mirror of
https://git.proxmox.com/git/mirror_zfs.git
synced 2025-01-25 01:16:34 +03:00
327c904615
No symbols affected in libavl No symbols affected by libtpool, but pre-ANSI declarations got purged No symbols affected by libzfs_core No symbols affected by libzfs_bootenv libefi got cleaned, gained efi_debug documentation in efi_partition.h, and removes one undocumented and unused symbol from libzfs_core: D default_vtoc_map libnvpair saw removal of these symbols: D nv_alloc_nosleep_def D nv_alloc_sleep D nv_alloc_sleep_def D nv_fixed_ops_def D nvlist_hashtable_init_size D nvpair_max_recursion libshare saw removal of these symbols from libzfs: T libshare_nfs_init T libshare_smb_init T register_fstype B smb_shares libzutil saw removal of these internal symbols from libzfs_core: T label_paths T slice_cache_compare T zpool_find_import_blkid T zpool_open_func T zutil_alloc T zutil_strdup Reviewed-by: Matthew Ahrens <mahrens@delphix.com> Reviewed-by: John Kennedy <john.kennedy@delphix.com> Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov> Signed-off-by: Ahelenia Ziemiańska <nabijaczleweli@nabijaczleweli.xyz> Closes #12191
1661 lines
43 KiB
C
1661 lines
43 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
|
|
* Copyright 2012 Nexenta Systems, Inc. All rights reserved.
|
|
* Copyright (c) 2018 by Delphix. All rights reserved.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <errno.h>
|
|
#include <string.h>
|
|
#include <strings.h>
|
|
#include <unistd.h>
|
|
#include <uuid/uuid.h>
|
|
#include <zlib.h>
|
|
#include <libintl.h>
|
|
#include <sys/types.h>
|
|
#include <sys/dkio.h>
|
|
#include <sys/vtoc.h>
|
|
#include <sys/mhd.h>
|
|
#include <sys/param.h>
|
|
#include <sys/dktp/fdisk.h>
|
|
#include <sys/efi_partition.h>
|
|
#include <sys/byteorder.h>
|
|
#include <sys/vdev_disk.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/blkpg.h>
|
|
|
|
static struct uuid_to_ptag {
|
|
struct uuid uuid;
|
|
} conversion_array[] = {
|
|
{ EFI_UNUSED },
|
|
{ EFI_BOOT },
|
|
{ EFI_ROOT },
|
|
{ EFI_SWAP },
|
|
{ EFI_USR },
|
|
{ EFI_BACKUP },
|
|
{ EFI_UNUSED }, /* STAND is never used */
|
|
{ EFI_VAR },
|
|
{ EFI_HOME },
|
|
{ EFI_ALTSCTR },
|
|
{ EFI_UNUSED }, /* CACHE (cachefs) is never used */
|
|
{ EFI_RESERVED },
|
|
{ EFI_SYSTEM },
|
|
{ EFI_LEGACY_MBR },
|
|
{ EFI_SYMC_PUB },
|
|
{ EFI_SYMC_CDS },
|
|
{ EFI_MSFT_RESV },
|
|
{ EFI_DELL_BASIC },
|
|
{ EFI_DELL_RAID },
|
|
{ EFI_DELL_SWAP },
|
|
{ EFI_DELL_LVM },
|
|
{ EFI_DELL_RESV },
|
|
{ EFI_AAPL_HFS },
|
|
{ EFI_AAPL_UFS },
|
|
{ EFI_FREEBSD_BOOT },
|
|
{ EFI_FREEBSD_SWAP },
|
|
{ EFI_FREEBSD_UFS },
|
|
{ EFI_FREEBSD_VINUM },
|
|
{ EFI_FREEBSD_ZFS },
|
|
{ EFI_BIOS_BOOT },
|
|
{ EFI_INTC_RS },
|
|
{ EFI_SNE_BOOT },
|
|
{ EFI_LENOVO_BOOT },
|
|
{ EFI_MSFT_LDMM },
|
|
{ EFI_MSFT_LDMD },
|
|
{ EFI_MSFT_RE },
|
|
{ EFI_IBM_GPFS },
|
|
{ EFI_MSFT_STORAGESPACES },
|
|
{ EFI_HPQ_DATA },
|
|
{ EFI_HPQ_SVC },
|
|
{ EFI_RHT_DATA },
|
|
{ EFI_RHT_HOME },
|
|
{ EFI_RHT_SRV },
|
|
{ EFI_RHT_DMCRYPT },
|
|
{ EFI_RHT_LUKS },
|
|
{ EFI_FREEBSD_DISKLABEL },
|
|
{ EFI_AAPL_RAID },
|
|
{ EFI_AAPL_RAIDOFFLINE },
|
|
{ EFI_AAPL_BOOT },
|
|
{ EFI_AAPL_LABEL },
|
|
{ EFI_AAPL_TVRECOVERY },
|
|
{ EFI_AAPL_CORESTORAGE },
|
|
{ EFI_NETBSD_SWAP },
|
|
{ EFI_NETBSD_FFS },
|
|
{ EFI_NETBSD_LFS },
|
|
{ EFI_NETBSD_RAID },
|
|
{ EFI_NETBSD_CAT },
|
|
{ EFI_NETBSD_CRYPT },
|
|
{ EFI_GOOG_KERN },
|
|
{ EFI_GOOG_ROOT },
|
|
{ EFI_GOOG_RESV },
|
|
{ EFI_HAIKU_BFS },
|
|
{ EFI_MIDNIGHTBSD_BOOT },
|
|
{ EFI_MIDNIGHTBSD_DATA },
|
|
{ EFI_MIDNIGHTBSD_SWAP },
|
|
{ EFI_MIDNIGHTBSD_UFS },
|
|
{ EFI_MIDNIGHTBSD_VINUM },
|
|
{ EFI_MIDNIGHTBSD_ZFS },
|
|
{ EFI_CEPH_JOURNAL },
|
|
{ EFI_CEPH_DMCRYPTJOURNAL },
|
|
{ EFI_CEPH_OSD },
|
|
{ EFI_CEPH_DMCRYPTOSD },
|
|
{ EFI_CEPH_CREATE },
|
|
{ EFI_CEPH_DMCRYPTCREATE },
|
|
{ EFI_OPENBSD_DISKLABEL },
|
|
{ EFI_BBRY_QNX },
|
|
{ EFI_BELL_PLAN9 },
|
|
{ EFI_VMW_KCORE },
|
|
{ EFI_VMW_VMFS },
|
|
{ EFI_VMW_RESV },
|
|
{ EFI_RHT_ROOTX86 },
|
|
{ EFI_RHT_ROOTAMD64 },
|
|
{ EFI_RHT_ROOTARM },
|
|
{ EFI_RHT_ROOTARM64 },
|
|
{ EFI_ACRONIS_SECUREZONE },
|
|
{ EFI_ONIE_BOOT },
|
|
{ EFI_ONIE_CONFIG },
|
|
{ EFI_IBM_PPRPBOOT },
|
|
{ EFI_FREEDESKTOP_BOOT }
|
|
};
|
|
|
|
int efi_debug = 0;
|
|
|
|
static int efi_read(int, struct dk_gpt *);
|
|
|
|
/*
|
|
* Return a 32-bit CRC of the contents of the buffer. Pre-and-post
|
|
* one's conditioning will be handled by crc32() internally.
