mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-25 01:16:34 +03:00
7f9d9e6f39
vq_lock is already too congested for two more operations per I/O. Instead of dropping and reacquiring it inside vdev_queue_aggregate() delegate the zio_vdev_io_bypass() and zio_execute() calls for parent I/Os to callers, that drop the lock any way to execute the new I/O. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Reviewed-by: Mark Maybee <mark.maybee@delphix.com> Reviewed-by: Brian Atkinson <batkinson@lanl.gov> Signed-off-by: Alexander Motin <mav@FreeBSD.org> Sponsored-By: iXsystems, Inc. Closes #12297
1122 lines
37 KiB
C
1122 lines
37 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/spa_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/metaslab_impl.h>
|
|
#include <sys/spa.h>
|
|
#include <sys/abd.h>
|
|
|
|
/*
|
|
* ZFS I/O Scheduler
|
|
* ---------------
|
|
*
|
|
* ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
|
|
* I/O scheduler determines when and in what order those operations are
|
|
* issued. The I/O scheduler divides operations into five I/O classes
|
|
* prioritized in the following order: sync read, sync write, async read,
|
|
* async write, and scrub/resilver. Each queue defines the minimum and
|
|
* maximum number of concurrent operations that may be issued to the device.
|
|
* In addition, the device has an aggregate maximum. Note that the sum of the
|
|
* per-queue minimums must not exceed the aggregate maximum. If the
|
|
* sum of the per-queue maximums exceeds the aggregate maximum, then the
|
|
* number of active i/os may reach zfs_vdev_max_active, in which case no
|
|
* further i/os will be issued regardless of whether all per-queue
|
|
* minimums have been met.
|
|
*
|
|
* For many physical devices, throughput increases with the number of
|
|
* concurrent operations, but latency typically suffers. Further, physical
|
|
* devices typically have a limit at which more concurrent operations have no
|
|
* effect on throughput or can actually cause it to decrease.
|
|
*
|
|
* The scheduler selects the next operation to issue by first looking for an
|
|
* I/O class whose minimum has not been satisfied. Once all are satisfied and
|
|
* the aggregate maximum has not been hit, the scheduler looks for classes
|
|
* whose maximum has not been satisfied. Iteration through the I/O classes is
|
|
* done in the order specified above. No further operations are issued if the
|
|
* aggregate maximum number of concurrent operations has been hit or if there
|
|
* are no operations queued for an I/O class that has not hit its maximum.
|
|
* Every time an i/o is queued or an operation completes, the I/O scheduler
|
|
* looks for new operations to issue.
|
|
*
|
|
* All I/O classes have a fixed maximum number of outstanding operations
|
|
* except for the async write class. Asynchronous writes represent the data
|
|
* that is committed to stable storage during the syncing stage for
|
|
* transaction groups (see txg.c). Transaction groups enter the syncing state
|
|
* periodically so the number of queued async writes will quickly burst up and
|
|
* then bleed down to zero. Rather than servicing them as quickly as possible,
|
|
* the I/O scheduler changes the maximum number of active async write i/os
|
|
* according to the amount of dirty data in the pool (see dsl_pool.c). Since
|
|
* both throughput and latency typically increase with the number of
|
|
* concurrent operations issued to physical devices, reducing the burstiness
|
|
* in the number of concurrent operations also stabilizes the response time of
|
|
* operations from other -- and in particular synchronous -- queues. In broad
|
|
* strokes, the I/O scheduler will issue more concurrent operations from the
|
|
* async write queue as there's more dirty data in the pool.
|
|
*
|
|
* Async Writes
|
|
*
|
|
* The number of concurrent operations issued for the async write I/O class
|
|
* follows a piece-wise linear function defined by a few adjustable points.
|
|
*
|
|
* | o---------| <-- zfs_vdev_async_write_max_active
|
|
* ^ | /^ |
|
|
* | | / | |
|
|
* active | / | |
|
|
* I/O | / | |
|
|
* count | / | |
|
|
* | / | |
|
|
* |------------o | | <-- zfs_vdev_async_write_min_active
|
|
* 0|____________^______|_________|
|
|
* 0% | | 100% of zfs_dirty_data_max
|
|
* | |
|
|
* | `-- zfs_vdev_async_write_active_max_dirty_percent
|
|
* `--------- zfs_vdev_async_write_active_min_dirty_percent
|
|
*
|
|
* Until the amount of dirty data exceeds a minimum percentage of the dirty
|
|
* data allowed in the pool, the I/O scheduler will limit the number of
|
|
* concurrent operations to the minimum. As that threshold is crossed, the
|
|
* number of concurrent operations issued increases linearly to the maximum at
|
|
* the specified maximum percentage of the dirty data allowed in the pool.
|
|
*
|
|
* Ideally, the amount of dirty data on a busy pool will stay in the sloped
|
|
* part of the function between zfs_vdev_async_write_active_min_dirty_percent
|
|
* and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
|
|
* maximum percentage, this indicates that the rate of incoming data is
|
|
* greater than the rate that the backend storage can handle. In this case, we
|
|
* must further throttle incoming writes (see dmu_tx_delay() for details).
|
|
*/
|
|
|
|
/*
|
|
* The maximum number of i/os active to each device. Ideally, this will be >=
|
|
* the sum of each queue's max_active.
