_tag(zvol_state_t *zv)
{
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
return (zv->zv_open_count > 0 ? zv : NULL);
}
/*
* Suspend the zvol for recv and rollback.
*/
zvol_state_t *
zvol_suspend(const char *name)
{
zvol_state_t *zv;
zv = zvol_find_by_name(name, RW_WRITER);
if (zv == NULL)
return (NULL);
/* block all I/O, release in zvol_resume. */
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
atomic_inc(&zv->zv_suspend_ref);
if (zv->zv_open_count > 0)
zvol_shutdown_zv(zv);
/*
* do not hold zv_state_lock across suspend/resume to
* avoid locking up zvol lookups
*/
mutex_exit(&zv->zv_state_lock);
/* zv_suspend_lock is released in zvol_resume() */
return (zv);
}
int
zvol_resume(zvol_state_t *zv)
{
int error = 0;
ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
mutex_enter(&zv->zv_state_lock);
if (zv->zv_open_count > 0) {
VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
dmu_objset_rele(zv->zv_objset, zv);
error = zvol_setup_zv(zv);
}
mutex_exit(&zv->zv_state_lock);
rw_exit(&zv->zv_suspend_lock);
/*
* We need this because we don't hold zvol_state_lock while releasing
* zv_suspend_lock. zvol_remove_minors_impl thus cannot check
* zv_suspend_lock to determine it is safe to free because rwlock is
* not inherent atomic.
*/
atomic_dec(&zv->zv_suspend_ref);
if (zv->zv_flags & ZVOL_REMOVING)
cv_broadcast(&zv->zv_removing_cv);
return (SET_ERROR(error));
}
int
zvol_first_open(zvol_state_t *zv, boolean_t readonly)
{
objset_t *os;
int error;
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
ASSERT(mutex_owned(&spa_namespace_lock));
boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
if (error)
return (SET_ERROR(error));
zv->zv_objset = os;
error = zvol_setup_zv(zv);
if (error) {
dmu_objset_disown(os, 1, zv);
zv->zv_objset = NULL;
}
return (error);
}
void
zvol_last_close(zvol_state_t *zv)
{
ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
if (zv->zv_flags & ZVOL_REMOVING)
cv_broadcast(&zv->zv_removing_cv);
zvol_shutdown_zv(zv);
dmu_objset_disown(zv->zv_objset, 1, zv);
zv->zv_objset = NULL;
}
typedef struct minors_job {
list_t *list;
list_node_t link;
/* input */
char *name;
/* output */
int error;
} minors_job_t;
/*
* Prefetch zvol dnodes for the minors_job
*/
static void
zvol_prefetch_minors_impl(void *arg)
{
minors_job_t *job = arg;
char *dsname = job->name;
objset_t *os = NULL;
job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
FTAG, &os);
if (job->error == 0) {
dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
dmu_objset_disown(os, B_TRUE, FTAG);
}
}
/*
* Mask errors to continue dmu_objset_find() traversal
*/
static int
zvol_create_snap_minor_cb(const char *dsname, void *arg)
{
minors_job_t *j = arg;
list_t *minors_list = j->list;
const char *name = j->name;
ASSERT0(MUTEX_HELD(&spa_namespace_lock));
/* skip the designated dataset */
if (name && strcmp(dsname, name) == 0)
return (0);
/* at this point, the dsname should name a snapshot */
if (strchr(dsname, '@') == 0) {
dprintf("zvol_create_snap_minor_cb(): "
"%s is not a snapshot name\n", dsname);
} else {
minors_job_t *job;
char *n = kmem_strdup(dsname);
if (n == NULL)
return (0);
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
job->name = n;
job->list = minors_list;
job->error = 0;
list_insert_tail(minors_list, job);
/* don't care if dispatch fails, because job->error is 0 */
taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
TQ_SLEEP);
}
return (0);
}
/*
* If spa_keystore_load_wkey() is called for an encrypted zvol,
* we need to look for any clones also using the key. This function
* is "best effort" - so we just skip over it if there are failures.