|
|
*/
|
|
static uint32_t
|
|
efi_crc32(const unsigned char *buf, unsigned int size)
|
|
{
|
|
uint32_t crc = crc32(0, Z_NULL, 0);
|
|
|
|
crc = crc32(crc, buf, size);
|
|
|
|
return (crc);
|
|
}
|
|
|
|
static int
|
|
read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
|
|
{
|
|
int sector_size;
|
|
unsigned long long capacity_size;
|
|
|
|
if (ioctl(fd, BLKSSZGET, §or_size) < 0)
|
|
return (-1);
|
|
|
|
if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
|
|
return (-1);
|
|
|
|
*lbsize = (uint_t)sector_size;
|
|
*capacity = (diskaddr_t)(capacity_size / sector_size);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Return back the device name associated with the file descriptor. The
|
|
* caller is responsible for freeing the memory associated with the
|
|
* returned string.
|
|
*/
|
|
static char *
|
|
efi_get_devname(int fd)
|
|
{
|
|
char path[32];
|
|
|
|
/*
|
|
* The libefi API only provides the open fd and not the file path.
|
|
* To handle this realpath(3) is used to resolve the block device
|
|
* name from /proc/self/fd/<fd>.
|
|
*/
|
|
(void) snprintf(path, sizeof (path), "/proc/self/fd/%d", fd);
|
|
return (realpath(path, NULL));
|
|
}
|
|
|
|
static int
|
|
efi_get_info(int fd, struct dk_cinfo *dki_info)
|
|
{
|
|
char *dev_path;
|
|
int rval = 0;
|
|
|
|
memset(dki_info, 0, sizeof (*dki_info));
|
|
|
|
/*
|
|
* The simplest way to get the partition number under linux is
|
|
* to parse it out of the /dev/<disk><partition> block device name.
|
|
* The kernel creates this using the partition number when it
|
|
* populates /dev/ so it may be trusted. The tricky bit here is
|
|
* that the naming convention is based on the block device type.
|
|
* So we need to take this in to account when parsing out the
|
|
* partition information. Aside from the partition number we collect
|
|
* some additional device info.
|
|
*/
|
|
dev_path = efi_get_devname(fd);
|
|
if (dev_path == NULL)
|
|
goto error;
|
|
|
|
if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
|
|
strcpy(dki_info->dki_cname, "sd");
|
|
dki_info->dki_ctype = DKC_SCSI_CCS;
|
|
rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
|
|
dki_info->dki_dname,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
|
|
strcpy(dki_info->dki_cname, "hd");
|
|
dki_info->dki_ctype = DKC_DIRECT;
|
|
rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
|
|
dki_info->dki_dname,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
|
|
strcpy(dki_info->dki_cname, "pseudo");
|
|
dki_info->dki_ctype = DKC_MD;
|
|
strcpy(dki_info->dki_dname, "md");
|
|
rval = sscanf(dev_path, "/dev/md%[0-9]p%hu",
|
|
dki_info->dki_dname + 2,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
|
|
strcpy(dki_info->dki_cname, "vd");
|
|
dki_info->dki_ctype = DKC_MD;
|
|
rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
|
|
dki_info->dki_dname,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) {
|
|
strcpy(dki_info->dki_cname, "xvd");
|
|
dki_info->dki_ctype = DKC_MD;
|
|
rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
|
|
dki_info->dki_dname,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) {
|
|
strcpy(dki_info->dki_cname, "zd");
|
|
dki_info->dki_ctype = DKC_MD;
|
|
strcpy(dki_info->dki_dname, "zd");
|
|
rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu",
|
|
dki_info->dki_dname + 2,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
|
|
strcpy(dki_info->dki_cname, "pseudo");
|
|
dki_info->dki_ctype = DKC_VBD;
|
|
strcpy(dki_info->dki_dname, "dm-");
|
|
rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu",
|
|
dki_info->dki_dname + 3,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
|
|
strcpy(dki_info->dki_cname, "pseudo");
|
|
dki_info->dki_ctype = DKC_PCMCIA_MEM;
|
|
strcpy(dki_info->dki_dname, "ram");
|
|
rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu",
|
|
dki_info->dki_dname + 3,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
|
|
strcpy(dki_info->dki_cname, "pseudo");
|
|
dki_info->dki_ctype = DKC_VBD;
|
|
strcpy(dki_info->dki_dname, "loop");
|
|
rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu",
|
|
dki_info->dki_dname + 4,
|
|
&dki_info->dki_partition);
|
|
} else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) {
|
|
strcpy(dki_info->dki_cname, "nvme");
|
|
dki_info->dki_ctype = DKC_SCSI_CCS;
|
|
strcpy(dki_info->dki_dname, "nvme");
|
|
(void) sscanf(dev_path, "/dev/nvme%[0-9]",
|
|
dki_info->dki_dname + 4);
|
|
size_t controller_length = strlen(
|
|
dki_info->dki_dname);
|
|
strcpy(dki_info->dki_dname + controller_length,
|
|
"n");
|
|
rval = sscanf(dev_path,
|
|
"/dev/nvme%*[0-9]n%[0-9]p%hu",
|
|
dki_info->dki_dname + controller_length + 1,
|
|
&dki_info->dki_partition);
|
|
} else {
|
|
strcpy(dki_info->dki_dname, "unknown");
|
|
strcpy(dki_info->dki_cname, "unknown");
|
|
dki_info->dki_ctype = DKC_UNKNOWN;
|
|
}
|
|
|
|
switch (rval) {
|
|
case 0:
|
|
errno = EINVAL;
|
|
goto error;
|
|
case 1:
|
|
dki_info->dki_partition = 0;
|
|
}
|
|
|
|
free(dev_path);
|
|
|
|
return (0);
|
|
error:
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
|
|
|
|
switch (errno) {
|
|
case EIO:
|
|
return (VT_EIO);
|
|
case EINVAL:
|
|
return (VT_EINVAL);
|
|
default:
|
|
return (VT_ERROR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* the number of blocks the EFI label takes up (round up to nearest
|
|
* block)
|
|
*/
|
|
#define NBLOCKS(p, l) (1 + ((((p) * (int)sizeof (efi_gpe_t)) + \
|
|
((l) - 1)) / (l)))
|
|
/* number of partitions -- limited by what we can malloc */
|
|
#define MAX_PARTS ((4294967295UL - sizeof (struct dk_gpt)) / \
|
|
sizeof (struct dk_part))
|
|
|
|
int
|
|
efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
|
|
{
|
|
diskaddr_t capacity = 0;
|
|
uint_t lbsize = 0;
|
|
uint_t nblocks;
|
|
size_t length;
|
|
struct dk_gpt *vptr;
|
|
struct uuid uuid;
|
|
struct dk_cinfo dki_info;
|
|
|
|
if (read_disk_info(fd, &capacity, &lbsize) != 0)
|
|
return (-1);
|
|
|
|
if (efi_get_info(fd, &dki_info) != 0)
|
|
return (-1);
|
|
|
|
if (dki_info.dki_partition != 0)
|
|
return (-1);
|
|
|
|
if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
|
|
(dki_info.dki_ctype == DKC_VBD) ||
|
|
(dki_info.dki_ctype == DKC_UNKNOWN))
|
|
return (-1);
|
|
|
|
nblocks = NBLOCKS(nparts, lbsize);
|
|
if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
|
|
/* 16K plus one block for the GPT */
|
|
nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
|
|
}
|
|
|
|
if (nparts > MAX_PARTS) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"the maximum number of partitions supported is %lu\n",
|
|
MAX_PARTS);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
length = sizeof (struct dk_gpt) +
|
|
sizeof (struct dk_part) * (nparts - 1);
|
|
|
|
vptr = calloc(1, length);
|
|
if (vptr == NULL)
|
|
return (-1);
|
|
|
|
*vtoc = vptr;
|
|
|
|
vptr->efi_version = EFI_VERSION_CURRENT;
|
|
vptr->efi_lbasize = lbsize;
|
|
vptr->efi_nparts = nparts;
|
|
/*
|
|
* add one block here for the PMBR; on disks with a 512 byte
|
|
* block size and 128 or fewer partitions, efi_first_u_lba
|
|
* should work out to "34"
|
|
*/
|
|
vptr->efi_first_u_lba = nblocks + 1;
|
|
vptr->efi_last_lba = capacity - 1;
|
|
vptr->efi_altern_lba = capacity -1;
|
|
vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
|
|
|
|
(void) uuid_generate((uchar_t *)&uuid);
|
|
UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Read EFI - return partition number upon success.
