mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-25 01:16:34 +03:00
8e739b2c9f
ZFS loves using %llu for uint64_t, but that requires a cast to not be noisy - which is even done in many, though not all, places. Also a couple places used %u for uint64_t, which were promoted to %llu. Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Rich Ercolani <rincebrain@gmail.com> Closes #12233
3402 lines
99 KiB
C
3402 lines
99 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
|
|
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
|
|
* Copyright 2014 HybridCluster. All rights reserved.
|
|
* Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
|
|
* Copyright (c) 2019, Klara Inc.
|
|
* Copyright (c) 2019, Allan Jude
|
|
*/
|
|
|
|
#include <sys/dmu.h>
|
|
#include <sys/dmu_impl.h>
|
|
#include <sys/dmu_send.h>
|
|
#include <sys/dmu_recv.h>
|
|
#include <sys/dmu_tx.h>
|
|
#include <sys/dbuf.h>
|
|
#include <sys/dnode.h>
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/dmu_objset.h>
|
|
#include <sys/dmu_traverse.h>
|
|
#include <sys/dsl_dataset.h>
|
|
#include <sys/dsl_dir.h>
|
|
#include <sys/dsl_prop.h>
|
|
#include <sys/dsl_pool.h>
|
|
#include <sys/dsl_synctask.h>
|
|
#include <sys/zfs_ioctl.h>
|
|
#include <sys/zap.h>
|
|
#include <sys/zvol.h>
|
|
#include <sys/zio_checksum.h>
|
|
#include <sys/zfs_znode.h>
|
|
#include <zfs_fletcher.h>
|
|
#include <sys/avl.h>
|
|
#include <sys/ddt.h>
|
|
#include <sys/zfs_onexit.h>
|
|
#include <sys/dsl_destroy.h>
|
|
#include <sys/blkptr.h>
|
|
#include <sys/dsl_bookmark.h>
|
|
#include <sys/zfeature.h>
|
|
#include <sys/bqueue.h>
|
|
#include <sys/objlist.h>
|
|
#ifdef _KERNEL
|
|
#include <sys/zfs_vfsops.h>
|
|
#endif
|
|
#include <sys/zfs_file.h>
|
|
|
|
int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
|
|
int zfs_recv_queue_ff = 20;
|
|
int zfs_recv_write_batch_size = 1024 * 1024;
|
|
|
|
static char *dmu_recv_tag = "dmu_recv_tag";
|
|
const char *recv_clone_name = "%recv";
|
|
|
|
static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
|
|
void *buf);
|
|
|
|
struct receive_record_arg {
|
|
dmu_replay_record_t header;
|
|
void *payload; /* Pointer to a buffer containing the payload */
|
|
/*
|
|
* If the record is a WRITE or SPILL, pointer to the abd containing the
|
|
* payload.
|
|
*/
|
|
abd_t *abd;
|
|
int payload_size;
|
|
uint64_t bytes_read; /* bytes read from stream when record created */
|
|
boolean_t eos_marker; /* Marks the end of the stream */
|
|
bqueue_node_t node;
|
|
};
|
|
|
|
struct receive_writer_arg {
|
|
objset_t *os;
|
|
boolean_t byteswap;
|
|
bqueue_t q;
|
|
|
|
/*
|
|
* These three members are used to signal to the main thread when
|
|
* we're done.
|
|
*/
|
|
kmutex_t mutex;
|
|
kcondvar_t cv;
|
|
boolean_t done;
|
|
|
|
int err;
|
|
boolean_t resumable;
|
|
boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */
|
|
boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
|
|
boolean_t full; /* this is a full send stream */
|
|
uint64_t last_object;
|
|
uint64_t last_offset;
|
|
uint64_t max_object; /* highest object ID referenced in stream */
|
|
uint64_t bytes_read; /* bytes read when current record created */
|
|
|
|
list_t write_batch;
|
|
|
|
/* Encryption parameters for the last received DRR_OBJECT_RANGE */
|
|
boolean_t or_crypt_params_present;
|
|
uint64_t or_firstobj;
|
|
uint64_t or_numslots;
|
|
uint8_t or_salt[ZIO_DATA_SALT_LEN];
|
|
uint8_t or_iv[ZIO_DATA_IV_LEN];
|
|
uint8_t or_mac[ZIO_DATA_MAC_LEN];
|
|
boolean_t or_byteorder;
|
|
};
|
|
|
|
typedef struct dmu_recv_begin_arg {
|
|
const char *drba_origin;
|
|
dmu_recv_cookie_t *drba_cookie;
|
|
cred_t *drba_cred;
|
|
proc_t *drba_proc;
|
|
dsl_crypto_params_t *drba_dcp;
|
|
} dmu_recv_begin_arg_t;
|
|
|
|
static void
|
|
byteswap_record(dmu_replay_record_t *drr)
|
|
{
|
|
#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
|
|
#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
|
|
drr->drr_type = BSWAP_32(drr->drr_type);
|
|
drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
|
|
|
|
switch (drr->drr_type) {
|
|
case DRR_BEGIN:
|
|
DO64(drr_begin.drr_magic);
|
|
DO64(drr_begin.drr_versioninfo);
|
|
DO64(drr_begin.drr_creation_time);
|
|
DO32(drr_begin.drr_type);
|
|
DO32(drr_begin.drr_flags);
|
|
DO64(drr_begin.drr_toguid);
|
|
DO64(drr_begin.drr_fromguid);
|
|
break;
|
|
case DRR_OBJECT:
|
|
DO64(drr_object.drr_object);
|
|
DO32(drr_object.drr_type);
|
|
DO32(drr_object.drr_bonustype);
|
|
DO32(drr_object.drr_blksz);
|
|
DO32(drr_object.drr_bonuslen);
|
|
DO32(drr_object.drr_raw_bonuslen);
|
|
DO64(drr_object.drr_toguid);
|
|
DO64(drr_object.drr_maxblkid);
|
|
break;
|
|
case DRR_FREEOBJECTS:
|
|
DO64(drr_freeobjects.drr_firstobj);
|
|
DO64(drr_freeobjects.drr_numobjs);
|
|
DO64(drr_freeobjects.drr_toguid);
|
|
break;
|
|
case DRR_WRITE:
|
|
DO64(drr_write.drr_object);
|
|
DO32(drr_write.drr_type);
|
|
DO64(drr_write.drr_offset);
|
|
DO64(drr_write.drr_logical_size);
|
|
DO64(drr_write.drr_toguid);
|
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
|
|
DO64(drr_write.drr_key.ddk_prop);
|
|
DO64(drr_write.drr_compressed_size);
|
|
break;
|
|
case DRR_WRITE_EMBEDDED:
|
|
DO64(drr_write_embedded.drr_object);
|
|
DO64(drr_write_embedded.drr_offset);
|
|
DO64(drr_write_embedded.drr_length);
|
|
DO64(drr_write_embedded.drr_toguid);
|
|
DO32(drr_write_embedded.drr_lsize);
|
|
DO32(drr_write_embedded.drr_psize);
|
|
break;
|
|
case DRR_FREE:
|
|
DO64(drr_free.drr_object);
|
|
DO64(drr_free.drr_offset);
|
|
DO64(drr_free.drr_length);
|
|
DO64(drr_free.drr_toguid);
|
|
break;
|
|
case DRR_SPILL:
|
|
DO64(drr_spill.drr_object);
|
|
DO64(drr_spill.drr_length);
|
|
DO64(drr_spill.drr_toguid);
|
|
DO64(drr_spill.drr_compressed_size);
|
|
DO32(drr_spill.drr_type);
|
|
break;
|
|
case DRR_OBJECT_RANGE:
|
|
DO64(drr_object_range.drr_firstobj);
|
|
DO64(drr_object_range.drr_numslots);
|
|
DO64(drr_object_range.drr_toguid);
|
|
break;
|
|
case DRR_REDACT:
|
|
DO64(drr_redact.drr_object);
|
|
DO64(drr_redact.drr_offset);
|
|
DO64(drr_redact.drr_length);
|
|
DO64(drr_redact.drr_toguid);
|
|
break;
|
|
case DRR_END:
|
|
DO64(drr_end.drr_toguid);
|
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (drr->drr_type != DRR_BEGIN) {
|
|
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
|
|
}
|
|
|
|
#undef DO64
|
|
#undef DO32
|
|
}
|
|
|
|
static boolean_t
|
|
redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
|
|
{
|
|
for (int i = 0; i < num_snaps; i++) {
|
|
if (snaps[i] == guid)
|
|
return (B_TRUE);
|
|
}
|
|
return (B_FALSE);
|
|
}
|
|
|
|
/*
|
|
* Check that the new stream we're trying to receive is redacted with respect to
|
|
* a subset of the snapshots that the origin was redacted with respect to. For
|
|
* the reasons behind this, see the man page on redacted zfs sends and receives.
|
|
*/
|
|
static boolean_t
|
|
compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
|
|
uint64_t *redact_snaps, uint64_t num_redact_snaps)
|
|
{
|
|
/*
|
|
* Short circuit the comparison; if we are redacted with respect to
|
|
* more snapshots than the origin, we can't be redacted with respect
|
|
* to a subset.
|
|
*/
|
|
if (num_redact_snaps > origin_num_snaps) {
|
|
return (B_FALSE);
|
|
}
|
|
|
|
for (int i = 0; i < num_redact_snaps; i++) {
|
|
if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
|
|
redact_snaps[i])) {
|
|
return (B_FALSE);
|
|
}
|
|
}
|
|
return (B_TRUE);
|
|
}
|
|
|
|
static boolean_t
|
|
redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
|
|
{
|
|
uint64_t *origin_snaps;
|
|
uint64_t origin_num_snaps;
|
|
dmu_recv_cookie_t *drc = drba->drba_cookie;
|
|
struct drr_begin *drrb = drc->drc_drrb;
|
|
int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
|
|
int err = 0;
|
|
boolean_t ret = B_TRUE;
|
|
uint64_t *redact_snaps;
|
|
uint_t numredactsnaps;
|
|
|
|
/*
|
|
* If this is a full send stream, we're safe no matter what.
|
|
*/
|
|
if (drrb->drr_fromguid == 0)
|
|
return (ret);
|
|
|
|
VERIFY(dsl_dataset_get_uint64_array_feature(origin,
|
|
SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
|
|
|
|
if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
|
|
BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
|
|
0) {
|
|
/*
|
|
* If the send stream was sent from the redaction bookmark or
|
|
* the redacted version of the dataset, then we're safe. Verify
|
|
* that this is from the a compatible redaction bookmark or
|
|
* redacted dataset.
|
|
*/
|
|
if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
|
|
redact_snaps, numredactsnaps)) {
|
|
err = EINVAL;
|
|
}
|
|
} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
|
|
/*
|
|
* If the stream is redacted, it must be redacted with respect
|
|
* to a subset of what the origin is redacted with respect to.
|
|
* See case number 2 in the zfs man page section on redacted zfs
|
|
* send.
|
|
*/
|
|
err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
|
|
BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
|
|
|
|
if (err != 0 || !compatible_redact_snaps(origin_snaps,
|
|
origin_num_snaps, redact_snaps, numredactsnaps)) {
|
|
err = EINVAL;
|
|
}
|
|
} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
|
|
drrb->drr_toguid)) {
|
|
/*
|
|
* If the stream isn't redacted but the origin is, this must be
|
|
* one of the snapshots the origin is redacted with respect to.
|
|
* See case number 1 in the zfs man page section on redacted zfs
|
|
* send.
|
|
*/
|
|
err = EINVAL;
|
|
}
|
|
|
|
if (err != 0)
|
|
ret = B_FALSE;
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* If we previously received a stream with --large-block, we don't support
|
|
* receiving an incremental on top of it without --large-block. This avoids
|
|
* forcing a read-modify-write or trying to re-aggregate a string of WRITE
|
|
* records.
|
|
*/
|
|
static int
|
|
recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
|
|
{
|
|
if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
|
|
!(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
|
|
return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
|
|
uint64_t fromguid, uint64_t featureflags)
|
|
{
|
|
uint64_t val;
|
|
uint64_t children;
|
|
int error;
|
|
dsl_pool_t *dp = ds->ds_dir->dd_pool;
|
|
boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
|
|
boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
|
|
boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
|
|
|
|
/* Temporary clone name must not exist. */
|
|
error = zap_lookup(dp->dp_meta_objset,
|
|
dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
|
|
8, 1, &val);
|
|
if (error != ENOENT)
|
|
return (error == 0 ? SET_ERROR(EBUSY) : error);
|
|
|
|
/* Resume state must not be set. */
|
|
if (dsl_dataset_has_resume_receive_state(ds))
|
|
return (SET_ERROR(EBUSY));
|
|
|
|
/* New snapshot name must not exist. */
|
|
error = zap_lookup(dp->dp_meta_objset,
|
|
dsl_dataset_phys(ds)->ds_snapnames_zapobj,
|
|
drba->drba_cookie->drc_tosnap, 8, 1, &val);
|
|
if (error != ENOENT)
|
|
return (error == 0 ? SET_ERROR(EEXIST) : error);
|
|
|
|
/* Must not have children if receiving a ZVOL. */
|
|
error = zap_count(dp->dp_meta_objset,
|
|
dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
|
|
if (error != 0)
|
|
return (error);
|
|
if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
|
|
children > 0)
|
|
return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
|
|
|
|
/*
|
|
* Check snapshot limit before receiving. We'll recheck again at the
|
|
* end, but might as well abort before receiving if we're already over
|
|
* the limit.
|
|
*
|
|
* Note that we do not check the file system limit with
|
|
* dsl_dir_fscount_check because the temporary %clones don't count
|
|
* against that limit.