*/
static void
zvol_add_clones(const char *dsname, list_t *minors_list)
{
/* Also check if it has clones */
dsl_dir_t *dd = NULL;
dsl_pool_t *dp = NULL;
if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
return;
if (!spa_feature_is_enabled(dp->dp_spa,
SPA_FEATURE_ENCRYPTION))
goto out;
if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
goto out;
if (dsl_dir_phys(dd)->dd_clones == 0)
goto out;
zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
objset_t *mos = dd->dd_pool->dp_meta_objset;
for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
zap_cursor_retrieve(zc, za) == 0;
zap_cursor_advance(zc)) {
dsl_dataset_t *clone;
minors_job_t *job;
if (dsl_dataset_hold_obj(dd->dd_pool,
za->za_first_integer, FTAG, &clone) == 0) {
char name[ZFS_MAX_DATASET_NAME_LEN];
dsl_dataset_name(clone, name);
char *n = kmem_strdup(name);
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
job->name = n;
job->list = minors_list;
job->error = 0;
list_insert_tail(minors_list, job);
dsl_dataset_rele(clone, FTAG);
}
}
zap_cursor_fini(zc);
kmem_free(za, sizeof (zap_attribute_t));
kmem_free(zc, sizeof (zap_cursor_t));
out:
if (dd != NULL)
dsl_dir_rele(dd, FTAG);
dsl_pool_rele(dp, FTAG);
}
/*
* Mask errors to continue dmu_objset_find() traversal
*/
static int
zvol_create_minors_cb(const char *dsname, void *arg)
{
uint64_t snapdev;
int error;
list_t *minors_list = arg;
ASSERT0(MUTEX_HELD(&spa_namespace_lock));
error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
if (error)
return (0);
/*
* Given the name and the 'snapdev' property, create device minor nodes
* with the linkages to zvols/snapshots as needed.
* If the name represents a zvol, create a minor node for the zvol, then
* check if its snapshots are 'visible', and if so, iterate over the
* snapshots and create device minor nodes for those.
*/
if (strchr(dsname, '@') == 0) {
minors_job_t *job;
char *n = kmem_strdup(dsname);
if (n == NULL)
return (0);
job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
job->name = n;
job->list = minors_list;
job->error = 0;
list_insert_tail(minors_list, job);
/* don't care if dispatch fails, because job->error is 0 */
taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
TQ_SLEEP);
zvol_add_clones(dsname, minors_list);
if (snapdev == ZFS_SNAPDEV_VISIBLE) {
/*
* traverse snapshots only, do not traverse children,
* and skip the 'dsname'
*/
(void) dmu_objset_find(dsname,
zvol_create_snap_minor_cb, (void *)job,
DS_FIND_SNAPSHOTS);
}
} else {
dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
dsname);
}
return (0);
}
/*
* Create minors for the specified dataset, including children and snapshots.
* Pay attention to the 'snapdev' property and iterate over the snapshots
* only if they are 'visible'. This approach allows one to assure that the
* snapshot metadata is read from disk only if it is needed.
*
* The name can represent a dataset to be recursively scanned for zvols and
* their snapshots, or a single zvol snapshot. If the name represents a
* dataset, the scan is performed in two nested stages:
* - scan the dataset for zvols, and
* - for each zvol, create a minor node, then check if the zvol's snapshots
* are 'visible', and only then iterate over the snapshots if needed
*
* If the name represents a snapshot, a check is performed if the snapshot is
* 'visible' (which also verifies that the parent is a zvol), and if so,
* a minor node for that snapshot is created.
*/
void
zvol_create_minors_recursive(const char *name)
{
list_t minors_list;
minors_job_t *job;
if (zvol_inhibit_dev)
return;
/*
* This is the list for prefetch jobs. Whenever we found a match
* during dmu_objset_find, we insert a minors_job to the list and do
* taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
* any lock because all list operation is done on the current thread.
*
* We will use this list to do zvol_os_create_minor after prefetch
* so we don't have to traverse using dmu_objset_find again.
*/
list_create(&minors_list, sizeof (minors_job_t),
offsetof(minors_job_t, link));
if (strchr(name, '@') != NULL) {
uint64_t snapdev;
int error = dsl_prop_get_integer(name, "snapdev",
&snapdev, NULL);
if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
(void) zvol_os_create_minor(name);
} else {
fstrans_cookie_t cookie = spl_fstrans_mark();
(void) dmu_objset_find(name, zvol_create_minors_cb,
&minors_list, DS_FIND_CHILDREN);
spl_fstrans_unmark(cookie);
}
taskq_wait_outstanding(system_taskq, 0);
/*
* Prefetch is completed, we can do zvol_os_create_minor
* sequentially.
*/
while ((job = list_remove_head(&minors_list)) != NULL) {
if (!job->error)
(void) zvol_os_create_minor(job->name);
kmem_strfree(job->name);
kmem_free(job, sizeof (minors_job_t));
}
list_destroy(&minors_list);
}
void
zvol_create_minor(const char *name)
{
/*
* Note: the dsl_pool_config_lock must not be held.
* Minor node creation needs to obtain the zvol_state_lock.