|
|
*/
|
|
int
|
|
efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
|
|
{
|
|
int rval;
|
|
uint32_t nparts;
|
|
int length;
|
|
struct dk_gpt *vptr;
|
|
|
|
/* figure out the number of entries that would fit into 16K */
|
|
nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
|
|
length = (int) sizeof (struct dk_gpt) +
|
|
(int) sizeof (struct dk_part) * (nparts - 1);
|
|
vptr = calloc(1, length);
|
|
|
|
if (vptr == NULL)
|
|
return (VT_ERROR);
|
|
|
|
vptr->efi_nparts = nparts;
|
|
rval = efi_read(fd, vptr);
|
|
|
|
if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) {
|
|
void *tmp;
|
|
length = (int) sizeof (struct dk_gpt) +
|
|
(int) sizeof (struct dk_part) * (vptr->efi_nparts - 1);
|
|
nparts = vptr->efi_nparts;
|
|
if ((tmp = realloc(vptr, length)) == NULL) {
|
|
/* cppcheck-suppress doubleFree */
|
|
free(vptr);
|
|
*vtoc = NULL;
|
|
return (VT_ERROR);
|
|
} else {
|
|
vptr = tmp;
|
|
rval = efi_read(fd, vptr);
|
|
}
|
|
}
|
|
|
|
if (rval < 0) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"read of EFI table failed, rval=%d\n", rval);
|
|
}
|
|
free(vptr);
|
|
*vtoc = NULL;
|
|
} else {
|
|
*vtoc = vptr;
|
|
}
|
|
|
|
return (rval);
|
|
}
|
|
|
|
static int
|
|
efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
|
|
{
|
|
void *data = dk_ioc->dki_data;
|
|
int error;
|
|
diskaddr_t capacity;
|
|
uint_t lbsize;
|
|
|
|
/*
|
|
* When the IO is not being performed in kernel as an ioctl we need
|
|
* to know the sector size so we can seek to the proper byte offset.
|
|
*/
|
|
if (read_disk_info(fd, &capacity, &lbsize) == -1) {
|
|
if (efi_debug)
|
|
fprintf(stderr, "unable to read disk info: %d", errno);
|
|
|
|
errno = EIO;
|
|
return (-1);
|
|
}
|
|
|
|
switch (cmd) {
|
|
case DKIOCGETEFI:
|
|
if (lbsize == 0) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCGETEFI assuming "
|
|
"LBA %d bytes\n", DEV_BSIZE);
|
|
|
|
lbsize = DEV_BSIZE;
|
|
}
|
|
|
|
error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
|
|
if (error == -1) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCGETEFI lseek "
|
|
"error: %d\n", errno);
|
|
return (error);
|
|
}
|
|
|
|
error = read(fd, data, dk_ioc->dki_length);
|
|
if (error == -1) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCGETEFI read "
|
|
"error: %d\n", errno);
|
|
return (error);
|
|
}
|
|
|
|
if (error != dk_ioc->dki_length) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCGETEFI short "
|
|
"read of %d bytes\n", error);
|
|
errno = EIO;
|
|
return (-1);
|
|
}
|
|
error = 0;
|
|
break;
|
|
|
|
case DKIOCSETEFI:
|
|
if (lbsize == 0) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCSETEFI unknown "
|
|
"LBA size\n");
|
|
errno = EIO;
|
|
return (-1);
|
|
}
|
|
|
|
error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
|
|
if (error == -1) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCSETEFI lseek "
|
|
"error: %d\n", errno);
|
|
return (error);
|
|
}
|
|
|
|
error = write(fd, data, dk_ioc->dki_length);
|
|
if (error == -1) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCSETEFI write "
|
|
"error: %d\n", errno);
|
|
return (error);
|
|
}
|
|
|
|
if (error != dk_ioc->dki_length) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "DKIOCSETEFI short "
|
|
"write of %d bytes\n", error);
|
|
errno = EIO;
|
|
return (-1);
|
|
}
|
|
|
|
/* Sync the new EFI table to disk */
|
|
error = fsync(fd);
|
|
if (error == -1)
|
|
return (error);
|
|
|
|
/* Ensure any local disk cache is also flushed */
|
|
if (ioctl(fd, BLKFLSBUF, 0) == -1)
|
|
return (error);
|
|
|
|
error = 0;
|
|
break;
|
|
|
|
default:
|
|
if (efi_debug)
|
|
(void) fprintf(stderr, "unsupported ioctl()\n");
|
|
|
|
errno = EIO;
|
|
return (-1);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
efi_rescan(int fd)
|
|
{
|
|
int retry = 10;
|
|
int error;
|
|
|
|
/* Notify the kernel a devices partition table has been updated */
|
|
while ((error = ioctl(fd, BLKRRPART)) != 0) {
|
|
if ((--retry == 0) || (errno != EBUSY)) {
|
|
(void) fprintf(stderr, "the kernel failed to rescan "
|
|
"the partition table: %d\n", errno);
|
|
return (-1);
|
|
}
|
|
usleep(50000);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
check_label(int fd, dk_efi_t *dk_ioc)
|
|
{
|
|
efi_gpt_t *efi;
|
|
uint_t crc;
|
|
|
|
if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
|
|
switch (errno) {
|
|
case EIO:
|
|
return (VT_EIO);
|
|
default:
|
|
return (VT_ERROR);
|
|
}
|
|
}
|
|
efi = dk_ioc->dki_data;
|
|
if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr,
|
|
"Bad EFI signature: 0x%llx != 0x%llx\n",
|
|
(long long)efi->efi_gpt_Signature,
|
|
(long long)LE_64(EFI_SIGNATURE));
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
/*
|
|
* check CRC of the header; the size of the header should
|
|
* never be larger than one block
|
|
*/
|
|
crc = efi->efi_gpt_HeaderCRC32;
|
|
efi->efi_gpt_HeaderCRC32 = 0;
|
|
len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
|
|
|
|
if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr,
|
|
"Invalid EFI HeaderSize %llu. Assuming %d.\n",
|
|
headerSize, EFI_MIN_LABEL_SIZE);
|
|
}
|
|
|
|
if ((headerSize > dk_ioc->dki_length) ||
|
|
crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
|
|
if (efi_debug)
|
|
(void) fprintf(stderr,
|
|
"Bad EFI CRC: 0x%x != 0x%x\n",
|
|
crc, LE_32(efi_crc32((unsigned char *)efi,
|
|
headerSize)));
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
efi_read(int fd, struct dk_gpt *vtoc)
|
|
{
|
|
int i, j;
|
|
int label_len;
|
|
int rval = 0;
|
|
int md_flag = 0;
|
|
int vdc_flag = 0;
|
|
diskaddr_t capacity = 0;
|
|
uint_t lbsize = 0;
|
|
struct dk_minfo disk_info;
|
|
dk_efi_t dk_ioc;
|
|
efi_gpt_t *efi;
|
|
efi_gpe_t *efi_parts;
|
|
struct dk_cinfo dki_info;
|
|
uint32_t user_length;
|
|
boolean_t legacy_label = B_FALSE;
|
|
|
|
/*
|
|
* get the partition number for this file descriptor.
