mirror_zfs/module/nvpair/nvpair.c
Matthew Macy 758699b6f1 Restructure nvlist_nv_alloc to work on FreeBSD
KM_PUSHPAGE is an Illumosism - On FreeBSD it's
aliased to the same malloc flag as KM_SLEEP.
The compiler naturally rejects multiple case
statements with the same value.  This is effectively
a no-op since all callers pass a specific KM_* flag.

Reviewed-by: Jorgen Lundman <lundman@lundman.net>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Matt Macy <mmacy@FreeBSD.org>
Closes #9643
2019-11-30 15:45:06 -08:00

3725 lines
84 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2015, 2017 by Delphix. All rights reserved.
* Copyright 2018 RackTop Systems.
*/
#include <sys/debug.h>
#include <sys/isa_defs.h>
#include <sys/nvpair.h>
#include <sys/nvpair_impl.h>
#include <sys/types.h>
#include <sys/strings.h>
#include <rpc/xdr.h>
#include <sys/mod.h>
#if defined(_KERNEL)
#include <sys/sunddi.h>
#include <sys/sysmacros.h>
#else
#include <stdarg.h>
#include <stdlib.h>
#include <stddef.h>
#endif
#define skip_whitespace(p) while ((*(p) == ' ') || (*(p) == '\t')) p++
/*
* nvpair.c - Provides kernel & userland interfaces for manipulating
* name-value pairs.
*
* Overview Diagram
*
* +--------------+
* | nvlist_t |
* |--------------|
* | nvl_version |
* | nvl_nvflag |
* | nvl_priv -+-+
* | nvl_flag | |
* | nvl_pad | |
* +--------------+ |
* V
* +--------------+ last i_nvp in list
* | nvpriv_t | +--------------------->
* |--------------| |
* +--+- nvp_list | | +------------+
* | | nvp_last -+--+ + nv_alloc_t |
* | | nvp_curr | |------------|
* | | nvp_nva -+----> | nva_ops |
* | | nvp_stat | | nva_arg |
* | +--------------+ +------------+
* |
* +-------+
* V
* +---------------------+ +-------------------+
* | i_nvp_t | +-->| i_nvp_t | +-->
* |---------------------| | |-------------------| |
* | nvi_next -+--+ | nvi_next -+--+
* | nvi_prev (NULL) | <----+ nvi_prev |
* | . . . . . . . . . . | | . . . . . . . . . |
* | nvp (nvpair_t) | | nvp (nvpair_t) |
* | - nvp_size | | - nvp_size |
* | - nvp_name_sz | | - nvp_name_sz |
* | - nvp_value_elem | | - nvp_value_elem |
* | - nvp_type | | - nvp_type |
* | - data ... | | - data ... |
* +---------------------+ +-------------------+
*
*
*
* +---------------------+ +---------------------+
* | i_nvp_t | +--> +-->| i_nvp_t (last) |
* |---------------------| | | |---------------------|
* | nvi_next -+--+ ... --+ | nvi_next (NULL) |
* <-+- nvi_prev |<-- ... <----+ nvi_prev |
* | . . . . . . . . . | | . . . . . . . . . |
* | nvp (nvpair_t) | | nvp (nvpair_t) |
* | - nvp_size | | - nvp_size |
* | - nvp_name_sz | | - nvp_name_sz |
* | - nvp_value_elem | | - nvp_value_elem |
* | - DATA_TYPE_NVLIST | | - nvp_type |
* | - data (embedded) | | - data ... |
* | nvlist name | +---------------------+
* | +--------------+ |
* | | nvlist_t | |
* | |--------------| |
* | | nvl_version | |
* | | nvl_nvflag | |
* | | nvl_priv --+---+---->
* | | nvl_flag | |
* | | nvl_pad | |
* | +--------------+ |
* +---------------------+
*
*
* N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
* allow value to be aligned on 8 byte boundary
*
* name_len is the length of the name string including the null terminator
* so it must be >= 1
*/
#define NVP_SIZE_CALC(name_len, data_len) \
(NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
uint_t nelem, const void *data);
#define NV_STAT_EMBEDDED 0x1
#define EMBEDDED_NVL(nvp) ((nvlist_t *)(void *)NVP_VALUE(nvp))
#define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp))
#define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
#define NVPAIR2I_NVP(nvp) \
((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
#ifdef _KERNEL
int nvpair_max_recursion = 20;
#else
int nvpair_max_recursion = 100;
#endif
uint64_t nvlist_hashtable_init_size = (1 << 4);
int
nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
{
va_list valist;
int err = 0;
nva->nva_ops = nvo;
nva->nva_arg = NULL;
va_start(valist, nvo);
if (nva->nva_ops->nv_ao_init != NULL)
err = nva->nva_ops->nv_ao_init(nva, valist);
va_end(valist);
return (err);
}
void
nv_alloc_reset(nv_alloc_t *nva)
{
if (nva->nva_ops->nv_ao_reset != NULL)
nva->nva_ops->nv_ao_reset(nva);
}
void
nv_alloc_fini(nv_alloc_t *nva)
{
if (nva->nva_ops->nv_ao_fini != NULL)
nva->nva_ops->nv_ao_fini(nva);
}
nv_alloc_t *
nvlist_lookup_nv_alloc(nvlist_t *nvl)
{
nvpriv_t *priv;
if (nvl == NULL ||
(priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
return (NULL);
return (priv->nvp_nva);
}
static void *
nv_mem_zalloc(nvpriv_t *nvp, size_t size)
{
nv_alloc_t *nva = nvp->nvp_nva;
void *buf;
if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
bzero(buf, size);
return (buf);
}
static void
nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
{
nv_alloc_t *nva = nvp->nvp_nva;
nva->nva_ops->nv_ao_free(nva, buf, size);
}
static void
nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
{
bzero(priv, sizeof (nvpriv_t));
priv->nvp_nva = nva;
priv->nvp_stat = stat;
}
static nvpriv_t *
nv_priv_alloc(nv_alloc_t *nva)
{
nvpriv_t *priv;
/*
* nv_mem_alloc() cannot called here because it needs the priv
* argument.
*/
if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
return (NULL);
nv_priv_init(priv, nva, 0);
return (priv);
}
/*
* Embedded lists need their own nvpriv_t's. We create a new
* nvpriv_t using the parameters and allocator from the parent
* list's nvpriv_t.
*/
static nvpriv_t *
nv_priv_alloc_embedded(nvpriv_t *priv)
{
nvpriv_t *emb_priv;
if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
return (NULL);
nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
return (emb_priv);
}
static int
nvt_tab_alloc(nvpriv_t *priv, uint64_t buckets)
{
ASSERT3P(priv->nvp_hashtable, ==, NULL);
ASSERT0(priv->nvp_nbuckets);
ASSERT0(priv->nvp_nentries);
i_nvp_t **tab = nv_mem_zalloc(priv, buckets * sizeof (i_nvp_t *));
if (tab == NULL)
return (ENOMEM);
priv->nvp_hashtable = tab;
priv->nvp_nbuckets = buckets;
return (0);
}
static void
nvt_tab_free(nvpriv_t *priv)
{
i_nvp_t **tab = priv->nvp_hashtable;
if (tab == NULL) {
ASSERT0(priv->nvp_nbuckets);
ASSERT0(priv->nvp_nentries);
return;
}
nv_mem_free(priv, tab, priv->nvp_nbuckets * sizeof (i_nvp_t *));
priv->nvp_hashtable = NULL;
priv->nvp_nbuckets = 0;
priv->nvp_nentries = 0;
}
static uint32_t
nvt_hash(const char *p)
{
uint32_t g, hval = 0;
while (*p) {
hval = (hval << 4) + *p++;
if ((g = (hval & 0xf0000000)) != 0)
hval ^= g >> 24;
hval &= ~g;
}
return (hval);
}
static boolean_t
nvt_nvpair_match(nvpair_t *nvp1, nvpair_t *nvp2, uint32_t nvflag)
{
boolean_t match = B_FALSE;
if (nvflag & NV_UNIQUE_NAME_TYPE) {
if (strcmp(NVP_NAME(nvp1), NVP_NAME(nvp2)) == 0 &&
NVP_TYPE(nvp1) == NVP_TYPE(nvp2))
match = B_TRUE;
} else {
ASSERT(nvflag == 0 || nvflag & NV_UNIQUE_NAME);
if (strcmp(NVP_NAME(nvp1), NVP_NAME(nvp2)) == 0)
match = B_TRUE;
}
return (match);
}
static nvpair_t *
nvt_lookup_name_type(nvlist_t *nvl, const char *name, data_type_t type)
{
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
ASSERT(priv != NULL);
i_nvp_t **tab = priv->nvp_hashtable;
if (tab == NULL) {
ASSERT3P(priv->nvp_list, ==, NULL);
ASSERT0(priv->nvp_nbuckets);
ASSERT0(priv->nvp_nentries);
return (NULL);
} else {
ASSERT(priv->nvp_nbuckets != 0);
}
uint64_t hash = nvt_hash(name);
uint64_t index = hash & (priv->nvp_nbuckets - 1);
ASSERT3U(index, <, priv->nvp_nbuckets);
i_nvp_t *entry = tab[index];
for (i_nvp_t *e = entry; e != NULL; e = e->nvi_hashtable_next) {
if (strcmp(NVP_NAME(&e->nvi_nvp), name) == 0 &&
(type == DATA_TYPE_DONTCARE ||
NVP_TYPE(&e->nvi_nvp) == type))
return (&e->nvi_nvp);
}
return (NULL);
}
static nvpair_t *
nvt_lookup_name(nvlist_t *nvl, const char *name)
{
return (nvt_lookup_name_type(nvl, name, DATA_TYPE_DONTCARE));
}
static int
nvt_resize(nvpriv_t *priv, uint32_t new_size)
{
i_nvp_t **tab = priv->nvp_hashtable;
/*
* Migrate all the entries from the current table
* to a newly-allocated table with the new size by
* re-adjusting the pointers of their entries.