|
|
*/
|
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
|
|
NULL, drba->drba_cred, drba->drba_proc);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (fromguid != 0) {
|
|
dsl_dataset_t *snap;
|
|
uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
|
|
|
|
/* Can't perform a raw receive on top of a non-raw receive */
|
|
if (!encrypted && raw)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Encryption is incompatible with embedded data */
|
|
if (encrypted && embed)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Find snapshot in this dir that matches fromguid. */
|
|
while (obj != 0) {
|
|
error = dsl_dataset_hold_obj(dp, obj, FTAG,
|
|
&snap);
|
|
if (error != 0)
|
|
return (SET_ERROR(ENODEV));
|
|
if (snap->ds_dir != ds->ds_dir) {
|
|
dsl_dataset_rele(snap, FTAG);
|
|
return (SET_ERROR(ENODEV));
|
|
}
|
|
if (dsl_dataset_phys(snap)->ds_guid == fromguid)
|
|
break;
|
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
|
dsl_dataset_rele(snap, FTAG);
|
|
}
|
|
if (obj == 0)
|
|
return (SET_ERROR(ENODEV));
|
|
|
|
if (drba->drba_cookie->drc_force) {
|
|
drba->drba_cookie->drc_fromsnapobj = obj;
|
|
} else {
|
|
/*
|
|
* If we are not forcing, there must be no
|
|
* changes since fromsnap. Raw sends have an
|
|
* additional constraint that requires that
|
|
* no "noop" snapshots exist between fromsnap
|
|
* and tosnap for the IVset checking code to
|
|
* work properly.
|
|
*/
|
|
if (dsl_dataset_modified_since_snap(ds, snap) ||
|
|
(raw &&
|
|
dsl_dataset_phys(ds)->ds_prev_snap_obj !=
|
|
snap->ds_object)) {
|
|
dsl_dataset_rele(snap, FTAG);
|
|
return (SET_ERROR(ETXTBSY));
|
|
}
|
|
drba->drba_cookie->drc_fromsnapobj =
|
|
ds->ds_prev->ds_object;
|
|
}
|
|
|
|
if (dsl_dataset_feature_is_active(snap,
|
|
SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
|
|
snap)) {
|
|
dsl_dataset_rele(snap, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
error = recv_check_large_blocks(snap, featureflags);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(snap, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
dsl_dataset_rele(snap, FTAG);
|
|
} else {
|
|
/* if full, then must be forced */
|
|
if (!drba->drba_cookie->drc_force)
|
|
return (SET_ERROR(EEXIST));
|
|
|
|
/*
|
|
* We don't support using zfs recv -F to blow away
|
|
* encrypted filesystems. This would require the
|
|
* dsl dir to point to the old encryption key and
|
|
* the new one at the same time during the receive.
|
|
*/
|
|
if ((!encrypted && raw) || encrypted)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* Perform the same encryption checks we would if
|
|
* we were creating a new dataset from scratch.
|
|
*/
|
|
if (!raw) {
|
|
boolean_t will_encrypt;
|
|
|
|
error = dmu_objset_create_crypt_check(
|
|
ds->ds_dir->dd_parent, drba->drba_dcp,
|
|
&will_encrypt);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if (will_encrypt && embed)
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check that any feature flags used in the data stream we're receiving are
|
|
* supported by the pool we are receiving into.
|
|
*
|
|
* Note that some of the features we explicitly check here have additional
|
|
* (implicit) features they depend on, but those dependencies are enforced
|
|
* through the zfeature_register() calls declaring the features that we
|
|
* explicitly check.
|
|
*/
|
|
static int
|
|
recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
|
|
{
|
|
/*
|
|
* Check if there are any unsupported feature flags.
|
|
*/
|
|
if (!DMU_STREAM_SUPPORTED(featureflags)) {
|
|
return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
|
|
}
|
|
|
|
/* Verify pool version supports SA if SA_SPILL feature set */
|
|
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
|
|
spa_version(spa) < SPA_VERSION_SA)
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
|
|
* and large_dnodes in the stream can only be used if those pool
|
|
* features are enabled because we don't attempt to decompress /
|
|
* un-embed / un-mooch / split up the blocks / dnodes during the
|
|
* receive process.
|
|
*/
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
|
|
!spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
|
|
return (SET_ERROR(ENOTSUP));
|
|
if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
|
|
!spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
|
|
return (SET_ERROR(ENOTSUP));
|
|
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
|
|
!spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
|
|
return (SET_ERROR(ENOTSUP));
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
|
|
!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
|
|
return (SET_ERROR(ENOTSUP));
|
|
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
|
|
!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/*
|
|
* Receiving redacted streams requires that redacted datasets are
|
|
* enabled.
|
|
*/
|
|
if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
|
|
!spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
|
|
uint64_t fromguid = drrb->drr_fromguid;
|
|
int flags = drrb->drr_flags;
|
|
ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
|
|
int error;
|
|
uint64_t featureflags = drba->drba_cookie->drc_featureflags;
|
|
dsl_dataset_t *ds;
|
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
|
|
|
/* already checked */
|
|
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
|
|
ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
|
|
|
|
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
|
|
DMU_COMPOUNDSTREAM ||
|
|
drrb->drr_type >= DMU_OST_NUMTYPES ||
|
|
((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* Resumable receives require extensible datasets */
|
|
if (drba->drba_cookie->drc_resumable &&
|
|
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
/* raw receives require the encryption feature */
|
|
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
|
|
return (SET_ERROR(ENOTSUP));
|
|
|
|
/* embedded data is incompatible with encryption and raw recv */
|
|
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* raw receives require spill block allocation flag */
|
|
if (!(flags & DRR_FLAG_SPILL_BLOCK))
|
|
return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
|
|
} else {
|
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
|
}
|
|
|
|
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
|
|
if (error == 0) {
|
|
/* target fs already exists; recv into temp clone */
|
|
|
|
/* Can't recv a clone into an existing fs */
|
|
if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
error = recv_begin_check_existing_impl(drba, ds, fromguid,
|
|
featureflags);
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
} else if (error == ENOENT) {
|
|
/* target fs does not exist; must be a full backup or clone */
|
|
char buf[ZFS_MAX_DATASET_NAME_LEN];
|
|
objset_t *os;
|
|
|
|
/*
|
|
* If it's a non-clone incremental, we are missing the
|
|
* target fs, so fail the recv.
|
|
*/
|
|
if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
|
|
drba->drba_origin))
|
|
return (SET_ERROR(ENOENT));
|
|
|
|
/*
|
|
* If we're receiving a full send as a clone, and it doesn't
|
|
* contain all the necessary free records and freeobject
|
|
* records, reject it.
|
|
*/
|
|
if (fromguid == 0 && drba->drba_origin != NULL &&
|
|
!(flags & DRR_FLAG_FREERECORDS))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* Open the parent of tofs */
|
|
ASSERT3U(strlen(tofs), <, sizeof (buf));
|
|
(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
|
|
error = dsl_dataset_hold(dp, buf, FTAG, &ds);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
|
|
drba->drba_origin == NULL) {
|
|
boolean_t will_encrypt;
|
|
|
|
/*
|
|
* Check that we aren't breaking any encryption rules
|
|
* and that we have all the parameters we need to
|
|
* create an encrypted dataset if necessary. If we are
|
|
* making an encrypted dataset the stream can't have
|
|
* embedded data.
|
|
*/
|
|
error = dmu_objset_create_crypt_check(ds->ds_dir,
|
|
drba->drba_dcp, &will_encrypt);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
if (will_encrypt &&
|
|
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check filesystem and snapshot limits before receiving. We'll
|
|
* recheck snapshot limits again at the end (we create the
|
|
* filesystems and increment those counts during begin_sync).
|
|
*/
|
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
|
|
ZFS_PROP_FILESYSTEM_LIMIT, NULL,
|
|
drba->drba_cred, drba->drba_proc);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
|
|
ZFS_PROP_SNAPSHOT_LIMIT, NULL,
|
|
drba->drba_cred, drba->drba_proc);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
/* can't recv below anything but filesystems (eg. no ZVOLs) */
|
|
error = dmu_objset_from_ds(ds, &os);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (error);
|
|
}
|
|
if (dmu_objset_type(os) != DMU_OST_ZFS) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
|
|
}
|
|
|
|
if (drba->drba_origin != NULL) {
|
|
dsl_dataset_t *origin;
|
|
error = dsl_dataset_hold_flags(dp, drba->drba_origin,
|
|
dsflags, FTAG, &origin);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (error);
|
|
}
|
|
if (!origin->ds_is_snapshot) {
|
|
dsl_dataset_rele_flags(origin, dsflags, FTAG);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
|
|
fromguid != 0) {
|
|
dsl_dataset_rele_flags(origin, dsflags, FTAG);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(ENODEV));
|
|
}
|
|
|
|
if (origin->ds_dir->dd_crypto_obj != 0 &&
|
|
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
|
|
dsl_dataset_rele_flags(origin, dsflags, FTAG);
|
|
dsl_dataset_rele(ds, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* If the origin is redacted we need to verify that this
|
|
* send stream can safely be received on top of the
|
|
* origin.
|
|
*/
|
|
if (dsl_dataset_feature_is_active(origin,
|
|
SPA_FEATURE_REDACTED_DATASETS)) {
|
|
if (!redact_check(drba, origin)) {
|
|
dsl_dataset_rele_flags(origin, dsflags,
|
|
FTAG);
|
|
dsl_dataset_rele_flags(ds, dsflags,
|
|
FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
error = recv_check_large_blocks(ds, featureflags);
|
|
if (error != 0) {
|
|
dsl_dataset_rele_flags(origin, dsflags, FTAG);
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
dsl_dataset_rele_flags(origin, dsflags, FTAG);
|
|
}
|
|
|
|
dsl_dataset_rele(ds, FTAG);
|
|
error = 0;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
objset_t *mos = dp->dp_meta_objset;
|
|
dmu_recv_cookie_t *drc = drba->drba_cookie;
|
|
struct drr_begin *drrb = drc->drc_drrb;
|
|
const char *tofs = drc->drc_tofs;
|
|
uint64_t featureflags = drc->drc_featureflags;
|
|
dsl_dataset_t *ds, *newds;
|
|
objset_t *os;
|
|
uint64_t dsobj;
|
|
ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
|
|
int error;
|
|
uint64_t crflags = 0;
|
|
dsl_crypto_params_t dummy_dcp = { 0 };
|
|
dsl_crypto_params_t *dcp = drba->drba_dcp;
|
|
|
|
if (drrb->drr_flags & DRR_FLAG_CI_DATA)
|
|
crflags |= DS_FLAG_CI_DATASET;
|
|
|
|
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
|
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
|
|
|
/*
|
|
* Raw, non-incremental recvs always use a dummy dcp with
|
|
* the raw cmd set. Raw incremental recvs do not use a dcp
|
|
* since the encryption parameters are already set in stone.
|
|
*/
|
|
if (dcp == NULL && drrb->drr_fromguid == 0 &&
|
|
drba->drba_origin == NULL) {
|
|
ASSERT3P(dcp, ==, NULL);
|
|
dcp = &dummy_dcp;
|
|
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW)
|
|
dcp->cp_cmd = DCP_CMD_RAW_RECV;
|
|
}
|
|
|
|
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
|
|
if (error == 0) {
|
|
/* create temporary clone */
|
|
dsl_dataset_t *snap = NULL;
|
|
|
|
if (drba->drba_cookie->drc_fromsnapobj != 0) {
|
|
VERIFY0(dsl_dataset_hold_obj(dp,
|
|
drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
|
|
ASSERT3P(dcp, ==, NULL);
|
|
}
|
|
dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
|
|
snap, crflags, drba->drba_cred, dcp, tx);
|
|
if (drba->drba_cookie->drc_fromsnapobj != 0)
|
|
dsl_dataset_rele(snap, FTAG);
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
} else {
|
|
dsl_dir_t *dd;
|
|
const char *tail;
|
|
dsl_dataset_t *origin = NULL;
|
|
|
|
VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
|
|
|
|
if (drba->drba_origin != NULL) {
|
|
VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
|
|
FTAG, &origin));
|
|
ASSERT3P(dcp, ==, NULL);
|
|
}
|
|
|
|
/* Create new dataset. */
|
|
dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
|
|
origin, crflags, drba->drba_cred, dcp, tx);
|
|
if (origin != NULL)
|
|
dsl_dataset_rele(origin, FTAG);
|
|
dsl_dir_rele(dd, FTAG);
|
|
drc->drc_newfs = B_TRUE;
|
|
}
|
|
VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
|
|
&newds));
|
|
if (dsl_dataset_feature_is_active(newds,
|
|
SPA_FEATURE_REDACTED_DATASETS)) {
|
|
/*
|
|
* If the origin dataset is redacted, the child will be redacted
|
|
* when we create it. We clear the new dataset's
|
|
* redaction info; if it should be redacted, we'll fill
|
|
* in its information later.
|
|
*/
|
|
dsl_dataset_deactivate_feature(newds,
|
|
SPA_FEATURE_REDACTED_DATASETS, tx);
|
|
}
|
|
VERIFY0(dmu_objset_from_ds(newds, &os));
|
|
|
|
if (drc->drc_resumable) {
|
|
dsl_dataset_zapify(newds, tx);
|
|
if (drrb->drr_fromguid != 0) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
|
|
8, 1, &drrb->drr_fromguid, tx));
|
|
}
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
|
|
8, 1, &drrb->drr_toguid, tx));
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
|
|
1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
|
|
uint64_t one = 1;
|
|
uint64_t zero = 0;
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
|
|
8, 1, &one, tx));
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
|
|
8, 1, &zero, tx));
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
|
|
8, 1, &zero, tx));
|
|
if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
|
|
8, 1, &one, tx));
|
|
}
|
|
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
|
|
8, 1, &one, tx));
|
|
}
|
|
if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
|
|
8, 1, &one, tx));
|
|
}
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
|
|
8, 1, &one, tx));
|
|
}
|
|
|
|
uint64_t *redact_snaps;
|
|
uint_t numredactsnaps;
|
|
if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
|
|
BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
|
|
&numredactsnaps) == 0) {
|
|
VERIFY0(zap_add(mos, dsobj,
|
|
DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
|
|
sizeof (*redact_snaps), numredactsnaps,
|
|
redact_snaps, tx));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Usually the os->os_encrypted value is tied to the presence of a
|
|
* DSL Crypto Key object in the dd. However, that will not be received
|
|
* until dmu_recv_stream(), so we set the value manually for now.