|
|
*/
|
|
if ((rval = efi_get_info(fd, &dki_info)) != 0)
|
|
return (rval);
|
|
|
|
if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
|
|
(strncmp(dki_info.dki_dname, "md", 3) == 0)) {
|
|
md_flag++;
|
|
} else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
|
|
(strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
|
|
/*
|
|
* The controller and drive name "vdc" (virtual disk client)
|
|
* indicates a LDoms virtual disk.
|
|
*/
|
|
vdc_flag++;
|
|
}
|
|
|
|
/* get the LBA size */
|
|
if (read_disk_info(fd, &capacity, &lbsize) == -1) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"unable to read disk info: %d",
|
|
errno);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
disk_info.dki_lbsize = lbsize;
|
|
disk_info.dki_capacity = capacity;
|
|
|
|
if (disk_info.dki_lbsize == 0) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"efi_read: assuming LBA 512 bytes\n");
|
|
}
|
|
disk_info.dki_lbsize = DEV_BSIZE;
|
|
}
|
|
/*
|
|
* Read the EFI GPT to figure out how many partitions we need
|
|
* to deal with.
|
|
*/
|
|
dk_ioc.dki_lba = 1;
|
|
if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
|
|
label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
|
|
} else {
|
|
label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
|
|
disk_info.dki_lbsize;
|
|
if (label_len % disk_info.dki_lbsize) {
|
|
/* pad to physical sector size */
|
|
label_len += disk_info.dki_lbsize;
|
|
label_len &= ~(disk_info.dki_lbsize - 1);
|
|
}
|
|
}
|
|
|
|
if (posix_memalign((void **)&dk_ioc.dki_data,
|
|
disk_info.dki_lbsize, label_len))
|
|
return (VT_ERROR);
|
|
|
|
memset(dk_ioc.dki_data, 0, label_len);
|
|
dk_ioc.dki_length = disk_info.dki_lbsize;
|
|
user_length = vtoc->efi_nparts;
|
|
efi = dk_ioc.dki_data;
|
|
if (md_flag) {
|
|
dk_ioc.dki_length = label_len;
|
|
if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
|
|
switch (errno) {
|
|
case EIO:
|
|
return (VT_EIO);
|
|
default:
|
|
return (VT_ERROR);
|
|
}
|
|
}
|
|
} else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
|
|
/*
|
|
* No valid label here; try the alternate. Note that here
|
|
* we just read GPT header and save it into dk_ioc.data,
|
|
* Later, we will read GUID partition entry array if we
|
|
* can get valid GPT header.
|
|
*/
|
|
|
|
/*
|
|
* This is a workaround for legacy systems. In the past, the
|
|
* last sector of SCSI disk was invisible on x86 platform. At
|
|
* that time, backup label was saved on the next to the last
|
|
* sector. It is possible for users to move a disk from previous
|
|
* solaris system to present system. Here, we attempt to search
|
|
* legacy backup EFI label first.
|
|
*/
|
|
dk_ioc.dki_lba = disk_info.dki_capacity - 2;
|
|
dk_ioc.dki_length = disk_info.dki_lbsize;
|
|
rval = check_label(fd, &dk_ioc);
|
|
if (rval == VT_EINVAL) {
|
|
/*
|
|
* we didn't find legacy backup EFI label, try to
|
|
* search backup EFI label in the last block.
|
|
*/
|
|
dk_ioc.dki_lba = disk_info.dki_capacity - 1;
|
|
dk_ioc.dki_length = disk_info.dki_lbsize;
|
|
rval = check_label(fd, &dk_ioc);
|
|
if (rval == 0) {
|
|
legacy_label = B_TRUE;
|
|
if (efi_debug)
|
|
(void) fprintf(stderr,
|
|
"efi_read: primary label corrupt; "
|
|
"using EFI backup label located on"
|
|
" the last block\n");
|
|
}
|
|
} else {
|
|
if ((efi_debug) && (rval == 0))
|
|
(void) fprintf(stderr, "efi_read: primary label"
|
|
" corrupt; using legacy EFI backup label "
|
|
" located on the next to last block\n");
|
|
}
|
|
|
|
if (rval == 0) {
|
|
dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
|
|
vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
|
|
vtoc->efi_nparts =
|
|
LE_32(efi->efi_gpt_NumberOfPartitionEntries);
|
|
/*
|
|
* Partition tables are between backup GPT header
|
|
* table and ParitionEntryLBA (the starting LBA of
|
|
* the GUID partition entries array). Now that we
|
|
* already got valid GPT header and saved it in
|
|
* dk_ioc.dki_data, we try to get GUID partition
|
|
* entry array here.
|
|
*/
|
|
/* LINTED */
|
|
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
|
|
+ disk_info.dki_lbsize);
|
|
if (legacy_label)
|
|
dk_ioc.dki_length = disk_info.dki_capacity - 1 -
|
|
dk_ioc.dki_lba;
|
|
else
|
|
dk_ioc.dki_length = disk_info.dki_capacity - 2 -
|
|
dk_ioc.dki_lba;
|
|
dk_ioc.dki_length *= disk_info.dki_lbsize;
|
|
if (dk_ioc.dki_length >
|
|
((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
|
|
rval = VT_EINVAL;
|
|
} else {
|
|
/*
|
|
* read GUID partition entry array
|
|
*/
|
|
rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
|
|
}
|
|
}
|
|
|
|
} else if (rval == 0) {
|
|
|
|
dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
|
|
/* LINTED */
|
|
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
|
|
+ disk_info.dki_lbsize);
|
|
dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
|
|
rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
|
|
|
|
} else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
|
|
/*
|
|
* When the device is a LDoms virtual disk, the DKIOCGETEFI
|
|
* ioctl can fail with EINVAL if the virtual disk backend
|
|
* is a ZFS volume serviced by a domain running an old version
|
|
* of Solaris. This is because the DKIOCGETEFI ioctl was
|
|
* initially incorrectly implemented for a ZFS volume and it
|
|
* expected the GPT and GPE to be retrieved with a single ioctl.