|
|
*/
|
|
uint32_t zfs_vdev_max_active = 1000;
|
|
|
|
/*
|
|
* Per-queue limits on the number of i/os active to each device. If the
|
|
* number of active i/os is < zfs_vdev_max_active, then the min_active comes
|
|
* into play. We will send min_active from each queue round-robin, and then
|
|
* send from queues in the order defined by zio_priority_t up to max_active.
|
|
* Some queues have additional mechanisms to limit number of active I/Os in
|
|
* addition to min_active and max_active, see below.
|
|
*
|
|
* In general, smaller max_active's will lead to lower latency of synchronous
|
|
* operations. Larger max_active's may lead to higher overall throughput,
|
|
* depending on underlying storage.
|
|
*
|
|
* The ratio of the queues' max_actives determines the balance of performance
|
|
* between reads, writes, and scrubs. E.g., increasing
|
|
* zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
|
|
* more quickly, but reads and writes to have higher latency and lower
|
|
* throughput.
|
|
*/
|
|
uint32_t zfs_vdev_sync_read_min_active = 10;
|
|
uint32_t zfs_vdev_sync_read_max_active = 10;
|
|
uint32_t zfs_vdev_sync_write_min_active = 10;
|
|
uint32_t zfs_vdev_sync_write_max_active = 10;
|
|
uint32_t zfs_vdev_async_read_min_active = 1;
|
|
uint32_t zfs_vdev_async_read_max_active = 3;
|
|
uint32_t zfs_vdev_async_write_min_active = 2;
|
|
uint32_t zfs_vdev_async_write_max_active = 10;
|
|
uint32_t zfs_vdev_scrub_min_active = 1;
|
|
uint32_t zfs_vdev_scrub_max_active = 3;
|
|
uint32_t zfs_vdev_removal_min_active = 1;
|
|
uint32_t zfs_vdev_removal_max_active = 2;
|
|
uint32_t zfs_vdev_initializing_min_active = 1;
|
|
uint32_t zfs_vdev_initializing_max_active = 1;
|
|
uint32_t zfs_vdev_trim_min_active = 1;
|
|
uint32_t zfs_vdev_trim_max_active = 2;
|
|
uint32_t zfs_vdev_rebuild_min_active = 1;
|
|
uint32_t zfs_vdev_rebuild_max_active = 3;
|
|
|
|
/*
|
|
* When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
|
|
* dirty data, use zfs_vdev_async_write_min_active. When it has more than
|
|
* zfs_vdev_async_write_active_max_dirty_percent, use
|
|
* zfs_vdev_async_write_max_active. The value is linearly interpolated
|
|
* between min and max.
|
|
*/
|
|
int zfs_vdev_async_write_active_min_dirty_percent = 30;
|
|
int zfs_vdev_async_write_active_max_dirty_percent = 60;
|
|
|
|
/*
|
|
* For non-interactive I/O (scrub, resilver, removal, initialize and rebuild),
|
|
* the number of concurrently-active I/O's is limited to *_min_active, unless
|
|
* the vdev is "idle". When there are no interactive I/Os active (sync or
|
|
* async), and zfs_vdev_nia_delay I/Os have completed since the last
|
|
* interactive I/O, then the vdev is considered to be "idle", and the number
|
|
* of concurrently-active non-interactive I/O's is increased to *_max_active.
|
|
*/
|
|
uint_t zfs_vdev_nia_delay = 5;
|
|
|
|
/*
|
|
* Some HDDs tend to prioritize sequential I/O so high that concurrent
|
|
* random I/O latency reaches several seconds. On some HDDs it happens
|
|
* even if sequential I/Os are submitted one at a time, and so setting
|
|
* *_max_active to 1 does not help. To prevent non-interactive I/Os, like
|
|
* scrub, from monopolizing the device no more than zfs_vdev_nia_credit
|
|
* I/Os can be sent while there are outstanding incomplete interactive
|
|
* I/Os. This enforced wait ensures the HDD services the interactive I/O
|
|
* within a reasonable amount of time.
|
|
*/
|
|
uint_t zfs_vdev_nia_credit = 5;
|
|
|
|
/*
|
|
* To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
|
|
* For read I/Os, we also aggregate across small adjacency gaps; for writes
|
|
* we include spans of optional I/Os to aid aggregation at the disk even when
|
|
* they aren't able to help us aggregate at this level.
|
|
*/
|
|
int zfs_vdev_aggregation_limit = 1 << 20;
|
|
int zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE;
|
|
int zfs_vdev_read_gap_limit = 32 << 10;
|
|
int zfs_vdev_write_gap_limit = 4 << 10;
|
|
|
|
/*
|
|
* Define the queue depth percentage for each top-level. This percentage is
|
|
* used in conjunction with zfs_vdev_async_max_active to determine how many
|
|
* allocations a specific top-level vdev should handle. Once the queue depth
|
|
* reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
|
|
* then allocator will stop allocating blocks on that top-level device.
|
|
* The default kernel setting is 1000% which will yield 100 allocations per
|
|
* device. For userland testing, the default setting is 300% which equates
|
|
* to 30 allocations per device.
|
|
*/
|
|
#ifdef _KERNEL
|
|
int zfs_vdev_queue_depth_pct = 1000;
|
|
#else
|
|
int zfs_vdev_queue_depth_pct = 300;
|
|
#endif
|
|
|
|
/*
|
|
* When performing allocations for a given metaslab, we want to make sure that
|
|
* there are enough IOs to aggregate together to improve throughput. We want to
|
|
* ensure that there are at least 128k worth of IOs that can be aggregated, and
|
|
* we assume that the average allocation size is 4k, so we need the queue depth
|
|
* to be 32 per allocator to get good aggregation of sequential writes.