*/
uint32_t size = priv->nvp_nbuckets;
uint32_t new_mask = new_size - 1;
ASSERT(ISP2(new_size));
i_nvp_t **new_tab = nv_mem_zalloc(priv, new_size * sizeof (i_nvp_t *));
if (new_tab == NULL)
return (ENOMEM);
uint32_t nentries = 0;
for (uint32_t i = 0; i < size; i++) {
i_nvp_t *next, *e = tab[i];
while (e != NULL) {
next = e->nvi_hashtable_next;
uint32_t hash = nvt_hash(NVP_NAME(&e->nvi_nvp));
uint32_t index = hash & new_mask;
e->nvi_hashtable_next = new_tab[index];
new_tab[index] = e;
nentries++;
e = next;
}
tab[i] = NULL;
}
ASSERT3U(nentries, ==, priv->nvp_nentries);
nvt_tab_free(priv);
priv->nvp_hashtable = new_tab;
priv->nvp_nbuckets = new_size;
priv->nvp_nentries = nentries;
return (0);
}
static boolean_t
nvt_needs_togrow(nvpriv_t *priv)
{
/*
* Grow only when we have more elements than buckets
* and the # of buckets doesn't overflow.
*/
return (priv->nvp_nentries > priv->nvp_nbuckets &&
(UINT32_MAX >> 1) >= priv->nvp_nbuckets);
}
/*
* Allocate a new table that's twice the size of the old one,
* and migrate all the entries from the old one to the new
* one by re-adjusting their pointers.
*/
static int
nvt_grow(nvpriv_t *priv)
{
uint32_t current_size = priv->nvp_nbuckets;
/* ensure we won't overflow */
ASSERT3U(UINT32_MAX >> 1, >=, current_size);
return (nvt_resize(priv, current_size << 1));
}
static boolean_t
nvt_needs_toshrink(nvpriv_t *priv)
{
/*
* Shrink only when the # of elements is less than or
* equal to 1/4 the # of buckets. Never shrink less than
* nvlist_hashtable_init_size.
*/
ASSERT3U(priv->nvp_nbuckets, >=, nvlist_hashtable_init_size);
if (priv->nvp_nbuckets == nvlist_hashtable_init_size)
return (B_FALSE);
return (priv->nvp_nentries <= (priv->nvp_nbuckets >> 2));
}
/*
* Allocate a new table that's half the size of the old one,
* and migrate all the entries from the old one to the new
* one by re-adjusting their pointers.
*/
static int
nvt_shrink(nvpriv_t *priv)
{
uint32_t current_size = priv->nvp_nbuckets;
/* ensure we won't overflow */
ASSERT3U(current_size, >=, nvlist_hashtable_init_size);
return (nvt_resize(priv, current_size >> 1));
}
static int
nvt_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
{
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
if (nvt_needs_toshrink(priv)) {
int err = nvt_shrink(priv);
if (err != 0)
return (err);
}
i_nvp_t **tab = priv->nvp_hashtable;
char *name = NVP_NAME(nvp);
uint64_t hash = nvt_hash(name);
uint64_t index = hash & (priv->nvp_nbuckets - 1);
ASSERT3U(index, <, priv->nvp_nbuckets);
i_nvp_t *bucket = tab[index];
for (i_nvp_t *prev = NULL, *e = bucket;
e != NULL; prev = e, e = e->nvi_hashtable_next) {
if (nvt_nvpair_match(&e->nvi_nvp, nvp, nvl->nvl_nvflag)) {
if (prev != NULL) {
prev->nvi_hashtable_next =
e->nvi_hashtable_next;
} else {
ASSERT3P(e, ==, bucket);
tab[index] = e->nvi_hashtable_next;
}
e->nvi_hashtable_next = NULL;
priv->nvp_nentries--;
break;
}
}
return (0);
}
static int
nvt_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
{
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
/* initialize nvpair table now if it doesn't exist. */
if (priv->nvp_hashtable == NULL) {
int err = nvt_tab_alloc(priv, nvlist_hashtable_init_size);
if (err != 0)
return (err);
}
/*
* if we don't allow duplicate entries, make sure to
* unlink any existing entries from the table.
*/
if (nvl->nvl_nvflag != 0) {
int err = nvt_remove_nvpair(nvl, nvp);
if (err != 0)
return (err);
}
if (nvt_needs_togrow(priv)) {
int err = nvt_grow(priv);
if (err != 0)
return (err);
}
i_nvp_t **tab = priv->nvp_hashtable;
char *name = NVP_NAME(nvp);
uint64_t hash = nvt_hash(name);
uint64_t index = hash & (priv->nvp_nbuckets - 1);
ASSERT3U(index, <, priv->nvp_nbuckets);
i_nvp_t *bucket = tab[index];
/* insert link at the beginning of the bucket */
i_nvp_t *new_entry = NVPAIR2I_NVP(nvp);
ASSERT3P(new_entry->nvi_hashtable_next, ==, NULL);
new_entry->nvi_hashtable_next = bucket;
tab[index] = new_entry;
priv->nvp_nentries++;
return (0);
}
static void
nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
{
nvl->nvl_version = NV_VERSION;
nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
nvl->nvl_flag = 0;
nvl->nvl_pad = 0;
}
uint_t
nvlist_nvflag(nvlist_t *nvl)
{
return (nvl->nvl_nvflag);
}
static nv_alloc_t *
nvlist_nv_alloc(int kmflag)
{
#if defined(_KERNEL)
switch (kmflag) {
case KM_SLEEP:
return (nv_alloc_sleep);
case KM_NOSLEEP:
return (nv_alloc_nosleep);
default:
return (nv_alloc_pushpage);
}
#else
return (nv_alloc_nosleep);
#endif /* _KERNEL */
}
/*
* nvlist_alloc - Allocate nvlist.
*/
int
nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
{
return (nvlist_xalloc(nvlp, nvflag, nvlist_nv_alloc(kmflag)));
}
int
nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
{
nvpriv_t *priv;
if (nvlp == NULL || nva == NULL)
return (EINVAL);
if ((priv = nv_priv_alloc(nva)) == NULL)
return (ENOMEM);
if ((*nvlp = nv_mem_zalloc(priv,
NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
nv_mem_free(priv, priv, sizeof (nvpriv_t));
return (ENOMEM);
}
nvlist_init(*nvlp, nvflag, priv);
return (0);
}
/*
* nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
*/
static nvpair_t *
nvp_buf_alloc(nvlist_t *nvl, size_t len)
{
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
i_nvp_t *buf;
nvpair_t *nvp;
size_t nvsize;
/*
* Allocate the buffer
*/
nvsize = len + offsetof(i_nvp_t, nvi_nvp);
if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
return (NULL);
nvp = &buf->nvi_nvp;
nvp->nvp_size = len;
return (nvp);
}
/*
* nvp_buf_free - de-Allocate an i_nvp_t.
*/
static void
nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
{
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
}
/*
* nvp_buf_link - link a new nv pair into the nvlist.
*/
static void
nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
{
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
i_nvp_t *curr = NVPAIR2I_NVP(nvp);
/* Put element at end of nvlist */
if (priv->nvp_list == NULL) {
priv->nvp_list = priv->nvp_last = curr;
} else {
curr->nvi_prev = priv->nvp_last;
priv->nvp_last->nvi_next = curr;
priv->nvp_last = curr;
}
}
/*
* nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
*/
static void
nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
{
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
i_nvp_t *curr = NVPAIR2I_NVP(nvp);
/*
* protect nvlist_next_nvpair() against walking on freed memory.
*/
if (priv->nvp_curr == curr)
priv->nvp_curr = curr->nvi_next;
if (curr == priv->nvp_list)
priv->nvp_list = curr->nvi_next;
else
curr->nvi_prev->nvi_next = curr->nvi_next;
if (curr == priv->nvp_last)
priv->nvp_last = curr->nvi_prev;
else
curr->nvi_next->nvi_prev = curr->nvi_prev;
}
/*
* take a nvpair type and number of elements and make sure the are valid
*/
static int
i_validate_type_nelem(data_type_t type, uint_t nelem)
{
switch (type) {
case DATA_TYPE_BOOLEAN:
if (nelem != 0)
return (EINVAL);
break;
case DATA_TYPE_BOOLEAN_VALUE:
case DATA_TYPE_BYTE:
case DATA_TYPE_INT8:
case DATA_TYPE_UINT8:
case DATA_TYPE_INT16:
case DATA_TYPE_UINT16:
case DATA_TYPE_INT32:
case DATA_TYPE_UINT32:
case DATA_TYPE_INT64:
case DATA_TYPE_UINT64:
case DATA_TYPE_STRING:
case DATA_TYPE_HRTIME:
case DATA_TYPE_NVLIST:
#if !defined(_KERNEL)
case DATA_TYPE_DOUBLE:
#endif
if (nelem != 1)
return (EINVAL);
break;
case DATA_TYPE_BOOLEAN_ARRAY:
case DATA_TYPE_BYTE_ARRAY:
case DATA_TYPE_INT8_ARRAY:
case DATA_TYPE_UINT8_ARRAY:
case DATA_TYPE_INT16_ARRAY:
case DATA_TYPE_UINT16_ARRAY:
case DATA_TYPE_INT32_ARRAY:
case DATA_TYPE_UINT32_ARRAY:
case DATA_TYPE_INT64_ARRAY:
case DATA_TYPE_UINT64_ARRAY:
case DATA_TYPE_STRING_ARRAY:
case DATA_TYPE_NVLIST_ARRAY:
/* we allow arrays with 0 elements */
break;
default:
return (EINVAL);
}
return (0);
}
/*
* Verify nvp_name_sz and check the name string length.
*/
static int
i_validate_nvpair_name(nvpair_t *nvp)
{
if ((nvp->nvp_name_sz <= 0) ||
(nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
return (EFAULT);
/* verify the name string, make sure its terminated */
if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
return (EFAULT);
return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
}
static int
i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
{
switch (type) {
case DATA_TYPE_BOOLEAN_VALUE:
if (*(boolean_t *)data != B_TRUE &&
*(boolean_t *)data != B_FALSE)
return (EINVAL);
break;
case DATA_TYPE_BOOLEAN_ARRAY: {
int i;
for (i = 0; i < nelem; i++)
if (((boolean_t *)data)[i] != B_TRUE &&
((boolean_t *)data)[i] != B_FALSE)
return (EINVAL);
break;
}
default:
break;
}
return (0);
}
/*
* This function takes a pointer to what should be a nvpair and it's size
* and then verifies that all the nvpair fields make sense and can be
* trusted. This function is used when decoding packed nvpairs.
*/
static int
i_validate_nvpair(nvpair_t *nvp)
{
data_type_t type = NVP_TYPE(nvp);
int size1, size2;
/* verify nvp_name_sz, check the name string length */
if (i_validate_nvpair_name(nvp) != 0)
return (EFAULT);
if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
return (EFAULT);
/*
* verify nvp_type, nvp_value_elem, and also possibly
* verify string values and get the value size.