|
|
* So we try to read the GPT and the GPE using that old style
|
|
* ioctl.
|
|
*/
|
|
dk_ioc.dki_lba = 1;
|
|
dk_ioc.dki_length = label_len;
|
|
rval = check_label(fd, &dk_ioc);
|
|
}
|
|
|
|
if (rval < 0) {
|
|
free(efi);
|
|
return (rval);
|
|
}
|
|
|
|
/* LINTED -- always longlong aligned */
|
|
efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
|
|
|
|
/*
|
|
* Assemble this into a "dk_gpt" struct for easier
|
|
* digestibility by applications.
|
|
*/
|
|
vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
|
|
vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
|
|
vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
|
|
vtoc->efi_lbasize = disk_info.dki_lbsize;
|
|
vtoc->efi_last_lba = disk_info.dki_capacity - 1;
|
|
vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
|
|
vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
|
|
vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
|
|
UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
|
|
|
|
/*
|
|
* If the array the user passed in is too small, set the length
|
|
* to what it needs to be and return
|
|
*/
|
|
if (user_length < vtoc->efi_nparts) {
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
for (i = 0; i < vtoc->efi_nparts; i++) {
|
|
|
|
UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
|
|
efi_parts[i].efi_gpe_PartitionTypeGUID);
|
|
|
|
for (j = 0;
|
|
j < sizeof (conversion_array)
|
|
/ sizeof (struct uuid_to_ptag); j++) {
|
|
|
|
if (bcmp(&vtoc->efi_parts[i].p_guid,
|
|
&conversion_array[j].uuid,
|
|
sizeof (struct uuid)) == 0) {
|
|
vtoc->efi_parts[i].p_tag = j;
|
|
break;
|
|
}
|
|
}
|
|
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
|
|
continue;
|
|
vtoc->efi_parts[i].p_flag =
|
|
LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
|
|
vtoc->efi_parts[i].p_start =
|
|
LE_64(efi_parts[i].efi_gpe_StartingLBA);
|
|
vtoc->efi_parts[i].p_size =
|
|
LE_64(efi_parts[i].efi_gpe_EndingLBA) -
|
|
vtoc->efi_parts[i].p_start + 1;
|
|
for (j = 0; j < EFI_PART_NAME_LEN; j++) {
|
|
vtoc->efi_parts[i].p_name[j] =
|
|
(uchar_t)LE_16(
|
|
efi_parts[i].efi_gpe_PartitionName[j]);
|
|
}
|
|
|
|
UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
|
|
efi_parts[i].efi_gpe_UniquePartitionGUID);
|
|
}
|
|
free(efi);
|
|
|
|
return (dki_info.dki_partition);
|
|
}
|
|
|
|
/* writes a "protective" MBR */
|
|
static int
|
|
write_pmbr(int fd, struct dk_gpt *vtoc)
|
|
{
|
|
dk_efi_t dk_ioc;
|
|
struct mboot mb;
|
|
uchar_t *cp;
|
|
diskaddr_t size_in_lba;
|
|
uchar_t *buf;
|
|
int len;
|
|
|
|
len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
|
|
if (posix_memalign((void **)&buf, len, len))
|
|
return (VT_ERROR);
|
|
|
|
/*
|
|
* Preserve any boot code and disk signature if the first block is
|
|
* already an MBR.
|
|
*/
|
|
memset(buf, 0, len);
|
|
dk_ioc.dki_lba = 0;
|
|
dk_ioc.dki_length = len;
|
|
/* LINTED -- always longlong aligned */
|
|
dk_ioc.dki_data = (efi_gpt_t *)buf;
|
|
if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
|
|
(void) memcpy(&mb, buf, sizeof (mb));
|
|
bzero(&mb, sizeof (mb));
|
|
mb.signature = LE_16(MBB_MAGIC);
|
|
} else {
|
|
(void) memcpy(&mb, buf, sizeof (mb));
|
|
if (mb.signature != LE_16(MBB_MAGIC)) {
|
|
bzero(&mb, sizeof (mb));
|
|
mb.signature = LE_16(MBB_MAGIC);
|
|
}
|
|
}
|
|
|
|
bzero(&mb.parts, sizeof (mb.parts));
|
|
cp = (uchar_t *)&mb.parts[0];
|
|
/* bootable or not */
|
|
*cp++ = 0;
|
|
/* beginning CHS; 0xffffff if not representable */
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
/* OS type */
|
|
*cp++ = EFI_PMBR;
|
|
/* ending CHS; 0xffffff if not representable */
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
/* starting LBA: 1 (little endian format) by EFI definition */
|
|
*cp++ = 0x01;
|
|
*cp++ = 0x00;
|
|
*cp++ = 0x00;
|
|
*cp++ = 0x00;
|
|
/* ending LBA: last block on the disk (little endian format) */
|
|
size_in_lba = vtoc->efi_last_lba;
|
|
if (size_in_lba < 0xffffffff) {
|
|
*cp++ = (size_in_lba & 0x000000ff);
|
|
*cp++ = (size_in_lba & 0x0000ff00) >> 8;
|
|
*cp++ = (size_in_lba & 0x00ff0000) >> 16;
|
|
*cp++ = (size_in_lba & 0xff000000) >> 24;
|
|
} else {
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
*cp++ = 0xff;
|
|
}
|
|
|
|
(void) memcpy(buf, &mb, sizeof (mb));
|
|
/* LINTED -- always longlong aligned */
|
|
dk_ioc.dki_data = (efi_gpt_t *)buf;
|
|
dk_ioc.dki_lba = 0;
|
|
dk_ioc.dki_length = len;
|
|
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
|
|
free(buf);
|
|
switch (errno) {
|
|
case EIO:
|
|
return (VT_EIO);
|
|
case EINVAL:
|
|
return (VT_EINVAL);
|
|
default:
|
|
return (VT_ERROR);
|
|
}
|
|
}
|
|
free(buf);
|
|
return (0);
|
|
}
|
|
|
|
/* make sure the user specified something reasonable */
|
|
static int
|
|
check_input(struct dk_gpt *vtoc)
|
|
{
|
|
int resv_part = -1;
|
|
int i, j;
|
|
diskaddr_t istart, jstart, isize, jsize, endsect;
|
|
|
|
/*
|
|
* Sanity-check the input (make sure no partitions overlap)
|
|
*/
|
|
for (i = 0; i < vtoc->efi_nparts; i++) {
|
|
/* It can't be unassigned and have an actual size */
|
|
if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
|
|
(vtoc->efi_parts[i].p_size != 0)) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr, "partition %d is "
|
|
"\"unassigned\" but has a size of %llu",
|
|
i, vtoc->efi_parts[i].p_size);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
|
|
if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
|
|
continue;
|
|
/* we have encountered an unknown uuid */
|
|
vtoc->efi_parts[i].p_tag = 0xff;
|
|
}
|
|
if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
|
|
if (resv_part != -1) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr, "found "
|
|
"duplicate reserved partition "
|
|
"at %d\n", i);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
resv_part = i;
|
|
}
|
|
if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
|
|
(vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"Partition %d starts at %llu. ",
|
|
i,
|
|
vtoc->efi_parts[i].p_start);
|
|
(void) fprintf(stderr,
|
|
"It must be between %llu and %llu.\n",
|
|
vtoc->efi_first_u_lba,
|
|
vtoc->efi_last_u_lba);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
if ((vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size <
|
|
vtoc->efi_first_u_lba) ||
|
|
(vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size >