|
|
*/
|
|
int zfs_vdev_def_queue_depth = 32;
|
|
|
|
/*
|
|
* Allow TRIM I/Os to be aggregated. This should normally not be needed since
|
|
* TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M) can be submitted
|
|
* by the TRIM code in zfs_trim.c.
|
|
*/
|
|
int zfs_vdev_aggregate_trim = 0;
|
|
|
|
static int
|
|
vdev_queue_offset_compare(const void *x1, const void *x2)
|
|
{
|
|
const zio_t *z1 = (const zio_t *)x1;
|
|
const zio_t *z2 = (const zio_t *)x2;
|
|
|
|
int cmp = TREE_CMP(z1->io_offset, z2->io_offset);
|
|
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
return (TREE_PCMP(z1, z2));
|
|
}
|
|
|
|
static inline avl_tree_t *
|
|
vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
|
|
{
|
|
return (&vq->vq_class[p].vqc_queued_tree);
|
|
}
|
|
|
|
static inline avl_tree_t *
|
|
vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
|
|
{
|
|
ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE || t == ZIO_TYPE_TRIM);
|
|
if (t == ZIO_TYPE_READ)
|
|
return (&vq->vq_read_offset_tree);
|
|
else if (t == ZIO_TYPE_WRITE)
|
|
return (&vq->vq_write_offset_tree);
|
|
else
|
|
return (&vq->vq_trim_offset_tree);
|
|
}
|
|
|
|
static int
|
|
vdev_queue_timestamp_compare(const void *x1, const void *x2)
|
|
{
|
|
const zio_t *z1 = (const zio_t *)x1;
|
|
const zio_t *z2 = (const zio_t *)x2;
|
|
|
|
int cmp = TREE_CMP(z1->io_timestamp, z2->io_timestamp);
|
|
|
|
if (likely(cmp))
|
|
return (cmp);
|
|
|
|
return (TREE_PCMP(z1, z2));
|
|
}
|
|
|
|
static int
|
|
vdev_queue_class_min_active(vdev_queue_t *vq, zio_priority_t p)
|
|
{
|
|
switch (p) {
|
|
case ZIO_PRIORITY_SYNC_READ:
|
|
return (zfs_vdev_sync_read_min_active);
|
|
case ZIO_PRIORITY_SYNC_WRITE:
|
|
return (zfs_vdev_sync_write_min_active);
|
|
case ZIO_PRIORITY_ASYNC_READ:
|
|
return (zfs_vdev_async_read_min_active);
|
|
case ZIO_PRIORITY_ASYNC_WRITE:
|
|
return (zfs_vdev_async_write_min_active);
|
|
case ZIO_PRIORITY_SCRUB:
|
|
return (vq->vq_ia_active == 0 ? zfs_vdev_scrub_min_active :
|
|
MIN(vq->vq_nia_credit, zfs_vdev_scrub_min_active));
|
|
case ZIO_PRIORITY_REMOVAL:
|
|
return (vq->vq_ia_active == 0 ? zfs_vdev_removal_min_active :
|
|
MIN(vq->vq_nia_credit, zfs_vdev_removal_min_active));
|
|
case ZIO_PRIORITY_INITIALIZING:
|
|
return (vq->vq_ia_active == 0 ?zfs_vdev_initializing_min_active:
|
|
MIN(vq->vq_nia_credit, zfs_vdev_initializing_min_active));
|
|
case ZIO_PRIORITY_TRIM:
|
|
return (zfs_vdev_trim_min_active);
|
|
case ZIO_PRIORITY_REBUILD:
|
|
return (vq->vq_ia_active == 0 ? zfs_vdev_rebuild_min_active :
|
|
MIN(vq->vq_nia_credit, zfs_vdev_rebuild_min_active));
|
|
default:
|
|
panic("invalid priority %u", p);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
static int
|
|
vdev_queue_max_async_writes(spa_t *spa)
|
|
{
|
|
int writes;
|
|
uint64_t dirty = 0;
|
|
dsl_pool_t *dp = spa_get_dsl(spa);
|
|
uint64_t min_bytes = zfs_dirty_data_max *
|
|
zfs_vdev_async_write_active_min_dirty_percent / 100;
|
|
uint64_t max_bytes = zfs_dirty_data_max *
|
|
zfs_vdev_async_write_active_max_dirty_percent / 100;
|
|
|
|
/*
|
|
* Async writes may occur before the assignment of the spa's
|
|
* dsl_pool_t if a self-healing zio is issued prior to the
|
|
* completion of dmu_objset_open_impl().
|
|
*/
|
|
if (dp == NULL)
|
|
return (zfs_vdev_async_write_max_active);
|
|
|
|
/*
|
|
* Sync tasks correspond to interactive user actions. To reduce the
|
|
* execution time of those actions we push data out as fast as possible.