|
|
*/
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
os->os_encrypted = B_TRUE;
|
|
drba->drba_cookie->drc_raw = B_TRUE;
|
|
}
|
|
|
|
if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
|
|
uint64_t *redact_snaps;
|
|
uint_t numredactsnaps;
|
|
VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
|
|
BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
|
|
dsl_dataset_activate_redaction(newds, redact_snaps,
|
|
numredactsnaps, tx);
|
|
}
|
|
|
|
dmu_buf_will_dirty(newds->ds_dbuf, tx);
|
|
dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
|
|
|
|
/*
|
|
* If we actually created a non-clone, we need to create the objset
|
|
* in our new dataset. If this is a raw send we postpone this until
|
|
* dmu_recv_stream() so that we can allocate the metadnode with the
|
|
* properties from the DRR_BEGIN payload.
|
|
*/
|
|
rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
|
|
if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
|
|
(featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
|
|
(void) dmu_objset_create_impl(dp->dp_spa,
|
|
newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
|
|
}
|
|
rrw_exit(&newds->ds_bp_rwlock, FTAG);
|
|
|
|
drba->drba_cookie->drc_ds = newds;
|
|
drba->drba_cookie->drc_os = os;
|
|
|
|
spa_history_log_internal_ds(newds, "receive", tx, " ");
|
|
}
|
|
|
|
static int
|
|
dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dmu_recv_cookie_t *drc = drba->drba_cookie;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
struct drr_begin *drrb = drc->drc_drrb;
|
|
int error;
|
|
ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
|
|
dsl_dataset_t *ds;
|
|
const char *tofs = drc->drc_tofs;
|
|
|
|
/* already checked */
|
|
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
|
|
ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
|
|
|
|
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
|
|
DMU_COMPOUNDSTREAM ||
|
|
drrb->drr_type >= DMU_OST_NUMTYPES)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* This is mostly a sanity check since we should have already done these
|
|
* checks during a previous attempt to receive the data.
|
|
*/
|
|
error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
|
|
dp->dp_spa);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/* 6 extra bytes for /%recv */
|
|
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
|
|
|
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
|
|
tofs, recv_clone_name);
|
|
|
|
if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
/* raw receives require spill block allocation flag */
|
|
if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
|
|
return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
|
|
} else {
|
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
|
}
|
|
|
|
if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
|
|
/* %recv does not exist; continue in tofs */
|
|
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
|
|
/* check that ds is marked inconsistent */
|
|
if (!DS_IS_INCONSISTENT(ds)) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/* check that there is resuming data, and that the toguid matches */
|
|
if (!dsl_dataset_is_zapified(ds)) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
uint64_t val;
|
|
error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
|
|
if (error != 0 || drrb->drr_toguid != val) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Check if the receive is still running. If so, it will be owned.
|
|
* Note that nothing else can own the dataset (e.g. after the receive
|
|
* fails) because it will be marked inconsistent.
|
|
*/
|
|
if (dsl_dataset_has_owner(ds)) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EBUSY));
|
|
}
|
|
|
|
/* There should not be any snapshots of this fs yet. */
|
|
if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Note: resume point will be checked when we process the first WRITE
|
|
* record.
|
|
*/
|
|
|
|
/* check that the origin matches */
|
|
val = 0;
|
|
(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
|
|
if (drrb->drr_fromguid != val) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
|
|
drc->drc_fromsnapobj = ds->ds_prev->ds_object;
|
|
|
|
/*
|
|
* If we're resuming, and the send is redacted, then the original send
|
|
* must have been redacted, and must have been redacted with respect to
|
|
* the same snapshots.
|
|
*/
|
|
if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
|
|
uint64_t num_ds_redact_snaps;
|
|
uint64_t *ds_redact_snaps;
|
|
|
|
uint_t num_stream_redact_snaps;
|
|
uint64_t *stream_redact_snaps;
|
|
|
|
if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
|
|
BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
|
|
&num_stream_redact_snaps) != 0) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (!dsl_dataset_get_uint64_array_feature(ds,
|
|
SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
|
|
&ds_redact_snaps)) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
for (int i = 0; i < num_ds_redact_snaps; i++) {
|
|
if (!redact_snaps_contains(ds_redact_snaps,
|
|
num_ds_redact_snaps, stream_redact_snaps[i])) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
}
|
|
|
|
error = recv_check_large_blocks(ds, drc->drc_featureflags);
|
|
if (error != 0) {
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (error);
|
|
}
|
|
|
|
dsl_dataset_rele_flags(ds, dsflags, FTAG);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_begin_arg_t *drba = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
const char *tofs = drba->drba_cookie->drc_tofs;
|
|
uint64_t featureflags = drba->drba_cookie->drc_featureflags;
|
|
dsl_dataset_t *ds;
|
|
ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
|
|
/* 6 extra bytes for /%recv */
|
|
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
|
|
|
|
(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
|
|
recv_clone_name);
|
|
|
|
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
drba->drba_cookie->drc_raw = B_TRUE;
|
|
} else {
|
|
dsflags |= DS_HOLD_FLAG_DECRYPT;
|
|
}
|
|
|
|
if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
|
|
!= 0) {
|
|
/* %recv does not exist; continue in tofs */
|
|
VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
|
|
&ds));
|
|
drba->drba_cookie->drc_newfs = B_TRUE;
|
|
}
|
|
|
|
ASSERT(DS_IS_INCONSISTENT(ds));
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
|
ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
|
|
drba->drba_cookie->drc_raw);
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
|
|
drba->drba_cookie->drc_ds = ds;
|
|
VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
|
|
drba->drba_cookie->drc_should_save = B_TRUE;
|
|
|
|
spa_history_log_internal_ds(ds, "resume receive", tx, " ");
|
|
}
|
|
|
|
/*
|
|
* NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
|
|
* succeeds; otherwise we will leak the holds on the datasets.
|
|
*/
|
|
int
|
|
dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
|
|
boolean_t force, boolean_t resumable, nvlist_t *localprops,
|
|
nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
|
|
zfs_file_t *fp, offset_t *voffp)
|
|
{
|
|
dmu_recv_begin_arg_t drba = { 0 };
|
|
int err;
|
|
|
|
bzero(drc, sizeof (dmu_recv_cookie_t));
|
|
drc->drc_drr_begin = drr_begin;
|
|
drc->drc_drrb = &drr_begin->drr_u.drr_begin;
|
|
drc->drc_tosnap = tosnap;
|
|
drc->drc_tofs = tofs;
|
|
drc->drc_force = force;
|
|
drc->drc_resumable = resumable;
|
|
drc->drc_cred = CRED();
|
|
drc->drc_proc = curproc;
|
|
drc->drc_clone = (origin != NULL);
|
|
|
|
if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
|
|
drc->drc_byteswap = B_TRUE;
|
|
(void) fletcher_4_incremental_byteswap(drr_begin,
|
|
sizeof (dmu_replay_record_t), &drc->drc_cksum);
|
|
byteswap_record(drr_begin);
|
|
} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
|
|
(void) fletcher_4_incremental_native(drr_begin,
|
|
sizeof (dmu_replay_record_t), &drc->drc_cksum);
|
|
} else {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
drc->drc_fp = fp;
|
|
drc->drc_voff = *voffp;
|
|
drc->drc_featureflags =
|
|
DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
|
|
|
|
uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
|
|
void *payload = NULL;
|
|
if (payloadlen != 0)
|
|
payload = kmem_alloc(payloadlen, KM_SLEEP);
|
|
|
|
err = receive_read_payload_and_next_header(drc, payloadlen,
|
|
payload);
|
|
if (err != 0) {
|
|
kmem_free(payload, payloadlen);
|
|
return (err);
|
|
}
|
|
if (payloadlen != 0) {
|
|
err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
|
|
KM_SLEEP);
|
|
kmem_free(payload, payloadlen);
|
|
if (err != 0) {
|
|
kmem_free(drc->drc_next_rrd,
|
|
sizeof (*drc->drc_next_rrd));
|
|
return (err);
|
|
}
|
|
}
|
|
|
|
if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
|
|
drc->drc_spill = B_TRUE;
|
|
|
|
drba.drba_origin = origin;
|
|
drba.drba_cookie = drc;
|
|
drba.drba_cred = CRED();
|
|
drba.drba_proc = curproc;
|
|
|
|
if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
|
|
err = dsl_sync_task(tofs,
|
|
dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
|
|
&drba, 5, ZFS_SPACE_CHECK_NORMAL);
|
|
} else {
|
|
|
|
/*
|
|
* For non-raw, non-incremental, non-resuming receives the
|
|
* user can specify encryption parameters on the command line
|
|
* with "zfs recv -o". For these receives we create a dcp and
|
|
* pass it to the sync task. Creating the dcp will implicitly
|
|
* remove the encryption params from the localprops nvlist,
|
|
* which avoids errors when trying to set these normally
|
|
* read-only properties. Any other kind of receive that
|
|
* attempts to set these properties will fail as a result.
|
|
*/
|
|
if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
|
|
DMU_BACKUP_FEATURE_RAW) == 0 &&
|
|
origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
|
|
err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
|
|
localprops, hidden_args, &drba.drba_dcp);
|
|
}
|
|
|
|
if (err == 0) {
|
|
err = dsl_sync_task(tofs,
|
|
dmu_recv_begin_check, dmu_recv_begin_sync,
|
|
&drba, 5, ZFS_SPACE_CHECK_NORMAL);
|
|
dsl_crypto_params_free(drba.drba_dcp, !!err);
|
|
}
|
|
}
|
|
|
|
if (err != 0) {
|
|
kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
|
|
nvlist_free(drc->drc_begin_nvl);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
|
|
{
|
|
int done = 0;
|
|
|
|
/*
|
|
* The code doesn't rely on this (lengths being multiples of 8). See
|
|
* comment in dump_bytes.
|
|
*/
|
|
ASSERT(len % 8 == 0 ||
|
|
(drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
|
|
|
|
while (done < len) {
|
|
ssize_t resid;
|
|
zfs_file_t *fp = drc->drc_fp;
|
|
int err = zfs_file_read(fp, (char *)buf + done,
|
|
len - done, &resid);
|
|
if (resid == len - done) {
|
|
/*
|
|
* Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
|
|
* that the receive was interrupted and can
|
|
* potentially be resumed.
|
|
*/
|
|
err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
|
|
}
|
|
drc->drc_voff += len - done - resid;
|
|
done = len - resid;
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
|
|
drc->drc_bytes_read += len;
|
|
|
|
ASSERT3U(done, ==, len);
|
|
return (0);
|
|
}
|
|
|
|
static inline uint8_t
|
|
deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
|
|
{
|
|
if (bonus_type == DMU_OT_SA) {
|
|
return (1);
|
|
} else {
|
|
return (1 +
|
|
((DN_OLD_MAX_BONUSLEN -
|
|
MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
|
|
}
|
|
}
|
|
|
|
static void
|
|
save_resume_state(struct receive_writer_arg *rwa,
|
|
uint64_t object, uint64_t offset, dmu_tx_t *tx)
|
|
{
|
|
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
|
|
|
|
if (!rwa->resumable)
|
|
return;
|
|
|
|
/*
|
|
* We use ds_resume_bytes[] != 0 to indicate that we need to
|
|
* update this on disk, so it must not be 0.
|
|
*/
|
|
ASSERT(rwa->bytes_read != 0);
|
|
|
|
/*
|
|
* We only resume from write records, which have a valid
|
|
* (non-meta-dnode) object number.
|
|
*/
|
|
ASSERT(object != 0);
|
|
|
|
/*
|
|
* For resuming to work correctly, we must receive records in order,
|
|
* sorted by object,offset. This is checked by the callers, but
|
|
* assert it here for good measure.
|
|
*/
|
|
ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
|
|
ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
|
|
offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
|
|
ASSERT3U(rwa->bytes_read, >=,
|
|
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
|
|
|
|
rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
|
|
rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
|
|
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
|
|
}
|
|
|
|
static int
|
|
receive_object_is_same_generation(objset_t *os, uint64_t object,
|
|
dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
|
|
const void *new_bonus, boolean_t *samegenp)
|
|
{
|
|
zfs_file_info_t zoi;
|
|
int err;
|
|
|
|
dmu_buf_t *old_bonus_dbuf;
|
|
err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
|
|
if (err != 0)
|
|
return (err);
|
|
err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
|
|
&zoi);
|
|
dmu_buf_rele(old_bonus_dbuf, FTAG);
|
|
if (err != 0)
|
|
return (err);
|
|
uint64_t old_gen = zoi.zfi_generation;
|
|
|
|
err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
|
|
if (err != 0)
|
|
return (err);
|
|
uint64_t new_gen = zoi.zfi_generation;
|
|
|
|
*samegenp = (old_gen == new_gen);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
receive_handle_existing_object(const struct receive_writer_arg *rwa,
|
|
const struct drr_object *drro, const dmu_object_info_t *doi,
|
|
const void *bonus_data,
|
|
uint64_t *object_to_hold, uint32_t *new_blksz)
|
|
{
|
|
uint32_t indblksz = drro->drr_indblkshift ?