*/
size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
size1 = nvp->nvp_size - NVP_VALOFF(nvp);
if (size2 < 0 || size1 != NV_ALIGN(size2))
return (EFAULT);
return (0);
}
static int
nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl)
{
nvpriv_t *priv;
i_nvp_t *curr;
if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
return (EINVAL);
for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
nvpair_t *nvp = &curr->nvi_nvp;
int err;
if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
return (err);
}
return (0);
}
/*
* Frees all memory allocated for an nvpair (like embedded lists) with
* the exception of the nvpair buffer itself.
*/
static void
nvpair_free(nvpair_t *nvp)
{
switch (NVP_TYPE(nvp)) {
case DATA_TYPE_NVLIST:
nvlist_free(EMBEDDED_NVL(nvp));
break;
case DATA_TYPE_NVLIST_ARRAY: {
nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
int i;
for (i = 0; i < NVP_NELEM(nvp); i++)
if (nvlp[i] != NULL)
nvlist_free(nvlp[i]);
break;
}
default:
break;
}
}
/*
* nvlist_free - free an unpacked nvlist
*/
void
nvlist_free(nvlist_t *nvl)
{
nvpriv_t *priv;
i_nvp_t *curr;
if (nvl == NULL ||
(priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
return;
/*
* Unpacked nvlist are linked through i_nvp_t
*/
curr = priv->nvp_list;
while (curr != NULL) {
nvpair_t *nvp = &curr->nvi_nvp;
curr = curr->nvi_next;
nvpair_free(nvp);
nvp_buf_free(nvl, nvp);
}
if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
else
nvl->nvl_priv = 0;
nvt_tab_free(priv);
nv_mem_free(priv, priv, sizeof (nvpriv_t));
}
static int
nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp)
{
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
i_nvp_t *curr;
if (nvp == NULL)
return (0);
for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
if (&curr->nvi_nvp == nvp)
return (1);
return (0);
}
/*
* Make a copy of nvlist
*/
int
nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
{
return (nvlist_xdup(nvl, nvlp, nvlist_nv_alloc(kmflag)));
}
int
nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
{
int err;
nvlist_t *ret;
if (nvl == NULL || nvlp == NULL)
return (EINVAL);
if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
return (err);
if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
nvlist_free(ret);
else
*nvlp = ret;
return (err);
}
/*
* Remove all with matching name
*/
int
nvlist_remove_all(nvlist_t *nvl, const char *name)
{
int error = ENOENT;
if (nvl == NULL || name == NULL || nvl->nvl_priv == 0)
return (EINVAL);
nvpair_t *nvp;
while ((nvp = nvt_lookup_name(nvl, name)) != NULL) {
VERIFY0(nvlist_remove_nvpair(nvl, nvp));
error = 0;
}
return (error);
}
/*
* Remove first one with matching name and type
*/
int
nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
{
if (nvl == NULL || name == NULL || nvl->nvl_priv == 0)
return (EINVAL);
nvpair_t *nvp = nvt_lookup_name_type(nvl, name, type);
if (nvp == NULL)
return (ENOENT);
return (nvlist_remove_nvpair(nvl, nvp));
}
int
nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
{
if (nvl == NULL || nvp == NULL)
return (EINVAL);
int err = nvt_remove_nvpair(nvl, nvp);
if (err != 0)
return (err);
nvp_buf_unlink(nvl, nvp);
nvpair_free(nvp);
nvp_buf_free(nvl, nvp);
return (0);
}
/*
* This function calculates the size of an nvpair value.
*
* The data argument controls the behavior in case of the data types
* DATA_TYPE_STRING and
* DATA_TYPE_STRING_ARRAY
* Is data == NULL then the size of the string(s) is excluded.
*/
static int
i_get_value_size(data_type_t type, const void *data, uint_t nelem)
{
uint64_t value_sz;
if (i_validate_type_nelem(type, nelem) != 0)
return (-1);
/* Calculate required size for holding value */
switch (type) {
case DATA_TYPE_BOOLEAN:
value_sz = 0;
break;
case DATA_TYPE_BOOLEAN_VALUE:
value_sz = sizeof (boolean_t);
break;
case DATA_TYPE_BYTE:
value_sz = sizeof (uchar_t);
break;
case DATA_TYPE_INT8:
value_sz = sizeof (int8_t);
break;
case DATA_TYPE_UINT8:
value_sz = sizeof (uint8_t);
break;
case DATA_TYPE_INT16:
value_sz = sizeof (int16_t);
break;
case DATA_TYPE_UINT16:
value_sz = sizeof (uint16_t);
break;
case DATA_TYPE_INT32:
value_sz = sizeof (int32_t);
break;
case DATA_TYPE_UINT32:
value_sz = sizeof (uint32_t);
break;
case DATA_TYPE_INT64:
value_sz = sizeof (int64_t);
break;
case DATA_TYPE_UINT64:
value_sz = sizeof (uint64_t);
break;
#if !defined(_KERNEL)
case DATA_TYPE_DOUBLE:
value_sz = sizeof (double);
break;
#endif
case DATA_TYPE_STRING:
if (data == NULL)
value_sz = 0;
else
value_sz = strlen(data) + 1;
break;
case DATA_TYPE_BOOLEAN_ARRAY:
value_sz = (uint64_t)nelem * sizeof (boolean_t);
break;
case DATA_TYPE_BYTE_ARRAY:
value_sz = (uint64_t)nelem * sizeof (uchar_t);
break;
case DATA_TYPE_INT8_ARRAY:
value_sz = (uint64_t)nelem * sizeof (int8_t);
break;
case DATA_TYPE_UINT8_ARRAY:
value_sz = (uint64_t)nelem * sizeof (uint8_t);
break;
case DATA_TYPE_INT16_ARRAY:
value_sz = (uint64_t)nelem * sizeof (int16_t);
break;
case DATA_TYPE_UINT16_ARRAY:
value_sz = (uint64_t)nelem * sizeof (uint16_t);
break;
case DATA_TYPE_INT32_ARRAY:
value_sz = (uint64_t)nelem * sizeof (int32_t);
break;
case DATA_TYPE_UINT32_ARRAY:
value_sz = (uint64_t)nelem * sizeof (uint32_t);
break;
case DATA_TYPE_INT64_ARRAY:
value_sz = (uint64_t)nelem * sizeof (int64_t);
break;
case DATA_TYPE_UINT64_ARRAY:
value_sz = (uint64_t)nelem * sizeof (uint64_t);
break;
case DATA_TYPE_STRING_ARRAY:
value_sz = (uint64_t)nelem * sizeof (uint64_t);
if (data != NULL) {
char *const *strs = data;
uint_t i;
/* no alignment requirement for strings */
for (i = 0; i < nelem; i++) {
if (strs[i] == NULL)
return (-1);
value_sz += strlen(strs[i]) + 1;
}
}
break;
case DATA_TYPE_HRTIME:
value_sz = sizeof (hrtime_t);
break;
case DATA_TYPE_NVLIST:
value_sz = NV_ALIGN(sizeof (nvlist_t));
break;
case DATA_TYPE_NVLIST_ARRAY:
value_sz = (uint64_t)nelem * sizeof (uint64_t) +
(uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
break;
default:
return (-1);
}
return (value_sz > INT32_MAX ? -1 : (int)value_sz);
}
static int
nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
{
nvpriv_t *priv;
int err;
if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
nvl->nvl_priv)) == NULL)
return (ENOMEM);
nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
nvlist_free(emb_nvl);
emb_nvl->nvl_priv = 0;
}
return (err);
}
/*
* nvlist_add_common - Add new <name,value> pair to nvlist
*/
static int
nvlist_add_common(nvlist_t *nvl, const char *name,
data_type_t type, uint_t nelem, const void *data)
{
nvpair_t *nvp;
uint_t i;
int nvp_sz, name_sz, value_sz;
int err = 0;
if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
return (EINVAL);
if (nelem != 0 && data == NULL)
return (EINVAL);
/*
* Verify type and nelem and get the value size.
* In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
* is the size of the string(s) included.
*/
if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
return (EINVAL);
if (i_validate_nvpair_value(type, nelem, data) != 0)
return (EINVAL);
/*
* If we're adding an nvlist or nvlist array, ensure that we are not
* adding the input nvlist to itself, which would cause recursion,
* and ensure that no NULL nvlist pointers are present.
*/
switch (type) {
case DATA_TYPE_NVLIST:
if (data == nvl || data == NULL)
return (EINVAL);
break;
case DATA_TYPE_NVLIST_ARRAY: {
nvlist_t **onvlp = (nvlist_t **)data;
for (i = 0; i < nelem; i++) {
if (onvlp[i] == nvl || onvlp[i] == NULL)
return (EINVAL);
}
break;
}
default:
break;
}
/* calculate sizes of the nvpair elements and the nvpair itself */
name_sz = strlen(name) + 1;
if (name_sz >= 1ULL << (sizeof (nvp->nvp_name_sz) * NBBY - 1))
return (EINVAL);
nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
return (ENOMEM);
ASSERT(nvp->nvp_size == nvp_sz);
nvp->nvp_name_sz = name_sz;
nvp->nvp_value_elem = nelem;
nvp->nvp_type = type;
bcopy(name, NVP_NAME(nvp), name_sz);
switch (type) {
case DATA_TYPE_BOOLEAN:
break;
case DATA_TYPE_STRING_ARRAY: {
char *const *strs = data;
char *buf = NVP_VALUE(nvp);
char **cstrs = (void *)buf;
/* skip pre-allocated space for pointer array */
buf += nelem * sizeof (uint64_t);
for (i = 0; i < nelem; i++) {
int slen = strlen(strs[i]) + 1;
bcopy(strs[i], buf, slen);
cstrs[i] = buf;
buf += slen;
}
break;
}
case DATA_TYPE_NVLIST: {
nvlist_t *nnvl = EMBEDDED_NVL(nvp);
nvlist_t *onvl = (nvlist_t *)data;
if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
nvp_buf_free(nvl, nvp);
return (err);
}
break;
}
case DATA_TYPE_NVLIST_ARRAY: {
nvlist_t **onvlp = (nvlist_t **)data;
nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
nvlist_t *embedded = (nvlist_t *)
((uintptr_t)nvlp + nelem * sizeof (uint64_t));
for (i = 0; i < nelem; i++) {
if ((err = nvlist_copy_embedded(nvl,
onvlp[i], embedded)) != 0) {
/*
* Free any successfully created lists
*/
nvpair_free(nvp);
nvp_buf_free(nvl, nvp);
return (err);
}
nvlp[i] = embedded++;
}
break;
}
default:
bcopy(data, NVP_VALUE(nvp), value_sz);
}
/* if unique name, remove before add */
if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
(void) nvlist_remove_all(nvl, name);
else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
(void) nvlist_remove(nvl, name, type);
err = nvt_add_nvpair(nvl, nvp);
if (err != 0) {
nvpair_free(nvp);
nvp_buf_free(nvl, nvp);
return (err);
}
nvp_buf_link(nvl, nvp);
return (0);
}
int
nvlist_add_boolean(nvlist_t *nvl, const char *name)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
}
int
nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
}
int
nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
}
int
nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
}
int
nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
}
int
nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
}
int
nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
}
int
nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
}
int
nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
}
int
nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
}
int
nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
}
#if !defined(_KERNEL)
int
nvlist_add_double(nvlist_t *nvl, const char *name, double val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
}
#endif
int
nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
}
int
nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
boolean_t *a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
}
int
nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
}
int
nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
}
int
nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
}
int
nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
}
int
nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
}
int
nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
}
int
nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
}
int
nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
}
int
nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
}
int
nvlist_add_string_array(nvlist_t *nvl, const char *name,
char *const *a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
}
int
nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
}
int
nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
}
int
nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n)
{
return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
}
/* reading name-value pairs */
nvpair_t *
nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp)
{
nvpriv_t *priv;
i_nvp_t *curr;
if (nvl == NULL ||
(priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
return (NULL);
curr = NVPAIR2I_NVP(nvp);
/*
* Ensure that nvp is a valid nvpair on this nvlist.