|
|
*/
|
|
dirty = dp->dp_dirty_total;
|
|
if (dirty > max_bytes || spa_has_pending_synctask(spa))
|
|
return (zfs_vdev_async_write_max_active);
|
|
|
|
if (dirty < min_bytes)
|
|
return (zfs_vdev_async_write_min_active);
|
|
|
|
/*
|
|
* linear interpolation:
|
|
* slope = (max_writes - min_writes) / (max_bytes - min_bytes)
|
|
* move right by min_bytes
|
|
* move up by min_writes
|
|
*/
|
|
writes = (dirty - min_bytes) *
|
|
(zfs_vdev_async_write_max_active -
|
|
zfs_vdev_async_write_min_active) /
|
|
(max_bytes - min_bytes) +
|
|
zfs_vdev_async_write_min_active;
|
|
ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
|
|
ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
|
|
return (writes);
|
|
}
|
|
|
|
static int
|
|
vdev_queue_class_max_active(spa_t *spa, vdev_queue_t *vq, zio_priority_t p)
|
|
{
|
|
switch (p) {
|
|
case ZIO_PRIORITY_SYNC_READ:
|
|
return (zfs_vdev_sync_read_max_active);
|
|
case ZIO_PRIORITY_SYNC_WRITE:
|
|
return (zfs_vdev_sync_write_max_active);
|
|
case ZIO_PRIORITY_ASYNC_READ:
|
|
return (zfs_vdev_async_read_max_active);
|
|
case ZIO_PRIORITY_ASYNC_WRITE:
|
|
return (vdev_queue_max_async_writes(spa));
|
|
case ZIO_PRIORITY_SCRUB:
|
|
if (vq->vq_ia_active > 0) {
|
|
return (MIN(vq->vq_nia_credit,
|
|
zfs_vdev_scrub_min_active));
|
|
} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
|
|
return (MAX(1, zfs_vdev_scrub_min_active));
|
|
return (zfs_vdev_scrub_max_active);
|
|
case ZIO_PRIORITY_REMOVAL:
|
|
if (vq->vq_ia_active > 0) {
|
|
return (MIN(vq->vq_nia_credit,
|
|
zfs_vdev_removal_min_active));
|
|
} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
|
|
return (MAX(1, zfs_vdev_removal_min_active));
|
|
return (zfs_vdev_removal_max_active);
|
|
case ZIO_PRIORITY_INITIALIZING:
|
|
if (vq->vq_ia_active > 0) {
|
|
return (MIN(vq->vq_nia_credit,
|
|
zfs_vdev_initializing_min_active));
|
|
} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
|
|
return (MAX(1, zfs_vdev_initializing_min_active));
|
|
return (zfs_vdev_initializing_max_active);
|
|
case ZIO_PRIORITY_TRIM:
|
|
return (zfs_vdev_trim_max_active);
|
|
case ZIO_PRIORITY_REBUILD:
|
|
if (vq->vq_ia_active > 0) {
|
|
return (MIN(vq->vq_nia_credit,
|
|
zfs_vdev_rebuild_min_active));
|
|
} else if (vq->vq_nia_credit < zfs_vdev_nia_delay)
|
|
return (MAX(1, zfs_vdev_rebuild_min_active));
|
|
return (zfs_vdev_rebuild_max_active);
|
|
default:
|
|
panic("invalid priority %u", p);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
|
|
* there is no eligible class.
|
|
*/
|
|
static zio_priority_t
|
|
vdev_queue_class_to_issue(vdev_queue_t *vq)
|
|
{
|
|
spa_t *spa = vq->vq_vdev->vdev_spa;
|
|
zio_priority_t p, n;
|
|
|
|
if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
|
|
return (ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
|
|
/*
|
|
* Find a queue that has not reached its minimum # outstanding i/os.
|
|
* Do round-robin to reduce starvation due to zfs_vdev_max_active
|
|
* and vq_nia_credit limits.
|
|
*/
|
|
for (n = 0; n < ZIO_PRIORITY_NUM_QUEUEABLE; n++) {
|
|
p = (vq->vq_last_prio + n + 1) % ZIO_PRIORITY_NUM_QUEUEABLE;
|
|
if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
|
|
vq->vq_class[p].vqc_active <
|
|
vdev_queue_class_min_active(vq, p)) {
|
|
vq->vq_last_prio = p;
|
|
return (p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we haven't found a queue, look for one that hasn't reached its
|
|
* maximum # outstanding i/os.
|
|
*/
|
|
for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
|
|
if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
|
|
vq->vq_class[p].vqc_active <
|
|
vdev_queue_class_max_active(spa, vq, p)) {
|
|
vq->vq_last_prio = p;
|
|
return (p);
|
|
}
|
|
}
|
|
|
|
/* No eligible queued i/os */
|
|
return (ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
}
|
|
|
|
void
|
|
vdev_queue_init(vdev_t *vd)
|
|
{
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
zio_priority_t p;
|
|
|
|
mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
vq->vq_vdev = vd;
|
|
taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent);
|
|
|
|
avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
|
|
sizeof (zio_t), offsetof(struct zio, io_queue_node));
|
|
avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
|
|
vdev_queue_offset_compare, sizeof (zio_t),
|
|
offsetof(struct zio, io_offset_node));
|
|
avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
|
|
vdev_queue_offset_compare, sizeof (zio_t),
|
|
offsetof(struct zio, io_offset_node));
|
|
avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM),
|
|
vdev_queue_offset_compare, sizeof (zio_t),
|
|
offsetof(struct zio, io_offset_node));
|
|
|
|
for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
|
|
int (*compfn) (const void *, const void *);
|
|
|
|
/*
|
|
* The synchronous/trim i/o queues are dispatched in FIFO rather
|
|
* than LBA order. This provides more consistent latency for
|
|
* these i/os.