|
|
1ULL << drro->drr_indblkshift : 0;
|
|
int nblkptr = deduce_nblkptr(drro->drr_bonustype,
|
|
drro->drr_bonuslen);
|
|
uint8_t dn_slots = drro->drr_dn_slots != 0 ?
|
|
drro->drr_dn_slots : DNODE_MIN_SLOTS;
|
|
boolean_t do_free_range = B_FALSE;
|
|
int err;
|
|
|
|
*object_to_hold = drro->drr_object;
|
|
|
|
/* nblkptr should be bounded by the bonus size and type */
|
|
if (rwa->raw && nblkptr != drro->drr_nblkptr)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* After the previous send stream, the sending system may
|
|
* have freed this object, and then happened to re-allocate
|
|
* this object number in a later txg. In this case, we are
|
|
* receiving a different logical file, and the block size may
|
|
* appear to be different. i.e. we may have a different
|
|
* block size for this object than what the send stream says.
|
|
* In this case we need to remove the object's contents,
|
|
* so that its structure can be changed and then its contents
|
|
* entirely replaced by subsequent WRITE records.
|
|
*
|
|
* If this is a -L (--large-block) incremental stream, and
|
|
* the previous stream was not -L, the block size may appear
|
|
* to increase. i.e. we may have a smaller block size for
|
|
* this object than what the send stream says. In this case
|
|
* we need to keep the object's contents and block size
|
|
* intact, so that we don't lose parts of the object's
|
|
* contents that are not changed by this incremental send
|
|
* stream.
|
|
*
|
|
* We can distinguish between the two above cases by using
|
|
* the ZPL's generation number (see
|
|
* receive_object_is_same_generation()). However, we only
|
|
* want to rely on the generation number when absolutely
|
|
* necessary, because with raw receives, the generation is
|
|
* encrypted. We also want to minimize dependence on the
|
|
* ZPL, so that other types of datasets can also be received
|
|
* (e.g. ZVOLs, although note that ZVOLS currently do not
|
|
* reallocate their objects or change their structure).
|
|
* Therefore, we check a number of different cases where we
|
|
* know it is safe to discard the object's contents, before
|
|
* using the ZPL's generation number to make the above
|
|
* distinction.
|
|
*/
|
|
if (drro->drr_blksz != doi->doi_data_block_size) {
|
|
if (rwa->raw) {
|
|
/*
|
|
* RAW streams always have large blocks, so
|
|
* we are sure that the data is not needed
|
|
* due to changing --large-block to be on.
|
|
* Which is fortunate since the bonus buffer
|
|
* (which contains the ZPL generation) is
|
|
* encrypted, and the key might not be
|
|
* loaded.
|
|
*/
|
|
do_free_range = B_TRUE;
|
|
} else if (rwa->full) {
|
|
/*
|
|
* This is a full send stream, so it always
|
|
* replaces what we have. Even if the
|
|
* generation numbers happen to match, this
|
|
* can not actually be the same logical file.
|
|
* This is relevant when receiving a full
|
|
* send as a clone.
|
|
*/
|
|
do_free_range = B_TRUE;
|
|
} else if (drro->drr_type !=
|
|
DMU_OT_PLAIN_FILE_CONTENTS ||
|
|
doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
|
|
/*
|
|
* PLAIN_FILE_CONTENTS are the only type of
|
|
* objects that have ever been stored with
|
|
* large blocks, so we don't need the special
|
|
* logic below. ZAP blocks can shrink (when
|
|
* there's only one block), so we don't want
|
|
* to hit the error below about block size
|
|
* only increasing.
|
|
*/
|
|
do_free_range = B_TRUE;
|
|
} else if (doi->doi_max_offset <=
|
|
doi->doi_data_block_size) {
|
|
/*
|
|
* There is only one block. We can free it,
|
|
* because its contents will be replaced by a
|
|
* WRITE record. This can not be the no-L ->
|
|
* -L case, because the no-L case would have
|
|
* resulted in multiple blocks. If we
|
|
* supported -L -> no-L, it would not be safe
|
|
* to free the file's contents. Fortunately,
|
|
* that is not allowed (see
|
|
* recv_check_large_blocks()).
|
|
*/
|
|
do_free_range = B_TRUE;
|
|
} else {
|
|
boolean_t is_same_gen;
|
|
err = receive_object_is_same_generation(rwa->os,
|
|
drro->drr_object, doi->doi_bonus_type,
|
|
drro->drr_bonustype, bonus_data, &is_same_gen);
|
|
if (err != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (is_same_gen) {
|
|
/*
|
|
* This is the same logical file, and
|
|
* the block size must be increasing.
|
|
* It could only decrease if
|
|
* --large-block was changed to be
|
|
* off, which is checked in
|
|
* recv_check_large_blocks().
|
|
*/
|
|
if (drro->drr_blksz <=
|
|
doi->doi_data_block_size)
|
|
return (SET_ERROR(EINVAL));
|
|
/*
|
|
* We keep the existing blocksize and
|
|
* contents.
|
|
*/
|
|
*new_blksz =
|
|
doi->doi_data_block_size;
|
|
} else {
|
|
do_free_range = B_TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* nblkptr can only decrease if the object was reallocated */
|
|
if (nblkptr < doi->doi_nblkptr)
|
|
do_free_range = B_TRUE;
|
|
|
|
/* number of slots can only change on reallocation */
|
|
if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
|
|
do_free_range = B_TRUE;
|
|
|
|
/*
|
|
* For raw sends we also check a few other fields to
|
|
* ensure we are preserving the objset structure exactly
|
|
* as it was on the receive side:
|
|
* - A changed indirect block size
|
|
* - A smaller nlevels
|
|
*/
|
|
if (rwa->raw) {
|
|
if (indblksz != doi->doi_metadata_block_size)
|
|
do_free_range = B_TRUE;
|
|
if (drro->drr_nlevels < doi->doi_indirection)
|
|
do_free_range = B_TRUE;
|
|
}
|
|
|
|
if (do_free_range) {
|
|
err = dmu_free_long_range(rwa->os, drro->drr_object,
|
|
0, DMU_OBJECT_END);
|
|
if (err != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* The dmu does not currently support decreasing nlevels
|
|
* or changing the number of dnode slots on an object. For
|
|
* non-raw sends, this does not matter and the new object
|
|
* can just use the previous one's nlevels. For raw sends,
|
|
* however, the structure of the received dnode (including
|
|
* nlevels and dnode slots) must match that of the send
|
|
* side. Therefore, instead of using dmu_object_reclaim(),
|
|
* we must free the object completely and call
|
|
* dmu_object_claim_dnsize() instead.
|
|
*/
|
|
if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
|
|
dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
|
|
err = dmu_free_long_object(rwa->os, drro->drr_object);
|
|
if (err != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
|
|
*object_to_hold = DMU_NEW_OBJECT;
|
|
}
|
|
|
|
/*
|
|
* For raw receives, free everything beyond the new incoming
|
|
* maxblkid. Normally this would be done with a DRR_FREE
|
|
* record that would come after this DRR_OBJECT record is
|
|
* processed. However, for raw receives we manually set the
|
|
* maxblkid from the drr_maxblkid and so we must first free
|
|
* everything above that blkid to ensure the DMU is always
|
|
* consistent with itself. We will never free the first block
|
|
* of the object here because a maxblkid of 0 could indicate
|
|
* an object with a single block or one with no blocks. This
|
|
* free may be skipped when dmu_free_long_range() was called
|
|
* above since it covers the entire object's contents.
|
|
*/
|
|
if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
|
|
err = dmu_free_long_range(rwa->os, drro->drr_object,
|
|
(drro->drr_maxblkid + 1) * doi->doi_data_block_size,
|
|
DMU_OBJECT_END);
|
|
if (err != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
noinline static int
|
|
receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
|
|
void *data)
|
|
{
|
|
dmu_object_info_t doi;
|
|
dmu_tx_t *tx;
|
|
int err;
|
|
uint32_t new_blksz = drro->drr_blksz;
|
|
uint8_t dn_slots = drro->drr_dn_slots != 0 ?
|
|
drro->drr_dn_slots : DNODE_MIN_SLOTS;
|
|
|
|
if (drro->drr_type == DMU_OT_NONE ||
|
|
!DMU_OT_IS_VALID(drro->drr_type) ||
|
|
!DMU_OT_IS_VALID(drro->drr_bonustype) ||
|
|
drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
|
|
drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
|
|
P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
|
|
drro->drr_blksz < SPA_MINBLOCKSIZE ||
|
|
drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
|
|
drro->drr_bonuslen >
|
|
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
|
|
dn_slots >
|
|
(spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (rwa->raw) {
|
|
/*
|
|
* We should have received a DRR_OBJECT_RANGE record
|
|
* containing this block and stored it in rwa.
|
|
*/
|
|
if (drro->drr_object < rwa->or_firstobj ||
|
|
drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
|
|
drro->drr_raw_bonuslen < drro->drr_bonuslen ||
|
|
drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
|
|
drro->drr_nlevels > DN_MAX_LEVELS ||
|
|
drro->drr_nblkptr > DN_MAX_NBLKPTR ||
|
|
DN_SLOTS_TO_BONUSLEN(dn_slots) <
|
|
drro->drr_raw_bonuslen)
|
|
return (SET_ERROR(EINVAL));
|
|
} else {
|
|
/*
|
|
* The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
|
|
* record indicates this by setting DRR_FLAG_SPILL_BLOCK.
|
|
*/
|
|
if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
|
|
(!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
|
|
drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
err = dmu_object_info(rwa->os, drro->drr_object, &doi);
|
|
|
|
if (err != 0 && err != ENOENT && err != EEXIST)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drro->drr_object > rwa->max_object)
|
|
rwa->max_object = drro->drr_object;
|
|
|
|
/*
|
|
* If we are losing blkptrs or changing the block size this must
|
|
* be a new file instance. We must clear out the previous file
|
|
* contents before we can change this type of metadata in the dnode.
|
|
* Raw receives will also check that the indirect structure of the
|
|
* dnode hasn't changed.
|
|
*/
|
|
uint64_t object_to_hold;
|
|
if (err == 0) {
|
|
err = receive_handle_existing_object(rwa, drro, &doi, data,
|
|
&object_to_hold, &new_blksz);
|
|
} else if (err == EEXIST) {
|
|
/*
|
|
* The object requested is currently an interior slot of a
|
|
* multi-slot dnode. This will be resolved when the next txg
|
|
* is synced out, since the send stream will have told us
|
|
* to free this slot when we freed the associated dnode
|
|
* earlier in the stream.
|
|
*/
|
|
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
|
|
|
|
if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/* object was freed and we are about to allocate a new one */
|
|
object_to_hold = DMU_NEW_OBJECT;
|
|
} else {
|
|
/* object is free and we are about to allocate a new one */
|
|
object_to_hold = DMU_NEW_OBJECT;
|
|
}
|
|
|
|
/*
|
|
* If this is a multi-slot dnode there is a chance that this
|
|
* object will expand into a slot that is already used by
|
|
* another object from the previous snapshot. We must free
|
|
* these objects before we attempt to allocate the new dnode.
|
|
*/
|
|
if (dn_slots > 1) {
|
|
boolean_t need_sync = B_FALSE;
|
|
|
|
for (uint64_t slot = drro->drr_object + 1;
|
|
slot < drro->drr_object + dn_slots;
|
|
slot++) {
|
|
dmu_object_info_t slot_doi;
|
|
|
|
err = dmu_object_info(rwa->os, slot, &slot_doi);
|
|
if (err == ENOENT || err == EEXIST)
|
|
continue;
|
|
else if (err != 0)
|
|
return (err);
|
|
|
|
err = dmu_free_long_object(rwa->os, slot);
|
|
if (err != 0)
|
|
return (err);
|
|
|
|
need_sync = B_TRUE;
|
|
}
|
|
|
|
if (need_sync)
|
|
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
|
|
}
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
dmu_tx_hold_bonus(tx, object_to_hold);
|
|
dmu_tx_hold_write(tx, object_to_hold, 0, 0);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
if (object_to_hold == DMU_NEW_OBJECT) {
|
|
/* Currently free, wants to be allocated */
|
|
err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
|
|
drro->drr_type, new_blksz,
|
|
drro->drr_bonustype, drro->drr_bonuslen,
|
|
dn_slots << DNODE_SHIFT, tx);
|
|
} else if (drro->drr_type != doi.doi_type ||
|
|
new_blksz != doi.doi_data_block_size ||
|
|
drro->drr_bonustype != doi.doi_bonus_type ||
|
|
drro->drr_bonuslen != doi.doi_bonus_size) {
|
|
/* Currently allocated, but with different properties */
|
|
err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
|
|
drro->drr_type, new_blksz,
|
|
drro->drr_bonustype, drro->drr_bonuslen,
|
|
dn_slots << DNODE_SHIFT, rwa->spill ?
|
|
DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
|
|
} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
|
|
/*
|
|
* Currently allocated, the existing version of this object
|
|
* may reference a spill block that is no longer allocated
|
|
* at the source and needs to be freed.
|
|
*/
|
|
err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
|
|
}
|
|
|
|
if (err != 0) {
|
|
dmu_tx_commit(tx);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (rwa->or_crypt_params_present) {
|
|
/*
|
|
* Set the crypt params for the buffer associated with this
|
|
* range of dnodes. This causes the blkptr_t to have the
|
|
* same crypt params (byteorder, salt, iv, mac) as on the
|
|
* sending side.