|
|
vtoc->efi_last_u_lba + 1)) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"Partition %d ends at %llu. ",
|
|
i,
|
|
vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size);
|
|
(void) fprintf(stderr,
|
|
"It must be between %llu and %llu.\n",
|
|
vtoc->efi_first_u_lba,
|
|
vtoc->efi_last_u_lba);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
for (j = 0; j < vtoc->efi_nparts; j++) {
|
|
isize = vtoc->efi_parts[i].p_size;
|
|
jsize = vtoc->efi_parts[j].p_size;
|
|
istart = vtoc->efi_parts[i].p_start;
|
|
jstart = vtoc->efi_parts[j].p_start;
|
|
if ((i != j) && (isize != 0) && (jsize != 0)) {
|
|
endsect = jstart + jsize -1;
|
|
if ((jstart <= istart) &&
|
|
(istart <= endsect)) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"Partition %d overlaps "
|
|
"partition %d.", i, j);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* just a warning for now */
|
|
if ((resv_part == -1) && efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"no reserved partition found\n");
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
call_blkpg_ioctl(int fd, int command, diskaddr_t start,
|
|
diskaddr_t size, uint_t pno)
|
|
{
|
|
struct blkpg_ioctl_arg ioctl_arg;
|
|
struct blkpg_partition linux_part;
|
|
memset(&linux_part, 0, sizeof (linux_part));
|
|
|
|
char *path = efi_get_devname(fd);
|
|
if (path == NULL) {
|
|
(void) fprintf(stderr, "failed to retrieve device name\n");
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
linux_part.start = start;
|
|
linux_part.length = size;
|
|
linux_part.pno = pno;
|
|
snprintf(linux_part.devname, BLKPG_DEVNAMELTH - 1, "%s%u", path, pno);
|
|
linux_part.devname[BLKPG_DEVNAMELTH - 1] = '\0';
|
|
free(path);
|
|
|
|
ioctl_arg.op = command;
|
|
ioctl_arg.flags = 0;
|
|
ioctl_arg.datalen = sizeof (struct blkpg_partition);
|
|
ioctl_arg.data = &linux_part;
|
|
|
|
return (ioctl(fd, BLKPG, &ioctl_arg));
|
|
}
|
|
|
|
/*
|
|
* add all the unallocated space to the current label
|
|
*/
|
|
int
|
|
efi_use_whole_disk(int fd)
|
|
{
|
|
struct dk_gpt *efi_label = NULL;
|
|
int rval;
|
|
int i;
|
|
uint_t resv_index = 0, data_index = 0;
|
|
diskaddr_t resv_start = 0, data_start = 0;
|
|
diskaddr_t data_size, limit, difference;
|
|
boolean_t sync_needed = B_FALSE;
|
|
uint_t nblocks;
|
|
|
|
rval = efi_alloc_and_read(fd, &efi_label);
|
|
if (rval < 0) {
|
|
if (efi_label != NULL)
|
|
efi_free(efi_label);
|
|
return (rval);
|
|
}
|
|
|
|
/*
|
|
* Find the last physically non-zero partition.
|
|
* This should be the reserved partition.
|
|
*/
|
|
for (i = 0; i < efi_label->efi_nparts; i ++) {
|
|
if (resv_start < efi_label->efi_parts[i].p_start) {
|
|
resv_start = efi_label->efi_parts[i].p_start;
|
|
resv_index = i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the last physically non-zero partition before that.
|
|
* This is the data partition.
|
|
*/
|
|
for (i = 0; i < resv_index; i ++) {
|
|
if (data_start < efi_label->efi_parts[i].p_start) {
|
|
data_start = efi_label->efi_parts[i].p_start;
|
|
data_index = i;
|
|
}
|
|
}
|
|
data_size = efi_label->efi_parts[data_index].p_size;
|
|
|
|
/*
|
|
* See the "efi_alloc_and_init" function for more information
|
|
* about where this "nblocks" value comes from.
|
|
*/
|
|
nblocks = efi_label->efi_first_u_lba - 1;
|
|
|
|
/*
|
|
* Determine if the EFI label is out of sync. We check that:
|
|
*
|
|
* 1. the data partition ends at the limit we set, and
|
|
* 2. the reserved partition starts at the limit we set.
|
|
*
|
|
* If either of these conditions is not met, then we need to
|
|
* resync the EFI label.
|
|
*
|
|
* The limit is the last usable LBA, determined by the last LBA
|
|
* and the first usable LBA fields on the EFI label of the disk
|
|
* (see the lines directly above). Additionally, we factor in
|
|
* EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and
|
|
* P2ALIGN it to ensure the partition boundaries are aligned
|
|
* (for performance reasons). The alignment should match the
|
|
* alignment used by the "zpool_label_disk" function.
|
|
*/
|
|
limit = P2ALIGN(efi_label->efi_last_lba - nblocks - EFI_MIN_RESV_SIZE,
|
|
PARTITION_END_ALIGNMENT);
|
|
if (data_start + data_size != limit || resv_start != limit)
|
|
sync_needed = B_TRUE;
|
|
|
|
if (efi_debug && sync_needed)
|
|
(void) fprintf(stderr, "efi_use_whole_disk: sync needed\n");
|
|
|
|
/*
|
|
* If alter_lba is 1, we are using the backup label.
|
|
* Since we can locate the backup label by disk capacity,
|
|
* there must be no unallocated space.
|
|
*/
|
|
if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
|
|
>= efi_label->efi_last_lba && !sync_needed)) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"efi_use_whole_disk: requested space not found\n");
|
|
}
|
|
efi_free(efi_label);
|
|
return (VT_ENOSPC);
|
|
}
|
|
|
|
/*
|
|
* Verify that we've found the reserved partition by checking
|
|
* that it looks the way it did when we created it in zpool_label_disk.
|
|
* If we've found the incorrect partition, then we know that this
|
|
* device was reformatted and no longer is solely used by ZFS.
|
|
*/
|
|
if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) ||
|
|
(efi_label->efi_parts[resv_index].p_tag != V_RESERVED) ||
|
|
(resv_index != 8)) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"efi_use_whole_disk: wholedisk not available\n");
|
|
}
|
|
efi_free(efi_label);
|
|
return (VT_ENOSPC);
|
|
}
|
|
|
|
if (data_start + data_size != resv_start) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"efi_use_whole_disk: "
|
|
"data_start (%lli) + "
|
|
"data_size (%lli) != "
|
|
"resv_start (%lli)\n",
|
|
data_start, data_size, resv_start);
|
|
}
|
|
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
if (limit < resv_start) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"efi_use_whole_disk: "
|
|
"limit (%lli) < resv_start (%lli)\n",
|
|
limit, resv_start);
|
|
}
|
|
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
difference = limit - resv_start;
|
|
|
|
if (efi_debug)
|
|
(void) fprintf(stderr,
|
|
"efi_use_whole_disk: difference is %lli\n", difference);
|
|
|
|
/*
|
|
* Move the reserved partition. There is currently no data in
|
|
* here except fabricated devids (which get generated via
|
|
* efi_write()). So there is no need to copy data.