|
|
*/
|
|
if (p == ZIO_PRIORITY_SYNC_READ ||
|
|
p == ZIO_PRIORITY_SYNC_WRITE ||
|
|
p == ZIO_PRIORITY_TRIM) {
|
|
compfn = vdev_queue_timestamp_compare;
|
|
} else {
|
|
compfn = vdev_queue_offset_compare;
|
|
}
|
|
avl_create(vdev_queue_class_tree(vq, p), compfn,
|
|
sizeof (zio_t), offsetof(struct zio, io_queue_node));
|
|
}
|
|
|
|
vq->vq_last_offset = 0;
|
|
}
|
|
|
|
void
|
|
vdev_queue_fini(vdev_t *vd)
|
|
{
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
|
|
for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
|
|
avl_destroy(vdev_queue_class_tree(vq, p));
|
|
avl_destroy(&vq->vq_active_tree);
|
|
avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
|
|
avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
|
|
avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM));
|
|
|
|
mutex_destroy(&vq->vq_lock);
|
|
}
|
|
|
|
static void
|
|
vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
|
|
avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
|
|
}
|
|
|
|
static void
|
|
vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
|
|
avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
|
|
}
|
|
|
|
static boolean_t
|
|
vdev_queue_is_interactive(zio_priority_t p)
|
|
{
|
|
switch (p) {
|
|
case ZIO_PRIORITY_SCRUB:
|
|
case ZIO_PRIORITY_REMOVAL:
|
|
case ZIO_PRIORITY_INITIALIZING:
|
|
case ZIO_PRIORITY_REBUILD:
|
|
return (B_FALSE);
|
|
default:
|
|
return (B_TRUE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vq->vq_lock));
|
|
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
vq->vq_class[zio->io_priority].vqc_active++;
|
|
if (vdev_queue_is_interactive(zio->io_priority)) {
|
|
if (++vq->vq_ia_active == 1)
|
|
vq->vq_nia_credit = 1;
|
|
} else if (vq->vq_ia_active > 0) {
|
|
vq->vq_nia_credit--;
|
|
}
|
|
avl_add(&vq->vq_active_tree, zio);
|
|
}
|
|
|
|
static void
|
|
vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
ASSERT(MUTEX_HELD(&vq->vq_lock));
|
|
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
vq->vq_class[zio->io_priority].vqc_active--;
|
|
if (vdev_queue_is_interactive(zio->io_priority)) {
|
|
if (--vq->vq_ia_active == 0)
|
|
vq->vq_nia_credit = 0;
|
|
else
|
|
vq->vq_nia_credit = zfs_vdev_nia_credit;
|
|
} else if (vq->vq_ia_active == 0)
|
|
vq->vq_nia_credit++;
|
|
avl_remove(&vq->vq_active_tree, zio);
|
|
}
|
|
|
|
static void
|
|
vdev_queue_agg_io_done(zio_t *aio)
|
|
{
|
|
abd_free(aio->io_abd);
|
|
}
|
|
|
|
/*
|
|
* Compute the range spanned by two i/os, which is the endpoint of the last
|
|
* (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
|
|
* Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
|
|
* thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
|
|
*/
|
|
#define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
|
|
#define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
|
|
|
|
/*
|
|
* Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this
|
|
* by creating a gang ABD from the adjacent ZIOs io_abd's. By using
|
|
* a gang ABD we avoid doing memory copies to and from the parent,
|
|
* child ZIOs. The gang ABD also accounts for gaps between adjacent
|
|
* io_offsets by simply getting the zero ABD for writes or allocating
|
|
* a new ABD for reads and placing them in the gang ABD as well.
|
|
*/
|
|
static zio_t *
|
|
vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
zio_t *first, *last, *aio, *dio, *mandatory, *nio;
|
|
uint64_t maxgap = 0;
|
|
uint64_t size;
|
|
uint64_t limit;
|
|
int maxblocksize;
|
|
boolean_t stretch = B_FALSE;
|
|
avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
|
|
enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
|
|
uint64_t next_offset;
|
|
abd_t *abd;
|
|
|
|
maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa);
|
|
if (vq->vq_vdev->vdev_nonrot)
|
|
limit = zfs_vdev_aggregation_limit_non_rotating;
|
|
else
|
|
limit = zfs_vdev_aggregation_limit;
|
|
limit = MAX(MIN(limit, maxblocksize), 0);
|
|
|
|
if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0)
|
|
return (NULL);
|
|
|
|
/*
|
|
* While TRIM commands could be aggregated based on offset this
|
|
* behavior is disabled until it's determined to be beneficial.
|
|
*/
|
|
if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim)
|
|
return (NULL);
|
|
|
|
/*
|
|
* I/Os to distributed spares are directly dispatched to the dRAID
|
|
* leaf vdevs for aggregation. See the comment at the end of the
|
|
* zio_vdev_io_start() function.
|
|
*/
|
|
ASSERT(vq->vq_vdev->vdev_ops != &vdev_draid_spare_ops);
|
|
|
|
first = last = zio;
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ)
|
|
maxgap = zfs_vdev_read_gap_limit;
|
|
|
|
/*
|
|
* We can aggregate I/Os that are sufficiently adjacent and of
|
|
* the same flavor, as expressed by the AGG_INHERIT flags.
|
|
* The latter requirement is necessary so that certain
|
|
* attributes of the I/O, such as whether it's a normal I/O
|
|
* or a scrub/resilver, can be preserved in the aggregate.