* NB: nvp_curr is used only as a hint so that we don't always
* have to walk the list to determine if nvp is still on the list.
*/
if (nvp == NULL)
curr = priv->nvp_list;
else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
curr = curr->nvi_next;
else
curr = NULL;
priv->nvp_curr = curr;
return (curr != NULL ? &curr->nvi_nvp : NULL);
}
nvpair_t *
nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp)
{
nvpriv_t *priv;
i_nvp_t *curr;
if (nvl == NULL ||
(priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
return (NULL);
curr = NVPAIR2I_NVP(nvp);
if (nvp == NULL)
curr = priv->nvp_last;
else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
curr = curr->nvi_prev;
else
curr = NULL;
priv->nvp_curr = curr;
return (curr != NULL ? &curr->nvi_nvp : NULL);
}
boolean_t
nvlist_empty(nvlist_t *nvl)
{
nvpriv_t *priv;
if (nvl == NULL ||
(priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
return (B_TRUE);
return (priv->nvp_list == NULL);
}
char *
nvpair_name(nvpair_t *nvp)
{
return (NVP_NAME(nvp));
}
data_type_t
nvpair_type(nvpair_t *nvp)
{
return (NVP_TYPE(nvp));
}
int
nvpair_type_is_array(nvpair_t *nvp)
{
data_type_t type = NVP_TYPE(nvp);
if ((type == DATA_TYPE_BYTE_ARRAY) ||
(type == DATA_TYPE_INT8_ARRAY) ||
(type == DATA_TYPE_UINT8_ARRAY) ||
(type == DATA_TYPE_INT16_ARRAY) ||
(type == DATA_TYPE_UINT16_ARRAY) ||
(type == DATA_TYPE_INT32_ARRAY) ||
(type == DATA_TYPE_UINT32_ARRAY) ||
(type == DATA_TYPE_INT64_ARRAY) ||
(type == DATA_TYPE_UINT64_ARRAY) ||
(type == DATA_TYPE_BOOLEAN_ARRAY) ||
(type == DATA_TYPE_STRING_ARRAY) ||
(type == DATA_TYPE_NVLIST_ARRAY))
return (1);
return (0);
}
static int
nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data)
{
int value_sz;
if (nvp == NULL || nvpair_type(nvp) != type)
return (EINVAL);
/*
* For non-array types, we copy the data.
* For array types (including string), we set a pointer.
*/
switch (type) {
case DATA_TYPE_BOOLEAN:
if (nelem != NULL)
*nelem = 0;
break;
case DATA_TYPE_BOOLEAN_VALUE:
case DATA_TYPE_BYTE:
case DATA_TYPE_INT8:
case DATA_TYPE_UINT8:
case DATA_TYPE_INT16:
case DATA_TYPE_UINT16:
case DATA_TYPE_INT32:
case DATA_TYPE_UINT32:
case DATA_TYPE_INT64:
case DATA_TYPE_UINT64:
case DATA_TYPE_HRTIME:
#if !defined(_KERNEL)
case DATA_TYPE_DOUBLE:
#endif
if (data == NULL)
return (EINVAL);
if ((value_sz = i_get_value_size(type, NULL, 1)) < 0)
return (EINVAL);
bcopy(NVP_VALUE(nvp), data, (size_t)value_sz);
if (nelem != NULL)
*nelem = 1;
break;
case DATA_TYPE_NVLIST:
case DATA_TYPE_STRING:
if (data == NULL)
return (EINVAL);
*(void **)data = (void *)NVP_VALUE(nvp);
if (nelem != NULL)
*nelem = 1;
break;
case DATA_TYPE_BOOLEAN_ARRAY:
case DATA_TYPE_BYTE_ARRAY:
case DATA_TYPE_INT8_ARRAY:
case DATA_TYPE_UINT8_ARRAY:
case DATA_TYPE_INT16_ARRAY:
case DATA_TYPE_UINT16_ARRAY:
case DATA_TYPE_INT32_ARRAY:
case DATA_TYPE_UINT32_ARRAY:
case DATA_TYPE_INT64_ARRAY:
case DATA_TYPE_UINT64_ARRAY:
case DATA_TYPE_STRING_ARRAY:
case DATA_TYPE_NVLIST_ARRAY:
if (nelem == NULL || data == NULL)
return (EINVAL);
if ((*nelem = NVP_NELEM(nvp)) != 0)
*(void **)data = (void *)NVP_VALUE(nvp);
else
*(void **)data = NULL;
break;
default:
return (ENOTSUP);
}
return (0);
}
static int
nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type,
uint_t *nelem, void *data)
{
if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
return (EINVAL);
if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
return (ENOTSUP);
nvpair_t *nvp = nvt_lookup_name_type(nvl, name, type);
if (nvp == NULL)
return (ENOENT);
return (nvpair_value_common(nvp, type, nelem, data));
}
int
nvlist_lookup_boolean(nvlist_t *nvl, const char *name)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
}
int
nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val)
{
return (nvlist_lookup_common(nvl, name,
DATA_TYPE_BOOLEAN_VALUE, NULL, val));
}
int
nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
}
int
nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
}
int
nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
}
int
nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
}
int
nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
}
int
nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
}
int
nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
}
int
nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
}
int
nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
}
#if !defined(_KERNEL)
int
nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
}
#endif
int
nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
}
int
nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
}
int
nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
boolean_t **a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name,
DATA_TYPE_BOOLEAN_ARRAY, n, a));
}
int
nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
uchar_t **a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
}
int
nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
}
int
nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
uint8_t **a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
}
int
nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
int16_t **a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
}
int
nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
uint16_t **a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
}
int
nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
int32_t **a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
}
int
nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
uint32_t **a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
}
int
nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
int64_t **a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
}
int
nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
uint64_t **a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
}
int
nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
char ***a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
}
int
nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
nvlist_t ***a, uint_t *n)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
}
int
nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
{
return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
}
int
nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
{
va_list ap;
char *name;
int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
int ret = 0;
va_start(ap, flag);
while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
data_type_t type;
void *val;
uint_t *nelem;
switch (type = va_arg(ap, data_type_t)) {
case DATA_TYPE_BOOLEAN:
ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
break;
case DATA_TYPE_BOOLEAN_VALUE:
case DATA_TYPE_BYTE:
case DATA_TYPE_INT8:
case DATA_TYPE_UINT8:
case DATA_TYPE_INT16:
case DATA_TYPE_UINT16:
case DATA_TYPE_INT32:
case DATA_TYPE_UINT32:
case DATA_TYPE_INT64:
case DATA_TYPE_UINT64:
case DATA_TYPE_HRTIME:
case DATA_TYPE_STRING:
case DATA_TYPE_NVLIST:
#if !defined(_KERNEL)
case DATA_TYPE_DOUBLE:
#endif
val = va_arg(ap, void *);
ret = nvlist_lookup_common(nvl, name, type, NULL, val);
break;
case DATA_TYPE_BYTE_ARRAY:
case DATA_TYPE_BOOLEAN_ARRAY:
case DATA_TYPE_INT8_ARRAY:
case DATA_TYPE_UINT8_ARRAY:
case DATA_TYPE_INT16_ARRAY:
case DATA_TYPE_UINT16_ARRAY:
case DATA_TYPE_INT32_ARRAY:
case DATA_TYPE_UINT32_ARRAY:
case DATA_TYPE_INT64_ARRAY:
case DATA_TYPE_UINT64_ARRAY:
case DATA_TYPE_STRING_ARRAY:
case DATA_TYPE_NVLIST_ARRAY:
val = va_arg(ap, void *);
nelem = va_arg(ap, uint_t *);
ret = nvlist_lookup_common(nvl, name, type, nelem, val);
break;
default:
ret = EINVAL;
}
if (ret == ENOENT && noentok)
ret = 0;
}
va_end(ap);
return (ret);
}
/*
* Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
* returns zero and a pointer to the matching nvpair is returned in '*ret'
* (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
* multiple levels of embedded nvlists, with 'sep' as the separator. As an
* example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
* "a.d[3].e[1]". This matches the C syntax for array embed (for convenience,
* code also supports "a.d[3]e[1]" syntax).
*
* If 'ip' is non-NULL and the last name component is an array, return the
* value of the "...[index]" array index in *ip. For an array reference that
* is not indexed, *ip will be returned as -1. If there is a syntax error in
* 'name', and 'ep' is non-NULL then *ep will be set to point to the location
* inside the 'name' string where the syntax error was detected.