|
|
*/
|
|
efi_label->efi_parts[data_index].p_size += difference;
|
|
efi_label->efi_parts[resv_index].p_start += difference;
|
|
efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
|
|
|
|
/*
|
|
* Rescanning the partition table in the kernel can result
|
|
* in the device links to be removed (see comment in vdev_disk_open).
|
|
* If BLKPG_RESIZE_PARTITION is available, then we can resize
|
|
* the partition table online and avoid having to remove the device
|
|
* links used by the pool. This provides a very deterministic
|
|
* approach to resizing devices and does not require any
|
|
* loops waiting for devices to reappear.
|
|
*/
|
|
#ifdef BLKPG_RESIZE_PARTITION
|
|
/*
|
|
* Delete the reserved partition since we're about to expand
|
|
* the data partition and it would overlap with the reserved
|
|
* partition.
|
|
* NOTE: The starting index for the ioctl is 1 while for the
|
|
* EFI partitions it's 0. For that reason we have to add one
|
|
* whenever we make an ioctl call.
|
|
*/
|
|
rval = call_blkpg_ioctl(fd, BLKPG_DEL_PARTITION, 0, 0, resv_index + 1);
|
|
if (rval != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Expand the data partition
|
|
*/
|
|
rval = call_blkpg_ioctl(fd, BLKPG_RESIZE_PARTITION,
|
|
efi_label->efi_parts[data_index].p_start * efi_label->efi_lbasize,
|
|
efi_label->efi_parts[data_index].p_size * efi_label->efi_lbasize,
|
|
data_index + 1);
|
|
if (rval != 0) {
|
|
(void) fprintf(stderr, "Unable to resize data "
|
|
"partition: %d\n", rval);
|
|
/*
|
|
* Since we failed to resize, we need to reset the start
|
|
* of the reserve partition and re-create it.
|
|
*/
|
|
efi_label->efi_parts[resv_index].p_start -= difference;
|
|
}
|
|
|
|
/*
|
|
* Re-add the reserved partition. If we've expanded the data partition
|
|
* then we'll move the reserve partition to the end of the data
|
|
* partition. Otherwise, we'll recreate the partition in its original
|
|
* location. Note that we do this as best-effort and ignore any
|
|
* errors that may arise here. This will ensure that we finish writing
|
|
* the EFI label.
|
|
*/
|
|
(void) call_blkpg_ioctl(fd, BLKPG_ADD_PARTITION,
|
|
efi_label->efi_parts[resv_index].p_start * efi_label->efi_lbasize,
|
|
efi_label->efi_parts[resv_index].p_size * efi_label->efi_lbasize,
|
|
resv_index + 1);
|
|
#endif
|
|
|
|
/*
|
|
* We're now ready to write the EFI label.
|
|
*/
|
|
if (rval == 0) {
|
|
rval = efi_write(fd, efi_label);
|
|
if (rval < 0 && efi_debug) {
|
|
(void) fprintf(stderr, "efi_use_whole_disk:fail "
|
|
"to write label, rval=%d\n", rval);
|
|
}
|
|
}
|
|
|
|
out:
|
|
efi_free(efi_label);
|
|
return (rval);
|
|
}
|
|
|
|
/*
|
|
* write EFI label and backup label
|
|
*/
|
|
int
|
|
efi_write(int fd, struct dk_gpt *vtoc)
|
|
{
|
|
dk_efi_t dk_ioc;
|
|
efi_gpt_t *efi;
|
|
efi_gpe_t *efi_parts;
|
|
int i, j;
|
|
struct dk_cinfo dki_info;
|
|
int rval;
|
|
int md_flag = 0;
|
|
int nblocks;
|
|
diskaddr_t lba_backup_gpt_hdr;
|
|
|
|
if ((rval = efi_get_info(fd, &dki_info)) != 0)
|
|
return (rval);
|
|
|
|
/* check if we are dealing with a metadevice */
|
|
if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
|
|
(strncmp(dki_info.dki_dname, "md", 3) == 0)) {
|
|
md_flag = 1;
|
|
}
|
|
|
|
if (check_input(vtoc)) {
|
|
/*
|
|
* not valid; if it's a metadevice just pass it down
|
|
* because SVM will do its own checking
|
|
*/
|
|
if (md_flag == 0) {
|
|
return (VT_EINVAL);
|
|
}
|
|
}
|
|
|
|
dk_ioc.dki_lba = 1;
|
|
if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
|
|
dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
|
|
} else {
|
|
dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
|
|
vtoc->efi_lbasize) *
|
|
vtoc->efi_lbasize;
|
|
}
|
|
|
|
/*
|
|
* the number of blocks occupied by GUID partition entry array
|
|
*/
|
|
nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
|
|
|
|
/*
|
|
* Backup GPT header is located on the block after GUID
|
|
* partition entry array. Here, we calculate the address
|
|
* for backup GPT header.
|
|
*/
|
|
lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
|
|
if (posix_memalign((void **)&dk_ioc.dki_data,
|
|
vtoc->efi_lbasize, dk_ioc.dki_length))
|
|
return (VT_ERROR);
|
|
|
|
memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
|
|
efi = dk_ioc.dki_data;
|
|
|
|
/* stuff user's input into EFI struct */
|
|
efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
|
|
efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
|
|
efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
|
|
efi->efi_gpt_Reserved1 = 0;
|
|
efi->efi_gpt_MyLBA = LE_64(1ULL);
|
|
efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
|
|
efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
|
|
efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
|
|
efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
|
|
efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
|
|
efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
|
|
UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
|
|
|
|
/* LINTED -- always longlong aligned */
|
|
efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
|
|
|
|
for (i = 0; i < vtoc->efi_nparts; i++) {
|
|
for (j = 0;
|
|
j < sizeof (conversion_array) /
|
|
sizeof (struct uuid_to_ptag); j++) {
|
|
|
|
if (vtoc->efi_parts[i].p_tag == j) {
|
|
UUID_LE_CONVERT(
|
|
efi_parts[i].efi_gpe_PartitionTypeGUID,
|
|
conversion_array[j].uuid);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (j == sizeof (conversion_array) /
|
|
sizeof (struct uuid_to_ptag)) {
|
|
/*
|
|
* If we didn't have a matching uuid match, bail here.
|
|
* Don't write a label with unknown uuid.