|
|
* We can include optional I/Os, but don't allow them
|
|
* to begin a range as they add no benefit in that situation.
|
|
*/
|
|
|
|
/*
|
|
* We keep track of the last non-optional I/O.
|
|
*/
|
|
mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
|
|
|
|
/*
|
|
* Walk backwards through sufficiently contiguous I/Os
|
|
* recording the last non-optional I/O.
|
|
*/
|
|
while ((dio = AVL_PREV(t, first)) != NULL &&
|
|
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
|
|
IO_SPAN(dio, last) <= limit &&
|
|
IO_GAP(dio, first) <= maxgap &&
|
|
dio->io_type == zio->io_type) {
|
|
first = dio;
|
|
if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
|
|
mandatory = first;
|
|
}
|
|
|
|
/*
|
|
* Skip any initial optional I/Os.
|
|
*/
|
|
while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
|
|
first = AVL_NEXT(t, first);
|
|
ASSERT(first != NULL);
|
|
}
|
|
|
|
|
|
/*
|
|
* Walk forward through sufficiently contiguous I/Os.
|
|
* The aggregation limit does not apply to optional i/os, so that
|
|
* we can issue contiguous writes even if they are larger than the
|
|
* aggregation limit.
|
|
*/
|
|
while ((dio = AVL_NEXT(t, last)) != NULL &&
|
|
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
|
|
(IO_SPAN(first, dio) <= limit ||
|
|
(dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
|
|
IO_SPAN(first, dio) <= maxblocksize &&
|
|
IO_GAP(last, dio) <= maxgap &&
|
|
dio->io_type == zio->io_type) {
|
|
last = dio;
|
|
if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
|
|
mandatory = last;
|
|
}
|
|
|
|
/*
|
|
* Now that we've established the range of the I/O aggregation
|
|
* we must decide what to do with trailing optional I/Os.
|
|
* For reads, there's nothing to do. While we are unable to
|
|
* aggregate further, it's possible that a trailing optional
|
|
* I/O would allow the underlying device to aggregate with
|
|
* subsequent I/Os. We must therefore determine if the next
|
|
* non-optional I/O is close enough to make aggregation
|
|
* worthwhile.
|
|
*/
|
|
if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
|
|
zio_t *nio = last;
|
|
while ((dio = AVL_NEXT(t, nio)) != NULL &&
|
|
IO_GAP(nio, dio) == 0 &&
|
|
IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
|
|
nio = dio;
|
|
if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
|
|
stretch = B_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (stretch) {
|
|
/*
|
|
* We are going to include an optional io in our aggregated
|
|
* span, thus closing the write gap. Only mandatory i/os can
|
|
* start aggregated spans, so make sure that the next i/o
|
|
* after our span is mandatory.
|
|
*/
|
|
dio = AVL_NEXT(t, last);
|
|
dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
|
|
} else {
|
|
/* do not include the optional i/o */
|
|
while (last != mandatory && last != first) {
|
|
ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
|
|
last = AVL_PREV(t, last);
|
|
ASSERT(last != NULL);
|
|
}
|
|
}
|
|
|
|
if (first == last)
|
|
return (NULL);
|
|
|
|
size = IO_SPAN(first, last);
|
|
ASSERT3U(size, <=, maxblocksize);
|
|
|
|
abd = abd_alloc_gang();
|
|
if (abd == NULL)
|
|
return (NULL);
|
|
|
|
aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
|
|
abd, size, first->io_type, zio->io_priority,
|
|
flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
|
|
vdev_queue_agg_io_done, NULL);
|
|
aio->io_timestamp = first->io_timestamp;
|
|
|
|
nio = first;
|
|
next_offset = first->io_offset;
|
|
do {
|
|
dio = nio;
|
|
nio = AVL_NEXT(t, dio);
|
|
zio_add_child(dio, aio);
|
|
vdev_queue_io_remove(vq, dio);
|
|
|
|
if (dio->io_offset != next_offset) {
|
|
/* allocate a buffer for a read gap */
|
|
ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ);
|
|
ASSERT3U(dio->io_offset, >, next_offset);
|
|
abd = abd_alloc_for_io(
|
|
dio->io_offset - next_offset, B_TRUE);
|
|
abd_gang_add(aio->io_abd, abd, B_TRUE);
|
|
}
|
|
if (dio->io_abd &&
|
|
(dio->io_size != abd_get_size(dio->io_abd))) {
|
|
/* abd size not the same as IO size */
|
|
ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size);
|
|
abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size);
|
|
abd_gang_add(aio->io_abd, abd, B_TRUE);
|
|
} else {
|
|
if (dio->io_flags & ZIO_FLAG_NODATA) {
|
|
/* allocate a buffer for a write gap */
|
|
ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
|
|
ASSERT3P(dio->io_abd, ==, NULL);
|
|
abd_gang_add(aio->io_abd,
|
|
abd_get_zeros(dio->io_size), B_TRUE);
|
|
} else {
|
|
/*
|
|
* We pass B_FALSE to abd_gang_add()
|
|
* because we did not allocate a new
|
|
* ABD, so it is assumed the caller
|
|
* will free this ABD.