*/
static int
nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
nvpair_t **ret, int *ip, char **ep)
{
nvpair_t *nvp;
const char *np;
char *sepp = NULL;
char *idxp, *idxep;
nvlist_t **nva;
long idx = 0;
int n;
if (ip)
*ip = -1; /* not indexed */
if (ep)
*ep = NULL;
if ((nvl == NULL) || (name == NULL))
return (EINVAL);
sepp = NULL;
idx = 0;
/* step through components of name */
for (np = name; np && *np; np = sepp) {
/* ensure unique names */
if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
return (ENOTSUP);
/* skip white space */
skip_whitespace(np);
if (*np == 0)
break;
/* set 'sepp' to end of current component 'np' */
if (sep)
sepp = strchr(np, sep);
else
sepp = NULL;
/* find start of next "[ index ]..." */
idxp = strchr(np, '[');
/* if sepp comes first, set idxp to NULL */
if (sepp && idxp && (sepp < idxp))
idxp = NULL;
/*
* At this point 'idxp' is set if there is an index
* expected for the current component.
*/
if (idxp) {
/* set 'n' to length of current 'np' name component */
n = idxp++ - np;
/* keep sepp up to date for *ep use as we advance */
skip_whitespace(idxp);
sepp = idxp;
/* determine the index value */
#if defined(_KERNEL)
if (ddi_strtol(idxp, &idxep, 0, &idx))
goto fail;
#else
idx = strtol(idxp, &idxep, 0);
#endif
if (idxep == idxp)
goto fail;
/* keep sepp up to date for *ep use as we advance */
sepp = idxep;
/* skip white space index value and check for ']' */
skip_whitespace(sepp);
if (*sepp++ != ']')
goto fail;
/* for embedded arrays, support C syntax: "a[1].b" */
skip_whitespace(sepp);
if (sep && (*sepp == sep))
sepp++;
} else if (sepp) {
n = sepp++ - np;
} else {
n = strlen(np);
}
/* trim trailing whitespace by reducing length of 'np' */
if (n == 0)
goto fail;
for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
;
n++;
/* skip whitespace, and set sepp to NULL if complete */
if (sepp) {
skip_whitespace(sepp);
if (*sepp == 0)
sepp = NULL;
}
/*
* At this point:
* o 'n' is the length of current 'np' component.
* o 'idxp' is set if there was an index, and value 'idx'.
* o 'sepp' is set to the beginning of the next component,
* and set to NULL if we have no more components.
*
* Search for nvpair with matching component name.
*/
for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
nvp = nvlist_next_nvpair(nvl, nvp)) {
/* continue if no match on name */
if (strncmp(np, nvpair_name(nvp), n) ||
(strlen(nvpair_name(nvp)) != n))
continue;
/* if indexed, verify type is array oriented */
if (idxp && !nvpair_type_is_array(nvp))
goto fail;
/*
* Full match found, return nvp and idx if this
* was the last component.
*/
if (sepp == NULL) {
if (ret)
*ret = nvp;
if (ip && idxp)
*ip = (int)idx; /* return index */
return (0); /* found */
}
/*
* More components: current match must be
* of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
* to support going deeper.
*/
if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
nvl = EMBEDDED_NVL(nvp);
break;
} else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
(void) nvpair_value_nvlist_array(nvp,
&nva, (uint_t *)&n);
if ((n < 0) || (idx >= n))
goto fail;
nvl = nva[idx];
break;
}
/* type does not support more levels */
goto fail;
}
if (nvp == NULL)
goto fail; /* 'name' not found */
/* search for match of next component in embedded 'nvl' list */
}
fail: if (ep && sepp)
*ep = sepp;
return (EINVAL);
}
/*
* Return pointer to nvpair with specified 'name'.
*/
int
nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
{
return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
}
/*
* Determine if named nvpair exists in nvlist (use embedded separator of '.'
* and return array index). See nvlist_lookup_nvpair_ei_sep for more detailed
* description.
*/
int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
const char *name, nvpair_t **ret, int *ip, char **ep)
{
return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
}
boolean_t
nvlist_exists(nvlist_t *nvl, const char *name)
{
nvpriv_t *priv;
nvpair_t *nvp;
i_nvp_t *curr;
if (name == NULL || nvl == NULL ||
(priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
return (B_FALSE);
for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
nvp = &curr->nvi_nvp;
if (strcmp(name, NVP_NAME(nvp)) == 0)
return (B_TRUE);
}
return (B_FALSE);
}
int
nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
}
int
nvpair_value_byte(nvpair_t *nvp, uchar_t *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
}
int
nvpair_value_int8(nvpair_t *nvp, int8_t *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
}
int
nvpair_value_uint8(nvpair_t *nvp, uint8_t *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
}
int
nvpair_value_int16(nvpair_t *nvp, int16_t *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
}
int
nvpair_value_uint16(nvpair_t *nvp, uint16_t *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
}
int
nvpair_value_int32(nvpair_t *nvp, int32_t *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
}
int
nvpair_value_uint32(nvpair_t *nvp, uint32_t *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
}
int
nvpair_value_int64(nvpair_t *nvp, int64_t *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
}
int
nvpair_value_uint64(nvpair_t *nvp, uint64_t *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
}
#if !defined(_KERNEL)
int
nvpair_value_double(nvpair_t *nvp, double *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
}
#endif
int
nvpair_value_string(nvpair_t *nvp, char **val)
{
return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
}
int
nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
{
return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
}
int
nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
}
int
nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
}
int
nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
}
int
nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
}
int
nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
}
int
nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
}
int
nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
}
int
nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
}
int
nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
}
int
nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
}
int
nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
}
int
nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
{
return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
}
int
nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
{
return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
}
/*
* Add specified pair to the list.
*/
int
nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
{
if (nvl == NULL || nvp == NULL)
return (EINVAL);
return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
NVP_NELEM(nvp), NVP_VALUE(nvp)));
}
/*
* Merge the supplied nvlists and put the result in dst.
* The merged list will contain all names specified in both lists,
* the values are taken from nvl in the case of duplicates.
* Return 0 on success.
*/
/*ARGSUSED*/
int
nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
{
if (nvl == NULL || dst == NULL)
return (EINVAL);
if (dst != nvl)
return (nvlist_copy_pairs(nvl, dst));
return (0);
}
/*
* Encoding related routines
*/
#define NVS_OP_ENCODE 0
#define NVS_OP_DECODE 1
#define NVS_OP_GETSIZE 2
typedef struct nvs_ops nvs_ops_t;
typedef struct {
int nvs_op;
const nvs_ops_t *nvs_ops;
void *nvs_private;
nvpriv_t *nvs_priv;
int nvs_recursion;
} nvstream_t;
/*
* nvs operations are:
* - nvs_nvlist
* encoding / decoding of an nvlist header (nvlist_t)
* calculates the size used for header and end detection
*
* - nvs_nvpair
* responsible for the first part of encoding / decoding of an nvpair
* calculates the decoded size of an nvpair
*
* - nvs_nvp_op
* second part of encoding / decoding of an nvpair
*
* - nvs_nvp_size
* calculates the encoding size of an nvpair
*
* - nvs_nvl_fini
* encodes the end detection mark (zeros).
*/
struct nvs_ops {
int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
int (*nvs_nvl_fini)(nvstream_t *);
};
typedef struct {
char nvh_encoding; /* nvs encoding method */
char nvh_endian; /* nvs endian */
char nvh_reserved1; /* reserved for future use */
char nvh_reserved2; /* reserved for future use */
} nvs_header_t;
static int
nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
{
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
i_nvp_t *curr;
/*
* Walk nvpair in list and encode each nvpair
*/
for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
return (EFAULT);
return (nvs->nvs_ops->nvs_nvl_fini(nvs));
}
static int
nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
{
nvpair_t *nvp;
size_t nvsize;
int err;
/*
* Get decoded size of next pair in stream, alloc
* memory for nvpair_t, then decode the nvpair
*/
while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
if (nvsize == 0) /* end of list */
break;
/* make sure len makes sense */
if (nvsize < NVP_SIZE_CALC(1, 0))
return (EFAULT);
if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
return (ENOMEM);
if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
nvp_buf_free(nvl, nvp);
return (err);
}
if (i_validate_nvpair(nvp) != 0) {
nvpair_free(nvp);
nvp_buf_free(nvl, nvp);
return (EFAULT);
}
err = nvt_add_nvpair(nvl, nvp);
if (err != 0) {
nvpair_free(nvp);
nvp_buf_free(nvl, nvp);
return (err);
}
nvp_buf_link(nvl, nvp);
}
return (err);
}
static int
nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
{
nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
i_nvp_t *curr;
uint64_t nvsize = *buflen;
size_t size;
/*
* Get encoded size of nvpairs in nvlist
*/
for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
return (EINVAL);
if ((nvsize += size) > INT32_MAX)
return (EINVAL);
}
*buflen = nvsize;
return (0);
}
static int
nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
{
int err;
if (nvl->nvl_priv == 0)
return (EFAULT);
/*
* Perform the operation, starting with header, then each nvpair
*/
if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
return (err);
switch (nvs->nvs_op) {
case NVS_OP_ENCODE:
err = nvs_encode_pairs(nvs, nvl);
break;
case NVS_OP_DECODE:
err = nvs_decode_pairs(nvs, nvl);
break;
case NVS_OP_GETSIZE:
err = nvs_getsize_pairs(nvs, nvl, buflen);
break;
default:
err = EINVAL;
}
return (err);
}
static int
nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
{
switch (nvs->nvs_op) {
case NVS_OP_ENCODE: {
int err;
if (nvs->nvs_recursion >= nvpair_max_recursion)
return (EINVAL);
nvs->nvs_recursion++;
err = nvs_operation(nvs, embedded, NULL);
nvs->nvs_recursion--;
return (err);
}
case NVS_OP_DECODE: {
nvpriv_t *priv;
int err;
if (embedded->nvl_version != NV_VERSION)
return (ENOTSUP);
if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
return (ENOMEM);
nvlist_init(embedded, embedded->nvl_nvflag, priv);
if (nvs->nvs_recursion >= nvpair_max_recursion) {
nvlist_free(embedded);
return (EINVAL);
}
nvs->nvs_recursion++;
if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
nvlist_free(embedded);
nvs->nvs_recursion--;
return (err);
}
default:
break;
}
return (EINVAL);
}
static int
nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
{
size_t nelem = NVP_NELEM(nvp);
nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
int i;
switch (nvs->nvs_op) {
case NVS_OP_ENCODE:
for (i = 0; i < nelem; i++)
if (nvs_embedded(nvs, nvlp[i]) != 0)
return (EFAULT);
break;
case NVS_OP_DECODE: {
size_t len = nelem * sizeof (uint64_t);
nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
bzero(nvlp, len); /* don't trust packed data */
for (i = 0; i < nelem; i++) {
if (nvs_embedded(nvs, embedded) != 0) {
nvpair_free(nvp);
return (EFAULT);
}
nvlp[i] = embedded++;
}
break;
}
case NVS_OP_GETSIZE: {
uint64_t nvsize = 0;
for (i = 0; i < nelem; i++) {
size_t nvp_sz = 0;
if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
return (EINVAL);
if ((nvsize += nvp_sz) > INT32_MAX)
return (EINVAL);
}
*size = nvsize;
break;
}
default:
return (EINVAL);
}
return (0);
}
static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
/*
* Common routine for nvlist operations:
* encode, decode, getsize (encoded size).