|
|
*
|
|
* Since we are committing this tx now, it is possible for
|
|
* the dnode block to end up on-disk with the incorrect MAC,
|
|
* if subsequent objects in this block are received in a
|
|
* different txg. However, since the dataset is marked as
|
|
* inconsistent, no code paths will do a non-raw read (or
|
|
* decrypt the block / verify the MAC). The receive code and
|
|
* scrub code can safely do raw reads and verify the
|
|
* checksum. They don't need to verify the MAC.
|
|
*/
|
|
dmu_buf_t *db = NULL;
|
|
uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
|
|
|
|
err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
|
|
offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
|
|
if (err != 0) {
|
|
dmu_tx_commit(tx);
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
dmu_buf_set_crypt_params(db, rwa->or_byteorder,
|
|
rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
|
|
rwa->or_crypt_params_present = B_FALSE;
|
|
}
|
|
|
|
dmu_object_set_checksum(rwa->os, drro->drr_object,
|
|
drro->drr_checksumtype, tx);
|
|
dmu_object_set_compress(rwa->os, drro->drr_object,
|
|
drro->drr_compress, tx);
|
|
|
|
/* handle more restrictive dnode structuring for raw recvs */
|
|
if (rwa->raw) {
|
|
/*
|
|
* Set the indirect block size, block shift, nlevels.
|
|
* This will not fail because we ensured all of the
|
|
* blocks were freed earlier if this is a new object.
|
|
* For non-new objects block size and indirect block
|
|
* shift cannot change and nlevels can only increase.
|
|
*/
|
|
ASSERT3U(new_blksz, ==, drro->drr_blksz);
|
|
VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
|
|
drro->drr_blksz, drro->drr_indblkshift, tx));
|
|
VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
|
|
drro->drr_nlevels, tx));
|
|
|
|
/*
|
|
* Set the maxblkid. This will always succeed because
|
|
* we freed all blocks beyond the new maxblkid above.
|
|
*/
|
|
VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
|
|
drro->drr_maxblkid, tx));
|
|
}
|
|
|
|
if (data != NULL) {
|
|
dmu_buf_t *db;
|
|
dnode_t *dn;
|
|
uint32_t flags = DMU_READ_NO_PREFETCH;
|
|
|
|
if (rwa->raw)
|
|
flags |= DMU_READ_NO_DECRYPT;
|
|
|
|
VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
|
|
VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
|
|
|
|
dmu_buf_will_dirty(db, tx);
|
|
|
|
ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
|
|
bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
|
|
|
|
/*
|
|
* Raw bonus buffers have their byteorder determined by the
|
|
* DRR_OBJECT_RANGE record.
|
|
*/
|
|
if (rwa->byteswap && !rwa->raw) {
|
|
dmu_object_byteswap_t byteswap =
|
|
DMU_OT_BYTESWAP(drro->drr_bonustype);
|
|
dmu_ot_byteswap[byteswap].ob_func(db->db_data,
|
|
DRR_OBJECT_PAYLOAD_SIZE(drro));
|
|
}
|
|
dmu_buf_rele(db, FTAG);
|
|
dnode_rele(dn, FTAG);
|
|
}
|
|
dmu_tx_commit(tx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
noinline static int
|
|
receive_freeobjects(struct receive_writer_arg *rwa,
|
|
struct drr_freeobjects *drrfo)
|
|
{
|
|
uint64_t obj;
|
|
int next_err = 0;
|
|
|
|
if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
|
|
obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
|
|
obj < DN_MAX_OBJECT && next_err == 0;
|
|
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
|
|
dmu_object_info_t doi;
|
|
int err;
|
|
|
|
err = dmu_object_info(rwa->os, obj, &doi);
|
|
if (err == ENOENT)
|
|
continue;
|
|
else if (err != 0)
|
|
return (err);
|
|
|
|
err = dmu_free_long_object(rwa->os, obj);
|
|
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
if (next_err != ESRCH)
|
|
return (next_err);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Note: if this fails, the caller will clean up any records left on the
|
|
* rwa->write_batch list.
|
|
*/
|
|
static int
|
|
flush_write_batch_impl(struct receive_writer_arg *rwa)
|
|
{
|
|
dnode_t *dn;
|
|
int err;
|
|
|
|
if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
|
|
struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
|
|
|
|
struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
|
|
struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
|
|
|
|
ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
|
|
ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
|
|
|
|
dmu_tx_t *tx = dmu_tx_create(rwa->os);
|
|
dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
|
|
last_drrw->drr_offset - first_drrw->drr_offset +
|
|
last_drrw->drr_logical_size);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_tx_abort(tx);
|
|
dnode_rele(dn, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
struct receive_record_arg *rrd;
|
|
while ((rrd = list_head(&rwa->write_batch)) != NULL) {
|
|
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
|
|
abd_t *abd = rrd->abd;
|
|
|
|
ASSERT3U(drrw->drr_object, ==, rwa->last_object);
|
|
|
|
if (drrw->drr_logical_size != dn->dn_datablksz) {
|
|
/*
|
|
* The WRITE record is larger than the object's block
|
|
* size. We must be receiving an incremental
|
|
* large-block stream into a dataset that previously did
|
|
* a non-large-block receive. Lightweight writes must
|
|
* be exactly one block, so we need to decompress the
|
|
* data (if compressed) and do a normal dmu_write().
|
|
*/
|
|
ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
|
|
if (DRR_WRITE_COMPRESSED(drrw)) {
|
|
abd_t *decomp_abd =
|
|
abd_alloc_linear(drrw->drr_logical_size,
|
|
B_FALSE);
|
|
|
|
err = zio_decompress_data(
|
|
drrw->drr_compressiontype,
|
|
abd, abd_to_buf(decomp_abd),
|
|
abd_get_size(abd),
|
|
abd_get_size(decomp_abd), NULL);
|
|
|
|
if (err == 0) {
|
|
dmu_write_by_dnode(dn,
|
|
drrw->drr_offset,
|
|
drrw->drr_logical_size,
|
|
abd_to_buf(decomp_abd), tx);
|
|
}
|
|
abd_free(decomp_abd);
|
|
} else {
|
|
dmu_write_by_dnode(dn,
|
|
drrw->drr_offset,
|
|
drrw->drr_logical_size,
|
|
abd_to_buf(abd), tx);
|
|
}
|
|
if (err == 0)
|
|
abd_free(abd);
|
|
} else {
|
|
zio_prop_t zp;
|
|
dmu_write_policy(rwa->os, dn, 0, 0, &zp);
|
|
|
|
enum zio_flag zio_flags = 0;
|
|
|
|
if (rwa->raw) {
|
|
zp.zp_encrypt = B_TRUE;
|
|
zp.zp_compress = drrw->drr_compressiontype;
|
|
zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
|
|
!!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
|
|
rwa->byteswap;
|
|
bcopy(drrw->drr_salt, zp.zp_salt,
|
|
ZIO_DATA_SALT_LEN);
|
|
bcopy(drrw->drr_iv, zp.zp_iv,
|
|
ZIO_DATA_IV_LEN);
|
|
bcopy(drrw->drr_mac, zp.zp_mac,
|
|
ZIO_DATA_MAC_LEN);
|
|
if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
|
|
zp.zp_nopwrite = B_FALSE;
|
|
zp.zp_copies = MIN(zp.zp_copies,
|
|
SPA_DVAS_PER_BP - 1);
|
|
}
|
|
zio_flags |= ZIO_FLAG_RAW;
|
|
} else if (DRR_WRITE_COMPRESSED(drrw)) {
|
|
ASSERT3U(drrw->drr_compressed_size, >, 0);
|
|
ASSERT3U(drrw->drr_logical_size, >=,
|
|
drrw->drr_compressed_size);
|
|
zp.zp_compress = drrw->drr_compressiontype;
|
|
zio_flags |= ZIO_FLAG_RAW_COMPRESS;
|
|
} else if (rwa->byteswap) {
|
|
/*
|
|
* Note: compressed blocks never need to be
|
|
* byteswapped, because WRITE records for
|
|
* metadata blocks are never compressed. The
|
|
* exception is raw streams, which are written
|
|
* in the original byteorder, and the byteorder
|
|
* bit is preserved in the BP by setting
|
|
* zp_byteorder above.
|
|
*/
|
|
dmu_object_byteswap_t byteswap =
|
|
DMU_OT_BYTESWAP(drrw->drr_type);
|
|
dmu_ot_byteswap[byteswap].ob_func(
|
|
abd_to_buf(abd),
|
|
DRR_WRITE_PAYLOAD_SIZE(drrw));
|
|
}
|
|
|
|
/*
|
|
* Since this data can't be read until the receive
|
|
* completes, we can do a "lightweight" write for
|
|
* improved performance.
|
|
*/
|
|
err = dmu_lightweight_write_by_dnode(dn,
|
|
drrw->drr_offset, abd, &zp, zio_flags, tx);
|
|
}
|
|
|
|
if (err != 0) {
|
|
/*
|
|
* This rrd is left on the list, so the caller will
|
|
* free it (and the abd).
|
|
*/
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Note: If the receive fails, we want the resume stream to
|
|
* start with the same record that we last successfully
|
|
* received (as opposed to the next record), so that we can
|
|
* verify that we are resuming from the correct location.
|
|
*/
|
|
save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
|
|
|
|
list_remove(&rwa->write_batch, rrd);
|
|
kmem_free(rrd, sizeof (*rrd));
|
|
}
|
|
|
|
dmu_tx_commit(tx);
|
|
dnode_rele(dn, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
noinline static int
|
|
flush_write_batch(struct receive_writer_arg *rwa)
|
|
{
|
|
if (list_is_empty(&rwa->write_batch))
|
|
return (0);
|
|
int err = rwa->err;
|
|
if (err == 0)
|
|
err = flush_write_batch_impl(rwa);
|
|
if (err != 0) {
|
|
struct receive_record_arg *rrd;
|
|
while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
|
|
abd_free(rrd->abd);
|
|
kmem_free(rrd, sizeof (*rrd));
|
|
}
|
|
}
|
|
ASSERT(list_is_empty(&rwa->write_batch));
|
|
return (err);
|
|
}
|
|
|
|
noinline static int
|
|
receive_process_write_record(struct receive_writer_arg *rwa,
|
|
struct receive_record_arg *rrd)
|
|
{
|
|
int err = 0;
|
|
|
|
ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
|
|
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
|
|
|
|
if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
|
|
!DMU_OT_IS_VALID(drrw->drr_type))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* For resuming to work, records must be in increasing order
|
|
* by (object, offset).
|
|
*/
|
|
if (drrw->drr_object < rwa->last_object ||
|
|
(drrw->drr_object == rwa->last_object &&
|
|
drrw->drr_offset < rwa->last_offset)) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
|
|
struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
|
|
uint64_t batch_size =
|
|
MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
|
|
if (first_rrd != NULL &&
|
|
(drrw->drr_object != first_drrw->drr_object ||
|
|
drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
|
|
err = flush_write_batch(rwa);
|
|
if (err != 0)
|
|
return (err);
|
|
}
|
|
|
|
rwa->last_object = drrw->drr_object;
|
|
rwa->last_offset = drrw->drr_offset;
|
|
|
|
if (rwa->last_object > rwa->max_object)
|
|
rwa->max_object = rwa->last_object;
|
|
|
|
list_insert_tail(&rwa->write_batch, rrd);
|
|
/*
|
|
* Return EAGAIN to indicate that we will use this rrd again,
|
|
* so the caller should not free it
|
|
*/
|
|
return (EAGAIN);
|
|
}
|
|
|
|
static int
|
|
receive_write_embedded(struct receive_writer_arg *rwa,
|
|
struct drr_write_embedded *drrwe, void *data)
|
|
{
|
|
dmu_tx_t *tx;
|
|
int err;
|
|
|
|
if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
|
|
return (SET_ERROR(EINVAL));
|
|
if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
|
|
return (SET_ERROR(EINVAL));
|
|
if (rwa->raw)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drrwe->drr_object > rwa->max_object)
|
|
rwa->max_object = drrwe->drr_object;
|
|
|
|
tx = dmu_tx_create(rwa->os);
|
|
|
|
dmu_tx_hold_write(tx, drrwe->drr_object,
|
|
drrwe->drr_offset, drrwe->drr_length);
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
dmu_write_embedded(rwa->os, drrwe->drr_object,
|
|
drrwe->drr_offset, data, drrwe->drr_etype,
|
|
drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
|
|
rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
|
|
|
|
/* See comment in restore_write. */
|
|
save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
|
|
dmu_tx_commit(tx);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
|
|
abd_t *abd)
|
|
{
|
|
dmu_buf_t *db, *db_spill;
|
|
int err;
|
|
|
|
if (drrs->drr_length < SPA_MINBLOCKSIZE ||
|
|
drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
/*
|
|
* This is an unmodified spill block which was added to the stream
|
|
* to resolve an issue with incorrectly removing spill blocks. It
|
|
* should be ignored by current versions of the code which support
|
|
* the DRR_FLAG_SPILL_BLOCK flag.
|
|
*/
|
|
if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
|
|
abd_free(abd);
|
|
return (0);
|
|
}
|
|
|
|
if (rwa->raw) {
|
|
if (!DMU_OT_IS_VALID(drrs->drr_type) ||
|
|
drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
|
|
drrs->drr_compressed_size == 0)
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drrs->drr_object > rwa->max_object)
|
|
rwa->max_object = drrs->drr_object;
|
|
|
|
VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
|
|
if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
|
|
&db_spill)) != 0) {
|
|
dmu_buf_rele(db, FTAG);
|
|
return (err);
|
|
}
|
|
|
|
dmu_tx_t *tx = dmu_tx_create(rwa->os);
|
|
|
|
dmu_tx_hold_spill(tx, db->db_object);
|
|
|
|
err = dmu_tx_assign(tx, TXG_WAIT);
|
|
if (err != 0) {
|
|
dmu_buf_rele(db, FTAG);
|
|
dmu_buf_rele(db_spill, FTAG);
|
|
dmu_tx_abort(tx);
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Spill blocks may both grow and shrink. When a change in size
|
|
* occurs any existing dbuf must be updated to match the logical
|
|
* size of the provided arc_buf_t.