* zvol_open() obtains the zvol_state_lock and then the dsl pool
* config lock. Therefore, we can't have the config lock now if
* we are going to wait for the zvol_state_lock, because it
* would be a lock order inversion which could lead to deadlock.
*/
if (zvol_inhibit_dev)
return;
if (strchr(name, '@') != NULL) {
uint64_t snapdev;
int error = dsl_prop_get_integer(name,
"snapdev", &snapdev, NULL);
if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
(void) zvol_os_create_minor(name);
} else {
(void) zvol_os_create_minor(name);
}
}
/*
* Remove minors for specified dataset including children and snapshots.
*/
/*
* Remove the minor for a given zvol. This will do it all:
* - flag the zvol for removal, so new requests are rejected
* - wait until outstanding requests are completed
* - remove it from lists
* - free it
* It's also usable as a taskq task, and smells nice too.
*/
static void
zvol_remove_minor_task(void *arg)
{
zvol_state_t *zv = (zvol_state_t *)arg;
ASSERT(!RW_LOCK_HELD(&zvol_state_lock));
ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
mutex_enter(&zv->zv_state_lock);
while (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) {
zv->zv_flags |= ZVOL_REMOVING;
cv_wait(&zv->zv_removing_cv, &zv->zv_state_lock);
}
mutex_exit(&zv->zv_state_lock);
rw_enter(&zvol_state_lock, RW_WRITER);
mutex_enter(&zv->zv_state_lock);
zvol_remove(zv);
zvol_os_clear_private(zv);
mutex_exit(&zv->zv_state_lock);
rw_exit(&zvol_state_lock);
zvol_os_free(zv);
}
static void
zvol_free_task(void *arg)
{
zvol_os_free(arg);
}
void
zvol_remove_minors_impl(const char *name)
{
zvol_state_t *zv, *zv_next;
int namelen = ((name) ? strlen(name) : 0);
taskqid_t t;
list_t delay_list, free_list;
if (zvol_inhibit_dev)
return;
list_create(&delay_list, sizeof (zvol_state_t),
offsetof(zvol_state_t, zv_next));
list_create(&free_list, sizeof (zvol_state_t),
offsetof(zvol_state_t, zv_next));
rw_enter(&zvol_state_lock, RW_WRITER);
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
zv_next = list_next(&zvol_state_list, zv);
mutex_enter(&zv->zv_state_lock);
if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
(strncmp(zv->zv_name, name, namelen) == 0 &&
(zv->zv_name[namelen] == '/' ||
zv->zv_name[namelen] == '@'))) {
/*
* By holding zv_state_lock here, we guarantee that no
* one is currently using this zv
*/
/*
* If in use, try to throw everyone off and try again
* later.
*/
if (zv->zv_open_count > 0 ||
atomic_read(&zv->zv_suspend_ref)) {
zv->zv_flags |= ZVOL_REMOVING;
t = taskq_dispatch(
zv->zv_objset->os_spa->spa_zvol_taskq,
zvol_remove_minor_task, zv, TQ_SLEEP);
if (t == TASKQID_INVALID) {
/*
* Couldn't create the task, so we'll
* do it in place once the loop is
* finished.
*/
list_insert_head(&delay_list, zv);
}
mutex_exit(&zv->zv_state_lock);
continue;
}
zvol_remove(zv);
/*
* Cleared while holding zvol_state_lock as a writer
* which will prevent zvol_open() from opening it.
*/
zvol_os_clear_private(zv);
/* Drop zv_state_lock before zvol_free() */
mutex_exit(&zv->zv_state_lock);
/* Try parallel zv_free, if failed do it in place */
t = taskq_dispatch(system_taskq, zvol_free_task, zv,
TQ_SLEEP);
if (t == TASKQID_INVALID)
list_insert_head(&free_list, zv);
} else {
mutex_exit(&zv->zv_state_lock);
}
}
rw_exit(&zvol_state_lock);
/* Wait for zvols that we couldn't create a remove task for */
while ((zv = list_remove_head(&delay_list)) != NULL)
zvol_remove_minor_task(zv);
/* Free any that we couldn't free in parallel earlier */
while ((zv = list_remove_head(&free_list)) != NULL)
zvol_os_free(zv);
}
/* Remove minor for this specific volume only */
static void
zvol_remove_minor_impl(const char *name)
{
zvol_state_t *zv = NULL, *zv_next;
if (zvol_inhibit_dev)
return;
rw_enter(&zvol_state_lock, RW_WRITER);
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
zv_next = list_next(&zvol_state_list, zv);
mutex_enter(&zv->zv_state_lock);
if (strcmp(zv->zv_name, name) == 0)
/* Found, leave the the loop with zv_lock held */
break;
mutex_exit(&zv->zv_state_lock);
}
if (zv == NULL) {
rw_exit(&zvol_state_lock);
return;
}
ASSERT(MUTEX_HELD(&zv->zv_state_lock));
if (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) {
/*
* In use, so try to throw everyone off, then wait
* until finished.