*/
static int
nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
int nvs_op)
{
int err = 0;
nvstream_t nvs;
int nvl_endian;
#ifdef _LITTLE_ENDIAN
int host_endian = 1;
#else
int host_endian = 0;
#endif /* _LITTLE_ENDIAN */
nvs_header_t *nvh = (void *)buf;
if (buflen == NULL || nvl == NULL ||
(nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
return (EINVAL);
nvs.nvs_op = nvs_op;
nvs.nvs_recursion = 0;
/*
* For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
* a buffer is allocated. The first 4 bytes in the buffer are
* used for encoding method and host endian.
*/
switch (nvs_op) {
case NVS_OP_ENCODE:
if (buf == NULL || *buflen < sizeof (nvs_header_t))
return (EINVAL);
nvh->nvh_encoding = encoding;
nvh->nvh_endian = nvl_endian = host_endian;
nvh->nvh_reserved1 = 0;
nvh->nvh_reserved2 = 0;
break;
case NVS_OP_DECODE:
if (buf == NULL || *buflen < sizeof (nvs_header_t))
return (EINVAL);
/* get method of encoding from first byte */
encoding = nvh->nvh_encoding;
nvl_endian = nvh->nvh_endian;
break;
case NVS_OP_GETSIZE:
nvl_endian = host_endian;
/*
* add the size for encoding
*/
*buflen = sizeof (nvs_header_t);
break;
default:
return (ENOTSUP);
}
/*
* Create an nvstream with proper encoding method
*/
switch (encoding) {
case NV_ENCODE_NATIVE:
/*
* check endianness, in case we are unpacking
* from a file
*/
if (nvl_endian != host_endian)
return (ENOTSUP);
err = nvs_native(&nvs, nvl, buf, buflen);
break;
case NV_ENCODE_XDR:
err = nvs_xdr(&nvs, nvl, buf, buflen);
break;
default:
err = ENOTSUP;
break;
}
return (err);
}
int
nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
{
return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
}
/*
* Pack nvlist into contiguous memory
*/
int
nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
int kmflag)
{
return (nvlist_xpack(nvl, bufp, buflen, encoding,
nvlist_nv_alloc(kmflag)));
}
int
nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
nv_alloc_t *nva)
{
nvpriv_t nvpriv;
size_t alloc_size;
char *buf;
int err;
if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
return (EINVAL);
if (*bufp != NULL)
return (nvlist_common(nvl, *bufp, buflen, encoding,
NVS_OP_ENCODE));
/*
* Here is a difficult situation:
* 1. The nvlist has fixed allocator properties.
* All other nvlist routines (like nvlist_add_*, ...) use
* these properties.
* 2. When using nvlist_pack() the user can specify their own
* allocator properties (e.g. by using KM_NOSLEEP).
*
* We use the user specified properties (2). A clearer solution
* will be to remove the kmflag from nvlist_pack(), but we will
* not change the interface.
*/
nv_priv_init(&nvpriv, nva, 0);
if ((err = nvlist_size(nvl, &alloc_size, encoding)))
return (err);
if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
return (ENOMEM);
if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
NVS_OP_ENCODE)) != 0) {
nv_mem_free(&nvpriv, buf, alloc_size);
} else {
*buflen = alloc_size;
*bufp = buf;
}
return (err);
}
/*
* Unpack buf into an nvlist_t
*/
int
nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
{
return (nvlist_xunpack(buf, buflen, nvlp, nvlist_nv_alloc(kmflag)));
}
int
nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
{
nvlist_t *nvl;
int err;
if (nvlp == NULL)
return (EINVAL);
if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
return (err);
if ((err = nvlist_common(nvl, buf, &buflen, NV_ENCODE_NATIVE,
NVS_OP_DECODE)) != 0)
nvlist_free(nvl);
else
*nvlp = nvl;
return (err);
}
/*
* Native encoding functions
*/
typedef struct {
/*
* This structure is used when decoding a packed nvpair in
* the native format. n_base points to a buffer containing the
* packed nvpair. n_end is a pointer to the end of the buffer.
* (n_end actually points to the first byte past the end of the
* buffer.) n_curr is a pointer that lies between n_base and n_end.
* It points to the current data that we are decoding.
* The amount of data left in the buffer is equal to n_end - n_curr.
* n_flag is used to recognize a packed embedded list.
*/
caddr_t n_base;
caddr_t n_end;
caddr_t n_curr;
uint_t n_flag;
} nvs_native_t;
static int
nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
size_t buflen)
{
switch (nvs->nvs_op) {
case NVS_OP_ENCODE:
case NVS_OP_DECODE:
nvs->nvs_private = native;
native->n_curr = native->n_base = buf;
native->n_end = buf + buflen;
native->n_flag = 0;
return (0);
case NVS_OP_GETSIZE:
nvs->nvs_private = native;
native->n_curr = native->n_base = native->n_end = NULL;
native->n_flag = 0;
return (0);
default:
return (EINVAL);
}
}
/*ARGSUSED*/
static void
nvs_native_destroy(nvstream_t *nvs)
{
}
static int
native_cp(nvstream_t *nvs, void *buf, size_t size)
{
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
if (native->n_curr + size > native->n_end)
return (EFAULT);
/*
* The bcopy() below eliminates alignment requirement
* on the buffer (stream) and is preferred over direct access.
*/
switch (nvs->nvs_op) {
case NVS_OP_ENCODE:
bcopy(buf, native->n_curr, size);
break;
case NVS_OP_DECODE:
bcopy(native->n_curr, buf, size);
break;
default:
return (EINVAL);
}
native->n_curr += size;
return (0);
}
/*
* operate on nvlist_t header
*/
static int
nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
{
nvs_native_t *native = nvs->nvs_private;
switch (nvs->nvs_op) {
case NVS_OP_ENCODE:
case NVS_OP_DECODE:
if (native->n_flag)
return (0); /* packed embedded list */
native->n_flag = 1;
/* copy version and nvflag of the nvlist_t */
if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
return (EFAULT);
return (0);
case NVS_OP_GETSIZE:
/*
* if calculate for packed embedded list
* 4 for end of the embedded list
* else
* 2 * sizeof (int32_t) for nvl_version and nvl_nvflag
* and 4 for end of the entire list
*/
if (native->n_flag) {
*size += 4;
} else {
native->n_flag = 1;
*size += 2 * sizeof (int32_t) + 4;
}
return (0);
default:
return (EINVAL);
}
}
static int
nvs_native_nvl_fini(nvstream_t *nvs)
{
if (nvs->nvs_op == NVS_OP_ENCODE) {
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
/*
* Add 4 zero bytes at end of nvlist. They are used
* for end detection by the decode routine.
*/
if (native->n_curr + sizeof (int) > native->n_end)
return (EFAULT);
bzero(native->n_curr, sizeof (int));
native->n_curr += sizeof (int);
}
return (0);
}
static int
nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
{
if (nvs->nvs_op == NVS_OP_ENCODE) {
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
nvlist_t *packed = (void *)
(native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
/*
* Null out the pointer that is meaningless in the packed
* structure. The address may not be aligned, so we have
* to use bzero.
*/
bzero((char *)packed + offsetof(nvlist_t, nvl_priv),
sizeof (uint64_t));
}
return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
}
static int
nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
{
if (nvs->nvs_op == NVS_OP_ENCODE) {
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
int i;
/*
* Null out pointers that are meaningless in the packed
* structure. The addresses may not be aligned, so we have
* to use bzero.
*/
bzero(value, len);
for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
/*
* Null out the pointer that is meaningless in the
* packed structure. The address may not be aligned,
* so we have to use bzero.
*/
bzero((char *)packed + offsetof(nvlist_t, nvl_priv),
sizeof (uint64_t));
}
return (nvs_embedded_nvl_array(nvs, nvp, NULL));
}
static void
nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
{
switch (nvs->nvs_op) {
case NVS_OP_ENCODE: {
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
uint64_t *strp = (void *)
(native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
/*
* Null out pointers that are meaningless in the packed
* structure. The addresses may not be aligned, so we have
* to use bzero.
*/
bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t));
break;
}
case NVS_OP_DECODE: {
char **strp = (void *)NVP_VALUE(nvp);
char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
int i;
for (i = 0; i < NVP_NELEM(nvp); i++) {
strp[i] = buf;
buf += strlen(buf) + 1;
}
break;
}
}
}
static int
nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
{
data_type_t type;
int value_sz;
int ret = 0;
/*
* We do the initial bcopy of the data before we look at
* the nvpair type, because when we're decoding, we won't
* have the correct values for the pair until we do the bcopy.
*/
switch (nvs->nvs_op) {
case NVS_OP_ENCODE:
case NVS_OP_DECODE:
if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
return (EFAULT);
break;
default:
return (EINVAL);
}
/* verify nvp_name_sz, check the name string length */
if (i_validate_nvpair_name(nvp) != 0)
return (EFAULT);
type = NVP_TYPE(nvp);
/*
* Verify type and nelem and get the value size.
* In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
* is the size of the string(s) excluded.