|
|
*/
|
|
if (db_spill->db_size != drrs->drr_length) {
|
|
dmu_buf_will_fill(db_spill, tx);
|
|
VERIFY0(dbuf_spill_set_blksz(db_spill,
|
|
drrs->drr_length, tx));
|
|
}
|
|
|
|
arc_buf_t *abuf;
|
|
if (rwa->raw) {
|
|
boolean_t byteorder = ZFS_HOST_BYTEORDER ^
|
|
!!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
|
|
rwa->byteswap;
|
|
|
|
abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
|
|
drrs->drr_object, byteorder, drrs->drr_salt,
|
|
drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
|
|
drrs->drr_compressed_size, drrs->drr_length,
|
|
drrs->drr_compressiontype, 0);
|
|
} else {
|
|
abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
|
|
DMU_OT_IS_METADATA(drrs->drr_type),
|
|
drrs->drr_length);
|
|
if (rwa->byteswap) {
|
|
dmu_object_byteswap_t byteswap =
|
|
DMU_OT_BYTESWAP(drrs->drr_type);
|
|
dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
|
|
DRR_SPILL_PAYLOAD_SIZE(drrs));
|
|
}
|
|
}
|
|
|
|
bcopy(abd_to_buf(abd), abuf->b_data, DRR_SPILL_PAYLOAD_SIZE(drrs));
|
|
abd_free(abd);
|
|
dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
|
|
|
|
dmu_buf_rele(db, FTAG);
|
|
dmu_buf_rele(db_spill, FTAG);
|
|
|
|
dmu_tx_commit(tx);
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
noinline static int
|
|
receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
|
|
{
|
|
int err;
|
|
|
|
if (drrf->drr_length != -1ULL &&
|
|
drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drrf->drr_object > rwa->max_object)
|
|
rwa->max_object = drrf->drr_object;
|
|
|
|
err = dmu_free_long_range(rwa->os, drrf->drr_object,
|
|
drrf->drr_offset, drrf->drr_length);
|
|
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
receive_object_range(struct receive_writer_arg *rwa,
|
|
struct drr_object_range *drror)
|
|
{
|
|
/*
|
|
* By default, we assume this block is in our native format
|
|
* (ZFS_HOST_BYTEORDER). We then take into account whether
|
|
* the send stream is byteswapped (rwa->byteswap). Finally,
|
|
* we need to byteswap again if this particular block was
|
|
* in non-native format on the send side.
|
|
*/
|
|
boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
|
|
!!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
|
|
|
|
/*
|
|
* Since dnode block sizes are constant, we should not need to worry
|
|
* about making sure that the dnode block size is the same on the
|
|
* sending and receiving sides for the time being. For non-raw sends,
|
|
* this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
|
|
* record at all). Raw sends require this record type because the
|
|
* encryption parameters are used to protect an entire block of bonus
|
|
* buffers. If the size of dnode blocks ever becomes variable,
|
|
* handling will need to be added to ensure that dnode block sizes
|
|
* match on the sending and receiving side.
|
|
*/
|
|
if (drror->drr_numslots != DNODES_PER_BLOCK ||
|
|
P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
|
|
!rwa->raw)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
if (drror->drr_firstobj > rwa->max_object)
|
|
rwa->max_object = drror->drr_firstobj;
|
|
|
|
/*
|
|
* The DRR_OBJECT_RANGE handling must be deferred to receive_object()
|
|
* so that the block of dnodes is not written out when it's empty,
|
|
* and converted to a HOLE BP.
|
|
*/
|
|
rwa->or_crypt_params_present = B_TRUE;
|
|
rwa->or_firstobj = drror->drr_firstobj;
|
|
rwa->or_numslots = drror->drr_numslots;
|
|
bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
|
|
bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
|
|
bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
|
|
rwa->or_byteorder = byteorder;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Until we have the ability to redact large ranges of data efficiently, we
|
|
* process these records as frees.
|
|
*/
|
|
/* ARGSUSED */
|
|
noinline static int
|
|
receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
|
|
{
|
|
struct drr_free drrf = {0};
|
|
drrf.drr_length = drrr->drr_length;
|
|
drrf.drr_object = drrr->drr_object;
|
|
drrf.drr_offset = drrr->drr_offset;
|
|
drrf.drr_toguid = drrr->drr_toguid;
|
|
return (receive_free(rwa, &drrf));
|
|
}
|
|
|
|
/* used to destroy the drc_ds on error */
|
|
static void
|
|
dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
|
|
{
|
|
dsl_dataset_t *ds = drc->drc_ds;
|
|
ds_hold_flags_t dsflags;
|
|
|
|
dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
|
|
/*
|
|
* Wait for the txg sync before cleaning up the receive. For
|
|
* resumable receives, this ensures that our resume state has
|
|
* been written out to disk. For raw receives, this ensures
|
|
* that the user accounting code will not attempt to do anything
|
|
* after we stopped receiving the dataset.
|
|
*/
|
|
txg_wait_synced(ds->ds_dir->dd_pool, 0);
|
|
ds->ds_objset->os_raw_receive = B_FALSE;
|
|
|
|
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
|
|
if (drc->drc_resumable && drc->drc_should_save &&
|
|
!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
|
|
} else {
|
|
char name[ZFS_MAX_DATASET_NAME_LEN];
|
|
rrw_exit(&ds->ds_bp_rwlock, FTAG);
|
|
dsl_dataset_name(ds, name);
|
|
dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
|
|
(void) dsl_destroy_head(name);
|
|
}
|
|
}
|
|
|
|
static void
|
|
receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
|
|
{
|
|
if (drc->drc_byteswap) {
|
|
(void) fletcher_4_incremental_byteswap(buf, len,
|
|
&drc->drc_cksum);
|
|
} else {
|
|
(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read the payload into a buffer of size len, and update the current record's
|
|
* payload field.
|
|
* Allocate drc->drc_next_rrd and read the next record's header into
|
|
* drc->drc_next_rrd->header.
|
|
* Verify checksum of payload and next record.
|
|
*/
|
|
static int
|
|
receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
|
|
{
|
|
int err;
|
|
|
|
if (len != 0) {
|
|
ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
|
|
err = receive_read(drc, len, buf);
|
|
if (err != 0)
|
|
return (err);
|
|
receive_cksum(drc, len, buf);
|
|
|
|
/* note: rrd is NULL when reading the begin record's payload */
|
|
if (drc->drc_rrd != NULL) {
|
|
drc->drc_rrd->payload = buf;
|
|
drc->drc_rrd->payload_size = len;
|
|
drc->drc_rrd->bytes_read = drc->drc_bytes_read;
|
|
}
|
|
} else {
|
|
ASSERT3P(buf, ==, NULL);
|
|
}
|
|
|
|
drc->drc_prev_cksum = drc->drc_cksum;
|
|
|
|
drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
|
|
err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
|
|
&drc->drc_next_rrd->header);
|
|
drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
|
|
|
|
if (err != 0) {
|
|
kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
|
|
drc->drc_next_rrd = NULL;
|
|
return (err);
|
|
}
|
|
if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
|
|
kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
|
|
drc->drc_next_rrd = NULL;
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
/*
|
|
* Note: checksum is of everything up to but not including the
|
|
* checksum itself.
|
|
*/
|
|
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
|
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
|
|
receive_cksum(drc,
|
|
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
|
|
&drc->drc_next_rrd->header);
|
|
|
|
zio_cksum_t cksum_orig =
|
|
drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
|
|
zio_cksum_t *cksump =
|
|
&drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
|
|
|
|
if (drc->drc_byteswap)
|
|
byteswap_record(&drc->drc_next_rrd->header);
|
|
|
|
if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
|
|
!ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
|
|
kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
|
|
drc->drc_next_rrd = NULL;
|
|
return (SET_ERROR(ECKSUM));
|
|
}
|
|
|
|
receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Issue the prefetch reads for any necessary indirect blocks.
|
|
*
|
|
* We use the object ignore list to tell us whether or not to issue prefetches
|
|
* for a given object. We do this for both correctness (in case the blocksize
|
|
* of an object has changed) and performance (if the object doesn't exist, don't
|
|
* needlessly try to issue prefetches). We also trim the list as we go through
|
|
* the stream to prevent it from growing to an unbounded size.
|
|
*
|
|
* The object numbers within will always be in sorted order, and any write
|
|
* records we see will also be in sorted order, but they're not sorted with
|
|
* respect to each other (i.e. we can get several object records before
|
|
* receiving each object's write records). As a result, once we've reached a
|
|
* given object number, we can safely remove any reference to lower object
|
|
* numbers in the ignore list. In practice, we receive up to 32 object records
|
|
* before receiving write records, so the list can have up to 32 nodes in it.
|
|
*/
|
|
/* ARGSUSED */
|
|
static void
|
|
receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
|
|
uint64_t length)
|
|
{
|
|
if (!objlist_exists(drc->drc_ignore_objlist, object)) {
|
|
dmu_prefetch(drc->drc_os, object, 1, offset, length,
|
|
ZIO_PRIORITY_SYNC_READ);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read records off the stream, issuing any necessary prefetches.
|
|
*/
|
|
static int
|
|
receive_read_record(dmu_recv_cookie_t *drc)
|
|
{
|
|
int err;
|
|
|
|
switch (drc->drc_rrd->header.drr_type) {
|
|
case DRR_OBJECT:
|
|
{
|
|
struct drr_object *drro =
|
|
&drc->drc_rrd->header.drr_u.drr_object;
|
|
uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
|
|
void *buf = NULL;
|
|
dmu_object_info_t doi;
|
|
|
|
if (size != 0)
|
|
buf = kmem_zalloc(size, KM_SLEEP);
|
|
|
|
err = receive_read_payload_and_next_header(drc, size, buf);
|
|
if (err != 0) {
|
|
kmem_free(buf, size);
|
|
return (err);
|
|
}
|
|
err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
|
|
/*
|
|
* See receive_read_prefetch for an explanation why we're
|
|
* storing this object in the ignore_obj_list.
|
|
*/
|
|
if (err == ENOENT || err == EEXIST ||
|
|
(err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
|
|
objlist_insert(drc->drc_ignore_objlist,
|
|
drro->drr_object);
|
|
err = 0;
|
|
}
|
|
return (err);
|
|
}
|
|
case DRR_FREEOBJECTS:
|
|
{
|
|
err = receive_read_payload_and_next_header(drc, 0, NULL);
|
|
return (err);
|
|
}
|
|
case DRR_WRITE:
|
|
{
|
|
struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
|
|
int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
|
|
abd_t *abd = abd_alloc_linear(size, B_FALSE);
|
|
err = receive_read_payload_and_next_header(drc, size,
|
|
abd_to_buf(abd));
|
|
if (err != 0) {
|
|
abd_free(abd);
|
|
return (err);
|
|
}
|
|
drc->drc_rrd->abd = abd;
|
|
receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
|
|
drrw->drr_logical_size);
|
|
return (err);
|
|
}
|
|
case DRR_WRITE_EMBEDDED:
|
|
{
|
|
struct drr_write_embedded *drrwe =
|
|
&drc->drc_rrd->header.drr_u.drr_write_embedded;
|
|
uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
|
|
void *buf = kmem_zalloc(size, KM_SLEEP);
|
|
|
|
err = receive_read_payload_and_next_header(drc, size, buf);
|
|
if (err != 0) {
|
|
kmem_free(buf, size);
|
|
return (err);
|
|
}
|
|
|
|
receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
|
|
drrwe->drr_length);
|
|
return (err);
|
|
}
|
|
case DRR_FREE:
|
|
case DRR_REDACT:
|
|
{
|
|
/*
|
|
* It might be beneficial to prefetch indirect blocks here, but
|
|
* we don't really have the data to decide for sure.