*/
zv->zv_flags |= ZVOL_REMOVING;
mutex_exit(&zv->zv_state_lock);
rw_exit(&zvol_state_lock);
zvol_remove_minor_task(zv);
return;
}
zvol_remove(zv);
zvol_os_clear_private(zv);
mutex_exit(&zv->zv_state_lock);
rw_exit(&zvol_state_lock);
zvol_os_free(zv);
}
/*
* Rename minors for specified dataset including children and snapshots.
*/
static void
zvol_rename_minors_impl(const char *oldname, const char *newname)
{
zvol_state_t *zv, *zv_next;
int oldnamelen;
if (zvol_inhibit_dev)
return;
oldnamelen = strlen(oldname);
rw_enter(&zvol_state_lock, RW_READER);
for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
zv_next = list_next(&zvol_state_list, zv);
mutex_enter(&zv->zv_state_lock);
if (strcmp(zv->zv_name, oldname) == 0) {
zvol_os_rename_minor(zv, newname);
} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
(zv->zv_name[oldnamelen] == '/' ||
zv->zv_name[oldnamelen] == '@')) {
char *name = kmem_asprintf("%s%c%s", newname,
zv->zv_name[oldnamelen],
zv->zv_name + oldnamelen + 1);
zvol_os_rename_minor(zv, name);
kmem_strfree(name);
}
mutex_exit(&zv->zv_state_lock);
}
rw_exit(&zvol_state_lock);
}
typedef struct zvol_snapdev_cb_arg {
uint64_t snapdev;
} zvol_snapdev_cb_arg_t;
static int
zvol_set_snapdev_cb(const char *dsname, void *param)
{
zvol_snapdev_cb_arg_t *arg = param;
if (strchr(dsname, '@') == NULL)
return (0);
switch (arg->snapdev) {
case ZFS_SNAPDEV_VISIBLE:
(void) zvol_os_create_minor(dsname);
break;
case ZFS_SNAPDEV_HIDDEN:
(void) zvol_remove_minor_impl(dsname);
break;
}
return (0);
}
static void
zvol_set_snapdev_impl(char *name, uint64_t snapdev)
{
zvol_snapdev_cb_arg_t arg = {snapdev};
fstrans_cookie_t cookie = spl_fstrans_mark();
/*
* The zvol_set_snapdev_sync() sets snapdev appropriately
* in the dataset hierarchy. Here, we only scan snapshots.
*/
dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
spl_fstrans_unmark(cookie);
}
static void
zvol_set_volmode_impl(char *name, uint64_t volmode)
{
fstrans_cookie_t cookie;
uint64_t old_volmode;
zvol_state_t *zv;
if (strchr(name, '@') != NULL)
return;
/*
* It's unfortunate we need to remove minors before we create new ones:
* this is necessary because our backing gendisk (zvol_state->zv_disk)
* could be different when we set, for instance, volmode from "geom"
* to "dev" (or vice versa).
*/
zv = zvol_find_by_name(name, RW_NONE);
if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
return;
if (zv != NULL) {
old_volmode = zv->zv_volmode;
mutex_exit(&zv->zv_state_lock);
if (old_volmode == volmode)
return;
zvol_wait_close(zv);
}
cookie = spl_fstrans_mark();
switch (volmode) {
case ZFS_VOLMODE_NONE:
(void) zvol_remove_minor_impl(name);
break;
case ZFS_VOLMODE_GEOM:
case ZFS_VOLMODE_DEV:
(void) zvol_remove_minor_impl(name);
(void) zvol_os_create_minor(name);
break;
case ZFS_VOLMODE_DEFAULT:
(void) zvol_remove_minor_impl(name);
if (zvol_volmode == ZFS_VOLMODE_NONE)
break;
else /* if zvol_volmode is invalid defaults to "geom" */
(void) zvol_os_create_minor(name);
break;
}
spl_fstrans_unmark(cookie);
}
static zvol_task_t *
zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
uint64_t value)
{
zvol_task_t *task;
/* Never allow tasks on hidden names. */
if (name1[0] == '$')
return (NULL);
task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
task->op = op;
task->value = value;
strlcpy(task->name1, name1, sizeof (task->name1));
if (name2 != NULL)
strlcpy(task->name2, name2, sizeof (task->name2));
return (task);
}
static void
zvol_task_free(zvol_task_t *task)
{
kmem_free(task, sizeof (zvol_task_t));
}
/*
* The worker thread function performed asynchronously.