*/
if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
return (EFAULT);
if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
return (EFAULT);
switch (type) {
case DATA_TYPE_NVLIST:
ret = nvpair_native_embedded(nvs, nvp);
break;
case DATA_TYPE_NVLIST_ARRAY:
ret = nvpair_native_embedded_array(nvs, nvp);
break;
case DATA_TYPE_STRING_ARRAY:
nvpair_native_string_array(nvs, nvp);
break;
default:
break;
}
return (ret);
}
static int
nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
{
uint64_t nvp_sz = nvp->nvp_size;
switch (NVP_TYPE(nvp)) {
case DATA_TYPE_NVLIST: {
size_t nvsize = 0;
if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
return (EINVAL);
nvp_sz += nvsize;
break;
}
case DATA_TYPE_NVLIST_ARRAY: {
size_t nvsize;
if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
return (EINVAL);
nvp_sz += nvsize;
break;
}
default:
break;
}
if (nvp_sz > INT32_MAX)
return (EINVAL);
*size = nvp_sz;
return (0);
}
static int
nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
{
switch (nvs->nvs_op) {
case NVS_OP_ENCODE:
return (nvs_native_nvp_op(nvs, nvp));
case NVS_OP_DECODE: {
nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
int32_t decode_len;
/* try to read the size value from the stream */
if (native->n_curr + sizeof (int32_t) > native->n_end)
return (EFAULT);
bcopy(native->n_curr, &decode_len, sizeof (int32_t));
/* sanity check the size value */
if (decode_len < 0 ||
decode_len > native->n_end - native->n_curr)
return (EFAULT);
*size = decode_len;
/*
* If at the end of the stream then move the cursor
* forward, otherwise nvpair_native_op() will read
* the entire nvpair at the same cursor position.
*/
if (*size == 0)
native->n_curr += sizeof (int32_t);
break;
}
default:
return (EINVAL);
}
return (0);
}
static const nvs_ops_t nvs_native_ops = {
.nvs_nvlist = nvs_native_nvlist,
.nvs_nvpair = nvs_native_nvpair,
.nvs_nvp_op = nvs_native_nvp_op,
.nvs_nvp_size = nvs_native_nvp_size,
.nvs_nvl_fini = nvs_native_nvl_fini
};
static int
nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
{
nvs_native_t native;
int err;
nvs->nvs_ops = &nvs_native_ops;
if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
*buflen - sizeof (nvs_header_t))) != 0)
return (err);
err = nvs_operation(nvs, nvl, buflen);
nvs_native_destroy(nvs);
return (err);
}
/*
* XDR encoding functions
*
* An xdr packed nvlist is encoded as:
*
* - encoding method and host endian (4 bytes)
* - nvl_version (4 bytes)
* - nvl_nvflag (4 bytes)
*
* - encoded nvpairs, the format of one xdr encoded nvpair is:
* - encoded size of the nvpair (4 bytes)
* - decoded size of the nvpair (4 bytes)
* - name string, (4 + sizeof(NV_ALIGN4(string))
* a string is coded as size (4 bytes) and data
* - data type (4 bytes)
* - number of elements in the nvpair (4 bytes)
* - data
*
* - 2 zero's for end of the entire list (8 bytes)
*/
static int
nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
{
/* xdr data must be 4 byte aligned */
if ((ulong_t)buf % 4 != 0)
return (EFAULT);
switch (nvs->nvs_op) {
case NVS_OP_ENCODE:
xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
nvs->nvs_private = xdr;
return (0);
case NVS_OP_DECODE:
xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
nvs->nvs_private = xdr;
return (0);
case NVS_OP_GETSIZE:
nvs->nvs_private = NULL;
return (0);
default:
return (EINVAL);
}
}
static void
nvs_xdr_destroy(nvstream_t *nvs)
{
switch (nvs->nvs_op) {
case NVS_OP_ENCODE:
case NVS_OP_DECODE:
xdr_destroy((XDR *)nvs->nvs_private);
break;
default:
break;
}
}
static int
nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
{
switch (nvs->nvs_op) {
case NVS_OP_ENCODE:
case NVS_OP_DECODE: {
XDR *xdr = nvs->nvs_private;
if (!xdr_int(xdr, &nvl->nvl_version) ||
!xdr_u_int(xdr, &nvl->nvl_nvflag))
return (EFAULT);
break;
}
case NVS_OP_GETSIZE: {
/*
* 2 * 4 for nvl_version + nvl_nvflag
* and 8 for end of the entire list
*/
*size += 2 * 4 + 8;
break;
}
default:
return (EINVAL);
}
return (0);
}
static int
nvs_xdr_nvl_fini(nvstream_t *nvs)
{
if (nvs->nvs_op == NVS_OP_ENCODE) {
XDR *xdr = nvs->nvs_private;
int zero = 0;
if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
return (EFAULT);
}
return (0);
}
/*
* The format of xdr encoded nvpair is:
* encode_size, decode_size, name string, data type, nelem, data
*/
static int
nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
{
data_type_t type;
char *buf;
char *buf_end = (char *)nvp + nvp->nvp_size;
int value_sz;
uint_t nelem, buflen;
bool_t ret = FALSE;
XDR *xdr = nvs->nvs_private;
ASSERT(xdr != NULL && nvp != NULL);
/* name string */
if ((buf = NVP_NAME(nvp)) >= buf_end)
return (EFAULT);
buflen = buf_end - buf;
if (!xdr_string(xdr, &buf, buflen - 1))
return (EFAULT);
nvp->nvp_name_sz = strlen(buf) + 1;
/* type and nelem */
if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
!xdr_int(xdr, &nvp->nvp_value_elem))
return (EFAULT);
type = NVP_TYPE(nvp);
nelem = nvp->nvp_value_elem;
/*
* Verify type and nelem and get the value size.
* In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
* is the size of the string(s) excluded.
*/
if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
return (EFAULT);
/* if there is no data to extract then return */
if (nelem == 0)
return (0);
/* value */
if ((buf = NVP_VALUE(nvp)) >= buf_end)
return (EFAULT);
buflen = buf_end - buf;
if (buflen < value_sz)
return (EFAULT);
switch (type) {
case DATA_TYPE_NVLIST:
if (nvs_embedded(nvs, (void *)buf) == 0)
return (0);
break;
case DATA_TYPE_NVLIST_ARRAY:
if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
return (0);
break;
case DATA_TYPE_BOOLEAN:
ret = TRUE;
break;
case DATA_TYPE_BYTE:
case DATA_TYPE_INT8:
case DATA_TYPE_UINT8:
ret = xdr_char(xdr, buf);
break;
case DATA_TYPE_INT16:
ret = xdr_short(xdr, (void *)buf);
break;
case DATA_TYPE_UINT16:
ret = xdr_u_short(xdr, (void *)buf);
break;
case DATA_TYPE_BOOLEAN_VALUE:
case DATA_TYPE_INT32:
ret = xdr_int(xdr, (void *)buf);
break;
case DATA_TYPE_UINT32:
ret = xdr_u_int(xdr, (void *)buf);
break;
case DATA_TYPE_INT64:
ret = xdr_longlong_t(xdr, (void *)buf);
break;
case DATA_TYPE_UINT64:
ret = xdr_u_longlong_t(xdr, (void *)buf);
break;
case DATA_TYPE_HRTIME:
/*
* NOTE: must expose the definition of hrtime_t here
*/
ret = xdr_longlong_t(xdr, (void *)buf);
break;
#if !defined(_KERNEL)
case DATA_TYPE_DOUBLE:
ret = xdr_double(xdr, (void *)buf);
break;
#endif
case DATA_TYPE_STRING:
ret = xdr_string(xdr, &buf, buflen - 1);
break;
case DATA_TYPE_BYTE_ARRAY:
ret = xdr_opaque(xdr, buf, nelem);
break;
case DATA_TYPE_INT8_ARRAY:
case DATA_TYPE_UINT8_ARRAY:
ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
(xdrproc_t)xdr_char);
break;
case DATA_TYPE_INT16_ARRAY:
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
sizeof (int16_t), (xdrproc_t)xdr_short);
break;
case DATA_TYPE_UINT16_ARRAY:
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
sizeof (uint16_t), (xdrproc_t)xdr_u_short);
break;
case DATA_TYPE_BOOLEAN_ARRAY:
case DATA_TYPE_INT32_ARRAY:
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
sizeof (int32_t), (xdrproc_t)xdr_int);
break;
case DATA_TYPE_UINT32_ARRAY:
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
sizeof (uint32_t), (xdrproc_t)xdr_u_int);
break;
case DATA_TYPE_INT64_ARRAY:
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
sizeof (int64_t), (xdrproc_t)xdr_longlong_t);
break;
case DATA_TYPE_UINT64_ARRAY:
ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t);
break;
case DATA_TYPE_STRING_ARRAY: {
size_t len = nelem * sizeof (uint64_t);
char **strp = (void *)buf;
int i;
if (nvs->nvs_op == NVS_OP_DECODE)
bzero(buf, len); /* don't trust packed data */
for (i = 0; i < nelem; i++) {
if (buflen <= len)
return (EFAULT);
buf += len;
buflen -= len;
if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
return (EFAULT);
if (nvs->nvs_op == NVS_OP_DECODE)
strp[i] = buf;
len = strlen(buf) + 1;
}
ret = TRUE;
break;
}
default:
break;
}
return (ret == TRUE ? 0 : EFAULT);
}
static int
nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
{
data_type_t type = NVP_TYPE(nvp);
/*
* encode_size + decode_size + name string size + data type + nelem
* where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
*/
uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
switch (type) {
case DATA_TYPE_BOOLEAN:
break;
case DATA_TYPE_BOOLEAN_VALUE:
case DATA_TYPE_BYTE:
case DATA_TYPE_INT8:
case DATA_TYPE_UINT8:
case DATA_TYPE_INT16:
case DATA_TYPE_UINT16:
case DATA_TYPE_INT32:
case DATA_TYPE_UINT32:
nvp_sz += 4; /* 4 is the minimum xdr unit */
break;
case DATA_TYPE_INT64:
case DATA_TYPE_UINT64:
case DATA_TYPE_HRTIME:
#if !defined(_KERNEL)
case DATA_TYPE_DOUBLE:
#endif
nvp_sz += 8;
break;
case DATA_TYPE_STRING:
nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
break;
case DATA_TYPE_BYTE_ARRAY:
nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
break;
case DATA_TYPE_BOOLEAN_ARRAY:
case DATA_TYPE_INT8_ARRAY:
case DATA_TYPE_UINT8_ARRAY:
case DATA_TYPE_INT16_ARRAY:
case DATA_TYPE_UINT16_ARRAY:
case DATA_TYPE_INT32_ARRAY:
case DATA_TYPE_UINT32_ARRAY:
nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
break;
case DATA_TYPE_INT64_ARRAY:
case DATA_TYPE_UINT64_ARRAY:
nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
break;
case DATA_TYPE_STRING_ARRAY: {
int i;
char **strs = (void *)NVP_VALUE(nvp);
for (i = 0; i < NVP_NELEM(nvp); i++)
nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
break;
}
case DATA_TYPE_NVLIST:
case DATA_TYPE_NVLIST_ARRAY: {
size_t nvsize = 0;
int old_nvs_op = nvs->nvs_op;
int err;
nvs->nvs_op = NVS_OP_GETSIZE;
if (type == DATA_TYPE_NVLIST)
err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
else
err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
nvs->nvs_op = old_nvs_op;
if (err != 0)
return (EINVAL);
nvp_sz += nvsize;
break;
}
default:
return (EINVAL);
}
if (nvp_sz > INT32_MAX)
return (EINVAL);
*size = nvp_sz;
return (0);
}
/*
* The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
* the largest nvpair that could be encoded in the buffer.