|
|
*/
|
|
err = receive_read_payload_and_next_header(drc, 0, NULL);
|
|
return (err);
|
|
}
|
|
case DRR_END:
|
|
{
|
|
struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
|
|
if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
|
|
drre->drr_checksum))
|
|
return (SET_ERROR(ECKSUM));
|
|
return (0);
|
|
}
|
|
case DRR_SPILL:
|
|
{
|
|
struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
|
|
int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
|
|
abd_t *abd = abd_alloc_linear(size, B_FALSE);
|
|
err = receive_read_payload_and_next_header(drc, size,
|
|
abd_to_buf(abd));
|
|
if (err != 0)
|
|
abd_free(abd);
|
|
else
|
|
drc->drc_rrd->abd = abd;
|
|
return (err);
|
|
}
|
|
case DRR_OBJECT_RANGE:
|
|
{
|
|
err = receive_read_payload_and_next_header(drc, 0, NULL);
|
|
return (err);
|
|
|
|
}
|
|
default:
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
dprintf_drr(struct receive_record_arg *rrd, int err)
|
|
{
|
|
#ifdef ZFS_DEBUG
|
|
switch (rrd->header.drr_type) {
|
|
case DRR_OBJECT:
|
|
{
|
|
struct drr_object *drro = &rrd->header.drr_u.drr_object;
|
|
dprintf("drr_type = OBJECT obj = %llu type = %u "
|
|
"bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
|
|
"compress = %u dn_slots = %u err = %d\n",
|
|
(u_longlong_t)drro->drr_object, drro->drr_type,
|
|
drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
|
|
drro->drr_checksumtype, drro->drr_compress,
|
|
drro->drr_dn_slots, err);
|
|
break;
|
|
}
|
|
case DRR_FREEOBJECTS:
|
|
{
|
|
struct drr_freeobjects *drrfo =
|
|
&rrd->header.drr_u.drr_freeobjects;
|
|
dprintf("drr_type = FREEOBJECTS firstobj = %llu "
|
|
"numobjs = %llu err = %d\n",
|
|
(u_longlong_t)drrfo->drr_firstobj,
|
|
(u_longlong_t)drrfo->drr_numobjs, err);
|
|
break;
|
|
}
|
|
case DRR_WRITE:
|
|
{
|
|
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
|
|
dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
|
|
"lsize = %llu cksumtype = %u flags = %u "
|
|
"compress = %u psize = %llu err = %d\n",
|
|
(u_longlong_t)drrw->drr_object, drrw->drr_type,
|
|
(u_longlong_t)drrw->drr_offset,
|
|
(u_longlong_t)drrw->drr_logical_size,
|
|
drrw->drr_checksumtype, drrw->drr_flags,
|
|
drrw->drr_compressiontype,
|
|
(u_longlong_t)drrw->drr_compressed_size, err);
|
|
break;
|
|
}
|
|
case DRR_WRITE_BYREF:
|
|
{
|
|
struct drr_write_byref *drrwbr =
|
|
&rrd->header.drr_u.drr_write_byref;
|
|
dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
|
|
"length = %llu toguid = %llx refguid = %llx "
|
|
"refobject = %llu refoffset = %llu cksumtype = %u "
|
|
"flags = %u err = %d\n",
|
|
(u_longlong_t)drrwbr->drr_object,
|
|
(u_longlong_t)drrwbr->drr_offset,
|
|
(u_longlong_t)drrwbr->drr_length,
|
|
(u_longlong_t)drrwbr->drr_toguid,
|
|
(u_longlong_t)drrwbr->drr_refguid,
|
|
(u_longlong_t)drrwbr->drr_refobject,
|
|
(u_longlong_t)drrwbr->drr_refoffset,
|
|
drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
|
|
break;
|
|
}
|
|
case DRR_WRITE_EMBEDDED:
|
|
{
|
|
struct drr_write_embedded *drrwe =
|
|
&rrd->header.drr_u.drr_write_embedded;
|
|
dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
|
|
"length = %llu compress = %u etype = %u lsize = %u "
|
|
"psize = %u err = %d\n",
|
|
(u_longlong_t)drrwe->drr_object,
|
|
(u_longlong_t)drrwe->drr_offset,
|
|
(u_longlong_t)drrwe->drr_length,
|
|
drrwe->drr_compression, drrwe->drr_etype,
|
|
drrwe->drr_lsize, drrwe->drr_psize, err);
|
|
break;
|
|
}
|
|
case DRR_FREE:
|
|
{
|
|
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
|
|
dprintf("drr_type = FREE obj = %llu offset = %llu "
|
|
"length = %lld err = %d\n",
|
|
(u_longlong_t)drrf->drr_object,
|
|
(u_longlong_t)drrf->drr_offset,
|
|
(longlong_t)drrf->drr_length,
|
|
err);
|
|
break;
|
|
}
|
|
case DRR_SPILL:
|
|
{
|
|
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
|
|
dprintf("drr_type = SPILL obj = %llu length = %llu "
|
|
"err = %d\n", (u_longlong_t)drrs->drr_object,
|
|
(u_longlong_t)drrs->drr_length, err);
|
|
break;
|
|
}
|
|
case DRR_OBJECT_RANGE:
|
|
{
|
|
struct drr_object_range *drror =
|
|
&rrd->header.drr_u.drr_object_range;
|
|
dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
|
|
"numslots = %llu flags = %u err = %d\n",
|
|
(u_longlong_t)drror->drr_firstobj,
|
|
(u_longlong_t)drror->drr_numslots,
|
|
drror->drr_flags, err);
|
|
break;
|
|
}
|
|
default:
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Commit the records to the pool.
|
|
*/
|
|
static int
|
|
receive_process_record(struct receive_writer_arg *rwa,
|
|
struct receive_record_arg *rrd)
|
|
{
|
|
int err;
|
|
|
|
/* Processing in order, therefore bytes_read should be increasing. */
|
|
ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
|
|
rwa->bytes_read = rrd->bytes_read;
|
|
|
|
if (rrd->header.drr_type != DRR_WRITE) {
|
|
err = flush_write_batch(rwa);
|
|
if (err != 0) {
|
|
if (rrd->abd != NULL) {
|
|
abd_free(rrd->abd);
|
|
rrd->abd = NULL;
|
|
rrd->payload = NULL;
|
|
} else if (rrd->payload != NULL) {
|
|
kmem_free(rrd->payload, rrd->payload_size);
|
|
rrd->payload = NULL;
|
|
}
|
|
|
|
return (err);
|
|
}
|
|
}
|
|
|
|
switch (rrd->header.drr_type) {
|
|
case DRR_OBJECT:
|
|
{
|
|
struct drr_object *drro = &rrd->header.drr_u.drr_object;
|
|
err = receive_object(rwa, drro, rrd->payload);
|
|
kmem_free(rrd->payload, rrd->payload_size);
|
|
rrd->payload = NULL;
|
|
break;
|
|
}
|
|
case DRR_FREEOBJECTS:
|
|
{
|
|
struct drr_freeobjects *drrfo =
|
|
&rrd->header.drr_u.drr_freeobjects;
|
|
err = receive_freeobjects(rwa, drrfo);
|
|
break;
|
|
}
|
|
case DRR_WRITE:
|
|
{
|
|
err = receive_process_write_record(rwa, rrd);
|
|
if (err != EAGAIN) {
|
|
/*
|
|
* On success, receive_process_write_record() returns
|
|
* EAGAIN to indicate that we do not want to free
|
|
* the rrd or arc_buf.
|
|
*/
|
|
ASSERT(err != 0);
|
|
abd_free(rrd->abd);
|
|
rrd->abd = NULL;
|
|
}
|
|
break;
|
|
}
|
|
case DRR_WRITE_EMBEDDED:
|
|
{
|
|
struct drr_write_embedded *drrwe =
|
|
&rrd->header.drr_u.drr_write_embedded;
|
|
err = receive_write_embedded(rwa, drrwe, rrd->payload);
|
|
kmem_free(rrd->payload, rrd->payload_size);
|
|
rrd->payload = NULL;
|
|
break;
|
|
}
|
|
case DRR_FREE:
|
|
{
|
|
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
|
|
err = receive_free(rwa, drrf);
|
|
break;
|
|
}
|
|
case DRR_SPILL:
|
|
{
|
|
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
|
|
err = receive_spill(rwa, drrs, rrd->abd);
|
|
if (err != 0)
|
|
abd_free(rrd->abd);
|
|
rrd->abd = NULL;
|
|
rrd->payload = NULL;
|
|
break;
|
|
}
|
|
case DRR_OBJECT_RANGE:
|
|
{
|
|
struct drr_object_range *drror =
|
|
&rrd->header.drr_u.drr_object_range;
|
|
err = receive_object_range(rwa, drror);
|
|
break;
|
|
}
|
|
case DRR_REDACT:
|
|
{
|
|
struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
|
|
err = receive_redact(rwa, drrr);
|
|
break;
|
|
}
|
|
default:
|
|
err = (SET_ERROR(EINVAL));
|
|
}
|
|
|
|
if (err != 0)
|
|
dprintf_drr(rrd, err);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* dmu_recv_stream's worker thread; pull records off the queue, and then call
|
|
* receive_process_record When we're done, signal the main thread and exit.
|
|
*/
|
|
static void
|
|
receive_writer_thread(void *arg)
|
|
{
|
|
struct receive_writer_arg *rwa = arg;
|
|
struct receive_record_arg *rrd;
|
|
fstrans_cookie_t cookie = spl_fstrans_mark();
|
|
|
|
for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
|
|
rrd = bqueue_dequeue(&rwa->q)) {
|
|
/*
|
|
* If there's an error, the main thread will stop putting things
|
|
* on the queue, but we need to clear everything in it before we
|
|
* can exit.
|
|
*/
|
|
int err = 0;
|
|
if (rwa->err == 0) {
|
|
err = receive_process_record(rwa, rrd);
|
|
} else if (rrd->abd != NULL) {
|
|
abd_free(rrd->abd);
|
|
rrd->abd = NULL;
|
|
rrd->payload = NULL;
|
|
} else if (rrd->payload != NULL) {
|
|
kmem_free(rrd->payload, rrd->payload_size);
|
|
rrd->payload = NULL;
|
|
}
|
|
/*
|
|
* EAGAIN indicates that this record has been saved (on
|
|
* raw->write_batch), and will be used again, so we don't
|
|
* free it.
|
|
*/
|
|
if (err != EAGAIN) {
|
|
if (rwa->err == 0)
|
|
rwa->err = err;
|
|
kmem_free(rrd, sizeof (*rrd));
|
|
}
|
|
}
|
|
kmem_free(rrd, sizeof (*rrd));
|
|
|
|
int err = flush_write_batch(rwa);
|
|
if (rwa->err == 0)
|
|
rwa->err = err;
|
|
|
|
mutex_enter(&rwa->mutex);
|
|
rwa->done = B_TRUE;
|
|
cv_signal(&rwa->cv);
|
|
mutex_exit(&rwa->mutex);
|
|
spl_fstrans_unmark(cookie);
|
|
thread_exit();
|
|
}
|
|
|
|
static int
|
|
resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
|
|
{
|
|
uint64_t val;
|
|
objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
|
|
uint64_t dsobj = dmu_objset_id(drc->drc_os);
|
|
uint64_t resume_obj, resume_off;
|
|
|
|
if (nvlist_lookup_uint64(begin_nvl,
|
|
"resume_object", &resume_obj) != 0 ||
|
|
nvlist_lookup_uint64(begin_nvl,
|
|
"resume_offset", &resume_off) != 0) {
|
|
return (SET_ERROR(EINVAL));
|
|
}
|
|
VERIFY0(zap_lookup(mos, dsobj,
|
|
DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
|
|
if (resume_obj != val)
|
|
return (SET_ERROR(EINVAL));
|
|
VERIFY0(zap_lookup(mos, dsobj,
|
|
DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
|
|
if (resume_off != val)
|
|
return (SET_ERROR(EINVAL));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read in the stream's records, one by one, and apply them to the pool. There
|
|
* are two threads involved; the thread that calls this function will spin up a
|
|
* worker thread, read the records off the stream one by one, and issue
|
|
* prefetches for any necessary indirect blocks. It will then push the records
|
|
* onto an internal blocking queue. The worker thread will pull the records off
|
|
* the queue, and actually write the data into the DMU. This way, the worker
|
|
* thread doesn't have to wait for reads to complete, since everything it needs
|
|
* (the indirect blocks) will be prefetched.
|
|
*
|
|
* NB: callers *must* call dmu_recv_end() if this succeeds.
|
|
*/
|
|
int
|
|
dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
|
|
{
|
|
int err = 0;
|
|
struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
|
|
|
|
if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
|
|
uint64_t bytes = 0;
|
|
(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
|
|
drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
|
|
sizeof (bytes), 1, &bytes);
|
|
drc->drc_bytes_read += bytes;
|
|
}
|
|
|
|
drc->drc_ignore_objlist = objlist_create();
|
|
|
|
/* these were verified in dmu_recv_begin */
|
|
ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
|
|
DMU_SUBSTREAM);
|
|
ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
|
|
|
|
ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
|
|
ASSERT0(drc->drc_os->os_encrypted &&
|
|
(drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
|
|
|
|
/* handle DSL encryption key payload */
|
|
if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
|
|
nvlist_t *keynvl = NULL;
|
|
|
|
ASSERT(drc->drc_os->os_encrypted);
|
|
ASSERT(drc->drc_raw);
|
|
|
|
err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
|
|
&keynvl);
|
|
if (err != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* If this is a new dataset we set the key immediately.
|
|
* Otherwise we don't want to change the key until we
|
|
* are sure the rest of the receive succeeded so we stash
|
|
* the keynvl away until then.
|
|
*/
|
|
err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
|
|
drc->drc_ds->ds_object, drc->drc_fromsnapobj,
|
|
drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
|
|
if (err != 0)
|
|
goto out;
|
|
|
|
/* see comment in dmu_recv_end_sync() */
|
|
drc->drc_ivset_guid = 0;
|
|
(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
|
|
&drc->drc_ivset_guid);
|
|
|
|
if (!drc->drc_newfs)
|
|
drc->drc_keynvl = fnvlist_dup(keynvl);
|
|
}
|
|
|
|
if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
|
|
err = resume_check(drc, drc->drc_begin_nvl);
|
|
if (err != 0)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If we failed before this point we will clean up any new resume
|
|
* state that was created. Now that we've gotten past the initial
|
|
* checks we are ok to retain that resume state.
|
|
*/
|
|
drc->drc_should_save = B_TRUE;
|
|
|
|
(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
|
|
MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
|
|
offsetof(struct receive_record_arg, node));
|
|
cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
|
|
mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
|
|
rwa->os = drc->drc_os;
|
|
rwa->byteswap = drc->drc_byteswap;
|
|
rwa->resumable = drc->drc_resumable;
|
|
rwa->raw = drc->drc_raw;
|
|
rwa->spill = drc->drc_spill;
|
|
rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
|
|
rwa->os->os_raw_receive = drc->drc_raw;
|
|
list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
|
|
offsetof(struct receive_record_arg, node.bqn_node));
|
|
|
|
(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
|
|
TS_RUN, minclsyspri);
|
|
/*
|
|
* We're reading rwa->err without locks, which is safe since we are the
|
|
* only reader, and the worker thread is the only writer. It's ok if we
|
|
* miss a write for an iteration or two of the loop, since the writer
|
|
* thread will keep freeing records we send it until we send it an eos
|
|
* marker.