*/
static void
zvol_task_cb(void *arg)
{
zvol_task_t *task = arg;
switch (task->op) {
case ZVOL_ASYNC_REMOVE_MINORS:
zvol_remove_minors_impl(task->name1);
break;
case ZVOL_ASYNC_RENAME_MINORS:
zvol_rename_minors_impl(task->name1, task->name2);
break;
case ZVOL_ASYNC_SET_SNAPDEV:
zvol_set_snapdev_impl(task->name1, task->value);
break;
case ZVOL_ASYNC_SET_VOLMODE:
zvol_set_volmode_impl(task->name1, task->value);
break;
default:
VERIFY(0);
break;
}
zvol_task_free(task);
}
typedef struct zvol_set_prop_int_arg {
const char *zsda_name;
uint64_t zsda_value;
zprop_source_t zsda_source;
zfs_prop_t zsda_prop;
} zvol_set_prop_int_arg_t;
/*
* Sanity check the dataset for safe use by the sync task. No additional
* conditions are imposed.
*/
static int
zvol_set_common_check(void *arg, dmu_tx_t *tx)
{
zvol_set_prop_int_arg_t *zsda = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dir_t *dd;
int error;
error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
if (error != 0)
return (error);
dsl_dir_rele(dd, FTAG);
return (error);
}
static int
zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
{
zvol_set_prop_int_arg_t *zsda = arg;
char dsname[ZFS_MAX_DATASET_NAME_LEN];
zvol_task_t *task;
uint64_t prop;
const char *prop_name = zfs_prop_to_name(zsda->zsda_prop);
dsl_dataset_name(ds, dsname);
if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0)
return (0);
switch (zsda->zsda_prop) {
case ZFS_PROP_VOLMODE:
task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname,
NULL, prop);
break;
case ZFS_PROP_SNAPDEV:
task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname,
NULL, prop);
break;
default:
task = NULL;
break;
}
if (task == NULL)
return (0);
(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
task, TQ_SLEEP);
return (0);
}
/*
* Traverse all child datasets and apply the property appropriately.
* We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
* dataset and read the effective "property" on every child in the callback
* function: this is because the value is not guaranteed to be the same in the
* whole dataset hierarchy.
*/
static void
zvol_set_common_sync(void *arg, dmu_tx_t *tx)
{
zvol_set_prop_int_arg_t *zsda = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
dsl_dir_t *dd;
dsl_dataset_t *ds;
int error;
VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
if (error == 0) {
dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop),
zsda->zsda_source, sizeof (zsda->zsda_value), 1,
&zsda->zsda_value, tx);
dsl_dataset_rele(ds, FTAG);
}
dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb,
zsda, DS_FIND_CHILDREN);
dsl_dir_rele(dd, FTAG);
}
int
zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source,
uint64_t val)
{
zvol_set_prop_int_arg_t zsda;
zsda.zsda_name = ddname;
zsda.zsda_source = source;
zsda.zsda_value = val;
zsda.zsda_prop = prop;
return (dsl_sync_task(ddname, zvol_set_common_check,
zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
}
void
zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
{
zvol_task_t *task;
taskqid_t id;
task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
if (task == NULL)
return;
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
if ((async == B_FALSE) && (id != TASKQID_INVALID))
taskq_wait_id(spa->spa_zvol_taskq, id);
}
void
zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
boolean_t async)
{
zvol_task_t *task;
taskqid_t id;
task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
if (task == NULL)
return;
id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
if ((async == B_FALSE) && (id != TASKQID_INVALID))
taskq_wait_id(spa->spa_zvol_taskq, id);
}
boolean_t
zvol_is_zvol(const char *name)
{
return (zvol_os_is_zvol(name));
}
int
zvol_init_impl(void)
{
int i;
list_create(&zvol_state_list, sizeof (zvol_state_t),
offsetof(zvol_state_t, zv_next));
rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
KM_SLEEP);
for (i = 0; i < ZVOL_HT_SIZE; i++)
INIT_HLIST_HEAD(&zvol_htable[i]);
return (0);
}
void
zvol_fini_impl(void)
{
zvol_remove_minors_impl(NULL);
/*
* The call to "zvol_remove_minors_impl" may dispatch entries to
* the system_taskq, but it doesn't wait for those entries to
* complete before it returns. Thus, we must wait for all of the
* removals to finish, before we can continue.
*/
taskq_wait_outstanding(system_taskq, 0);
kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
list_destroy(&zvol_state_list);
rw_destroy(&zvol_state_lock);
}