|
|
*/
|
|
abd_gang_add(aio->io_abd, dio->io_abd,
|
|
B_FALSE);
|
|
}
|
|
}
|
|
next_offset = dio->io_offset + dio->io_size;
|
|
} while (dio != last);
|
|
ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size);
|
|
|
|
/*
|
|
* Callers must call zio_vdev_io_bypass() and zio_execute() for
|
|
* aggregated (parent) I/Os so that we could avoid dropping the
|
|
* queue's lock here to avoid a deadlock that we could encounter
|
|
* due to lock order reversal between vq_lock and io_lock in
|
|
* zio_change_priority().
|
|
*/
|
|
return (aio);
|
|
}
|
|
|
|
static zio_t *
|
|
vdev_queue_io_to_issue(vdev_queue_t *vq)
|
|
{
|
|
zio_t *zio, *aio;
|
|
zio_priority_t p;
|
|
avl_index_t idx;
|
|
avl_tree_t *tree;
|
|
|
|
again:
|
|
ASSERT(MUTEX_HELD(&vq->vq_lock));
|
|
|
|
p = vdev_queue_class_to_issue(vq);
|
|
|
|
if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
|
|
/* No eligible queued i/os */
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* For LBA-ordered queues (async / scrub / initializing), issue the
|
|
* i/o which follows the most recently issued i/o in LBA (offset) order.
|
|
*
|
|
* For FIFO queues (sync/trim), issue the i/o with the lowest timestamp.
|
|
*/
|
|
tree = vdev_queue_class_tree(vq, p);
|
|
vq->vq_io_search.io_timestamp = 0;
|
|
vq->vq_io_search.io_offset = vq->vq_last_offset - 1;
|
|
VERIFY3P(avl_find(tree, &vq->vq_io_search, &idx), ==, NULL);
|
|
zio = avl_nearest(tree, idx, AVL_AFTER);
|
|
if (zio == NULL)
|
|
zio = avl_first(tree);
|
|
ASSERT3U(zio->io_priority, ==, p);
|
|
|
|
aio = vdev_queue_aggregate(vq, zio);
|
|
if (aio != NULL) {
|
|
zio = aio;
|
|
} else {
|
|
vdev_queue_io_remove(vq, zio);
|
|
|
|
/*
|
|
* If the I/O is or was optional and therefore has no data, we
|
|
* need to simply discard it. We need to drop the vdev queue's
|
|
* lock to avoid a deadlock that we could encounter since this
|
|
* I/O will complete immediately.
|
|
*/
|
|
if (zio->io_flags & ZIO_FLAG_NODATA) {
|
|
mutex_exit(&vq->vq_lock);
|
|
zio_vdev_io_bypass(zio);
|
|
zio_execute(zio);
|
|
mutex_enter(&vq->vq_lock);
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
vdev_queue_pending_add(vq, zio);
|
|
vq->vq_last_offset = zio->io_offset + zio->io_size;
|
|
|
|
return (zio);
|
|
}
|
|
|
|
zio_t *
|
|
vdev_queue_io(zio_t *zio)
|
|
{
|
|
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
|
|
zio_t *dio, *nio;
|
|
zio_link_t *zl = NULL;
|
|
|
|
if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
|
|
return (zio);
|
|
|
|
/*
|
|
* Children i/os inherent their parent's priority, which might
|
|
* not match the child's i/o type. Fix it up here.
|
|
*/
|
|
if (zio->io_type == ZIO_TYPE_READ) {
|
|
ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
|
|
|
|
if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
|
|
zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
|
|
zio->io_priority != ZIO_PRIORITY_SCRUB &&
|
|
zio->io_priority != ZIO_PRIORITY_REMOVAL &&
|
|
zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
|
|
zio->io_priority != ZIO_PRIORITY_REBUILD) {
|
|
zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
|
|
}
|
|
} else if (zio->io_type == ZIO_TYPE_WRITE) {
|
|
ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
|
|
|
|
if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
|
|
zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
|
|
zio->io_priority != ZIO_PRIORITY_REMOVAL &&
|
|
zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
|
|
zio->io_priority != ZIO_PRIORITY_REBUILD) {
|
|
zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
|
|
}
|
|
} else {
|
|
ASSERT(zio->io_type == ZIO_TYPE_TRIM);
|
|
ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM);
|
|
}
|
|
|
|
zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
|
|
zio->io_timestamp = gethrtime();
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
vdev_queue_io_add(vq, zio);
|
|
nio = vdev_queue_io_to_issue(vq);
|
|
mutex_exit(&vq->vq_lock);
|
|
|
|
if (nio == NULL)
|
|
return (NULL);
|
|
|
|
if (nio->io_done == vdev_queue_agg_io_done) {
|
|
while ((dio = zio_walk_parents(nio, &zl)) != NULL) {
|
|
ASSERT3U(dio->io_type, ==, nio->io_type);
|
|
zio_vdev_io_bypass(dio);
|
|
zio_execute(dio);
|
|
}
|
|
zio_nowait(nio);
|
|
return (NULL);
|
|
}
|
|
|
|
return (nio);
|
|
}
|
|
|
|
void
|
|
vdev_queue_io_done(zio_t *zio)
|
|
{
|
|
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
|
|
zio_t *dio, *nio;
|
|
zio_link_t *zl = NULL;
|
|
|
|
hrtime_t now = gethrtime();
|
|
vq->vq_io_complete_ts = now;
|
|
vq->vq_io_delta_ts = zio->io_delta = now - zio->io_timestamp;
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
vdev_queue_pending_remove(vq, zio);
|
|
|
|
while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
|
|
mutex_exit(&vq->vq_lock);
|
|
if (nio->io_done == vdev_queue_agg_io_done) {
|
|
while ((dio = zio_walk_parents(nio, &zl)) != NULL) {
|
|
ASSERT3U(dio->io_type, ==, nio->io_type);
|
|
zio_vdev_io_bypass(dio);
|
|
zio_execute(dio);
|
|
}
|
|
zio_nowait(nio);
|
|
} else {
|
|
zio_vdev_io_reissue(nio);
|
|
zio_execute(nio);
|
|
}
|
|
mutex_enter(&vq->vq_lock);
|
|
}
|
|
|
|
mutex_exit(&vq->vq_lock);
|
|
}
|
|
|
|
void
|
|
vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
|
|
{
|
|
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
|
|
avl_tree_t *tree;
|
|
|
|
/*
|
|
* ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
|
|
* code to issue IOs without adding them to the vdev queue. In this
|
|
* case, the zio is already going to be issued as quickly as possible
|
|
* and so it doesn't need any reprioritization to help.