|
|
*/
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"Unknown uuid for p_tag %d\n",
|
|
vtoc->efi_parts[i].p_tag);
|
|
}
|
|
return (VT_EINVAL);
|
|
}
|
|
|
|
/* Zero's should be written for empty partitions */
|
|
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
|
|
continue;
|
|
|
|
efi_parts[i].efi_gpe_StartingLBA =
|
|
LE_64(vtoc->efi_parts[i].p_start);
|
|
efi_parts[i].efi_gpe_EndingLBA =
|
|
LE_64(vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size - 1);
|
|
efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
|
|
LE_16(vtoc->efi_parts[i].p_flag);
|
|
for (j = 0; j < EFI_PART_NAME_LEN; j++) {
|
|
efi_parts[i].efi_gpe_PartitionName[j] =
|
|
LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
|
|
}
|
|
if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
|
|
uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
|
|
(void) uuid_generate((uchar_t *)
|
|
&vtoc->efi_parts[i].p_uguid);
|
|
}
|
|
bcopy(&vtoc->efi_parts[i].p_uguid,
|
|
&efi_parts[i].efi_gpe_UniquePartitionGUID,
|
|
sizeof (uuid_t));
|
|
}
|
|
efi->efi_gpt_PartitionEntryArrayCRC32 =
|
|
LE_32(efi_crc32((unsigned char *)efi_parts,
|
|
vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
|
|
efi->efi_gpt_HeaderCRC32 =
|
|
LE_32(efi_crc32((unsigned char *)efi,
|
|
LE_32(efi->efi_gpt_HeaderSize)));
|
|
|
|
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
|
|
free(dk_ioc.dki_data);
|
|
switch (errno) {
|
|
case EIO:
|
|
return (VT_EIO);
|
|
case EINVAL:
|
|
return (VT_EINVAL);
|
|
default:
|
|
return (VT_ERROR);
|
|
}
|
|
}
|
|
/* if it's a metadevice we're done */
|
|
if (md_flag) {
|
|
free(dk_ioc.dki_data);
|
|
return (0);
|
|
}
|
|
|
|
/* write backup partition array */
|
|
dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
|
|
dk_ioc.dki_length -= vtoc->efi_lbasize;
|
|
/* LINTED */
|
|
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
|
|
vtoc->efi_lbasize);
|
|
|
|
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
|
|
/*
|
|
* we wrote the primary label okay, so don't fail
|
|
*/
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"write of backup partitions to block %llu "
|
|
"failed, errno %d\n",
|
|
vtoc->efi_last_u_lba + 1,
|
|
errno);
|
|
}
|
|
}
|
|
/*
|
|
* now swap MyLBA and AlternateLBA fields and write backup
|
|
* partition table header
|
|
*/
|
|
dk_ioc.dki_lba = lba_backup_gpt_hdr;
|
|
dk_ioc.dki_length = vtoc->efi_lbasize;
|
|
/* LINTED */
|
|
dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
|
|
vtoc->efi_lbasize);
|
|
efi->efi_gpt_AlternateLBA = LE_64(1ULL);
|
|
efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
|
|
efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
|
|
efi->efi_gpt_HeaderCRC32 = 0;
|
|
efi->efi_gpt_HeaderCRC32 =
|
|
LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
|
|
LE_32(efi->efi_gpt_HeaderSize)));
|
|
|
|
if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
|
|
if (efi_debug) {
|
|
(void) fprintf(stderr,
|
|
"write of backup header to block %llu failed, "
|
|
"errno %d\n",
|
|
lba_backup_gpt_hdr,
|
|
errno);
|
|
}
|
|
}
|
|
/* write the PMBR */
|
|
(void) write_pmbr(fd, vtoc);
|
|
free(dk_ioc.dki_data);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
efi_free(struct dk_gpt *ptr)
|
|
{
|
|
free(ptr);
|
|
}
|
|
|
|
/*
|
|
* Input: File descriptor
|
|
* Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
|
|
* Otherwise 0.
|
|
*/
|
|
int
|
|
efi_type(int fd)
|
|
{
|
|
#if 0
|
|
struct vtoc vtoc;
|
|
struct extvtoc extvtoc;
|
|
|
|
if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
|
|
if (errno == ENOTSUP)
|
|
return (1);
|
|
else if (errno == ENOTTY) {
|
|
if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
|
|
if (errno == ENOTSUP)
|
|
return (1);
|
|
}
|
|
}
|
|
return (0);
|
|
#else
|
|
return (ENOSYS);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
efi_err_check(struct dk_gpt *vtoc)
|
|
{
|
|
int resv_part = -1;
|
|
int i, j;
|
|
diskaddr_t istart, jstart, isize, jsize, endsect;
|
|
int overlap = 0;
|
|
|
|
/*
|
|
* make sure no partitions overlap
|
|
*/
|
|
for (i = 0; i < vtoc->efi_nparts; i++) {
|
|
/* It can't be unassigned and have an actual size */
|
|
if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
|
|
(vtoc->efi_parts[i].p_size != 0)) {
|
|
(void) fprintf(stderr,
|
|
"partition %d is \"unassigned\" but has a size "
|
|
"of %llu\n", i, vtoc->efi_parts[i].p_size);
|
|
}
|
|
if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
|
|
continue;
|
|
}
|
|
if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
|
|
if (resv_part != -1) {
|
|
(void) fprintf(stderr,
|
|
"found duplicate reserved partition at "
|
|
"%d\n", i);
|
|
}
|
|
resv_part = i;
|
|
if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
|
|
(void) fprintf(stderr,
|
|
"Warning: reserved partition size must "
|
|
"be %d sectors\n", EFI_MIN_RESV_SIZE);
|
|
}
|
|
if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
|
|
(vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
|
|
(void) fprintf(stderr,
|
|
"Partition %d starts at %llu\n",
|
|
i,
|
|
vtoc->efi_parts[i].p_start);
|
|
(void) fprintf(stderr,
|
|
"It must be between %llu and %llu.\n",
|
|
vtoc->efi_first_u_lba,
|
|
vtoc->efi_last_u_lba);
|
|
}
|
|
if ((vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size <
|
|
vtoc->efi_first_u_lba) ||
|
|
(vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size >
|
|
vtoc->efi_last_u_lba + 1)) {
|
|
(void) fprintf(stderr,
|
|
"Partition %d ends at %llu\n",
|
|
i,
|
|
vtoc->efi_parts[i].p_start +
|
|
vtoc->efi_parts[i].p_size);
|
|
(void) fprintf(stderr,
|
|
"It must be between %llu and %llu.\n",
|
|
vtoc->efi_first_u_lba,
|
|
vtoc->efi_last_u_lba);
|
|
}
|
|
|
|
for (j = 0; j < vtoc->efi_nparts; j++) {
|
|
isize = vtoc->efi_parts[i].p_size;
|
|
jsize = vtoc->efi_parts[j].p_size;
|
|
istart = vtoc->efi_parts[i].p_start;
|
|
jstart = vtoc->efi_parts[j].p_start;
|
|
if ((i != j) && (isize != 0) && (jsize != 0)) {
|
|
endsect = jstart + jsize -1;
|
|
if ((jstart <= istart) &&
|
|
(istart <= endsect)) {
|
|
if (!overlap) {
|
|
(void) fprintf(stderr,
|
|
"label error: EFI Labels do not "
|
|
"support overlapping partitions\n");
|
|
}
|
|
(void) fprintf(stderr,
|
|
"Partition %d overlaps partition "
|
|
"%d.\n", i, j);
|
|
overlap = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* make sure there is a reserved partition */
|
|
if (resv_part == -1) {
|
|
(void) fprintf(stderr,
|
|
"no reserved partition found\n");
|
|
}
|
|
}
|