|
|
*
|
|
* We can leave this loop in 3 ways: First, if rwa->err is
|
|
* non-zero. In that case, the writer thread will free the rrd we just
|
|
* pushed. Second, if we're interrupted; in that case, either it's the
|
|
* first loop and drc->drc_rrd was never allocated, or it's later, and
|
|
* drc->drc_rrd has been handed off to the writer thread who will free
|
|
* it. Finally, if receive_read_record fails or we're at the end of the
|
|
* stream, then we free drc->drc_rrd and exit.
|
|
*/
|
|
while (rwa->err == 0) {
|
|
if (issig(JUSTLOOKING) && issig(FORREAL)) {
|
|
err = SET_ERROR(EINTR);
|
|
break;
|
|
}
|
|
|
|
ASSERT3P(drc->drc_rrd, ==, NULL);
|
|
drc->drc_rrd = drc->drc_next_rrd;
|
|
drc->drc_next_rrd = NULL;
|
|
/* Allocates and loads header into drc->drc_next_rrd */
|
|
err = receive_read_record(drc);
|
|
|
|
if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
|
|
kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
|
|
drc->drc_rrd = NULL;
|
|
break;
|
|
}
|
|
|
|
bqueue_enqueue(&rwa->q, drc->drc_rrd,
|
|
sizeof (struct receive_record_arg) +
|
|
drc->drc_rrd->payload_size);
|
|
drc->drc_rrd = NULL;
|
|
}
|
|
|
|
ASSERT3P(drc->drc_rrd, ==, NULL);
|
|
drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
|
|
drc->drc_rrd->eos_marker = B_TRUE;
|
|
bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
|
|
|
|
mutex_enter(&rwa->mutex);
|
|
while (!rwa->done) {
|
|
/*
|
|
* We need to use cv_wait_sig() so that any process that may
|
|
* be sleeping here can still fork.
|
|
*/
|
|
(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
|
|
}
|
|
mutex_exit(&rwa->mutex);
|
|
|
|
/*
|
|
* If we are receiving a full stream as a clone, all object IDs which
|
|
* are greater than the maximum ID referenced in the stream are
|
|
* by definition unused and must be freed.
|
|
*/
|
|
if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
|
|
uint64_t obj = rwa->max_object + 1;
|
|
int free_err = 0;
|
|
int next_err = 0;
|
|
|
|
while (next_err == 0) {
|
|
free_err = dmu_free_long_object(rwa->os, obj);
|
|
if (free_err != 0 && free_err != ENOENT)
|
|
break;
|
|
|
|
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
|
|
}
|
|
|
|
if (err == 0) {
|
|
if (free_err != 0 && free_err != ENOENT)
|
|
err = free_err;
|
|
else if (next_err != ESRCH)
|
|
err = next_err;
|
|
}
|
|
}
|
|
|
|
cv_destroy(&rwa->cv);
|
|
mutex_destroy(&rwa->mutex);
|
|
bqueue_destroy(&rwa->q);
|
|
list_destroy(&rwa->write_batch);
|
|
if (err == 0)
|
|
err = rwa->err;
|
|
|
|
out:
|
|
/*
|
|
* If we hit an error before we started the receive_writer_thread
|
|
* we need to clean up the next_rrd we create by processing the
|
|
* DRR_BEGIN record.
|
|
*/
|
|
if (drc->drc_next_rrd != NULL)
|
|
kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
|
|
|
|
/*
|
|
* The objset will be invalidated by dmu_recv_end() when we do
|
|
* dsl_dataset_clone_swap_sync_impl().
|
|
*/
|
|
drc->drc_os = NULL;
|
|
|
|
kmem_free(rwa, sizeof (*rwa));
|
|
nvlist_free(drc->drc_begin_nvl);
|
|
|
|
if (err != 0) {
|
|
/*
|
|
* Clean up references. If receive is not resumable,
|
|
* destroy what we created, so we don't leave it in
|
|
* the inconsistent state.
|
|
*/
|
|
dmu_recv_cleanup_ds(drc);
|
|
nvlist_free(drc->drc_keynvl);
|
|
}
|
|
|
|
objlist_destroy(drc->drc_ignore_objlist);
|
|
drc->drc_ignore_objlist = NULL;
|
|
*voffp = drc->drc_voff;
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
dmu_recv_end_check(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_cookie_t *drc = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
int error;
|
|
|
|
ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
|
|
|
|
if (!drc->drc_newfs) {
|
|
dsl_dataset_t *origin_head;
|
|
|
|
error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
|
|
if (error != 0)
|
|
return (error);
|
|
if (drc->drc_force) {
|
|
/*
|
|
* We will destroy any snapshots in tofs (i.e. before
|
|
* origin_head) that are after the origin (which is
|
|
* the snap before drc_ds, because drc_ds can not
|
|
* have any snaps of its own).
|
|
*/
|
|
uint64_t obj;
|
|
|
|
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
|
while (obj !=
|
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
|
|
dsl_dataset_t *snap;
|
|
error = dsl_dataset_hold_obj(dp, obj, FTAG,
|
|
&snap);
|
|
if (error != 0)
|
|
break;
|
|
if (snap->ds_dir != origin_head->ds_dir)
|
|
error = SET_ERROR(EINVAL);
|
|
if (error == 0) {
|
|
error = dsl_destroy_snapshot_check_impl(
|
|
snap, B_FALSE);
|
|
}
|
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
|
dsl_dataset_rele(snap, FTAG);
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
if (error != 0) {
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
return (error);
|
|
}
|
|
}
|
|
if (drc->drc_keynvl != NULL) {
|
|
error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
|
|
drc->drc_keynvl, tx);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
|
|
origin_head, drc->drc_force, drc->drc_owner, tx);
|
|
if (error != 0) {
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
return (error);
|
|
}
|
|
error = dsl_dataset_snapshot_check_impl(origin_head,
|
|
drc->drc_tosnap, tx, B_TRUE, 1,
|
|
drc->drc_cred, drc->drc_proc);
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
|
|
} else {
|
|
error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
|
|
drc->drc_tosnap, tx, B_TRUE, 1,
|
|
drc->drc_cred, drc->drc_proc);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
|
|
{
|
|
dmu_recv_cookie_t *drc = arg;
|
|
dsl_pool_t *dp = dmu_tx_pool(tx);
|
|
boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
|
|
uint64_t newsnapobj;
|
|
|
|
spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
|
|
tx, "snap=%s", drc->drc_tosnap);
|
|
drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
|
|
|
|
if (!drc->drc_newfs) {
|
|
dsl_dataset_t *origin_head;
|
|
|
|
VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
|
|
&origin_head));
|
|
|
|
if (drc->drc_force) {
|
|
/*
|
|
* Destroy any snapshots of drc_tofs (origin_head)
|
|
* after the origin (the snap before drc_ds).
|
|
*/
|
|
uint64_t obj;
|
|
|
|
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
|
while (obj !=
|
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
|
|
dsl_dataset_t *snap;
|
|
VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
|
|
&snap));
|
|
ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
|
|
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
|
|
dsl_destroy_snapshot_sync_impl(snap,
|
|
B_FALSE, tx);
|
|
dsl_dataset_rele(snap, FTAG);
|
|
}
|
|
}
|
|
if (drc->drc_keynvl != NULL) {
|
|
dsl_crypto_recv_raw_key_sync(drc->drc_ds,
|
|
drc->drc_keynvl, tx);
|
|
nvlist_free(drc->drc_keynvl);
|
|
drc->drc_keynvl = NULL;
|
|
}
|
|
|
|
VERIFY3P(drc->drc_ds->ds_prev, ==,
|
|
origin_head->ds_prev);
|
|
|
|
dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
|
|
origin_head, tx);
|
|
/*
|
|
* The objset was evicted by dsl_dataset_clone_swap_sync_impl,
|
|
* so drc_os is no longer valid.
|
|
*/
|
|
drc->drc_os = NULL;
|
|
|
|
dsl_dataset_snapshot_sync_impl(origin_head,
|
|
drc->drc_tosnap, tx);
|
|
|
|
/* set snapshot's creation time and guid */
|
|
dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
|
|
dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
|
|
drc->drc_drrb->drr_creation_time;
|
|
dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
|
|
drc->drc_drrb->drr_toguid;
|
|
dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
|
|
~DS_FLAG_INCONSISTENT;
|
|
|
|
dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
|
|
dsl_dataset_phys(origin_head)->ds_flags &=
|
|
~DS_FLAG_INCONSISTENT;
|
|
|
|
newsnapobj =
|
|
dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
|
|
|
|
dsl_dataset_rele(origin_head, FTAG);
|
|
dsl_destroy_head_sync_impl(drc->drc_ds, tx);
|
|
|
|
if (drc->drc_owner != NULL)
|
|
VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
|
|
} else {
|
|
dsl_dataset_t *ds = drc->drc_ds;
|
|
|
|
dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
|
|
|
|
/* set snapshot's creation time and guid */
|
|
dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
|
|
dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
|
|
drc->drc_drrb->drr_creation_time;
|
|
dsl_dataset_phys(ds->ds_prev)->ds_guid =
|
|
drc->drc_drrb->drr_toguid;
|
|
dsl_dataset_phys(ds->ds_prev)->ds_flags &=
|
|
~DS_FLAG_INCONSISTENT;
|
|
|
|
dmu_buf_will_dirty(ds->ds_dbuf, tx);
|
|
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
|
|
if (dsl_dataset_has_resume_receive_state(ds)) {
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_FROMGUID, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_OBJECT, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_OFFSET, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_BYTES, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_TOGUID, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_TONAME, tx);
|
|
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
|
|
DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
|
|
}
|
|
newsnapobj =
|
|
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
|
|
}
|
|
|
|
/*
|
|
* If this is a raw receive, the crypt_keydata nvlist will include
|
|
* a to_ivset_guid for us to set on the new snapshot. This value
|
|
* will override the value generated by the snapshot code. However,
|
|
* this value may not be present, because older implementations of
|
|
* the raw send code did not include this value, and we are still
|
|
* allowed to receive them if the zfs_disable_ivset_guid_check
|
|
* tunable is set, in which case we will leave the newly-generated
|
|
* value.
|
|
*/
|
|
if (drc->drc_raw && drc->drc_ivset_guid != 0) {
|
|
dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
|
|
DMU_OT_DSL_DATASET, tx);
|
|
VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
|
|
DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
|
|
&drc->drc_ivset_guid, tx));
|
|
}
|
|
|
|
/*
|
|
* Release the hold from dmu_recv_begin. This must be done before
|
|
* we return to open context, so that when we free the dataset's dnode
|
|
* we can evict its bonus buffer. Since the dataset may be destroyed
|
|
* at this point (and therefore won't have a valid pointer to the spa)
|
|
* we release the key mapping manually here while we do have a valid
|
|
* pointer, if it exists.
|
|
*/
|
|
if (!drc->drc_raw && encrypted) {
|
|
(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
|
|
drc->drc_ds->ds_object, drc->drc_ds);
|
|
}
|
|
dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
|
|
drc->drc_ds = NULL;
|
|
}
|
|
|
|
static int dmu_recv_end_modified_blocks = 3;
|
|
|
|
static int
|
|
dmu_recv_existing_end(dmu_recv_cookie_t *drc)
|
|
{
|
|
#ifdef _KERNEL
|
|
/*
|
|
* We will be destroying the ds; make sure its origin is unmounted if
|
|
* necessary.
|
|
*/
|
|
char name[ZFS_MAX_DATASET_NAME_LEN];
|
|
dsl_dataset_name(drc->drc_ds, name);
|
|
zfs_destroy_unmount_origin(name);
|
|
#endif
|
|
|
|
return (dsl_sync_task(drc->drc_tofs,
|
|
dmu_recv_end_check, dmu_recv_end_sync, drc,
|
|
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
|
|
}
|
|
|
|
static int
|
|
dmu_recv_new_end(dmu_recv_cookie_t *drc)
|
|
{
|
|
return (dsl_sync_task(drc->drc_tofs,
|
|
dmu_recv_end_check, dmu_recv_end_sync, drc,
|
|
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
|
|
}
|
|
|
|
int
|
|
dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
|
|
{
|
|
int error;
|
|
|
|
drc->drc_owner = owner;
|
|
|
|
if (drc->drc_newfs)
|
|
error = dmu_recv_new_end(drc);
|
|
else
|
|
error = dmu_recv_existing_end(drc);
|
|
|
|
if (error != 0) {
|
|
dmu_recv_cleanup_ds(drc);
|
|
nvlist_free(drc->drc_keynvl);
|
|
} else {
|
|
if (drc->drc_newfs) {
|
|
zvol_create_minor(drc->drc_tofs);
|
|
}
|
|
char *snapname = kmem_asprintf("%s@%s",
|
|
drc->drc_tofs, drc->drc_tosnap);
|
|
zvol_create_minor(snapname);
|
|
kmem_strfree(snapname);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Return TRUE if this objset is currently being received into.
|
|
*/
|
|
boolean_t
|
|
dmu_objset_is_receiving(objset_t *os)
|
|
{
|
|
return (os->os_dsl_dataset != NULL &&
|
|
os->os_dsl_dataset->ds_owner == dmu_recv_tag);
|
|
}
|
|
|
|
/* BEGIN CSTYLED */
|
|
ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW,
|
|
"Maximum receive queue length");
|
|
|
|
ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW,
|
|
"Receive queue fill fraction");
|
|
|
|
ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW,
|
|
"Maximum amount of writes to batch into one transaction");
|
|
/* END CSTYLED */
|