|
|
*/
|
|
if (zio->io_priority == ZIO_PRIORITY_NOW)
|
|
return;
|
|
|
|
ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ) {
|
|
if (priority != ZIO_PRIORITY_SYNC_READ &&
|
|
priority != ZIO_PRIORITY_ASYNC_READ &&
|
|
priority != ZIO_PRIORITY_SCRUB)
|
|
priority = ZIO_PRIORITY_ASYNC_READ;
|
|
} else {
|
|
ASSERT(zio->io_type == ZIO_TYPE_WRITE);
|
|
if (priority != ZIO_PRIORITY_SYNC_WRITE &&
|
|
priority != ZIO_PRIORITY_ASYNC_WRITE)
|
|
priority = ZIO_PRIORITY_ASYNC_WRITE;
|
|
}
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
|
|
/*
|
|
* If the zio is in none of the queues we can simply change
|
|
* the priority. If the zio is waiting to be submitted we must
|
|
* remove it from the queue and re-insert it with the new priority.
|
|
* Otherwise, the zio is currently active and we cannot change its
|
|
* priority.
|
|
*/
|
|
tree = vdev_queue_class_tree(vq, zio->io_priority);
|
|
if (avl_find(tree, zio, NULL) == zio) {
|
|
avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
|
|
zio->io_priority = priority;
|
|
avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
|
|
} else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) {
|
|
zio->io_priority = priority;
|
|
}
|
|
|
|
mutex_exit(&vq->vq_lock);
|
|
}
|
|
|
|
/*
|
|
* As these two methods are only used for load calculations we're not
|
|
* concerned if we get an incorrect value on 32bit platforms due to lack of
|
|
* vq_lock mutex use here, instead we prefer to keep it lock free for
|
|
* performance.
|
|
*/
|
|
int
|
|
vdev_queue_length(vdev_t *vd)
|
|
{
|
|
return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
|
|
}
|
|
|
|
uint64_t
|
|
vdev_queue_last_offset(vdev_t *vd)
|
|
{
|
|
return (vd->vdev_queue.vq_last_offset);
|
|
}
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, INT, ZMOD_RW,
|
|
"Max vdev I/O aggregation size");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, INT, ZMOD_RW,
|
|
"Max vdev I/O aggregation size for non-rotating media");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregate_trim, INT, ZMOD_RW,
|
|
"Allow TRIM I/O to be aggregated");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, INT, ZMOD_RW,
|
|
"Aggregate read I/O over gap");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, INT, ZMOD_RW,
|
|
"Aggregate write I/O over gap");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, INT, ZMOD_RW,
|
|
"Maximum number of active I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent, INT, ZMOD_RW,
|
|
"Async write concurrency max threshold");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent, INT, ZMOD_RW,
|
|
"Async write concurrency min threshold");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, INT, ZMOD_RW,
|
|
"Max active async read I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, INT, ZMOD_RW,
|
|
"Min active async read I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, INT, ZMOD_RW,
|
|
"Max active async write I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, INT, ZMOD_RW,
|
|
"Min active async write I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, INT, ZMOD_RW,
|
|
"Max active initializing I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, INT, ZMOD_RW,
|
|
"Min active initializing I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, INT, ZMOD_RW,
|
|
"Max active removal I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, INT, ZMOD_RW,
|
|
"Min active removal I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, INT, ZMOD_RW,
|
|
"Max active scrub I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, INT, ZMOD_RW,
|
|
"Min active scrub I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, INT, ZMOD_RW,
|
|
"Max active sync read I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, INT, ZMOD_RW,
|
|
"Min active sync read I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, INT, ZMOD_RW,
|
|
"Max active sync write I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, INT, ZMOD_RW,
|
|
"Min active sync write I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, INT, ZMOD_RW,
|
|
"Max active trim/discard I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, INT, ZMOD_RW,
|
|
"Min active trim/discard I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, INT, ZMOD_RW,
|
|
"Max active rebuild I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, INT, ZMOD_RW,
|
|
"Min active rebuild I/Os per vdev");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_credit, INT, ZMOD_RW,
|
|
"Number of non-interactive I/Os to allow in sequence");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, nia_delay, INT, ZMOD_RW,
|
|
"Number of non-interactive I/Os before _max_active");
|
|
|
|
ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, queue_depth_pct, INT, ZMOD_RW,
|
|
"Queue depth percentage for each top-level vdev");
|
|
/* END CSTYLED */
|