*
* See comments above nvpair_xdr_op() for the format of xdr encoding.
* The size of a xdr packed nvpair without any data is 5 words.
*
* Using the size of the data directly as an estimate would be ok
* in all cases except one. If the data type is of DATA_TYPE_STRING_ARRAY
* then the actual nvpair has space for an array of pointers to index
* the strings. These pointers are not encoded into the packed xdr buffer.
*
* If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
* of length 0, then each string is encoded in xdr format as a single word.
* Therefore when expanded to an nvpair there will be 2.25 word used for
* each string. (a int64_t allocated for pointer usage, and a single char
* for the null termination.)
*
* This is the calculation performed by the NVS_XDR_MAX_LEN macro.
*/
#define NVS_XDR_HDR_LEN ((size_t)(5 * 4))
#define NVS_XDR_DATA_LEN(y) (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
#define NVS_XDR_MAX_LEN(x) (NVP_SIZE_CALC(1, 0) + \
(NVS_XDR_DATA_LEN(x) * 2) + \
NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
static int
nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
{
XDR *xdr = nvs->nvs_private;
int32_t encode_len, decode_len;
switch (nvs->nvs_op) {
case NVS_OP_ENCODE: {
size_t nvsize;
if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
return (EFAULT);
decode_len = nvp->nvp_size;
encode_len = nvsize;
if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
return (EFAULT);
return (nvs_xdr_nvp_op(nvs, nvp));
}
case NVS_OP_DECODE: {
struct xdr_bytesrec bytesrec;
/* get the encode and decode size */
if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
return (EFAULT);
*size = decode_len;
/* are we at the end of the stream? */
if (*size == 0)
return (0);
/* sanity check the size parameter */
if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
return (EFAULT);
if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
return (EFAULT);
break;
}
default:
return (EINVAL);
}
return (0);
}
static const struct nvs_ops nvs_xdr_ops = {
.nvs_nvlist = nvs_xdr_nvlist,
.nvs_nvpair = nvs_xdr_nvpair,
.nvs_nvp_op = nvs_xdr_nvp_op,
.nvs_nvp_size = nvs_xdr_nvp_size,
.nvs_nvl_fini = nvs_xdr_nvl_fini
};
static int
nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
{
XDR xdr;
int err;
nvs->nvs_ops = &nvs_xdr_ops;
if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
*buflen - sizeof (nvs_header_t))) != 0)
return (err);
err = nvs_operation(nvs, nvl, buflen);
nvs_xdr_destroy(nvs);
return (err);
}
#if defined(_KERNEL)
static int __init
nvpair_init(void)
{
return (0);
}
static void __exit
nvpair_fini(void)
{
}
module_init(nvpair_init);
module_exit(nvpair_fini);
#endif
ZFS_MODULE_DESCRIPTION("Generic name/value pair implementation");
ZFS_MODULE_AUTHOR(ZFS_META_AUTHOR);
ZFS_MODULE_LICENSE(ZFS_META_LICENSE);
ZFS_MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
EXPORT_SYMBOL(nv_alloc_init);
EXPORT_SYMBOL(nv_alloc_reset);
EXPORT_SYMBOL(nv_alloc_fini);
/* list management */
EXPORT_SYMBOL(nvlist_alloc);
EXPORT_SYMBOL(nvlist_free);
EXPORT_SYMBOL(nvlist_size);
EXPORT_SYMBOL(nvlist_pack);
EXPORT_SYMBOL(nvlist_unpack);
EXPORT_SYMBOL(nvlist_dup);
EXPORT_SYMBOL(nvlist_merge);
EXPORT_SYMBOL(nvlist_xalloc);
EXPORT_SYMBOL(nvlist_xpack);
EXPORT_SYMBOL(nvlist_xunpack);
EXPORT_SYMBOL(nvlist_xdup);
EXPORT_SYMBOL(nvlist_lookup_nv_alloc);
EXPORT_SYMBOL(nvlist_add_nvpair);
EXPORT_SYMBOL(nvlist_add_boolean);
EXPORT_SYMBOL(nvlist_add_boolean_value);
EXPORT_SYMBOL(nvlist_add_byte);
EXPORT_SYMBOL(nvlist_add_int8);
EXPORT_SYMBOL(nvlist_add_uint8);
EXPORT_SYMBOL(nvlist_add_int16);
EXPORT_SYMBOL(nvlist_add_uint16);
EXPORT_SYMBOL(nvlist_add_int32);
EXPORT_SYMBOL(nvlist_add_uint32);
EXPORT_SYMBOL(nvlist_add_int64);
EXPORT_SYMBOL(nvlist_add_uint64);
EXPORT_SYMBOL(nvlist_add_string);
EXPORT_SYMBOL(nvlist_add_nvlist);
EXPORT_SYMBOL(nvlist_add_boolean_array);
EXPORT_SYMBOL(nvlist_add_byte_array);
EXPORT_SYMBOL(nvlist_add_int8_array);
EXPORT_SYMBOL(nvlist_add_uint8_array);
EXPORT_SYMBOL(nvlist_add_int16_array);
EXPORT_SYMBOL(nvlist_add_uint16_array);
EXPORT_SYMBOL(nvlist_add_int32_array);
EXPORT_SYMBOL(nvlist_add_uint32_array);
EXPORT_SYMBOL(nvlist_add_int64_array);
EXPORT_SYMBOL(nvlist_add_uint64_array);
EXPORT_SYMBOL(nvlist_add_string_array);
EXPORT_SYMBOL(nvlist_add_nvlist_array);
EXPORT_SYMBOL(nvlist_next_nvpair);
EXPORT_SYMBOL(nvlist_prev_nvpair);
EXPORT_SYMBOL(nvlist_empty);
EXPORT_SYMBOL(nvlist_add_hrtime);
EXPORT_SYMBOL(nvlist_remove);
EXPORT_SYMBOL(nvlist_remove_nvpair);
EXPORT_SYMBOL(nvlist_remove_all);
EXPORT_SYMBOL(nvlist_lookup_boolean);
EXPORT_SYMBOL(nvlist_lookup_boolean_value);
EXPORT_SYMBOL(nvlist_lookup_byte);
EXPORT_SYMBOL(nvlist_lookup_int8);
EXPORT_SYMBOL(nvlist_lookup_uint8);
EXPORT_SYMBOL(nvlist_lookup_int16);
EXPORT_SYMBOL(nvlist_lookup_uint16);
EXPORT_SYMBOL(nvlist_lookup_int32);
EXPORT_SYMBOL(nvlist_lookup_uint32);
EXPORT_SYMBOL(nvlist_lookup_int64);
EXPORT_SYMBOL(nvlist_lookup_uint64);
EXPORT_SYMBOL(nvlist_lookup_string);
EXPORT_SYMBOL(nvlist_lookup_nvlist);
EXPORT_SYMBOL(nvlist_lookup_boolean_array);
EXPORT_SYMBOL(nvlist_lookup_byte_array);
EXPORT_SYMBOL(nvlist_lookup_int8_array);
EXPORT_SYMBOL(nvlist_lookup_uint8_array);
EXPORT_SYMBOL(nvlist_lookup_int16_array);
EXPORT_SYMBOL(nvlist_lookup_uint16_array);
EXPORT_SYMBOL(nvlist_lookup_int32_array);
EXPORT_SYMBOL(nvlist_lookup_uint32_array);
EXPORT_SYMBOL(nvlist_lookup_int64_array);
EXPORT_SYMBOL(nvlist_lookup_uint64_array);
EXPORT_SYMBOL(nvlist_lookup_string_array);
EXPORT_SYMBOL(nvlist_lookup_nvlist_array);
EXPORT_SYMBOL(nvlist_lookup_hrtime);
EXPORT_SYMBOL(nvlist_lookup_pairs);
EXPORT_SYMBOL(nvlist_lookup_nvpair);
EXPORT_SYMBOL(nvlist_exists);
/* processing nvpair */
EXPORT_SYMBOL(nvpair_name);
EXPORT_SYMBOL(nvpair_type);
EXPORT_SYMBOL(nvpair_value_boolean_value);
EXPORT_SYMBOL(nvpair_value_byte);
EXPORT_SYMBOL(nvpair_value_int8);
EXPORT_SYMBOL(nvpair_value_uint8);
EXPORT_SYMBOL(nvpair_value_int16);
EXPORT_SYMBOL(nvpair_value_uint16);
EXPORT_SYMBOL(nvpair_value_int32);
EXPORT_SYMBOL(nvpair_value_uint32);
EXPORT_SYMBOL(nvpair_value_int64);
EXPORT_SYMBOL(nvpair_value_uint64);
EXPORT_SYMBOL(nvpair_value_string);
EXPORT_SYMBOL(nvpair_value_nvlist);
EXPORT_SYMBOL(nvpair_value_boolean_array);
EXPORT_SYMBOL(nvpair_value_byte_array);
EXPORT_SYMBOL(nvpair_value_int8_array);
EXPORT_SYMBOL(nvpair_value_uint8_array);
EXPORT_SYMBOL(nvpair_value_int16_array);
EXPORT_SYMBOL(nvpair_value_uint16_array);
EXPORT_SYMBOL(nvpair_value_int32_array);
EXPORT_SYMBOL(nvpair_value_uint32_array);
EXPORT_SYMBOL(nvpair_value_int64_array);
EXPORT_SYMBOL(nvpair_value_uint64_array);
EXPORT_SYMBOL(nvpair_value_string_array);
EXPORT_SYMBOL(nvpair_value_nvlist_array);
EXPORT_SYMBOL(nvpair_value_hrtime);